#include "mbed.h" #include "main.h" #include "SWO.h" #include "pca9685.h" #include "tusb322.h" #include "ds3231.h" #include "ioc.h" #include "animation.h" I2C i2c(PA_10, PA_9); // SWO_Channel swo("swo"); #ifdef REVISION_B Serial serial(PB_6, PB_7); #endif typedef enum { Decrementing = 0, Incrementing = 1, } DigitState; typedef struct { DigitState CurrentState; int Value; bool Updated; } Digit; typedef struct { Digit Digits[NUM_DIGITS]; int LastActiveDigit; int RefreshLastDigit; bool RefreshActive; int FadeDuration; } Tube; Tube Tubes[NUM_TUBES]; // Active per-tube configuration Digit Dot; Timeout DotUpdateTimeout; void DotUpdateCallback(void) { int ticks = DOT_FADE_DURATION_US / REFRESH_RATE_US; int step = ((DOT_MAX - DOT_MIN) + ticks - 1) / ticks; if (Dot.CurrentState == Incrementing && Dot.Value < DOT_MAX) { Dot.Value = (Dot.Value + step >= DOT_MAX) ? DOT_MAX : Dot.Value + step; } else if (Dot.CurrentState == Decrementing && Dot.Value > DOT_MIN) { Dot.Value = (Dot.Value - step <= DOT_MIN) ? DOT_MIN : Dot.Value - step; } Dot.Updated = true; if (Dot.Value != DOT_MAX && Dot.Value != DOT_MIN) { DotUpdateTimeout.attach_us(DotUpdateCallback, REFRESH_RATE_US); } } // Macro the per-tube callback function as each callback needs to be defined as // a unique function (callbacks cannot have arguments and are not reentrant) #define TUBE_CALLBACK(x) \ void Tube##x##UpdateCallback(void) { \ int ticks = Tubes[x].FadeDuration / REFRESH_RATE_US; \ int step = ((DIGIT_MAX - DIGIT_MIN) + ticks - 1) / ticks; \ bool activeTube = false; \ for (int i = 0; i < NUM_DIGITS; i++) { \ Digit *digit = &Tubes[x].Digits[i]; \ if (digit->CurrentState == Incrementing && digit->Value <= DIGIT_MAX) { \ digit->Value = (digit->Value + step >= DIGIT_MAX) ? DIGIT_MAX : digit->Value + step; \ digit->Updated = true; \ } else if (digit->CurrentState == Decrementing && digit->Value >= DIGIT_MIN) { \ digit->Value = (digit->Value - step <= DIGIT_MIN) ? DIGIT_MIN : digit->Value - step; \ digit->Updated = true; \ } \ activeTube |= (digit->Value != DIGIT_MAX && digit->Value != DIGIT_MIN); \ } \ if (activeTube) { \ Tube##x##UpdateTimeout.attach_us(Tube##x##UpdateCallback, REFRESH_RATE_US); \ } \ } Timeout Tube0UpdateTimeout; TUBE_CALLBACK(0) Timeout Tube1UpdateTimeout; TUBE_CALLBACK(1) Timeout Tube2UpdateTimeout; TUBE_CALLBACK(2) Timeout Tube3UpdateTimeout; TUBE_CALLBACK(3) void FadeInOutDigit(int T, int D, int Duration, bool RngUpdate = false) { // If the tube is in the middle of a refresh sequence and a call comes // in to update the tube digit (for time), override the last value of // the refresh sequence with the new digit. if (Tubes[T].RefreshActive && !RngUpdate) { Tubes[T].RefreshLastDigit = D; } // Dont update if actively refreshing tube unless RngUpdate is set if ((!RngUpdate && !Tubes[T].RefreshActive) || (RngUpdate)) { for (int i = 0; i < NUM_DIGITS; i++) { Tubes[T].Digits[i].CurrentState = Decrementing; } if (D != -1) { Tubes[T].Digits[D].CurrentState = Incrementing; } Tubes[T].FadeDuration = Duration; Tubes[T].LastActiveDigit = D; if (T == 0) { Tube0UpdateTimeout.attach_us(Tube0UpdateCallback, REFRESH_RATE_US); } else if (T == 1) { Tube1UpdateTimeout.attach_us(Tube1UpdateCallback, REFRESH_RATE_US); } else if (T == 2) { Tube2UpdateTimeout.attach_us(Tube2UpdateCallback, REFRESH_RATE_US); } else if (T == 3) { Tube3UpdateTimeout.attach_us(Tube3UpdateCallback, REFRESH_RATE_US); } } } bool RtcTick, RefreshTick, RngTick; Ticker RefreshTicker; Timeout RngRefreshTimeout; // Callback from DS3231 interrupt (1Hz) void RtcInterruptCallback(void) { RtcTick = true; } // Callback from RefreshTicker (REFRESH_RATE_US) void RefreshTickerCallback(void) { RefreshTick = true; } void RngTickerCallback(void) { RngTick = true; } Timeout RngUpdateTimeout; int RngUpdateIteration; void RngUpdateCallback(void) { int newfadeDuration = DIGIT_FADE_DURATION_US - RngUpdateIteration * DIGIT_RNG_FADE_DURATION_US; if (newfadeDuration <= DIGIT_RNG_FADE_DURATION_US) newfadeDuration = DIGIT_RNG_FADE_DURATION_US; for (int i = 0; i < NUM_TUBES; i++) { if (Tubes[i].RefreshActive) { if (RngUpdateIteration) { int nextDigit; #ifdef REFRESH_SEQUENTIAL nextDigit = (Tubes[i].LastActiveDigit >= 9 || Tubes[i].LastActiveDigit < 0) ? 0 : Tubes[i].LastActiveDigit + 1;; #endif #ifdef REFRESH_RANDOM do { nextDigit = rand() % NUM_DIGITS; } while (nextDigit == Tubes[i].LastActiveDigit || (RngUpdateIteration == 1 && nextDigit == Tubes[i].RefreshLastDigit)); #endif FadeInOutDigit(i, nextDigit, newfadeDuration, true); } else { FadeInOutDigit(i, Tubes[i].RefreshLastDigit, newfadeDuration, true); Tubes[i].RefreshActive = false; } } } if (RngUpdateIteration-- != 0) { RngUpdateTimeout.attach_us(RngUpdateCallback, newfadeDuration); } } int main() { #ifdef REVISION_B serial.baud(115200); #endif // Initialize pointers in global data structure for (int i = 0; i < NUM_TUBES; i++) { for (int j = 0; j < NUM_DIGITS; j++) { Tubes[i].Digits[j].CurrentState = Decrementing; Tubes[i].Digits[j].Value = DIGIT_MIN; Tubes[i].Digits[j].Updated = false; } Tubes[i].LastActiveDigit = -1; Tubes[i].RefreshLastDigit = -1; Tubes[i].RefreshActive = true; Tubes[i].FadeDuration = 0; } Dot.CurrentState = Decrementing; Dot.Value = DOT_MIN; Dot.Updated = false; RtcTick = false; RefreshTick = false; RngTick = false; int nextSecond, nextMinute, nextHour; int prevMinute, prevHour; int day, date, month, year; bool startup = true; // Start I2C at 400kHz for DS3231 i2c.frequency(400000); // Start with HV PSU disabled HV_EnableOutput(false); TUSB322_Init(); PCA9685_Init(); DS3231_Init(RtcInterruptCallback); // Enable HV PSU HV_EnableOutput(true); // Set PCA9685 input voltage to highest possible PCA9685_SetVoltage(1.0); // swo.