/**
******************************************************************************
* @file stm32l4xx_hal_swpmi.c
* @author MCD Application Team
* @brief SWPMI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Single Wire Protocol Master Interface (SWPMI).
* + Initialization and Configuration
* + Data transfers functions
* + DMA transfers management
* + Interrupts and flags management
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
The SWPMI HAL driver can be used as follows:
(#) Declare a SWPMI_HandleTypeDef handle structure (eg. SWPMI_HandleTypeDef hswpmi).
(#) Initialize the SWPMI low level resources by implementing the HAL_SWPMI_MspInit() API:
(##) Enable the SWPMIx interface clock with __HAL_RCC_SWPMIx_CLK_ENABLE().
(##) SWPMI IO configuration:
(+++) Enable the clock for the SWPMI GPIO.
(+++) Configure these SWPMI pins as alternate function pull-up.
(##) NVIC configuration if you need to use interrupt process (HAL_SWPMI_Transmit_IT()
and HAL_SWPMI_Receive_IT() APIs):
(+++) Configure the SWPMIx interrupt priority with HAL_NVIC_SetPriority().
(+++) Enable the NVIC SWPMI IRQ handle with HAL_NVIC_EnableIRQ().
(##) DMA Configuration if you need to use DMA process (HAL_SWPMI_Transmit_DMA()
and HAL_SWPMI_Receive_DMA() APIs):
(+++) Declare a DMA handle structure for the Tx/Rx channels.
(+++) Enable the DMAx interface clock.
(+++) Configure the declared DMA handle structure with the required
Tx/Rx parameters.
(+++) Configure the DMA Tx/Rx channels and requests.
(+++) Associate the initialized DMA handle to the SWPMI DMA Tx/Rx handle.
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the DMA Tx/Rx channels.
(#) Program the Bite Rate, Tx Buffering mode, Rx Buffering mode in the Init structure.
(#) Enable the SWPMI peripheral by calling the HAL_SWPMI_Init() function.
@endverbatim
******************************************************************************
* @attention
*
*
© COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
#if defined(STM32L431xx) || defined(STM32L432xx) || defined(STM32L433xx) || defined(STM32L442xx) || defined(STM32L443xx) || \
defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || \
defined(STM32L496xx) || defined(STM32L4A6xx)
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @defgroup SWPMI SWPMI
* @brief HAL SWPMI module driver
* @{
*/
#ifdef HAL_SWPMI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup SWPMI_Private_Constants SWPMI Private Constants
* @{
*/
#define SWPMI_TIMEOUT_VALUE ((uint32_t) 22000)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void SWPMI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMAError(DMA_HandleTypeDef *hdma);
static void SWPMI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef SWPMI_Transmit_IT(SWPMI_HandleTypeDef *hswpmi);
static HAL_StatusTypeDef SWPMI_EndTransmit_IT(SWPMI_HandleTypeDef *hswpmi);
static HAL_StatusTypeDef SWPMI_Receive_IT(SWPMI_HandleTypeDef *hswpmi);
static HAL_StatusTypeDef SWPMI_EndReceive_IT(SWPMI_HandleTypeDef *hswpmi);
static HAL_StatusTypeDef SWPMI_EndTransmitReceive_IT(SWPMI_HandleTypeDef *hswpmi);
static HAL_StatusTypeDef SWPMI_WaitOnFlagSetUntilTimeout(SWPMI_HandleTypeDef *hswpmi, uint32_t Flag, uint32_t Tickstart, uint32_t Timeout);
/* Exported functions --------------------------------------------------------*/
/** @defgroup SWPMI_Exported_Functions SWPMI Exported Functions
* @{
*/
/** @defgroup SWPMI_Exported_Group1 Initialization/de-initialization methods
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the SWPMI peripheral.
(+) De-initialize the SWPMI peripheral.
@endverbatim
* @{
*/
/**
* @brief Initialize the SWPMI peripheral according to the specified parameters in the SWPMI_InitTypeDef.
