/**
******************************************************************************
* @file stm32l4xx_hal_rcc.h
* @author MCD Application Team
* @brief Header file of RCC HAL module.
******************************************************************************
* @attention
*
*
© COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L4xx_HAL_RCC_H
#define __STM32L4xx_HAL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal_def.h"
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @addtogroup RCC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup RCC_Exported_Types RCC Exported Types
* @{
*/
/**
* @brief RCC PLL configuration structure definition
*/
typedef struct
{
uint32_t PLLState; /*!< The new state of the PLL.
This parameter can be a value of @ref RCC_PLL_Config */
uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source.
This parameter must be a value of @ref RCC_PLL_Clock_Source */
uint32_t PLLM; /*!< PLLM: Division factor for PLL VCO input clock.
This parameter must be a number between Min_Data = 1 and Max_Data = 16 on STM32L4Rx/STM32L4Sx devices.
This parameter must be a number between Min_Data = 1 and Max_Data = 8 on the other devices */
uint32_t PLLN; /*!< PLLN: Multiplication factor for PLL VCO output clock.
This parameter must be a number between Min_Data = 8 and Max_Data = 86 */
uint32_t PLLP; /*!< PLLP: Division factor for SAI clock.
This parameter must be a value of @ref RCC_PLLP_Clock_Divider */
uint32_t PLLQ; /*!< PLLQ: Division factor for SDMMC1, RNG and USB clocks.
This parameter must be a value of @ref RCC_PLLQ_Clock_Divider */
uint32_t PLLR; /*!< PLLR: Division for the main system clock.
User have to set the PLLR parameter correctly to not exceed max frequency 80MHZ.
This parameter must be a value of @ref RCC_PLLR_Clock_Divider */
}RCC_PLLInitTypeDef;
/**
* @brief RCC Internal/External Oscillator (HSE, HSI, MSI, LSE and LSI) configuration structure definition
*/
typedef struct
{
uint32_t OscillatorType; /*!< The oscillators to be configured.
This parameter can be a value of @ref RCC_Oscillator_Type */
uint32_t HSEState; /*!< The new state of the HSE.
This parameter can be a value of @ref RCC_HSE_Config */
uint32_t LSEState; /*!< The new state of the LSE.
This parameter can be a value of @ref RCC_LSE_Config */
uint32_t HSIState; /*!< The new state of the HSI.
This parameter can be a value of @ref RCC_HSI_Config */
uint32_t HSICalibrationValue; /*!< The calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT).
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F on STM32L43x/STM32L44x/STM32L47x/STM32L48x devices.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x7F on the other devices */
uint32_t LSIState; /*!< The new state of the LSI.
This parameter can be a value of @ref RCC_LSI_Config */
uint32_t MSIState; /*!< The new state of the MSI.
This parameter can be a value of @ref RCC_MSI_Config */
uint32_t MSICalibrationValue; /*!< The calibration trimming value (default is RCC_MSICALIBRATION_DEFAULT).
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
uint32_t MSIClockRange; /*!< The MSI frequency range.
This parameter can be a value of @ref RCC_MSI_Clock_Range */
uint32_t HSI48State; /*!< The new state of the HSI48 (only applicable to STM32L43x/STM32L44x/STM32L49x/STM32L4Ax devices).
This parameter can be a value of @ref RCC_HSI48_Config */
RCC_PLLInitTypeDef PLL; /*!< Main PLL structure parameters */
}RCC_OscInitTypeDef;
/**
* @brief RCC System, AHB and APB busses clock configuration structure definition
*/
typedef struct
{
uint32_t ClockType; /*!< The clock to be configured.
This parameter can be a value of @ref RCC_System_Clock_Type */
uint32_t SYSCLKSource; /*!< The clock source used as system clock (SYSCLK).
This parameter can be a value of @ref RCC_System_Clock_Source */
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_AHB_Clock_Source */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */
uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */
}RCC_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_Timeout_Value Timeout Values
* @{
*/
#define RCC_DBP_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT
/**
* @}
*/
/** @defgroup RCC_Oscillator_Type Oscillator Type
* @{
*/
#define RCC_OSCILLATORTYPE_NONE 0x00000000U /*!< Oscillator configuration unchanged */
#define RCC_OSCILLATORTYPE_HSE 0x00000001U /*!< HSE to configure */
#define RCC_OSCILLATORTYPE_HSI 0x00000002U /*!< HSI to configure */
#define RCC_OSCILLATORTYPE_LSE 0x00000004U /*!< LSE to configure */
#define RCC_OSCILLATORTYPE_LSI 0x00000008U /*!< LSI to configure */
#define RCC_OSCILLATORTYPE_MSI 0x00000010U /*!< MSI to configure */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_OSCILLATORTYPE_HSI48 0x00000020U /*!< HSI48 to configure */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_HSE_Config HSE Config
* @{
*/
#define RCC_HSE_OFF 0x00000000U /*!< HSE clock deactivation */
#define RCC_HSE_ON RCC_CR_HSEON /*!< HSE clock activation */
#define RCC_HSE_BYPASS (RCC_CR_HSEBYP | RCC_CR_HSEON) /*!< External clock source for HSE clock */
/**
* @}
*/
/** @defgroup RCC_LSE_Config LSE Config
* @{
*/
#define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */
#define RCC_LSE_ON RCC_BDCR_LSEON /*!< LSE clock activation */
#define RCC_LSE_BYPASS (RCC_BDCR_LSEBYP | RCC_BDCR_LSEON) /*!< External clock source for LSE clock */
/**
* @}
*/
/** @defgroup RCC_HSI_Config HSI Config
* @{
*/
#define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */
#define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */
#if defined(STM32L431xx) || defined(STM32L432xx) || defined(STM32L433xx) || defined(STM32L442xx) || defined(STM32L443xx) || \
defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx)
#define RCC_HSICALIBRATION_DEFAULT 0x10U /* Default HSI calibration trimming value */
#else
#define RCC_HSICALIBRATION_DEFAULT 0x40U /* Default HSI calibration trimming value */
#endif /* STM32L431xx || STM32L432xx || STM32L433xx || STM32L442xx || STM32L443xx || */
/* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx */
/**
* @}
*/
/** @defgroup RCC_LSI_Config LSI Config
* @{
*/
#define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */
#define RCC_LSI_ON RCC_CSR_LSION /*!< LSI clock activation */
/**
* @}
*/
/** @defgroup RCC_MSI_Config MSI Config
* @{
*/
#define RCC_MSI_OFF 0x00000000U /*!< MSI clock deactivation */
#define RCC_MSI_ON RCC_CR_MSION /*!< MSI clock activation */
#define RCC_MSICALIBRATION_DEFAULT 0U /*!< Default MSI calibration trimming value */
/**
* @}
*/
#if defined(RCC_HSI48_SUPPORT)
/** @defgroup RCC_HSI48_Config HSI48 Config
* @{
*/
#define RCC_HSI48_OFF 0x00000000U /*!< HSI48 clock deactivation */
#define RCC_HSI48_ON RCC_CRRCR_HSI48ON /*!< HSI48 clock activation */
/**
* @}
*/
#else
/** @defgroup RCC_HSI48_Config HSI48 Config
* @{
*/
#define RCC_HSI48_OFF 0x00000000U /*!< HSI48 clock deactivation */
/**
* @}
*/
#endif /* RCC_HSI48_SUPPORT */
/** @defgroup RCC_PLL_Config PLL Config
* @{
*/
#define RCC_PLL_NONE 0x00000000U /*!< PLL configuration unchanged */
#define RCC_PLL_OFF 0x00000001U /*!< PLL deactivation */
#define RCC_PLL_ON 0x00000002U /*!< PLL activation */
/**
* @}
*/
/** @defgroup RCC_PLLP_Clock_Divider PLLP Clock Divider
* @{
*/
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
#define RCC_PLLP_DIV2 0x00000002U /*!< PLLP division factor = 2 */
#define RCC_PLLP_DIV3 0x00000003U /*!< PLLP division factor = 3 */
#define RCC_PLLP_DIV4 0x00000004U /*!< PLLP division factor = 4 */
#define RCC_PLLP_DIV5 0x00000005U /*!< PLLP division factor = 5 */
#define RCC_PLLP_DIV6 0x00000006U /*!< PLLP division factor = 6 */
#define RCC_PLLP_DIV7 0x00000007U /*!< PLLP division factor = 7 */
#define RCC_PLLP_DIV8 0x00000008U /*!< PLLP division factor = 8 */
#define RCC_PLLP_DIV9 0x00000009U /*!< PLLP division factor = 9 */
#define RCC_PLLP_DIV10 0x0000000AU /*!< PLLP division factor = 10 */
#define RCC_PLLP_DIV11 0x0000000BU /*!< PLLP division factor = 11 */
#define RCC_PLLP_DIV12 0x0000000CU /*!< PLLP division factor = 12 */
#define RCC_PLLP_DIV13 0x0000000DU /*!< PLLP division factor = 13 */
#define RCC_PLLP_DIV14 0x0000000EU /*!< PLLP division factor = 14 */
#define RCC_PLLP_DIV15 0x0000000FU /*!< PLLP division factor = 15 */
#define RCC_PLLP_DIV16 0x00000010U /*!< PLLP division factor = 16 */
#define RCC_PLLP_DIV17 0x00000011U /*!< PLLP division factor = 17 */
#define RCC_PLLP_DIV18 0x00000012U /*!< PLLP division factor = 18 */
#define RCC_PLLP_DIV19 0x00000013U /*!< PLLP division factor = 19 */
#define RCC_PLLP_DIV20 0x00000014U /*!< PLLP division factor = 20 */
#define RCC_PLLP_DIV21 0x00000015U /*!< PLLP division factor = 21 */
#define RCC_PLLP_DIV22 0x00000016U /*!< PLLP division factor = 22 */
#define RCC_PLLP_DIV23 0x00000017U /*!< PLLP division factor = 23 */
#define RCC_PLLP_DIV24 0x00000018U /*!< PLLP division factor = 24 */
#define RCC_PLLP_DIV25 0x00000019U /*!< PLLP division factor = 25 */
#define RCC_PLLP_DIV26 0x0000001AU /*!< PLLP division factor = 26 */
#define RCC_PLLP_DIV27 0x0000001BU /*!< PLLP division factor = 27 */
#define RCC_PLLP_DIV28 0x0000001CU /*!< PLLP division factor = 28 */
#define RCC_PLLP_DIV29 0x0000001DU /*!< PLLP division factor = 29 */
#define RCC_PLLP_DIV30 0x0000001EU /*!< PLLP division factor = 30 */
#define RCC_PLLP_DIV31 0x0000001FU /*!< PLLP division factor = 31 */
#else
#define RCC_PLLP_DIV7 0x00000007U /*!< PLLP division factor = 7 */
#define RCC_PLLP_DIV17 0x00000011U /*!< PLLP division factor = 17 */
#endif /* RCC_PLLP_DIV_2_31_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_PLLQ_Clock_Divider PLLQ Clock Divider
* @{
*/
#define RCC_PLLQ_DIV2 0x00000002U /*!< PLLQ division factor = 2 */
#define RCC_PLLQ_DIV4 0x00000004U /*!< PLLQ division factor = 4 */
#define RCC_PLLQ_DIV6 0x00000006U /*!< PLLQ division factor = 6 */
#define RCC_PLLQ_DIV8 0x00000008U /*!< PLLQ division factor = 8 */
/**
* @}
*/
/** @defgroup RCC_PLLR_Clock_Divider PLLR Clock Divider
* @{
*/
#define RCC_PLLR_DIV2 0x00000002U /*!< PLLR division factor = 2 */
#define RCC_PLLR_DIV4 0x00000004U /*!< PLLR division factor = 4 */
#define RCC_PLLR_DIV6 0x00000006U /*!< PLLR division factor = 6 */
#define RCC_PLLR_DIV8 0x00000008U /*!< PLLR division factor = 8 */
/**
* @}
*/
/** @defgroup RCC_PLL_Clock_Source PLL Clock Source
* @{
*/
#define RCC_PLLSOURCE_NONE 0x00000000U /*!< No clock selected as PLL entry clock source */
#define RCC_PLLSOURCE_MSI RCC_PLLCFGR_PLLSRC_MSI /*!< MSI clock selected as PLL entry clock source */
#define RCC_PLLSOURCE_HSI RCC_PLLCFGR_PLLSRC_HSI /*!< HSI clock selected as PLL entry clock source */
#define RCC_PLLSOURCE_HSE RCC_PLLCFGR_PLLSRC_HSE /*!< HSE clock selected as PLL entry clock source */
/**
* @}
*/
/** @defgroup RCC_PLL_Clock_Output PLL Clock Output
* @{
*/
#if defined(RCC_PLLSAI2_SUPPORT)
#define RCC_PLL_SAI3CLK RCC_PLLCFGR_PLLPEN /*!< PLLSAI3CLK selection from main PLL (for devices with PLLSAI2) */
#else
#define RCC_PLL_SAI2CLK RCC_PLLCFGR_PLLPEN /*!< PLLSAI2CLK selection from main PLL (for devices without PLLSAI2) */
#endif /* RCC_PLLSAI2_SUPPORT */
#define RCC_PLL_48M1CLK RCC_PLLCFGR_PLLQEN /*!< PLL48M1CLK selection from main PLL */
#define RCC_PLL_SYSCLK RCC_PLLCFGR_PLLREN /*!< PLLCLK selection from main PLL */
/**
* @}
*/
/** @defgroup RCC_PLLSAI1_Clock_Output PLLSAI1 Clock Output
* @{
*/
#define RCC_PLLSAI1_SAI1CLK RCC_PLLSAI1CFGR_PLLSAI1PEN /*!< PLLSAI1CLK selection from PLLSAI1 */
#define RCC_PLLSAI1_48M2CLK RCC_PLLSAI1CFGR_PLLSAI1QEN /*!< PLL48M2CLK selection from PLLSAI1 */
#define RCC_PLLSAI1_ADC1CLK RCC_PLLSAI1CFGR_PLLSAI1REN /*!< PLLADC1CLK selection from PLLSAI1 */
/**
* @}
*/
#if defined(RCC_PLLSAI2_SUPPORT)
/** @defgroup RCC_PLLSAI2_Clock_Output PLLSAI2 Clock Output
* @{
*/
#define RCC_PLLSAI2_SAI2CLK RCC_PLLSAI2CFGR_PLLSAI2PEN /*!< PLLSAI2CLK selection from PLLSAI2 */
#if defined(RCC_PLLSAI2Q_DIV_SUPPORT)
#define RCC_PLLSAI2_DSICLK RCC_PLLSAI2CFGR_PLLSAI2QEN /*!< PLLDSICLK selection from PLLSAI2 */
#endif /* RCC_PLLSAI2Q_DIV_SUPPORT */
#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || defined(STM32L496xx) || defined(STM32L4A6xx)
#define RCC_PLLSAI2_ADC2CLK RCC_PLLSAI2CFGR_PLLSAI2REN /*!< PLLADC2CLK selection from PLLSAI2 */
#else
#define RCC_PLLSAI2_LTDCCLK RCC_PLLSAI2CFGR_PLLSAI2REN /*!< PLLLTDCCLK selection from PLLSAI2 */
#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || STM32L496xx || STM32L4A6xx */
/**
* @}
*/
#endif /* RCC_PLLSAI2_SUPPORT */
/** @defgroup RCC_MSI_Clock_Range MSI Clock Range
* @{
*/
#define RCC_MSIRANGE_0 RCC_CR_MSIRANGE_0 /*!< MSI = 100 KHz */
#define RCC_MSIRANGE_1 RCC_CR_MSIRANGE_1 /*!< MSI = 200 KHz */
#define RCC_MSIRANGE_2 RCC_CR_MSIRANGE_2 /*!< MSI = 400 KHz */
#define RCC_MSIRANGE_3 RCC_CR_MSIRANGE_3 /*!< MSI = 800 KHz */
#define RCC_MSIRANGE_4 RCC_CR_MSIRANGE_4 /*!< MSI = 1 MHz */
#define RCC_MSIRANGE_5 RCC_CR_MSIRANGE_5 /*!< MSI = 2 MHz */
#define RCC_MSIRANGE_6 RCC_CR_MSIRANGE_6 /*!< MSI = 4 MHz */
#define RCC_MSIRANGE_7 RCC_CR_MSIRANGE_7 /*!< MSI = 8 MHz */
#define RCC_MSIRANGE_8 RCC_CR_MSIRANGE_8 /*!< MSI = 16 MHz */
#define RCC_MSIRANGE_9 RCC_CR_MSIRANGE_9 /*!< MSI = 24 MHz */
#define RCC_MSIRANGE_10 RCC_CR_MSIRANGE_10 /*!< MSI = 32 MHz */
