#include "mbed.h" #include "main.h" #include "SWO.h" #include "pca9685.h" #include "tusb322.h" #include "ds3231.h" #include "ioc.h" #include "animation.h" I2C i2c(PA_10, PA_9); // SWO_Channel swo("swo"); bool RtcTick, RefreshTick, RngTick; typedef struct { char Value; ushort Reg; bool Active; bool Increment; } DIGIT; typedef struct { DIGIT Digits[MAX_FADE_DIGITS]; DIGIT *NextDigit; DIGIT *PrevDigit; bool Updated; bool RefreshActive; } TUBE; TUBE Tube[NUM_TUBES] = {0}; // Active per-tube digit setting ushort DotValue = PCA9685_Min_Brightness; bool DotUpdated = false; bool DotIncrement = true; Ticker StartupUpdateTicker, RuntimeUpdateTicker, RngUpdateTicker; int StartupTickerIter, RuntimeTickerIter, RngTickerIter; void RtcTickCallback(void) { RtcTick = true; } void RefreshTickCallback(void) { RefreshTick = true; } void RngTickCallback(void) { RngTick = true; } void RuntimeTickerUpdate(void) { for (int i = 0; i < NUM_TUBES; i++) { if(!Tube[i].RefreshActive) { for (int j = 0; j < MAX_FADE_DIGITS; j++) { DIGIT *digit = &Tube[i].Digits[j]; if (digit->Active) { if (digit->Increment && digit->Reg < PCA9685_Max_Brightness) { digit->Reg += FADE_TICK_STEP; } else if (digit->Reg > PCA9685_Min_Brightness) { digit->Reg -= FADE_TICK_STEP; } Tube[i].Updated = true; } } } } DotValue = DotIncrement ? DotValue + FADE_TICK_STEP : DotValue - FADE_TICK_STEP; DotUpdated = true; if (--RuntimeTickerIter == 0) { RuntimeUpdateTicker.detach(); DotIncrement = !DotIncrement; } } void RngTickerUpdate(void) { if (--RngTickerIter == 0) { RngUpdateTicker.detach(); } } int main() { // Initialize pointers in global data structure for (int i = 0; i < NUM_TUBES; i++) { Tube[i].NextDigit = &Tube[i].Digits[0]; } RtcTick = false; RefreshTick = false; RngTick = false; int nextSecond, nextMinute, nextHour; int prevMinute, prevHour; bool startup = true; // Start I2C at 400kHz for DS3231 i2c.frequency(400000); // Start with HV PSU disabled HV_EnableOutput(false); TUSB322_Init(); PCA9685_Init(); DS3231_Init(RtcTickCallback); // Enable HV PSU HV_EnableOutput(true); // Set PCA9685 input voltage to highest possible PCA9685_SetVoltage(1.0); // swo.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); // Bump I2C frequency to 1MHz // i2c.frequency(1000000); // Setup a ticker to refresh the display at 1kHz Ticker refreshTicker; refreshTicker.attach_us(RefreshTickCallback, DIGIT_REFRESH_RATE_US); // Kick off the RNG ticker at 0.1Hz // Ticker rngTicker; // rngTicker.attach(RngTickCallback, DIGIT_RNG_REFRESH_RATE_S); // DS3231_SetTime(0, 55, 6, true); // DS3231_SetDate(0, 2, 12, 18, 0); while(1) { // Animate_Cycle_Basic(); // Animate_Cycle_Analog(); // Animate_Cycle_Low_Pwm(); // Animate_Cycle_Pwm(); // Animate_Cycle_Fade(); // Animate_Cycle_Fade_Random(); // Animate_Cycle_Fast(); // Animate_Cycle_Fast_Random(); if (RefreshTick) { RefreshTick = false; // On refresh, update the display with new values for (int i = 0; i < NUM_TUBES; i++) { if (Tube[i].Updated) { Tube[i].Updated = false; for (int j = 0; j < MAX_FADE_DIGITS; j++) { DIGIT *digit = &Tube[i].Digits[j]; if (digit->Active) { PCA9685_SetDigit(i, digit->Value, digit->Reg); if (digit->Reg == 0 && !digit->Increment) { digit->Active = false; } } } } } if (DotUpdated) { PCA9685_SetDot(DotValue); DotUpdated = false; } } if (RtcTick) { RtcTick = false; prevMinute = nextMinute; prevHour = nextHour; DS3231_GetTime(&nextSecond, &nextMinute, &nextHour); if (startup) { startup = false; for (int i = 0; i < NUM_TUBES; i++) { bool Update = false; if (i == 0 && nextHour / 10 != 0) { Tube[i].NextDigit->Value = nextHour / 10; Update = true; } else if (i == 1) { Tube[i].NextDigit->Value = nextHour % 10; Update = true; } else if (i == 2) { Tube[i].NextDigit->Value = nextMinute / 10; Update = true; } else if (i == 3) { Tube[i].NextDigit->Value = nextMinute % 10; Update = true; } if (Update) { Tube[i].NextDigit->Increment = true; Tube[i].NextDigit->Active = true; Tube[i].PrevDigit = Tube[i].NextDigit; Tube[i].NextDigit = (Tube[i].NextDigit == &Tube[i].Digits[0]) ? &Tube[i].Digits[1] : &Tube[i].Digits[0]; } } } else { for (int i = 0; i < NUM_TUBES; i++) { bool Update = false; if (i == 0 && ((prevHour / 10) != (nextHour / 10))) { if (nextHour / 10 != 0) { Tube[i].NextDigit->Value = nextHour / 10; Tube[i].NextDigit->Increment = true; Tube[i].NextDigit->Active = true; } Update = true; } else if (i == 1 && ((prevHour % 10) != (nextHour % 10))) { Tube[i].NextDigit->Value = nextHour % 10; Tube[i].NextDigit->Increment = true; Tube[i].NextDigit->Active = true; Update = true; } else if (i == 2 && ((prevMinute / 10) != (nextMinute / 10))) { Tube[i].NextDigit->Value = nextMinute / 10; Tube[i].NextDigit->Increment = true; Tube[i].NextDigit->Active = true; Update = true; } else if (i == 3 && ((prevMinute % 10) != (nextMinute % 10))) { Tube[i].NextDigit->Value = nextMinute % 10; Tube[i].NextDigit->Increment = true; Tube[i].NextDigit->Active = true; Update = true; } if (Update) { Tube[i].PrevDigit->Increment = false; Tube[i].PrevDigit = Tube[i].NextDigit; Tube[i].NextDigit = (Tube[i].NextDigit == &Tube[i].Digits[0]) ? &Tube[i].Digits[1] : &Tube[i].Digits[0]; } } } // Fade in the new time RuntimeTickerIter = FADE_TICKS; RuntimeUpdateTicker.attach(RuntimeTickerUpdate, (float)(DIGIT_REFRESH_RATE_US / 1000) / RuntimeTickerIter); } if (RngTick) { // Choose a random tube to refresh Tube[rand() % 4].RefreshActive = true; RngTickerIter = DIGIT_RNG_REFRESH_ITER * FADE_TICKS; RngUpdateTicker.attach(RngTickerUpdate, (DIGIT_REFRESH_RATE_US/1000)/FADE_TICKS); RngTick = false; } } } void I2C_Write(int DeviceAddress, char RegAddress, char *Data, int Length) { char buffer[I2C_MAX_BUFFER+1] = {0}; if (Length > I2C_MAX_BUFFER) LED_Fault(1); buffer[0] = RegAddress; memcpy(&buffer[1], Data, Length); i2c.write(DeviceAddress << 1, buffer, Length + 1); } void I2C_Read(int DeviceAddress, char RegAddress, char *Data, int Length) { i2c.write(DeviceAddress << 1, &RegAddress, 1); i2c.read(DeviceAddress << 1, Data, Length); }