* @param hswpmi: SWPMI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Init(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
__IO uint32_t wait_loop_index = 0;
/* Check the SWPMI handle allocation */
if(hswpmi == NULL)
{
status = HAL_ERROR;
}
else
{
/* Check the parameters */
assert_param(IS_SWPMI_VOLTAGE_CLASS(hswpmi->Init.VoltageClass));
assert_param(IS_SWPMI_BITRATE_VALUE(hswpmi->Init.BitRate));
assert_param(IS_SWPMI_TX_BUFFERING_MODE(hswpmi->Init.TxBufferingMode));
assert_param(IS_SWPMI_RX_BUFFERING_MODE(hswpmi->Init.RxBufferingMode));
if(hswpmi->State == HAL_SWPMI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hswpmi->Lock = HAL_UNLOCKED;
/* Init the low level hardware : GPIO, CLOCK, CORTEX */
HAL_SWPMI_MspInit(hswpmi);
}
hswpmi->State = HAL_SWPMI_STATE_BUSY;
/* Disable SWPMI interface */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Clear all SWPMI interface flags */
WRITE_REG(hswpmi->Instance->ICR, 0x019F);
/* Apply Voltage class selection */
MODIFY_REG(hswpmi->Instance->OR, SWPMI_OR_CLASS, hswpmi->Init.VoltageClass);
/* If Voltage class B, apply 300 µs delay */
if(hswpmi->Init.VoltageClass == SWPMI_VOLTAGE_CLASS_B)
{
/* Insure 300 µs wait to insure SWPMI_IO output not higher than 1.8V */
/* Wait loop initialization and execution */
/* Note: Variable divided by 4 to compensate partially CPU processing cycles. */
wait_loop_index = (300 * (SystemCoreClock / (1000000 * 4))) + 150;
while(wait_loop_index != 0)
{
wait_loop_index--;
}
}
/* Configure the BRR register (Bitrate) */
WRITE_REG(hswpmi->Instance->BRR, hswpmi->Init.BitRate);
/* Apply SWPMI CR configuration */
MODIFY_REG(hswpmi->Instance->CR, \
SWPMI_CR_RXDMA | SWPMI_CR_TXDMA | SWPMI_CR_RXMODE | SWPMI_CR_TXMODE, \
hswpmi->Init.TxBufferingMode | hswpmi->Init.RxBufferingMode);
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
hswpmi->State = HAL_SWPMI_STATE_READY;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
return status;
}
/**
* @brief De-initialize the SWPMI peripheral.
* @param hswpmi: SWPMI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_DeInit(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the SWPMI handle allocation */
if(hswpmi == NULL)
{
status = HAL_ERROR;
}
else
{
/* Check the parameters */
assert_param(IS_SWPMI_INSTANCE(hswpmi->Instance));
hswpmi->State = HAL_SWPMI_STATE_BUSY;
/* Disable SWPMI interface */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* DeInit the low level hardware */
HAL_SWPMI_MspDeInit(hswpmi);
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
hswpmi->State = HAL_SWPMI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hswpmi);
}
return status;
}
/**
* @brief Initialize the SWPMI MSP.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_MspInit(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_MspInit can be implemented in the user file
*/
}
/**
* @brief DeInitialize the SWPMI MSP.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_MspDeInit(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_MspDeInit can be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup SWPMI_Exported_Group2 IO operation methods
* @brief SWPMI Transmit/Receive functions
*
@verbatim
===============================================================================
##### IO operation methods #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the SWPMI
data transfers.
(#) There are two modes of transfer:
(++) Blocking mode: The communication is performed in polling mode.
The HAL status of all data processing is returned by the same function
after finishing transfer.
(++) Non-Blocking mode: The communication is performed using Interrupts
or DMA. The end of the data processing will be indicated through the
dedicated SWPMI Interrupt handler (HAL_SWPMI_IRQHandler()) when using Interrupt mode or
the selected DMA channel interrupt handler when using DMA mode.
The HAL_SWPMI_TxCpltCallback(), HAL_SWPMI_RxCpltCallback() user callbacks
will be executed respectively at the end of the transmit or receive process.
The HAL_SWPMI_ErrorCallback() user callback will be executed when a communication error is detected.