#define RCC_MSIRANGE_11 RCC_CR_MSIRANGE_11 /*!< MSI = 48 MHz */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Type System Clock Type
* @{
*/
#define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */
#define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */
#define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */
#define RCC_CLOCKTYPE_PCLK2 0x00000008U /*!< PCLK2 to configure */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source System Clock Source
* @{
*/
#define RCC_SYSCLKSOURCE_MSI RCC_CFGR_SW_MSI /*!< MSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */
#define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_PLL /*!< PLL selection as system clock */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source_Status System Clock Source Status
* @{
*/
#define RCC_SYSCLKSOURCE_STATUS_MSI RCC_CFGR_SWS_MSI /*!< MSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_PLL /*!< PLL used as system clock */
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Source AHB Clock Source
* @{
*/
#define RCC_SYSCLK_DIV1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */
#define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */
#define RCC_SYSCLK_DIV4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */
#define RCC_SYSCLK_DIV8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */
#define RCC_SYSCLK_DIV16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */
#define RCC_SYSCLK_DIV64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */
#define RCC_SYSCLK_DIV128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */
#define RCC_SYSCLK_DIV256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */
#define RCC_SYSCLK_DIV512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_APB1_APB2_Clock_Source APB1 APB2 Clock Source
* @{
*/
#define RCC_HCLK_DIV1 RCC_CFGR_PPRE1_DIV1 /*!< HCLK not divided */
#define RCC_HCLK_DIV2 RCC_CFGR_PPRE1_DIV2 /*!< HCLK divided by 2 */
#define RCC_HCLK_DIV4 RCC_CFGR_PPRE1_DIV4 /*!< HCLK divided by 4 */
#define RCC_HCLK_DIV8 RCC_CFGR_PPRE1_DIV8 /*!< HCLK divided by 8 */
#define RCC_HCLK_DIV16 RCC_CFGR_PPRE1_DIV16 /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Source RTC Clock Source
* @{
*/
#define RCC_RTCCLKSOURCE_NONE 0x00000000U /*!< No clock used as RTC clock */
#define RCC_RTCCLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_HSE_DIV32 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 32 used as RTC clock */
/**
* @}
*/
/** @defgroup RCC_MCO_Index MCO Index
* @{
*/
#define RCC_MCO1 0x00000000U
#define RCC_MCO RCC_MCO1 /*!< MCO1 to be compliant with other families with 2 MCOs*/
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Source MCO1 Clock Source
* @{
*/
#define RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO1 output disabled, no clock on MCO1 */
#define RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_MSI RCC_CFGR_MCOSEL_1 /*!< MSI selection as MCO1 source */
#define RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */
#define RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */
#define RCC_MCO1SOURCE_PLLCLK (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_2) /*!< PLLCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */
#define RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCOSEL_3 /*!< HSI48 selection as MCO1 source (STM32L43x/STM32L44x devices) */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_MCOx_Clock_Prescaler MCO1 Clock Prescaler
* @{
*/
#define RCC_MCODIV_1 RCC_CFGR_MCOPRE_DIV1 /*!< MCO not divided */
#define RCC_MCODIV_2 RCC_CFGR_MCOPRE_DIV2 /*!< MCO divided by 2 */
#define RCC_MCODIV_4 RCC_CFGR_MCOPRE_DIV4 /*!< MCO divided by 4 */
#define RCC_MCODIV_8 RCC_CFGR_MCOPRE_DIV8 /*!< MCO divided by 8 */
#define RCC_MCODIV_16 RCC_CFGR_MCOPRE_DIV16 /*!< MCO divided by 16 */
/**
* @}
*/
/** @defgroup RCC_Interrupt Interrupts
* @{
*/
#define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define RCC_IT_LSERDY RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define RCC_IT_MSIRDY RCC_CIFR_MSIRDYF /*!< MSI Ready Interrupt flag */
#define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF /*!< HSI16 Ready Interrupt flag */
#define RCC_IT_HSERDY RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */
#define RCC_IT_PLLRDY RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */
#define RCC_IT_PLLSAI1RDY RCC_CIFR_PLLSAI1RDYF /*!< PLLSAI1 Ready Interrupt flag */
#if defined(RCC_PLLSAI2_SUPPORT)
#define RCC_IT_PLLSAI2RDY RCC_CIFR_PLLSAI2RDYF /*!< PLLSAI2 Ready Interrupt flag */
#endif /* RCC_PLLSAI2_SUPPORT */
#define RCC_IT_CSS RCC_CIFR_CSSF /*!< Clock Security System Interrupt flag */
#define RCC_IT_LSECSS RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_IT_HSI48RDY RCC_CIFR_HSI48RDYF /*!< HSI48 Ready Interrupt flag */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_Flag Flags
* Elements values convention: XXXYYYYYb
* - YYYYY : Flag position in the register
* - XXX : Register index
* - 001: CR register
* - 010: BDCR register
* - 011: CSR register
* - 100: CRRCR register
* @{
*/
/* Flags in the CR register */
#define RCC_FLAG_MSIRDY ((CR_REG_INDEX << 5U) | RCC_CR_MSIRDY_Pos) /*!< MSI Ready flag */
#define RCC_FLAG_HSIRDY ((CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos) /*!< HSI Ready flag */
#define RCC_FLAG_HSERDY ((CR_REG_INDEX << 5U) | RCC_CR_HSERDY_Pos) /*!< HSE Ready flag */
#define RCC_FLAG_PLLRDY ((CR_REG_INDEX << 5U) | RCC_CR_PLLRDY_Pos) /*!< PLL Ready flag */
#define RCC_FLAG_PLLSAI1RDY ((CR_REG_INDEX << 5U) | RCC_CR_PLLSAI1RDY_Pos) /*!< PLLSAI1 Ready flag */
#if defined(RCC_PLLSAI2_SUPPORT)
#define RCC_FLAG_PLLSAI2RDY ((CR_REG_INDEX << 5U) | RCC_CR_PLLSAI2RDY_Pos) /*!< PLLSAI2 Ready flag */
#endif /* RCC_PLLSAI2_SUPPORT */
/* Flags in the BDCR register */
#define RCC_FLAG_LSERDY ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSERDY_Pos) /*!< LSE Ready flag */
#define RCC_FLAG_LSECSSD ((BDCR_REG_INDEX << 5U) | RCC_BDCR_LSECSSD_Pos) /*!< LSE Clock Security System Interrupt flag */
/* Flags in the CSR register */
#define RCC_FLAG_LSIRDY ((CSR_REG_INDEX << 5U) | RCC_CSR_LSIRDY_Pos) /*!< LSI Ready flag */
#define RCC_FLAG_RMVF ((CSR_REG_INDEX << 5U) | RCC_CSR_RMVF_Pos) /*!< Remove reset flag */
#define RCC_FLAG_FWRST ((CSR_REG_INDEX << 5U) | RCC_CSR_FWRSTF_Pos) /*!< Firewall reset flag */
#define RCC_FLAG_OBLRST ((CSR_REG_INDEX << 5U) | RCC_CSR_OBLRSTF_Pos) /*!< Option Byte Loader reset flag */
#define RCC_FLAG_PINRST ((CSR_REG_INDEX << 5U) | RCC_CSR_PINRSTF_Pos) /*!< PIN reset flag */
#define RCC_FLAG_BORRST ((CSR_REG_INDEX << 5U) | RCC_CSR_BORRSTF_Pos) /*!< BOR reset flag */
#define RCC_FLAG_SFTRST ((CSR_REG_INDEX << 5U) | RCC_CSR_SFTRSTF_Pos) /*!< Software Reset flag */
#define RCC_FLAG_IWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_IWDGRSTF_Pos) /*!< Independent Watchdog reset flag */
#define RCC_FLAG_WWDGRST ((CSR_REG_INDEX << 5U) | RCC_CSR_WWDGRSTF_Pos) /*!< Window watchdog reset flag */
#define RCC_FLAG_LPWRRST ((CSR_REG_INDEX << 5U) | RCC_CSR_LPWRRSTF_Pos) /*!< Low-Power reset flag */
#if defined(RCC_HSI48_SUPPORT)
/* Flags in the CRRCR register */
#define RCC_FLAG_HSI48RDY ((CRRCR_REG_INDEX << 5U) | RCC_CRRCR_HSI48RDY_Pos) /*!< HSI48 Ready flag */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_LSEDrive_Config LSE Drive Config
* @{
*/
#define RCC_LSEDRIVE_LOW 0x00000000U /*!< LSE low drive capability */
#define RCC_LSEDRIVE_MEDIUMLOW RCC_BDCR_LSEDRV_0 /*!< LSE medium low drive capability */
#define RCC_LSEDRIVE_MEDIUMHIGH RCC_BDCR_LSEDRV_1 /*!< LSE medium high drive capability */
#define RCC_LSEDRIVE_HIGH RCC_BDCR_LSEDRV /*!< LSE high drive capability */
/**
* @}
*/
/** @defgroup RCC_Stop_WakeUpClock Wake-Up from STOP Clock
* @{
*/
#define RCC_STOP_WAKEUPCLOCK_MSI 0x00000000U /*!< MSI selection after wake-up from STOP */
#define RCC_STOP_WAKEUPCLOCK_HSI RCC_CFGR_STOPWUCK /*!< HSI selection after wake-up from STOP */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup RCC_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_AHB1_Peripheral_Clock_Enable_Disable AHB1 Peripheral Clock Enable Disable
* @brief Enable or disable the AHB1 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_DMA2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMAMUX1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMAMUX1EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_FLASHEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_FLASHEN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_TSC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_TSCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_TSCEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GFXMMUEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GFXMMUEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* GFXMMU */
#define __HAL_RCC_DMA1_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN)
#define __HAL_RCC_DMA2_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMAMUX1EN)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_FLASHEN)
#define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN)
#define __HAL_RCC_TSC_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_TSCEN)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_CLK_DISABLE() CLEAR_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GFXMMUEN)
#endif /* GFXMMU */
/**
* @}
*/
/** @defgroup RCC_AHB2_Peripheral_Clock_Enable_Disable AHB2 Peripheral Clock Enable Disable
* @brief Enable or disable the AHB2 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOAEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOAEN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_GPIOB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOBEN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_GPIOC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOCEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIODEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIODEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOEEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOEEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOFEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOFEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOGEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOHEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOHEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOIEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOIEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* GPIOI */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_ADCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_ADCEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(DCMI)
#define __HAL_RCC_DCMI_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_AESEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_AESEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* HASH */
#define __HAL_RCC_RNG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OSPIMEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OSPIMEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2ENR_SDMMC1EN)
#define __HAL_RCC_SDMMC1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB2ENR, RCC_AHB2ENR_SDMMC1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_SDMMC1EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* SDMMC1 && RCC_AHB2ENR_SDMMC1EN */
#define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOAEN)
#define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOBEN)
#define __HAL_RCC_GPIOC_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOCEN)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIODEN)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOEEN)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOFEN)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOGEN)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOHEN)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOIEN)
#endif /* GPIOI */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN);
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_ADCEN)
#if defined(DCMI)
#define __HAL_RCC_DCMI_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_AESEN);
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN)
#endif /* HASH */
#define __HAL_RCC_RNG_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OSPIMEN)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2ENR_SDMMC1EN)
#define __HAL_RCC_SDMMC1_CLK_DISABLE() CLEAR_BIT(RCC->AHB2ENR, RCC_AHB2ENR_SDMMC1EN)
#endif /* SDMMC1 && RCC_AHB2ENR_SDMMC1EN */
/**
* @}
*/
/** @defgroup RCC_AHB3_Clock_Enable_Disable AHB3 Peripheral Clock Enable Disable
* @brief Enable or disable the AHB3 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB3ENR, RCC_AHB3ENR_OSPI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_OSPI1EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHB3ENR, RCC_AHB3ENR_OSPI2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_OSPI2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* OCTOSPI2 */
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_CLK_DISABLE() CLEAR_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_CLK_DISABLE() CLEAR_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_CLK_DISABLE() CLEAR_BIT(RCC->AHB3ENR, RCC_AHB3ENR_OSPI1EN)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_CLK_DISABLE() CLEAR_BIT(RCC->AHB3ENR, RCC_AHB3ENR_OSPI2EN)