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); // Bump I2C frequency to 1MHz // i2c.frequency(1000000); // Animate_Cycle_Basic(10); // Animate_Cycle_Analog(10); // Animate_Cycle_Low_Pwm(10); // Animate_Cycle_Pwm(10); // Animate_Cycle_Fade(10); // Animate_Cycle_Fade_Random(10); // Animate_Cycle_Fast(10); // Animate_Cycle_Fast_Random(100); // wait(3); // DS3231_SetTime(00, 05, 00); // DS3231_SetDate(FRIDAY, 15, 3, 19, 0); // Setup a ticker to refresh the display at 1kHz RefreshTicker.attach_us(RefreshTickerCallback, REFRESH_RATE_US); // Kick off the RNG timeout animation on startup int nextRngTimeout = DIGIT_RNG_REFRESH_INTERVAL + (rand() % DIGIT_RNG_REFRESH_VARIANCE); RngRefreshTimeout.attach(RngTickerCallback, nextRngTimeout); RngUpdateIteration = DIGIT_RNG_FADE_ITERATIONS; RngUpdateCallback(); while(1) { // On every refresh tick, update the display with new values if (RefreshTick) { RefreshTick = false; for (int i = 0; i < NUM_TUBES; i++) { for (int j = 0; j < NUM_DIGITS; j++) { if (Tubes[i].Digits[j].Updated) { PCA9685_SetDigit(i, j, Tubes[i].Digits[j].Value); Tubes[i].Digits[j].Updated = false; } } } if (Dot.Updated) { PCA9685_SetDot(Dot.Value); Dot.Updated = false; } } // On every RTC tick, read and process the current time if (RtcTick) { RtcTick = false; // Save the previous time to check if digit(s) has changed prevMinute = nextMinute; prevHour = nextHour; DS3231_GetTime(&nextSecond, &nextMinute, &nextHour); DS3231_GetDate(&day, &date, &month, &year); // Compensate for daylight savings time nextHour = IsDst(day, date, month, nextHour) ? (nextHour + 1) % 12 : nextHour % 12; if (nextHour == 0) nextHour = 12; // Update the display configuration based on the new/previous time if (startup || prevHour / 10 != nextHour / 10) { FadeInOutDigit(0, (nextHour / 10 != 0) ? nextHour / 10 : -1 , DIGIT_FADE_DURATION_US); } if (startup || prevHour % 10 != nextHour % 10) { FadeInOutDigit(1, nextHour % 10, DIGIT_FADE_DURATION_US); } if (startup || prevMinute / 10 != nextMinute / 10) { FadeInOutDigit(2, nextMinute / 10, DIGIT_FADE_DURATION_US); } if (startup || prevMinute % 10 != nextMinute % 10) { FadeInOutDigit(3, nextMinute % 10, DIGIT_FADE_DURATION_US); } Dot.CurrentState = (Dot.CurrentState == Decrementing) ? Incrementing : Decrementing; DotUpdateTimeout.attach_us(DotUpdateCallback, DOT_FADE_DURATION_US / REFRESH_RATE_US); // Clear the startup run-once flag after the first iteration startup = false; } if (RngTick) { RngTick = false; int refreshTube = rand() % NUM_TUBES; Tubes[refreshTube].RefreshLastDigit = Tubes[refreshTube].LastActiveDigit; Tubes[refreshTube].RefreshActive = true; RngUpdateIteration = DIGIT_RNG_FADE_ITERATIONS; RngUpdateCallback(); nextRngTimeout = DIGIT_RNG_REFRESH_INTERVAL + (rand() % DIGIT_RNG_REFRESH_VARIANCE); RngRefreshTimeout.attach(RngTickerCallback, nextRngTimeout); } } } void I2C_Write(int DeviceAddress, char RegAddress, char *Data, int Length) { char buffer[I2C_MAX_BUFFER+1] = {0}; if (Length > I2C_MAX_BUFFER) LED_Fault(1); buffer[0] = RegAddress; memcpy(&buffer[1], Data, Length); i2c.write(DeviceAddress << 1, buffer, Length + 1); } void I2C_Read(int DeviceAddress, char RegAddress, char *Data, int Length) { i2c.write(DeviceAddress << 1, &RegAddress, 1); i2c.read(DeviceAddress << 1, Data, Length); }