(#) Blocking mode API's are:
(++) HAL_SWPMI_Transmit()
(++) HAL_SWPMI_Receive()
(#) Non-Blocking mode API's with Interrupt are:
(++) HAL_SWPMI_Transmit_IT()
(++) HAL_SWPMI_Receive_IT()
(++) HAL_SWPMI_IRQHandler()
(#) Non-Blocking mode API's with DMA are:
(++) HAL_SWPMI_Transmit_DMA()
(++) HAL_SWPMI_Receive_DMA()
(++) HAL_SWPMI_DMAPause()
(++) HAL_SWPMI_DMAResume()
(++) HAL_SWPMI_DMAStop()
(#) A set of Transfer Complete Callbacks are provided in Non-Blocking mode:
(++) HAL_SWPMI_TxHalfCpltCallback()
(++) HAL_SWPMI_TxCpltCallback()
(++) HAL_SWPMI_RxHalfCpltCallback()
(++) HAL_SWPMI_RxCpltCallback()
(++) HAL_SWPMI_ErrorCallback()
(#) The capability to launch the above IO operations in loopback mode for
user application verification:
(++) HAL_SWPMI_EnableLoopback()
(++) HAL_SWPMI_DisableLoopback()
@endverbatim
* @{
*/
/**
* @brief Transmit an amount of data in blocking mode.
* @param hswpmi: pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for SWPMI module.
* @param pData: Pointer to data buffer
* @param Size: Amount of data to be sent
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Transmit(SWPMI_HandleTypeDef *hswpmi, uint32_t* pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
HAL_StatusTypeDef status = HAL_OK;
if((pData == NULL ) || (Size == 0))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
if((hswpmi->State == HAL_SWPMI_STATE_READY) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_RX))
{
/* Check if a non-blocking receive process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
/* Disable any transmitter interrupts */
__HAL_SWPMI_DISABLE_IT(hswpmi, SWPMI_IT_TCIE | SWPMI_IT_TIE | SWPMI_IT_TXUNRIE | SWPMI_IT_TXBEIE);
/* Disable any transmitter flags */
__HAL_SWPMI_CLEAR_FLAG(hswpmi, SWPMI_FLAG_TXBEF | SWPMI_FLAG_TXUNRF | SWPMI_FLAG_TCF);
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
do
{
/* Wait the TXE to write data */
if(HAL_IS_BIT_SET(hswpmi->Instance->ISR, SWPMI_FLAG_TXE))
{
hswpmi->Instance->TDR = (*pData++);
Size--;
}
else
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
{
status = HAL_TIMEOUT;
break;
}
}
}
} while(Size != 0);
/* Wait on TXBEF flag to be able to start a second transfer */
if(SWPMI_WaitOnFlagSetUntilTimeout(hswpmi, SWPMI_FLAG_TXBEF, tickstart, Timeout) != HAL_OK)
{
status = HAL_TIMEOUT;
}
if(status == HAL_OK)
{
/* Check if a non-blocking receive Process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
}
if((status != HAL_OK) && (status != HAL_BUSY))
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Receive an amount of data in blocking mode.
* @param hswpmi: pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for SWPMI module.
* @param pData: Pointer to data buffer
* @param Size: Amount of data to be received
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Receive(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
HAL_StatusTypeDef status = HAL_OK;
if((pData == NULL ) || (Size == 0))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
if((hswpmi->State == HAL_SWPMI_STATE_READY) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX))
{
/* Check if a non-blocking transmit process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
/* Disable any receiver interrupts */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_SRIE | SWPMI_IT_RIE | SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE | SWPMI_IT_RXBFIE);
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
do
{
/* Wait the RXNE to read data */
if(HAL_IS_BIT_SET(hswpmi->Instance->ISR, SWPMI_FLAG_RXNE))
{
(*pData++) = hswpmi->Instance->RDR;
Size--;
}
else
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
{
status = HAL_TIMEOUT;
break;
}
}
}
} while(Size != 0);
if(status == HAL_OK)
{
if(HAL_IS_BIT_SET(hswpmi->Instance->ISR, SWPMI_FLAG_RXBFF))
{
/* Clear RXBFF at end of reception */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXBFF);
}
/* Check if a non-blocking transmit Process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
}
if((status != HAL_OK) && (status != HAL_BUSY))
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Transmit an amount of data in non-blocking mode with interrupt.