#endif /* OCTOSPI2 */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable
* @brief Enable or disable the APB1 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_TIM2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM2EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(TIM3)
#define __HAL_RCC_TIM3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM3EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM4EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM4EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM5EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM5EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM6EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM6EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_TIM7_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM7EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM7EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(LCD)
#define __HAL_RCC_LCD_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LCDEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LCDEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* LCD */
#if defined(RCC_APB1ENR1_RTCAPBEN)
#define __HAL_RCC_RTCAPB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_RTCAPBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_RTCAPBEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* RCC_APB1ENR1_RTCAPBEN */
#define __HAL_RCC_WWDG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_WWDGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_WWDGEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI3EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_USART2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART2EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART3EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART4EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART4EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART5EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART5EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* UART5 */
#define __HAL_RCC_I2C1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C1EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C3EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(I2C4)
#define __HAL_RCC_I2C4_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR2, RCC_APB1ENR2_I2C4EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_I2C4EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CRSEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CRSEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* CRS */
#define __HAL_RCC_CAN1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN1EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(CAN2)
#define __HAL_RCC_CAN2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USBFSEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USBFSEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* USB */
#define __HAL_RCC_PWR_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_DAC1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_DAC1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_DAC1EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_OPAMP_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_OPAMPEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_OPAMPEN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_LPTIM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LPTIM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LPTIM1EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_LPUART1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPUART1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPUART1EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR2, RCC_APB1ENR2_SWPMI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_SWPMI1EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPTIM2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPTIM2EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_TIM2_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM2EN)
#if defined(TIM3)
#define __HAL_RCC_TIM3_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM3EN)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM4EN)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM5EN)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM6EN)
#define __HAL_RCC_TIM7_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM7EN)
#if defined(LCD)
#define __HAL_RCC_LCD_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LCDEN);
#endif /* LCD */
#if defined(RCC_APB1ENR1_RTCAPBEN)
#define __HAL_RCC_RTCAPB_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_RTCAPBEN);
#endif /* RCC_APB1ENR1_RTCAPBEN */
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI2EN)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI3EN)
#define __HAL_RCC_USART2_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART2EN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART3EN)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART4EN)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART5EN)
#endif /* UART5 */
#define __HAL_RCC_I2C1_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C1EN)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C2EN)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C3EN)
#if defined(I2C4)
#define __HAL_RCC_I2C4_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR2, RCC_APB1ENR2_I2C4EN)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CRSEN);
#endif /* CRS */
#define __HAL_RCC_CAN1_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN1EN)
#if defined(CAN2)
#define __HAL_RCC_CAN2_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN2EN)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USBFSEN);
#endif /* USB */
#define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN)
#define __HAL_RCC_DAC1_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_DAC1EN)
#define __HAL_RCC_OPAMP_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_OPAMPEN)
#define __HAL_RCC_LPTIM1_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LPTIM1EN)
#define __HAL_RCC_LPUART1_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPUART1EN)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR2, RCC_APB1ENR2_SWPMI1EN)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPTIM2EN)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable
* @brief Enable or disable the APB2 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_FIREWALL_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_FWEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_FWEN); \
UNUSED(tmpreg); \
} while(0)
#if defined(SDMMC1) && defined(RCC_APB2ENR_SDMMC1EN)
#define __HAL_RCC_SDMMC1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* SDMMC1 && RCC_APB2ENR_SDMMC1EN */
#define __HAL_RCC_TIM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_SPI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(TIM8)
#define __HAL_RCC_TIM8_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* TIM8 */
#define __HAL_RCC_USART1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_TIM15_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN); \
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_TIM16_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(TIM17)
#define __HAL_RCC_TIM17_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN); \
UNUSED(tmpreg); \
} while(0)
#if defined(SAI2)
#define __HAL_RCC_SAI2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* DSI */
#define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN)
#if defined(SDMMC1) && defined(RCC_APB2ENR_SDMMC1EN)
#define __HAL_RCC_SDMMC1_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN)
#endif /* SDMMC1 && RCC_APB2ENR_SDMMC1EN */
#define __HAL_RCC_TIM1_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN)
#define __HAL_RCC_SPI1_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN)
#if defined(TIM8)
#define __HAL_RCC_TIM8_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN)
#endif /* TIM8 */
#define __HAL_RCC_USART1_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN)
#define __HAL_RCC_TIM15_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN)
#define __HAL_RCC_TIM16_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN)
#if defined(TIM17)
#define __HAL_RCC_TIM17_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN)
#if defined(SAI2)
#define __HAL_RCC_SAI2_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN)
#endif /* DSI */
/**
* @}
*/
/** @defgroup RCC_AHB1_Peripheral_Clock_Enable_Disable_Status AHB1 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB1 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN) != RESET)
#define __HAL_RCC_DMA2_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN) != RESET)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMAMUX1EN) != RESET)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_FLASHEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN) != RESET)
#define __HAL_RCC_TSC_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_TSCEN) != RESET)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN) != RESET)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_IS_CLK_ENABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GFXMMUEN) != RESET)
#endif /* GFXMMU */
#define __HAL_RCC_DMA1_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA1EN) == RESET)
#define __HAL_RCC_DMA2_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2EN) == RESET)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMAMUX1EN) == RESET)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_FLASHEN) == RESET)
#define __HAL_RCC_CRC_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_CRCEN) == RESET)
#define __HAL_RCC_TSC_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_TSCEN) == RESET)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_DMA2DEN) == RESET)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_IS_CLK_DISABLED() (READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GFXMMUEN) == RESET)
#endif /* GFXMMU */
/**
* @}
*/
/** @defgroup RCC_AHB2_Clock_Enable_Disable_Status AHB2 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB2 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOAEN) != RESET)
#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOBEN) != RESET)
#define __HAL_RCC_GPIOC_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOCEN) != RESET)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIODEN) != RESET)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOEEN) != RESET)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOFEN) != RESET)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOGEN) != RESET)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOHEN) != RESET)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOIEN) != RESET)
#endif /* GPIOI */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN) != RESET)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_ADCEN) != RESET)
#if defined(DCMI)
#define __HAL_RCC_DCMI_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN) != RESET)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_AESEN) != RESET)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN) != RESET)
#endif /* HASH */
#define __HAL_RCC_RNG_IS_CLK_ENABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN) != RESET)
#define __HAL_RCC_GPIOA_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOAEN) == RESET)
#define __HAL_RCC_GPIOB_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOBEN) == RESET)
#define __HAL_RCC_GPIOC_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOCEN) == RESET)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIODEN) == RESET)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOEEN) == RESET)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOFEN) == RESET)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOGEN) == RESET)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOHEN) == RESET)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_GPIOIEN) == RESET)
#endif /* GPIOI */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_OTGFSEN) == RESET)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_ADCEN) == RESET)
#if defined(DCMI)
#define __HAL_RCC_DCMI_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_DCMIEN) == RESET)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_AESEN) == RESET)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_HASHEN) == RESET)
#endif /* HASH */
#define __HAL_RCC_RNG_IS_CLK_DISABLED() (READ_BIT(RCC->AHB2ENR, RCC_AHB2ENR_RNGEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_AHB3_Clock_Enable_Disable_Status AHB3 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB3 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_IS_CLK_ENABLED() (READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN) != RESET)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_IS_CLK_ENABLED() (READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN) != RESET)
#endif /* QUADSPI */
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_IS_CLK_DISABLED() (READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN) == RESET)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_IS_CLK_DISABLED() (READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_QSPIEN) == RESET)
#endif /* QUADSPI */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enable_Disable_Status APB1 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_TIM2_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM2EN) != RESET)
#if defined(TIM3)
#define __HAL_RCC_TIM3_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM3EN) != RESET)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM4EN) != RESET)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM5EN) != RESET)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM6EN) != RESET)
#define __HAL_RCC_TIM7_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM7EN) != RESET)
#if defined(LCD)
#define __HAL_RCC_LCD_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LCDEN) != RESET)
#endif /* LCD */
#if defined(RCC_APB1ENR1_RTCAPBEN)
#define __HAL_RCC_RTCAPB_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_RTCAPBEN) != RESET)
#endif /* RCC_APB1ENR1_RTCAPBEN */
#define __HAL_RCC_WWDG_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_WWDGEN) != RESET)
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI2EN) != RESET)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI3EN) != RESET)
#define __HAL_RCC_USART2_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART2EN) != RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART3EN) != RESET)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART4EN) != RESET)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART5EN) != RESET)
#endif /* UART5 */
#define __HAL_RCC_I2C1_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C1EN) != RESET)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C2EN) != RESET)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C3EN) != RESET)
#if defined(I2C4)
#define __HAL_RCC_I2C4_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_I2C4EN) != RESET)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CRSEN) != RESET)
#endif /* CRS */
#define __HAL_RCC_CAN1_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN1EN) != RESET)
#if defined(CAN2)
#define __HAL_RCC_CAN2_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN2EN) != RESET)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USBFSEN) != RESET)
#endif /* USB */
#define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN) != RESET)
#define __HAL_RCC_DAC1_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_DAC1EN) != RESET)
#define __HAL_RCC_OPAMP_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_OPAMPEN) != RESET)
#define __HAL_RCC_LPTIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LPTIM1EN) != RESET)
#define __HAL_RCC_LPUART1_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPUART1EN) != RESET)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_SWPMI1EN) != RESET)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPTIM2EN) != RESET)
#define __HAL_RCC_TIM2_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM2EN) == RESET)
#if defined(TIM3)
#define __HAL_RCC_TIM3_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM3EN) == RESET)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM4EN) == RESET)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM5EN) == RESET)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM6EN) == RESET)
#define __HAL_RCC_TIM7_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_TIM7EN) == RESET)
#if defined(LCD)
#define __HAL_RCC_LCD_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LCDEN) == RESET)
#endif /* LCD */
#if defined(RCC_APB1ENR1_RTCAPBEN)
#define __HAL_RCC_RTCAPB_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_RTCAPBEN) == RESET)
#endif /* RCC_APB1ENR1_RTCAPBEN */
#define __HAL_RCC_WWDG_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_WWDGEN) == RESET)
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI2EN) == RESET)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_SPI3EN) == RESET)
#define __HAL_RCC_USART2_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART2EN) == RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USART3EN) == RESET)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART4EN) == RESET)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_UART5EN) == RESET)
#endif /* UART5 */
#define __HAL_RCC_I2C1_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C1EN) == RESET)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C2EN) == RESET)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_I2C3EN) == RESET)
#if defined(I2C4)
#define __HAL_RCC_I2C4_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_I2C4EN) == RESET)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CRSEN) == RESET)
#endif /* CRS */
#define __HAL_RCC_CAN1_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN1EN) == RESET)
#if defined(CAN2)
#define __HAL_RCC_CAN2_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_CAN2EN) == RESET)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_USBFSEN) == RESET)
#endif /* USB */
#define __HAL_RCC_PWR_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN) == RESET)
#define __HAL_RCC_DAC1_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_DAC1EN) == RESET)
#define __HAL_RCC_OPAMP_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_OPAMPEN) == RESET)
#define __HAL_RCC_LPTIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR1, RCC_APB1ENR1_LPTIM1EN) == RESET)
#define __HAL_RCC_LPUART1_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPUART1EN) == RESET)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_SWPMI1EN) == RESET)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_IS_CLK_DISABLED() (READ_BIT(RCC->APB1ENR2, RCC_APB1ENR2_LPTIM2EN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enable_Disable_Status APB2 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN) != RESET)
#define __HAL_RCC_FIREWALL_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_FWEN) != RESET)
#if defined(SDMMC1) && defined(RCC_APB2ENR_SDMMC1EN)
#define __HAL_RCC_SDMMC1_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN) != RESET)
#endif /* SDMMC1 && RCC_APB2ENR_SDMMC1EN */
#define __HAL_RCC_TIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN) != RESET)
#define __HAL_RCC_SPI1_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN) != RESET)
#if defined(TIM8)
#define __HAL_RCC_TIM8_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN) != RESET)
#endif /* TIM8 */
#define __HAL_RCC_USART1_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN) != RESET)
#define __HAL_RCC_TIM15_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN) != RESET)
#define __HAL_RCC_TIM16_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN) != RESET)
#if defined(TIM17)
#define __HAL_RCC_TIM17_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN) != RESET)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN) != RESET)
#if defined(SAI2)
#define __HAL_RCC_SAI2_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN) != RESET)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN) != RESET)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN) != RESET)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN) != RESET)
#endif /* DSI */
#define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN) == RESET)
#if defined(SDMMC1) && defined(RCC_APB2ENR_SDMMC1EN)
#define __HAL_RCC_SDMMC1_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SDMMC1EN) == RESET)
#endif /* SDMMC1 && RCC_APB2ENR_SDMMC1EN */
#define __HAL_RCC_TIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM1EN) == RESET)
#define __HAL_RCC_SPI1_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SPI1EN) == RESET)
#if defined(TIM8)
#define __HAL_RCC_TIM8_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM8EN) == RESET)
#endif /* TIM8 */
#define __HAL_RCC_USART1_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_USART1EN) == RESET)
#define __HAL_RCC_TIM15_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM15EN) == RESET)
#define __HAL_RCC_TIM16_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM16EN) == RESET)
#if defined(TIM17)
#define __HAL_RCC_TIM17_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_TIM17EN) == RESET)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI1EN) == RESET)
#if defined(SAI2)
#define __HAL_RCC_SAI2_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SAI2EN) == RESET)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DFSDM1EN) == RESET)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_LTDCEN) == RESET)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_IS_CLK_DISABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DSIEN) == RESET)
#endif /* DSI */
/**
* @}
*/
/** @defgroup RCC_AHB1_Force_Release_Reset AHB1 Peripheral Force Release Reset
* @brief Force or release AHB1 peripheral reset.
* @{
*/
#define __HAL_RCC_AHB1_FORCE_RESET() WRITE_REG(RCC->AHB1RSTR, 0xFFFFFFFFU)
#define __HAL_RCC_DMA1_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMA1RST)
#define __HAL_RCC_DMA2_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMA2RST)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMAMUX1RST)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_FLASHRST)
#define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_CRCRST)
#define __HAL_RCC_TSC_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_TSCRST)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMA2DRST)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_FORCE_RESET() SET_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_GFXMMURST)
#endif /* GFXMMU */
#define __HAL_RCC_AHB1_RELEASE_RESET() WRITE_REG(RCC->AHB1RSTR, 0x00000000U)
#define __HAL_RCC_DMA1_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMA1RST)
#define __HAL_RCC_DMA2_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMA2RST)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMAMUX1RST)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_FLASHRST)
#define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_CRCRST)
#define __HAL_RCC_TSC_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_TSCRST)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_DMA2DRST)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_RELEASE_RESET() CLEAR_BIT(RCC->AHB1RSTR, RCC_AHB1RSTR_GFXMMURST)
#endif /* GFXMMU */
/**
* @}
*/
/** @defgroup RCC_AHB2_Force_Release_Reset AHB2 Peripheral Force Release Reset
* @brief Force or release AHB2 peripheral reset.
* @{
*/
#define __HAL_RCC_AHB2_FORCE_RESET() WRITE_REG(RCC->AHB2RSTR, 0xFFFFFFFFU)
#define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOARST)
#define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOBRST)
#define __HAL_RCC_GPIOC_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOCRST)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIODRST)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOERST)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOFRST)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOGRST)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOHRST)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOIRST)
#endif /* GPIOI */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_OTGFSRST)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_ADCRST)
#if defined(DCMI)
#define __HAL_RCC_DCMI_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_DCMIRST)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_AESRST)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_HASHRST)
#endif /* HASH */
#define __HAL_RCC_RNG_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_RNGRST)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_OSPIMRST)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2RSTR_SDMMC1RST)
#define __HAL_RCC_SDMMC1_FORCE_RESET() SET_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_SDMMC1RST)
#endif /* SDMMC1 && RCC_AHB2RSTR_SDMMC1RST */
#define __HAL_RCC_AHB2_RELEASE_RESET() WRITE_REG(RCC->AHB2RSTR, 0x00000000U)
#define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOARST)
#define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOBRST)
#define __HAL_RCC_GPIOC_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOCRST)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIODRST)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOERST)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOFRST)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOGRST)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOHRST)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_GPIOIRST)
#endif /* GPIOI */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_OTGFSRST)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_ADCRST)
#if defined(DCMI)
#define __HAL_RCC_DCMI_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_DCMIRST)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_AESRST)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_HASHRST)
#endif /* HASH */
#define __HAL_RCC_RNG_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_RNGRST)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_OSPIMRST)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2RSTR_SDMMC1RST)
#define __HAL_RCC_SDMMC1_RELEASE_RESET() CLEAR_BIT(RCC->AHB2RSTR, RCC_AHB2RSTR_SDMMC1RST)
#endif /* SDMMC1 && RCC_AHB2RSTR_SDMMC1RST */
/**
* @}
*/
/** @defgroup RCC_AHB3_Force_Release_Reset AHB3 Peripheral Force Release Reset
* @brief Force or release AHB3 peripheral reset.