* @param hswpmi: pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for SWPMI module.
* @param pData: Pointer to data buffer
* @param Size: Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Transmit_IT(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
if((pData == NULL ) || (Size == 0))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
if((hswpmi->State == HAL_SWPMI_STATE_READY) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_RX))
{
/* Update handle */
hswpmi->pTxBuffPtr = pData;
hswpmi->TxXferSize = Size;
hswpmi->TxXferCount = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a receive process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Enable the SWPMI transmit underrun error */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_TXUNRIE);
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI interrupts: */
/* - Transmit data register empty */
/* - Transmit buffer empty */
/* - Transmit/Reception completion */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_TIE | SWPMI_IT_TXBEIE | SWPMI_IT_TCIE);
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Receive an amount of data in non-blocking mode with interrupt.
* @param hswpmi: SWPMI handle
* @param pData: pointer to data buffer
* @param Size: amount of data to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Receive_IT(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
if((pData == NULL ) || (Size == 0))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
if((hswpmi->State == HAL_SWPMI_STATE_READY) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX))
{
/* Update handle */
hswpmi->pRxBuffPtr = pData;
hswpmi->RxXferSize = Size;
hswpmi->RxXferCount = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a transmit process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI slave resume */
/* Enable the SWPMI Data Register not empty Interrupt, receive CRC Error, receive overrun and RxBuf Interrupt */
/* Enable the SWPMI Transmit/Reception completion */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_RIE | SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE | SWPMI_IT_RXBFIE);
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Transmit an amount of data in non-blocking mode with DMA interrupt.
* @param hswpmi: SWPMI handle
* @param pData: pointer to data buffer
* @param Size: amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Transmit_DMA(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
if((pData == NULL ) || (Size == 0))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
if((hswpmi->State == HAL_SWPMI_STATE_READY) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_RX))
{
/* Update handle */
hswpmi->pTxBuffPtr = pData;
hswpmi->TxXferSize = Size;
hswpmi->TxXferCount = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a receive process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Set the SWPMI DMA transfer complete callback */
hswpmi->hdmatx->XferCpltCallback = SWPMI_DMATransmitCplt;
/* Set the SWPMI DMA Half transfer complete callback */
hswpmi->hdmatx->XferHalfCpltCallback = SWPMI_DMATxHalfCplt;
/* Set the DMA error callback */
hswpmi->hdmatx->XferErrorCallback = SWPMI_DMAError;
/* Enable the SWPMI transmit DMA Channel */
HAL_DMA_Start_IT(hswpmi->hdmatx, (uint32_t)hswpmi->pTxBuffPtr, (uint32_t)&hswpmi->Instance->TDR, Size);
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI transmit underrun error */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_TXUNRIE);
/* Enable the DMA transfer for transmit request by setting the TXDMA bit
in the SWPMI CR register */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_TXDMA);
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA interrupt.
* @param hswpmi: SWPMI handle
* @param pData: pointer to data buffer
* @param Size: amount of data to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Receive_DMA(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
if((pData == NULL ) || (Size == 0))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
if((hswpmi->State == HAL_SWPMI_STATE_READY) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX))
{
/* Update handle */
hswpmi->pRxBuffPtr = pData;
hswpmi->RxXferSize = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a transmit process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Set the SWPMI DMA transfer complete callback */
hswpmi->hdmarx->XferCpltCallback = SWPMI_DMAReceiveCplt;
/* Set the SWPMI DMA Half transfer complete callback */
hswpmi->hdmarx->XferHalfCpltCallback = SWPMI_DMARxHalfCplt;
/* Set the DMA error callback */
hswpmi->hdmarx->XferErrorCallback = SWPMI_DMAError;
/* Enable the DMA request */
HAL_DMA_Start_IT(hswpmi->hdmarx, (uint32_t)&hswpmi->Instance->RDR, (uint32_t)hswpmi->pRxBuffPtr, Size);
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI receive CRC Error and receive overrun interrupts */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE);
/* Enable the DMA transfer for the receiver request by setting the RXDMA bit
in the SWPMI CR register */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_RXDMA);
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Stop all DMA transfers.
* @param hswpmi: SWPMI handle
* @retval HAL_OK
*/
HAL_StatusTypeDef HAL_SWPMI_DMAStop(SWPMI_HandleTypeDef *hswpmi)
{
/* Process Locked */
__HAL_LOCK(hswpmi);
/* Disable the SWPMI Tx/Rx DMA requests */
CLEAR_BIT(hswpmi->Instance->CR, (SWPMI_CR_TXDMA | SWPMI_CR_RXDMA));
/* Abort the SWPMI DMA tx channel */
if(hswpmi->hdmatx != NULL)
{
HAL_DMA_Abort(hswpmi->hdmatx);
}
/* Abort the SWPMI DMA rx channel */
if(hswpmi->hdmarx != NULL)
{
HAL_DMA_Abort(hswpmi->hdmarx);
}
/* Disable SWPMI interface */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
hswpmi->State = HAL_SWPMI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return HAL_OK;
}
/**
* @brief Enable the Loopback mode.
* @param hswpmi: SWPMI handle
* @note Loopback mode is to be used only for test purposes
* @retval HAL_OK / HAL_BUSY
*/
HAL_StatusTypeDef HAL_SWPMI_EnableLoopback(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(hswpmi);
/* Check SWPMI not enabled */
if(READ_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT) != RESET)
{
status = HAL_BUSY;
}
else
{
/* Set Loopback */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_LPBK);
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Disable the Loopback mode.
* @param hswpmi: SWPMI handle
* @note Loopback mode is to be used only for test purposes
* @retval HAL_OK / HAL_BUSY
*/
HAL_StatusTypeDef HAL_SWPMI_DisableLoopback(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(hswpmi);
/* Check SWPMI not enabled */
if(READ_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT) != RESET)
{
status = HAL_BUSY;
}
else
{
/* Reset Loopback */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_LPBK);
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @}
*/
/** @defgroup SWPMI_Exported_Group3 SWPMI IRQ handler and callbacks
* @brief SWPMI IRQ handler.
*
@verbatim
==============================================================================
##### SWPMI IRQ handler and callbacks #####
==============================================================================
[..] This section provides SWPMI IRQ handler and callback functions called within
the IRQ handler.
@endverbatim
* @{
*/
/**
* @brief Handle SWPMI interrupt request.
* @param hswpmi: SWPMI handle
* @retval None
*/
void HAL_SWPMI_IRQHandler(SWPMI_HandleTypeDef *hswpmi)
{
uint32_t regisr = READ_REG(hswpmi->Instance->ISR);
uint32_t regier = READ_REG(hswpmi->Instance->IER);
uint32_t errcode = HAL_SWPMI_ERROR_NONE;
/* SWPMI CRC error interrupt occurred --------------------------------------*/
if(((regisr & SWPMI_FLAG_RXBERF) != RESET) && ((regier & SWPMI_IT_RXBERIE) != RESET))
{
/* Disable Receive CRC interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_RXBERIE | SWPMI_IT_RXBFIE);
/* Clear Receive CRC and Receive buffer full flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXBERF | SWPMI_FLAG_RXBFF);
errcode |= HAL_SWPMI_ERROR_CRC;
}
/* SWPMI Over-Run interrupt occurred -----------------------------------------*/
if(((regisr & SWPMI_FLAG_RXOVRF) != RESET) && ((regier & SWPMI_IT_RXOVRIE) != RESET))
{
/* Disable Receive overrun interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_RXOVRIE);
/* Clear Receive overrun flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXOVRF);
errcode |= HAL_SWPMI_ERROR_OVR;
}
/* SWPMI Under-Run interrupt occurred -----------------------------------------*/
if(((regisr & SWPMI_FLAG_TXUNRF) != RESET) && ((regier & SWPMI_IT_TXUNRIE) != RESET))
{
/* Disable Transmit under run interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_TXUNRIE);
/* Clear Transmit under run flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_TXUNRF);
errcode |= HAL_SWPMI_ERROR_UDR;
}