* @{
*/
#define __HAL_RCC_AHB3_FORCE_RESET() WRITE_REG(RCC->AHB3RSTR, 0xFFFFFFFFU)
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_FORCE_RESET() SET_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_FMCRST)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_FORCE_RESET() SET_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_QSPIRST)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_FORCE_RESET() SET_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_OSPI1RST)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_FORCE_RESET() SET_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_OSPI2RST)
#endif /* OCTOSPI2 */
#define __HAL_RCC_AHB3_RELEASE_RESET() WRITE_REG(RCC->AHB3RSTR, 0x00000000U)
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_RELEASE_RESET() CLEAR_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_FMCRST)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_RELEASE_RESET() CLEAR_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_QSPIRST)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_RELEASE_RESET() CLEAR_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_OSPI1RST)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_RELEASE_RESET() CLEAR_BIT(RCC->AHB3RSTR, RCC_AHB3RSTR_OSPI2RST)
#endif /* OCTOSPI2 */
/**
* @}
*/
/** @defgroup RCC_APB1_Force_Release_Reset APB1 Peripheral Force Release Reset
* @brief Force or release APB1 peripheral reset.
* @{
*/
#define __HAL_RCC_APB1_FORCE_RESET() WRITE_REG(RCC->APB1RSTR1, 0xFFFFFFFFU)
#define __HAL_RCC_TIM2_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM2RST)
#if defined(TIM3)
#define __HAL_RCC_TIM3_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM3RST)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM4RST)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM5RST)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM6RST)
#define __HAL_RCC_TIM7_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM7RST)
#if defined(LCD)
#define __HAL_RCC_LCD_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_LCDRST)
#endif /* LCD */
#if defined(SPI2)
#define __HAL_RCC_SPI2_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_SPI2RST)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_SPI3RST)
#define __HAL_RCC_USART2_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_USART2RST)
#if defined(USART3)
#define __HAL_RCC_USART3_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_USART3RST)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_UART4RST)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_UART5RST)
#endif /* UART5 */
#define __HAL_RCC_I2C1_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_I2C1RST)
#if defined(I2C2)
#define __HAL_RCC_I2C2_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_I2C2RST)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_I2C3RST)
#if defined(I2C4)
#define __HAL_RCC_I2C4_FORCE_RESET() SET_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_I2C4RST)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_CRSRST)
#endif /* CRS */
#define __HAL_RCC_CAN1_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_CAN1RST)
#if defined(CAN2)
#define __HAL_RCC_CAN2_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_CAN2RST)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_USBFSRST)
#endif /* USB */
#define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_PWRRST)
#define __HAL_RCC_DAC1_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_DAC1RST)
#define __HAL_RCC_OPAMP_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_OPAMPRST)
#define __HAL_RCC_LPTIM1_FORCE_RESET() SET_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_LPTIM1RST)
#define __HAL_RCC_LPUART1_FORCE_RESET() SET_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_LPUART1RST)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_FORCE_RESET() SET_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_SWPMI1RST)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_FORCE_RESET() SET_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_LPTIM2RST)
#define __HAL_RCC_APB1_RELEASE_RESET() WRITE_REG(RCC->APB1RSTR1, 0x00000000U)
#define __HAL_RCC_TIM2_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM2RST)
#if defined(TIM3)
#define __HAL_RCC_TIM3_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM3RST)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM4RST)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM5RST)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM6RST)
#define __HAL_RCC_TIM7_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_TIM7RST)
#if defined(LCD)
#define __HAL_RCC_LCD_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_LCDRST)
#endif /* LCD */
#if defined(SPI2)
#define __HAL_RCC_SPI2_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_SPI2RST)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_SPI3RST)
#define __HAL_RCC_USART2_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_USART2RST)
#if defined(USART3)
#define __HAL_RCC_USART3_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_USART3RST)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_UART4RST)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_UART5RST)
#endif /* UART5 */
#define __HAL_RCC_I2C1_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_I2C1RST)
#if defined(I2C2)
#define __HAL_RCC_I2C2_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_I2C2RST)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_I2C3RST)
#if defined(I2C4)
#define __HAL_RCC_I2C4_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_I2C4RST)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_CRSRST)
#endif /* CRS */
#define __HAL_RCC_CAN1_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_CAN1RST)
#if defined(CAN2)
#define __HAL_RCC_CAN2_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_CAN2RST)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_USBFSRST)
#endif /* USB */
#define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_PWRRST)
#define __HAL_RCC_DAC1_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_DAC1RST)
#define __HAL_RCC_OPAMP_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_OPAMPRST)
#define __HAL_RCC_LPTIM1_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR1, RCC_APB1RSTR1_LPTIM1RST)
#define __HAL_RCC_LPUART1_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_LPUART1RST)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_SWPMI1RST)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR2, RCC_APB1RSTR2_LPTIM2RST)
/**
* @}
*/
/** @defgroup RCC_APB2_Force_Release_Reset APB2 Peripheral Force Release Reset
* @brief Force or release APB2 peripheral reset.
* @{
*/
#define __HAL_RCC_APB2_FORCE_RESET() WRITE_REG(RCC->APB2RSTR, 0xFFFFFFFFU)
#define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SYSCFGRST)
#if defined(SDMMC1) && defined(RCC_APB2RSTR_SDMMC1RST)
#define __HAL_RCC_SDMMC1_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SDMMC1RST)
#endif /* SDMMC1 && RCC_APB2RSTR_SDMMC1RST */
#define __HAL_RCC_TIM1_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM1RST)
#define __HAL_RCC_SPI1_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SPI1RST)
#if defined(TIM8)
#define __HAL_RCC_TIM8_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM8RST)
#endif /* TIM8 */
#define __HAL_RCC_USART1_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_USART1RST)
#define __HAL_RCC_TIM15_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM15RST)
#define __HAL_RCC_TIM16_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM16RST)
#if defined(TIM17)
#define __HAL_RCC_TIM17_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM17RST)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SAI1RST)
#if defined(SAI2)
#define __HAL_RCC_SAI2_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SAI2RST)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_DFSDM1RST)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_LTDCRST)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_FORCE_RESET() SET_BIT(RCC->APB2RSTR, RCC_APB2RSTR_DSIRST)
#endif /* DSI */
#define __HAL_RCC_APB2_RELEASE_RESET() WRITE_REG(RCC->APB2RSTR, 0x00000000U)
#define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SYSCFGRST)
#if defined(SDMMC1) && defined(RCC_APB2RSTR_SDMMC1RST)
#define __HAL_RCC_SDMMC1_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SDMMC1RST)
#endif /* SDMMC1 && RCC_APB2RSTR_SDMMC1RST */
#define __HAL_RCC_TIM1_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM1RST)
#define __HAL_RCC_SPI1_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SPI1RST)
#if defined(TIM8)
#define __HAL_RCC_TIM8_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM8RST)
#endif /* TIM8 */
#define __HAL_RCC_USART1_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_USART1RST)
#define __HAL_RCC_TIM15_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM15RST)
#define __HAL_RCC_TIM16_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM16RST)
#if defined(TIM17)
#define __HAL_RCC_TIM17_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_TIM17RST)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SAI1RST)
#if defined(SAI2)
#define __HAL_RCC_SAI2_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_SAI2RST)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_DFSDM1RST)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_LTDCRST)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, RCC_APB2RSTR_DSIRST)
#endif /* DSI */
/**
* @}
*/
/** @defgroup RCC_AHB1_Clock_Sleep_Enable_Disable AHB1 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the AHB1 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_DMA1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA1SMEN)
#define __HAL_RCC_DMA2_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2SMEN)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMAMUX1SMEN)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_FLASHSMEN)
#define __HAL_RCC_SRAM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_SRAM1SMEN)
#define __HAL_RCC_CRC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_CRCSMEN)
#define __HAL_RCC_TSC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_TSCSMEN)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2DSMEN)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_GFXMMUSMEN)
#endif /* GFXMMU */
#define __HAL_RCC_DMA1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA1SMEN)
#define __HAL_RCC_DMA2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2SMEN)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMAMUX1SMEN)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_FLASHSMEN)
#define __HAL_RCC_SRAM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_SRAM1SMEN)
#define __HAL_RCC_CRC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_CRCSMEN)
#define __HAL_RCC_TSC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_TSCSMEN)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2DSMEN)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_GFXMMUSMEN)
#endif /* GFXMMU */
/**
* @}
*/
/** @defgroup RCC_AHB2_Clock_Sleep_Enable_Disable AHB2 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the AHB2 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOASMEN)
#define __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOBSMEN)
#define __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOCSMEN)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIODSMEN)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOESMEN)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOFSMEN)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOGSMEN)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOHSMEN)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOISMEN)
#endif /* GPIOI */
#define __HAL_RCC_SRAM2_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM2SMEN)
#if defined(SRAM3)
#define __HAL_RCC_SRAM3_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM3SMEN)
#endif /* SRAM3 */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OTGFSSMEN)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_ADCSMEN)
#if defined(DCMI)
#define __HAL_RCC_DCMI_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_DCMISMEN)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_AESSMEN)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_HASHSMEN)
#endif /* HASH */
#define __HAL_RCC_RNG_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_RNGSMEN)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OSPIMSMEN)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SDMMC1SMEN)
#endif /* SDMMC1 && RCC_AHB2SMENR_SDMMC1SMEN */
#define __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOASMEN)
#define __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOBSMEN)
#define __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOCSMEN)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIODSMEN)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOESMEN)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOFSMEN)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOGSMEN)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOHSMEN)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOISMEN)
#endif /* GPIOI */
#define __HAL_RCC_SRAM2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM2SMEN)
#if defined(SRAM3)
#define __HAL_RCC_SRAM3_IS_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM3SMEN)
#endif /* SRAM3 */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OTGFSSMEN)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_ADCSMEN)
#if defined(DCMI)
#define __HAL_RCC_DCMI_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_DCMISMEN)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_AESSMEN)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_HASHSMEN)
#endif /* HASH */
#define __HAL_RCC_RNG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_RNGSMEN)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OSPIMSMEN)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SDMMC1SMEN)
#endif /* SDMMC1 && RCC_AHB2SMENR_SDMMC1SMEN */
/**
* @}
*/
/** @defgroup RCC_AHB3_Clock_Sleep_Enable_Disable AHB3 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the AHB3 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_QSPISMEN)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI1SMEN)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI2SMEN)
#endif /* OCTOSPI2 */
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_FMCSMEN)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_QSPISMEN)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI1SMEN)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI2SMEN)
#endif /* OCTOSPI2 */
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_FMCSMEN)
#endif /* FMC_BANK1 */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Sleep_Enable_Disable APB1 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB1 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_TIM2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM2SMEN)
#if defined(TIM3)
#define __HAL_RCC_TIM3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM3SMEN)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM4SMEN)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM5SMEN)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM6SMEN)
#define __HAL_RCC_TIM7_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM7SMEN)
#if defined(LCD)
#define __HAL_RCC_LCD_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LCDSMEN)
#endif /* LCD */
#if defined(RCC_APB1SMENR1_RTCAPBSMEN)
#define __HAL_RCC_RTCAPB_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_RTCAPBSMEN)
#endif /* RCC_APB1SMENR1_RTCAPBSMEN */
#define __HAL_RCC_WWDG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_WWDGSMEN)
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI2SMEN)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI3SMEN)
#define __HAL_RCC_USART2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART2SMEN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART3SMEN)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART4SMEN)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART5SMEN)
#endif /* UART5 */
#define __HAL_RCC_I2C1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C1SMEN)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C2SMEN)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C3SMEN)
#if defined(I2C4)
#define __HAL_RCC_I2C4_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_I2C4SMEN)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CRSSMEN)
#endif /* CRS */
#define __HAL_RCC_CAN1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN1SMEN)
#if defined(CAN2)
#define __HAL_RCC_CAN2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN2SMEN)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USBFSSMEN)
#endif /* USB */
#define __HAL_RCC_PWR_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_PWRSMEN)
#define __HAL_RCC_DAC1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_DAC1SMEN)
#define __HAL_RCC_OPAMP_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_OPAMPSMEN)
#define __HAL_RCC_LPTIM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LPTIM1SMEN)
#define __HAL_RCC_LPUART1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPUART1SMEN)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_SWPMI1SMEN)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPTIM2SMEN)
#define __HAL_RCC_TIM2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM2SMEN)
#if defined(TIM3)
#define __HAL_RCC_TIM3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM3SMEN)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM4SMEN)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM5SMEN)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM6SMEN)
#define __HAL_RCC_TIM7_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM7SMEN)
#if defined(LCD)
#define __HAL_RCC_LCD_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LCDSMEN)
#endif /* LCD */
#if defined(RCC_APB1SMENR1_RTCAPBSMEN)
#define __HAL_RCC_RTCAPB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_RTCAPBSMEN)
#endif /* RCC_APB1SMENR1_RTCAPBSMEN */
#define __HAL_RCC_WWDG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_WWDGSMEN)
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI2SMEN)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI3SMEN)
#define __HAL_RCC_USART2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART2SMEN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART3SMEN)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART4SMEN)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART5SMEN)
#endif /* UART5 */
#define __HAL_RCC_I2C1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C1SMEN)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C2SMEN)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C3SMEN)
#if defined(I2C4)
#define __HAL_RCC_I2C4_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_I2C4SMEN)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CRSSMEN)
#endif /* CRS */
#define __HAL_RCC_CAN1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN1SMEN)
#if defined(CAN2)
#define __HAL_RCC_CAN2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN2SMEN)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USBFSSMEN)
#endif /* USB */
#define __HAL_RCC_PWR_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_PWRSMEN)
#define __HAL_RCC_DAC1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_DAC1SMEN)
#define __HAL_RCC_OPAMP_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_OPAMPSMEN)
#define __HAL_RCC_LPTIM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LPTIM1SMEN)
#define __HAL_RCC_LPUART1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPUART1SMEN)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_SWPMI1SMEN)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPTIM2SMEN)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Sleep_Enable_Disable APB2 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB2 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SYSCFGSMEN)
#if defined(SDMMC1) && defined(RCC_APB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SDMMC1SMEN)
#endif /* SDMMC1 && RCC_APB2SMENR_SDMMC1SMEN */
#define __HAL_RCC_TIM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM1SMEN)
#define __HAL_RCC_SPI1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SPI1SMEN)
#if defined(TIM8)
#define __HAL_RCC_TIM8_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM8SMEN)
#endif /* TIM8 */
#define __HAL_RCC_USART1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_USART1SMEN)
#define __HAL_RCC_TIM15_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM15SMEN)
#define __HAL_RCC_TIM16_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM16SMEN)
#if defined(TIM17)
#define __HAL_RCC_TIM17_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM17SMEN)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI1SMEN)
#if defined(SAI2)
#define __HAL_RCC_SAI2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI2SMEN)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DFSDM1SMEN)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_LTDCSMEN)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DSISMEN)
#endif /* DSI */
#define __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SYSCFGSMEN)
#if defined(SDMMC1) && defined(RCC_APB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SDMMC1SMEN)
#endif /* SDMMC1 && RCC_APB2SMENR_SDMMC1SMEN */
#define __HAL_RCC_TIM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM1SMEN)
#define __HAL_RCC_SPI1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SPI1SMEN)
#if defined(TIM8)
#define __HAL_RCC_TIM8_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM8SMEN)
#endif /* TIM8 */
#define __HAL_RCC_USART1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_USART1SMEN)
#define __HAL_RCC_TIM15_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM15SMEN)
#define __HAL_RCC_TIM16_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM16SMEN)
#if defined(TIM17)
#define __HAL_RCC_TIM17_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM17SMEN)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI1SMEN)
#if defined(SAI2)
#define __HAL_RCC_SAI2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI2SMEN)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DFSDM1SMEN)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_LTDCSMEN)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DSISMEN)
#endif /* DSI */
/**
* @}
*/
/** @defgroup RCC_AHB1_Clock_Sleep_Enable_Disable_Status AHB1 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the AHB1 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA1SMEN) != RESET)
#define __HAL_RCC_DMA2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2SMEN) != RESET)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMAMUX1SMEN) != RESET)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_FLASHSMEN) != RESET)
#define __HAL_RCC_SRAM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_SRAM1SMEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_CRCSMEN) != RESET)
#define __HAL_RCC_TSC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_TSCSMEN) != RESET)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2DSMEN) != RESET)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_GFXMMUSMEN) != RESET)
#endif /* GFXMMU */
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA1SMEN) == RESET)
#define __HAL_RCC_DMA2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2SMEN) == RESET)
#if defined(DMAMUX1)
#define __HAL_RCC_DMAMUX1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMAMUX1SMEN) == RESET)
#endif /* DMAMUX1 */
#define __HAL_RCC_FLASH_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_FLASHSMEN) == RESET)
#define __HAL_RCC_SRAM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_SRAM1SMEN) == RESET)
#define __HAL_RCC_CRC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_CRCSMEN) == RESET)
#define __HAL_RCC_TSC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_TSCSMEN) == RESET)
#if defined(DMA2D)
#define __HAL_RCC_DMA2D_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_DMA2DSMEN) == RESET)
#endif /* DMA2D */
#if defined(GFXMMU)
#define __HAL_RCC_GFXMMU_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB1SMENR, RCC_AHB1SMENR_GFXMMUSMEN) == RESET)
#endif /* GFXMMU */
/**
* @}
*/
/** @defgroup RCC_AHB2_Clock_Sleep_Enable_Disable_Status AHB2 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the AHB2 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOASMEN) != RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOBSMEN) != RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOCSMEN) != RESET)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIODSMEN) != RESET)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOESMEN) != RESET)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOFSMEN) != RESET)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOGSMEN) != RESET)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOHSMEN) != RESET)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOISMEN) != RESET)
#endif /* GPIOI */
#define __HAL_RCC_SRAM2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM2SMEN) != RESET)
#if defined(SRAM3)
#define __HAL_RCC_SRAM3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM3SMEN) != RESET)
#endif /* SRAM3 */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OTGFSSMEN) != RESET)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_ADCSMEN) != RESET)
#if defined(DCMI)
#define __HAL_RCC_DCMI_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_DCMISMEN) != RESET)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_AESSMEN) != RESET)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_HASHSMEN) != RESET)
#endif /* HASH */
#define __HAL_RCC_RNG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_RNGSMEN) != RESET)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OSPIMSMEN) != RESET)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SDMMC1SMEN) != RESET)
#endif /* SDMMC1 && RCC_AHB2SMENR_SDMMC1SMEN */
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOASMEN) == RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOBSMEN) == RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOCSMEN) == RESET)
#if defined(GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIODSMEN) == RESET)
#endif /* GPIOD */
#if defined(GPIOE)
#define __HAL_RCC_GPIOE_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOESMEN) == RESET)
#endif /* GPIOE */
#if defined(GPIOF)
#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOFSMEN) == RESET)
#endif /* GPIOF */
#if defined(GPIOG)
#define __HAL_RCC_GPIOG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOGSMEN) == RESET)
#endif /* GPIOG */
#define __HAL_RCC_GPIOH_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOHSMEN) == RESET)
#if defined(GPIOI)
#define __HAL_RCC_GPIOI_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_GPIOISMEN) == RESET)
#endif /* GPIOI */
#define __HAL_RCC_SRAM2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM2SMEN) == RESET)
#if defined(SRAM3)
#define __HAL_RCC_SRAM3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SRAM3SMEN) == RESET)
#endif /* SRAM3 */
#if defined(USB_OTG_FS)
#define __HAL_RCC_USB_OTG_FS_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OTGFSSMEN) == RESET)
#endif /* USB_OTG_FS */
#define __HAL_RCC_ADC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_ADCSMEN) == RESET)
#if defined(DCMI)
#define __HAL_RCC_DCMI_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_DCMISMEN) == RESET)
#endif /* DCMI */
#if defined(AES)
#define __HAL_RCC_AES_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_AESSMEN) == RESET)
#endif /* AES */
#if defined(HASH)
#define __HAL_RCC_HASH_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_HASHSMEN) == RESET)
#endif /* HASH */
#define __HAL_RCC_RNG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_RNGSMEN) == RESET)
#if defined(OCTOSPIM)
#define __HAL_RCC_OSPIM_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_OSPIMSMEN) == RESET)
#endif /* OCTOSPIM */
#if defined(SDMMC1) && defined(RCC_AHB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB2SMENR, RCC_AHB2SMENR_SDMMC1SMEN) == RESET)
#endif /* SDMMC1 && RCC_AHB2SMENR_SDMMC1SMEN */
/**
* @}
*/
/** @defgroup RCC_AHB3_Clock_Sleep_Enable_Disable_Status AHB3 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the AHB3 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_QSPISMEN) != RESET)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI1SMEN) != RESET)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI2SMEN) != RESET)
#endif /* OCTOSPI2 */
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_FMCSMEN) != RESET)
#endif /* FMC_BANK1 */
#if defined(QUADSPI)
#define __HAL_RCC_QSPI_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_QSPISMEN) == RESET)
#endif /* QUADSPI */
#if defined(OCTOSPI1)
#define __HAL_RCC_OSPI1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI1SMEN) == RESET)
#endif /* OCTOSPI1 */
#if defined(OCTOSPI2)
#define __HAL_RCC_OSPI2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_OSPI2SMEN) == RESET)
#endif /* OCTOSPI2 */
#if defined(FMC_BANK1)
#define __HAL_RCC_FMC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHB3SMENR, RCC_AHB3SMENR_FMCSMEN) == RESET)
#endif /* FMC_BANK1 */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Sleep_Enable_Disable_Status APB1 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_TIM2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM2SMEN) != RESET)
#if defined(TIM3)
#define __HAL_RCC_TIM3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM3SMEN) != RESET)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM4SMEN) != RESET)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM5SMEN) != RESET)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM6SMEN) != RESET)
#define __HAL_RCC_TIM7_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM7SMEN) != RESET)
#if defined(LCD)
#define __HAL_RCC_LCD_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LCDSMEN) != RESET)
#endif /* LCD */
#if defined(RCC_APB1SMENR1_RTCAPBSMEN)