/* Call SWPMI Error Call back function if needed --------------------------*/
if(errcode != HAL_SWPMI_ERROR_NONE)
{
hswpmi->ErrorCode |= errcode;
if((errcode & HAL_SWPMI_ERROR_UDR) != RESET)
{
/* Check TXDMA transfer to abort */
if(HAL_IS_BIT_SET(hswpmi->Instance->CR, SWPMI_CR_TXDMA))
{
/* Disable DMA TX at SWPMI level */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_TXDMA);
/* Abort the USART DMA Tx channel */
if(hswpmi->hdmatx != NULL)
{
/* Set the SWPMI Tx DMA Abort callback :
will lead to call HAL_SWPMI_ErrorCallback() at end of DMA abort procedure */
hswpmi->hdmatx->XferAbortCallback = SWPMI_DMAAbortOnError;
/* Abort DMA TX */
if(HAL_DMA_Abort_IT(hswpmi->hdmatx) != HAL_OK)
{
/* Call Directly hswpmi->hdmatx->XferAbortCallback function in case of error */
hswpmi->hdmatx->XferAbortCallback(hswpmi->hdmatx);
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
HAL_SWPMI_ErrorCallback(hswpmi);
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
HAL_SWPMI_ErrorCallback(hswpmi);
}
}
else
{
/* Check RXDMA transfer to abort */
if(HAL_IS_BIT_SET(hswpmi->Instance->CR, SWPMI_CR_RXDMA))
{
/* Disable DMA RX at SWPMI level */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_RXDMA);
/* Abort the USART DMA Rx channel */
if(hswpmi->hdmarx != NULL)
{
/* Set the SWPMI Rx DMA Abort callback :
will lead to call HAL_SWPMI_ErrorCallback() at end of DMA abort procedure */
hswpmi->hdmarx->XferAbortCallback = SWPMI_DMAAbortOnError;
/* Abort DMA RX */
if(HAL_DMA_Abort_IT(hswpmi->hdmarx) != HAL_OK)
{
/* Call Directly hswpmi->hdmarx->XferAbortCallback function in case of error */
hswpmi->hdmarx->XferAbortCallback(hswpmi->hdmarx);
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
HAL_SWPMI_ErrorCallback(hswpmi);
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
HAL_SWPMI_ErrorCallback(hswpmi);
}
}
}
/* SWPMI in mode Receiver ---------------------------------------------------*/
if(((regisr & SWPMI_FLAG_RXNE) != RESET) && ((regier & SWPMI_IT_RIE) != RESET))
{
SWPMI_Receive_IT(hswpmi);
}
/* SWPMI in mode Transmitter ------------------------------------------------*/
if(((regisr & SWPMI_FLAG_TXE) != RESET) && ((regier & SWPMI_IT_TIE) != RESET))
{
SWPMI_Transmit_IT(hswpmi);
}
/* SWPMI in mode Transmitter (Transmit buffer empty) ------------------------*/
if(((regisr & SWPMI_FLAG_TXBEF) != RESET) && ((regier & SWPMI_IT_TXBEIE) != RESET))
{
SWPMI_EndTransmit_IT(hswpmi);
}
/* SWPMI in mode Receiver (Receive buffer full) -----------------------------*/
if(((regisr & SWPMI_FLAG_RXBFF) != RESET) && ((regier & SWPMI_IT_RXBFIE) != RESET))
{
SWPMI_EndReceive_IT(hswpmi);
}
/* Both Transmission and reception complete ---------------------------------*/
if(((regisr & SWPMI_FLAG_TCF) != RESET) && ((regier & SWPMI_IT_TCIE) != RESET))
{
SWPMI_EndTransmitReceive_IT(hswpmi);
}
}
/**
* @brief Tx Transfer completed callback.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_TxCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_TxCpltCallback is to be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callback.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_TxHalfCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_SWPMI_TxHalfCpltCallback is to be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callback.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_RxCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_RxCpltCallback is to be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callback.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_RxHalfCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_SWPMI_RxHalfCpltCallback is to be implemented in the user file
*/
}
/**
* @brief SWPMI error callback.