#define __HAL_RCC_RTCAPB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_RTCAPBSMEN) != RESET)
#endif /* RCC_APB1SMENR1_RTCAPBSMEN */
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_WWDGSMEN) != RESET)
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI2SMEN) != RESET)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI3SMEN) != RESET)
#define __HAL_RCC_USART2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART2SMEN) != RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART3SMEN) != RESET)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART4SMEN) != RESET)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART5SMEN) != RESET)
#endif /* UART5 */
#define __HAL_RCC_I2C1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C1SMEN) != RESET)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C2SMEN) != RESET)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C3SMEN) != RESET)
#if defined(I2C4)
#define __HAL_RCC_I2C4_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_I2C4SMEN) != RESET)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CRSSMEN) != RESET)
#endif /* CRS */
#define __HAL_RCC_CAN1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN1SMEN) != RESET)
#if defined(CAN2)
#define __HAL_RCC_CAN2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN2SMEN) != RESET)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USBFSSMEN) != RESET)
#endif /* USB */
#define __HAL_RCC_PWR_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_PWRSMEN) != RESET)
#define __HAL_RCC_DAC1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_DAC1SMEN) != RESET)
#define __HAL_RCC_OPAMP_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_OPAMPSMEN) != RESET)
#define __HAL_RCC_LPTIM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LPTIM1SMEN) != RESET)
#define __HAL_RCC_LPUART1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPUART1SMEN) != RESET)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_SWPMI1SMEN) != RESET)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPTIM2SMEN) != RESET)
#define __HAL_RCC_TIM2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM2SMEN) == RESET)
#if defined(TIM3)
#define __HAL_RCC_TIM3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM3SMEN) == RESET)
#endif /* TIM3 */
#if defined(TIM4)
#define __HAL_RCC_TIM4_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM4SMEN) == RESET)
#endif /* TIM4 */
#if defined(TIM5)
#define __HAL_RCC_TIM5_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM5SMEN) == RESET)
#endif /* TIM5 */
#define __HAL_RCC_TIM6_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM6SMEN) == RESET)
#define __HAL_RCC_TIM7_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_TIM7SMEN) == RESET)
#if defined(LCD)
#define __HAL_RCC_LCD_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LCDSMEN) == RESET)
#endif /* LCD */
#if defined(RCC_APB1SMENR1_RTCAPBSMEN)
#define __HAL_RCC_RTCAPB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_RTCAPBSMEN) == RESET)
#endif /* RCC_APB1SMENR1_RTCAPBSMEN */
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_WWDGSMEN) == RESET)
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI2SMEN) == RESET)
#endif /* SPI2 */
#define __HAL_RCC_SPI3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_SPI3SMEN) == RESET)
#define __HAL_RCC_USART2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART2SMEN) == RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USART3SMEN) == RESET)
#endif /* USART3 */
#if defined(UART4)
#define __HAL_RCC_UART4_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART4SMEN) == RESET)
#endif /* UART4 */
#if defined(UART5)
#define __HAL_RCC_UART5_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_UART5SMEN) == RESET)
#endif /* UART5 */
#define __HAL_RCC_I2C1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C1SMEN) == RESET)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C2SMEN) == RESET)
#endif /* I2C2 */
#define __HAL_RCC_I2C3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_I2C3SMEN) == RESET)
#if defined(I2C4)
#define __HAL_RCC_I2C4_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_I2C4SMEN) == RESET)
#endif /* I2C4 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CRSSMEN) == RESET)
#endif /* CRS */
#define __HAL_RCC_CAN1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN1SMEN) == RESET)
#if defined(CAN2)
#define __HAL_RCC_CAN2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_CAN2SMEN) == RESET)
#endif /* CAN2 */
#if defined(USB)
#define __HAL_RCC_USB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_USBFSSMEN) == RESET)
#endif /* USB */
#define __HAL_RCC_PWR_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_PWRSMEN) == RESET)
#define __HAL_RCC_DAC1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_DAC1SMEN) == RESET)
#define __HAL_RCC_OPAMP_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_OPAMPSMEN) == RESET)
#define __HAL_RCC_LPTIM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR1, RCC_APB1SMENR1_LPTIM1SMEN) == RESET)
#define __HAL_RCC_LPUART1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPUART1SMEN) == RESET)
#if defined(SWPMI1)
#define __HAL_RCC_SWPMI1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_SWPMI1SMEN) == RESET)
#endif /* SWPMI1 */
#define __HAL_RCC_LPTIM2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB1SMENR2, RCC_APB1SMENR2_LPTIM2SMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Sleep_Enable_Disable_Status APB2 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SYSCFGSMEN) != RESET)
#if defined(SDMMC1) && defined(RCC_APB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SDMMC1SMEN) != RESET)
#endif /* SDMMC1 && RCC_APB2SMENR_SDMMC1SMEN */
#define __HAL_RCC_TIM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM1SMEN) != RESET)
#define __HAL_RCC_SPI1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SPI1SMEN) != RESET)
#if defined(TIM8)
#define __HAL_RCC_TIM8_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM8SMEN) != RESET)
#endif /* TIM8 */
#define __HAL_RCC_USART1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_USART1SMEN) != RESET)
#define __HAL_RCC_TIM15_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM15SMEN) != RESET)
#define __HAL_RCC_TIM16_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM16SMEN) != RESET)
#if defined(TIM17)
#define __HAL_RCC_TIM17_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM17SMEN) != RESET)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI1SMEN) != RESET)
#if defined(SAI2)
#define __HAL_RCC_SAI2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI2SMEN) != RESET)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DFSDM1SMEN) != RESET)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_LTDCSMEN) != RESET)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DSISMEN) != RESET)
#endif /* DSI */
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SYSCFGSMEN) == RESET)
#if defined(SDMMC1) && defined(RCC_APB2SMENR_SDMMC1SMEN)
#define __HAL_RCC_SDMMC1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SDMMC1SMEN) == RESET)
#endif /* SDMMC1 && RCC_APB2SMENR_SDMMC1SMEN */
#define __HAL_RCC_TIM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM1SMEN) == RESET)
#define __HAL_RCC_SPI1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SPI1SMEN) == RESET)
#if defined(TIM8)
#define __HAL_RCC_TIM8_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM8SMEN) == RESET)
#endif /* TIM8 */
#define __HAL_RCC_USART1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_USART1SMEN) == RESET)
#define __HAL_RCC_TIM15_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM15SMEN) == RESET)
#define __HAL_RCC_TIM16_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM16SMEN) == RESET)
#if defined(TIM17)
#define __HAL_RCC_TIM17_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_TIM17SMEN) == RESET)
#endif /* TIM17 */
#define __HAL_RCC_SAI1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI1SMEN) == RESET)
#if defined(SAI2)
#define __HAL_RCC_SAI2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SAI2SMEN) == RESET)
#endif /* SAI2 */
#if defined(DFSDM1_Filter0)
#define __HAL_RCC_DFSDM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DFSDM1SMEN) == RESET)
#endif /* DFSDM1_Filter0 */
#if defined(LTDC)
#define __HAL_RCC_LTDC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_LTDCSMEN) == RESET)
#endif /* LTDC */
#if defined(DSI)
#define __HAL_RCC_DSI_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DSISMEN) == RESET)
#endif /* DSI */
/**
* @}
*/
/** @defgroup RCC_Backup_Domain_Reset RCC Backup Domain Reset
* @{
*/
/** @brief Macros to force or release the Backup domain reset.
* @note This function resets the RTC peripheral (including the backup registers)
* and the RTC clock source selection in RCC_CSR register.
* @note The BKPSRAM is not affected by this reset.
* @retval None
*/
#define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->BDCR, RCC_BDCR_BDRST)
#define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST)
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
* @{
*/
/** @brief Macros to enable or disable the RTC clock.
* @note As the RTC is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the RTC
* (to be done once after reset).
* @note These macros must be used after the RTC clock source was selected.
* @retval None
*/
#define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
#define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN)
/**
* @}
*/
/** @brief Macros to enable or disable the Internal High Speed 16MHz oscillator (HSI).
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after startup
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure
* of the HSE used directly or indirectly as system clock (if the Clock
* Security System CSS is enabled).
* @note HSI can not be stopped if it is used as system clock source. In this case,
* you have to select another source of the system clock then stop the HSI.
* @note After enabling the HSI, the application software should wait on HSIRDY
* flag to be set indicating that HSI clock is stable and can be used as
* system clock source.
* This parameter can be: ENABLE or DISABLE.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION)
#define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macro to adjust the Internal High Speed 16MHz oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* @param __HSICALIBRATIONVALUE__ specifies the calibration trimming value
* (default is RCC_HSICALIBRATION_DEFAULT).
* This parameter must be a number between 0 and 0x1F (STM32L43x/STM32L44x/STM32L47x/STM32L48x) or 0x7F (for other devices).
* @retval None
*/
#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) \
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, (__HSICALIBRATIONVALUE__) << RCC_ICSCR_HSITRIM_Pos)
/**
* @brief Macros to enable or disable the wakeup the Internal High Speed oscillator (HSI)
* in parallel to the Internal Multi Speed oscillator (MSI) used at system wakeup.
* @note The enable of this function has not effect on the HSION bit.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSIAUTOMATIC_START_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSIASFS)
#define __HAL_RCC_HSIAUTOMATIC_START_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSIASFS)
/**
* @brief Macros to enable or disable the force of the Internal High Speed oscillator (HSI)
* in STOP mode to be quickly available as kernel clock for USARTs and I2Cs.
* @note Keeping the HSI ON in STOP mode allows to avoid slowing down the communication
* speed because of the HSI startup time.
* @note The enable of this function has not effect on the HSION bit.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSISTOP_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSIKERON)
#define __HAL_RCC_HSISTOP_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSIKERON)
/**
* @brief Macros to enable or disable the Internal Multi Speed oscillator (MSI).
* @note The MSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after
* startup from Reset, wakeup from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
* @note MSI can not be stopped if it is used as system clock source.
* In this case, you have to select another source of the system
* clock then stop the MSI.
* @note After enabling the MSI, the application software should wait on
* MSIRDY flag to be set indicating that MSI clock is stable and can
* be used as system clock source.
* @note When the MSI is stopped, MSIRDY flag goes low after 6 MSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_MSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_MSION)
#define __HAL_RCC_MSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_MSION)
/** @brief Macro Adjusts the Internal Multi Speed oscillator (MSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal MSI RC.
* Refer to the Application Note AN3300 for more details on how to
* calibrate the MSI.
* @param __MSICALIBRATIONVALUE__ specifies the calibration trimming value
* (default is RCC_MSICALIBRATION_DEFAULT).
* This parameter must be a number between 0 and 255.
* @retval None
*/
#define __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(__MSICALIBRATIONVALUE__) \
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_MSITRIM, (__MSICALIBRATIONVALUE__) << RCC_ICSCR_MSITRIM_Pos)
/**
* @brief Macro configures the Internal Multi Speed oscillator (MSI) clock range in run mode
* @note After restart from Reset , the MSI clock is around 4 MHz.
* After stop the startup clock can be MSI (at any of its possible
* frequencies, the one that was used before entering stop mode) or HSI.
* After Standby its frequency can be selected between 4 possible values
* (1, 2, 4 or 8 MHz).
* @note MSIRANGE can be modified when MSI is OFF (MSION=0) or when MSI is ready
* (MSIRDY=1).
* @note The MSI clock range after reset can be modified on the fly.
* @param __MSIRANGEVALUE__ specifies the MSI clock range.
* This parameter must be one of the following values:
* @arg @ref RCC_MSIRANGE_0 MSI clock is around 100 KHz
* @arg @ref RCC_MSIRANGE_1 MSI clock is around 200 KHz
* @arg @ref RCC_MSIRANGE_2 MSI clock is around 400 KHz
* @arg @ref RCC_MSIRANGE_3 MSI clock is around 800 KHz
* @arg @ref RCC_MSIRANGE_4 MSI clock is around 1 MHz
* @arg @ref RCC_MSIRANGE_5 MSI clock is around 2 MHz
* @arg @ref RCC_MSIRANGE_6 MSI clock is around 4 MHz (default after Reset)
* @arg @ref RCC_MSIRANGE_7 MSI clock is around 8 MHz
* @arg @ref RCC_MSIRANGE_8 MSI clock is around 16 MHz
* @arg @ref RCC_MSIRANGE_9 MSI clock is around 24 MHz
* @arg @ref RCC_MSIRANGE_10 MSI clock is around 32 MHz
* @arg @ref RCC_MSIRANGE_11 MSI clock is around 48 MHz
* @retval None
*/
#define __HAL_RCC_MSI_RANGE_CONFIG(__MSIRANGEVALUE__) \
do { \
SET_BIT(RCC->CR, RCC_CR_MSIRGSEL); \
MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, (__MSIRANGEVALUE__)); \
} while(0)
/**
* @brief Macro configures the Internal Multi Speed oscillator (MSI) clock range after Standby mode
* After Standby its frequency can be selected between 4 possible values (1, 2, 4 or 8 MHz).