* @param hswpmi: SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_ErrorCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_ErrorCallback is to be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup SWPMI_Exported_Group4 Peripheral Control methods
* @brief SWPMI control functions
*
@verbatim
===============================================================================
##### Peripheral Control methods #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the SWPMI.
(+) HAL_SWPMI_GetState() API is helpful to check in run-time the state of the SWPMI peripheral
(+) HAL_SWPMI_GetError() API is helpful to check in run-time the error state of the SWPMI peripheral
@endverbatim
* @{
*/
/**
* @brief Return the SWPMI handle state.
* @param hswpmi: SWPMI handle
* @retval HAL state
*/
HAL_SWPMI_StateTypeDef HAL_SWPMI_GetState(SWPMI_HandleTypeDef *hswpmi)
{
/* Return SWPMI handle state */
return hswpmi->State;
}
/**
* @brief Return the SWPMI error code.
* @param hswpmi : pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for the specified SWPMI.
* @retval SWPMI Error Code
*/
uint32_t HAL_SWPMI_GetError(SWPMI_HandleTypeDef *hswpmi)
{
return hswpmi->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SWPMI_Private_Functions SWPMI Private Functions
* @{
*/
/**
* @brief Transmit an amount of data in interrupt mode.
* @note Function called under interruption only, once interruptions have been enabled by HAL_SWPMI_Transmit_IT()
* @param hswpmi: SWPMI handle
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_Transmit_IT(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
if ((hswpmi->State == HAL_SWPMI_STATE_BUSY_TX) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX))
{
if(hswpmi->TxXferCount == 0)
{
/* Disable the SWPMI TXE and Underrun Interrupts */
CLEAR_BIT(hswpmi->Instance->IER, (SWPMI_IT_TIE | SWPMI_IT_TXUNRIE));
}
else
{
hswpmi->Instance->TDR = (uint32_t)(*hswpmi->pTxBuffPtr++);
hswpmi->TxXferCount--;
}
}
else
{
status = HAL_BUSY;
}
return status;
}
/**
* @brief Wraps up transmission in non-blocking mode.
* @param hswpmi: SWPMI handle
* @retval HAL status
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_EndTransmit_IT(SWPMI_HandleTypeDef *hswpmi)
{
/* Clear the SWPMI Transmit buffer empty Flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_TXBEF);
/* Disable the all SWPMI Transmit Interrupts */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_TIE | SWPMI_IT_TXUNRIE | SWPMI_IT_TXBEIE);
/* Check if a receive Process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
HAL_SWPMI_TxCpltCallback(hswpmi);
return HAL_OK;
}
/**
* @brief Receive an amount of data in interrupt mode.
* @note Function called under interruption only, once interruptions have been enabled by HAL_SWPMI_Receive_IT()
* @param hswpmi: SWPMI handle
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_Receive_IT(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
if((hswpmi->State == HAL_SWPMI_STATE_BUSY_RX) || (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX))
{
*hswpmi->pRxBuffPtr++ = (uint32_t)(hswpmi->Instance->RDR);
if(--hswpmi->RxXferCount == 0)
{
/* Wait for RXBFF flag to update state */
HAL_SWPMI_RxCpltCallback(hswpmi);
}
}
else
{
status = HAL_BUSY;
}
return status;
}
/**
* @brief Wraps up reception in non-blocking mode.
* @param hswpmi: SWPMI handle
* @retval HAL status
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_EndReceive_IT(SWPMI_HandleTypeDef *hswpmi)
{
/* Clear the SWPMI Receive buffer full Flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXBFF);
/* Disable the all SWPMI Receive Interrupts */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_RIE | SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE | SWPMI_IT_RXBFIE);
/* Check if a transmit Process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
return HAL_OK;
}
/**
* @brief Wraps up transmission and reception in non-blocking mode.
* @param hswpmi: SWPMI handle
* @retval HAL status
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_EndTransmitReceive_IT(SWPMI_HandleTypeDef *hswpmi)
{
/* Clear the SWPMI Transmission Complete Flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_TCF);
/* Disable the SWPMI Transmission Complete Interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_TCIE);
/* Check if a receive Process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX)
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
return HAL_OK;
}
/**
* @brief DMA SWPMI transmit process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void SWPMI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef* hswpmi = ( SWPMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
uint32_t tickstart = 0;
/* DMA Normal mode*/
if((hdma->Instance->CCR & DMA_CCR_CIRC) != SET)
{
hswpmi->TxXferCount = 0;
/* Disable the DMA transfer for transmit request by setting the TXDMA bit
in the SWPMI CR register */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_TXDMA);
/* Init tickstart for timeout managment*/
tickstart = HAL_GetTick();
/* Wait the TXBEF */
if(SWPMI_WaitOnFlagSetUntilTimeout(hswpmi, SWPMI_FLAG_TXBEF, tickstart, SWPMI_TIMEOUT_VALUE) != HAL_OK)
{
/* Timeout occurred */
HAL_SWPMI_ErrorCallback(hswpmi);
}
else
{
/* No Timeout */
/* Check if a receive process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
HAL_SWPMI_TxCpltCallback(hswpmi);
}
}
/* DMA Circular mode */
else
{
HAL_SWPMI_TxCpltCallback(hswpmi);
}
}
/**
* @brief DMA SWPMI transmit process half complete callback.
* @param hdma : DMA handle
* @retval None
*/
static void SWPMI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef* hswpmi = (SWPMI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
HAL_SWPMI_TxHalfCpltCallback(hswpmi);
}
/**
* @brief DMA SWPMI receive process complete callback.
* @param hdma: DMA handle
* @retval None
*/
static void SWPMI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef* hswpmi = ( SWPMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* DMA Normal mode*/
if((hdma->Instance->CCR & DMA_CCR_CIRC) == RESET)
{
hswpmi->RxXferCount = 0;
/* Disable the DMA transfer for the receiver request by setting the RXDMA bit
in the SWPMI CR register */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_RXDMA);
/* Check if a transmit Process is ongoing or not */
if(hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
HAL_SWPMI_RxCpltCallback(hswpmi);
}
/**
* @brief DMA SWPMI receive process half complete callback.
* @param hdma : DMA handle
* @retval None
*/
static void SWPMI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef* hswpmi = (SWPMI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
HAL_SWPMI_RxHalfCpltCallback(hswpmi);
}
/**
* @brief DMA SWPMI communication error callback.
* @param hdma: DMA handle
* @retval None
*/
static void SWPMI_DMAError(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef* hswpmi = ( SWPMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Update handle */
hswpmi->RxXferCount = 0;
hswpmi->TxXferCount = 0;
hswpmi->State= HAL_SWPMI_STATE_READY;
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_DMA;
HAL_SWPMI_ErrorCallback(hswpmi);
}
/**
* @brief DMA SWPMI communication abort callback.
* @param hdma: DMA handle
* @retval None
*/
static void SWPMI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef* hswpmi = ( SWPMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Update handle */
hswpmi->RxXferCount = 0;
hswpmi->TxXferCount = 0;
hswpmi->State= HAL_SWPMI_STATE_READY;
HAL_SWPMI_ErrorCallback(hswpmi);
}
/**
* @brief Handle SWPMI Communication Timeout.
* @param hswpmi: SWPMI handle
* @param Flag: specifies the SWPMI flag to check.
* @param Tickstart Tick start value
* @param Timeout timeout duration.
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_WaitOnFlagSetUntilTimeout(SWPMI_HandleTypeDef *hswpmi, uint32_t Flag, uint32_t Tickstart, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
/* Wait until flag is set */
while(!(HAL_IS_BIT_SET(hswpmi->Instance->ISR, Flag)))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick()-Tickstart) > Timeout))
{
hswpmi->State = HAL_SWPMI_STATE_READY;
status = HAL_TIMEOUT;
break;
}
}
}
return status;
}
/**
* @}
*/
#endif /* HAL_SWPMI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
#endif /* STM32L431xx || STM32L432xx || STM32L433xx || STM32L442xx || STM32L443xx || */
/* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || */
/* STM32L496xx || STM32L4A6xx */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/