* @param __MSIRANGEVALUE__ specifies the MSI clock range.
* This parameter must be one of the following values:
* @arg @ref RCC_MSIRANGE_4 MSI clock is around 1 MHz
* @arg @ref RCC_MSIRANGE_5 MSI clock is around 2 MHz
* @arg @ref RCC_MSIRANGE_6 MSI clock is around 4 MHz (default after Reset)
* @arg @ref RCC_MSIRANGE_7 MSI clock is around 8 MHz
* @retval None
*/
#define __HAL_RCC_MSI_STANDBY_RANGE_CONFIG(__MSIRANGEVALUE__) \
MODIFY_REG(RCC->CSR, RCC_CSR_MSISRANGE, (__MSIRANGEVALUE__) << 4U)
/** @brief Macro to get the Internal Multi Speed oscillator (MSI) clock range in run mode
* @retval MSI clock range.
* This parameter must be one of the following values:
* @arg @ref RCC_MSIRANGE_0 MSI clock is around 100 KHz
* @arg @ref RCC_MSIRANGE_1 MSI clock is around 200 KHz
* @arg @ref RCC_MSIRANGE_2 MSI clock is around 400 KHz
* @arg @ref RCC_MSIRANGE_3 MSI clock is around 800 KHz
* @arg @ref RCC_MSIRANGE_4 MSI clock is around 1 MHz
* @arg @ref RCC_MSIRANGE_5 MSI clock is around 2 MHz
* @arg @ref RCC_MSIRANGE_6 MSI clock is around 4 MHz (default after Reset)
* @arg @ref RCC_MSIRANGE_7 MSI clock is around 8 MHz
* @arg @ref RCC_MSIRANGE_8 MSI clock is around 16 MHz
* @arg @ref RCC_MSIRANGE_9 MSI clock is around 24 MHz
* @arg @ref RCC_MSIRANGE_10 MSI clock is around 32 MHz
* @arg @ref RCC_MSIRANGE_11 MSI clock is around 48 MHz
*/
#define __HAL_RCC_GET_MSI_RANGE() \
((READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) != RESET) ? \
READ_BIT(RCC->CR, RCC_CR_MSIRANGE) : \
READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> 4U)
/** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION)
#define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION)
/**
* @brief Macro to configure the External High Speed oscillator (HSE).
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this macro. User should request a transition to HSE Off
* first and then HSE On or HSE Bypass.
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function reset the CSSON bit, so if the clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param __STATE__ specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg @ref RCC_HSE_OFF Turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg @ref RCC_HSE_ON Turn ON the HSE oscillator.
* @arg @ref RCC_HSE_BYPASS HSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_HSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_HSE_ON) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else if((__STATE__) == RCC_HSE_BYPASS) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEBYP); \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
} \
} while(0)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE).
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this macro. User should request a transition to LSE Off
* first and then LSE On or LSE Bypass.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param __STATE__ specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg @ref RCC_LSE_OFF Turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg @ref RCC_LSE_ON Turn ON the LSE oscillator.
* @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_LSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_LSE_ON) \
{ \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
} \
else if((__STATE__) == RCC_LSE_BYPASS) \
{ \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); \
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); \
} \
} while(0)
#if defined(RCC_HSI48_SUPPORT)
/** @brief Macros to enable or disable the Internal High Speed 48MHz oscillator (HSI48).
* @note The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
* @note After enabling the HSI48, the application software should wait on HSI48RDY
* flag to be set indicating that HSI48 clock is stable.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSI48_ENABLE() SET_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON)
#define __HAL_RCC_HSI48_DISABLE() CLEAR_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON)
#endif /* RCC_HSI48_SUPPORT */
/** @brief Macros to configure the RTC clock (RTCCLK).
* @note As the RTC clock configuration bits are in the Backup domain and write
* access is denied to this domain after reset, you have to enable write
* access using the Power Backup Access macro before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it cannot be changed unless the
* Backup domain is reset using __HAL_RCC_BACKUPRESET_FORCE() macro, or by
* a Power On Reset (POR).
*
* @param __RTC_CLKSOURCE__ specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV32 HSE clock divided by 32 selected
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
* RTC clock source).
* @retval None
*/
#define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) \
MODIFY_REG( RCC->BDCR, RCC_BDCR_RTCSEL, (__RTC_CLKSOURCE__))
/** @brief Macro to get the RTC clock source.
* @retval The returned value can be one of the following:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV32 HSE clock divided by 32 selected
*/
#define __HAL_RCC_GET_RTC_SOURCE() (READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL))
/** @brief Macros to enable or disable the main PLL.
* @note After enabling the main PLL, the application software should wait on
* PLLRDY flag to be set indicating that PLL clock is stable and can
* be used as system clock source.
* @note The main PLL can not be disabled if it is used as system clock source
* @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
* @retval None
*/
#define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON)
#define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON)
/** @brief Macro to configure the PLL clock source.
* @note This function must be used only when the main PLL is disabled.
* @param __PLLSOURCE__ specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_PLLSOURCE_NONE No clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_MSI MSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry
* @note This clock source is common for the main PLL and audio PLL (PLLSAI1 and PLLSAI2).
* @retval None
*
*/
#define __HAL_RCC_PLL_PLLSOURCE_CONFIG(__PLLSOURCE__) \
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__PLLSOURCE__))
/** @brief Macro to configure the PLL source division factor M.
* @note This function must be used only when the main PLL is disabled.
* @param __PLLM__ specifies the division factor for PLL VCO input clock
* This parameter must be a number between Min_Data = 1 and Max_Data = 16 on STM32L4Rx/STM32L4Sx devices.
* This parameter must be a number between Min_Data = 1 and Max_Data = 8 on other devices.
* @note You have to set the PLLM parameter correctly to ensure that the VCO input
* frequency ranges from 4 to 16 MHz. It is recommended to select a frequency
* of 16 MHz to limit PLL jitter.
* @retval None
*
*/
#define __HAL_RCC_PLL_PLLM_CONFIG(__PLLM__) \
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLM, ((__PLLM__) - 1) << 4U)
/**
* @brief Macro to configure the main PLL clock source, multiplication and division factors.
* @note This function must be used only when the main PLL is disabled.
*
* @param __PLLSOURCE__ specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_PLLSOURCE_NONE No clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_MSI MSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSI HSI oscillator clock selected as PLL clock entry
* @arg @ref RCC_PLLSOURCE_HSE HSE oscillator clock selected as PLL clock entry
* @note This clock source is common for the main PLL and audio PLL (PLLSAI1 and PLLSAI2).
*
* @param __PLLM__ specifies the division factor for PLL VCO input clock.
* This parameter must be a number between Min_Data = 1 and Max_Data = 16 on STM32L4Rx/STM32L4Sx devices.
* This parameter must be a number between Min_Data = 1 and Max_Data = 8 on other devices.
* @note You have to set the PLLM parameter correctly to ensure that the VCO input
* frequency ranges from 4 to 16 MHz. It is recommended to select a frequency
* of 16 MHz to limit PLL jitter.
*
* @param __PLLN__ specifies the multiplication factor for PLL VCO output clock.
* This parameter must be a number between 8 and 86.
* @note You have to set the PLLN parameter correctly to ensure that the VCO
* output frequency is between 64 and 344 MHz.
*
* @param __PLLP__ specifies the division factor for SAI clock.
* This parameter must be a number in the range (7 or 17) for STM32L47x/STM32L48x
* else (2 to 31).
*
* @param __PLLQ__ specifies the division factor for OTG FS, SDMMC1 and RNG clocks.
* This parameter must be in the range (2, 4, 6 or 8).
* @note If the USB OTG FS is used in your application, you have to set the
* PLLQ parameter correctly to have 48 MHz clock for the USB. However,
* the SDMMC1 and RNG need a frequency lower than or equal to 48 MHz to work
* correctly.
* @param __PLLR__ specifies the division factor for the main system clock.
* @note You have to set the PLLR parameter correctly to not exceed 80MHZ.
* This parameter must be in the range (2, 4, 6 or 8).
* @retval None
*/
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
#define __HAL_RCC_PLL_CONFIG(__PLLSOURCE__, __PLLM__, __PLLN__, __PLLP__, __PLLQ__,__PLLR__ ) \
(RCC->PLLCFGR = (uint32_t)(((__PLLM__) - 1U) << 4U) | (uint32_t)((__PLLN__) << 8U) | \
(__PLLSOURCE__) | (uint32_t)((((__PLLQ__) >> 1U) - 1U) << 21U) | (uint32_t)((((__PLLR__) >> 1U) - 1U) << 25U) | \
((uint32_t)(__PLLP__) << 27U))
#else
#define __HAL_RCC_PLL_CONFIG(__PLLSOURCE__, __PLLM__, __PLLN__, __PLLP__, __PLLQ__,__PLLR__ ) \
(RCC->PLLCFGR = (uint32_t)(((__PLLM__) - 1U) << 4U) | (uint32_t)((__PLLN__) << 8U) | \
(uint32_t)(((__PLLP__) >> 4U ) << 17U) | \
(__PLLSOURCE__) | (uint32_t)((((__PLLQ__) >> 1U) - 1U) << 21U) | (uint32_t)((((__PLLR__) >> 1U) - 1U) << 25U))
#endif /* RCC_PLLP_DIV_2_31_SUPPORT */
/** @brief Macro to get the oscillator used as PLL clock source.
* @retval The oscillator used as PLL clock source. The returned value can be one
* of the following:
* - RCC_PLLSOURCE_NONE: No oscillator is used as PLL clock source.
* - RCC_PLLSOURCE_MSI: MSI oscillator is used as PLL clock source.
* - RCC_PLLSOURCE_HSI: HSI oscillator is used as PLL clock source.
* - RCC_PLLSOURCE_HSE: HSE oscillator is used as PLL clock source.
*/
#define __HAL_RCC_GET_PLL_OSCSOURCE() (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC))
/**
* @brief Enable or disable each clock output (RCC_PLL_SYSCLK, RCC_PLL_48M1CLK, RCC_PLL_SAI3CLK)
* @note Enabling/disabling clock outputs RCC_PLL_SAI3CLK and RCC_PLL_48M1CLK can be done at anytime
* without the need to stop the PLL in order to save power. But RCC_PLL_SYSCLK cannot
* be stopped if used as System Clock.
* @param __PLLCLOCKOUT__ specifies the PLL clock to be output.
* This parameter can be one or a combination of the following values:
* @arg @ref RCC_PLL_SAI3CLK This clock is used to generate an accurate clock to achieve
* high-quality audio performance on SAI interface in case.
* @arg @ref RCC_PLL_48M1CLK This Clock is used to generate the clock for the USB OTG FS (48 MHz),
* the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
* @arg @ref RCC_PLL_SYSCLK This Clock is used to generate the high speed system clock (up to 80MHz)
* @retval None
*/
#define __HAL_RCC_PLLCLKOUT_ENABLE(__PLLCLOCKOUT__) SET_BIT(RCC->PLLCFGR, (__PLLCLOCKOUT__))
#define __HAL_RCC_PLLCLKOUT_DISABLE(__PLLCLOCKOUT__) CLEAR_BIT(RCC->PLLCFGR, (__PLLCLOCKOUT__))
/**
* @brief Get clock output enable status (RCC_PLL_SYSCLK, RCC_PLL_48M1CLK, RCC_PLL_SAI3CLK)
* @param __PLLCLOCKOUT__ specifies the output PLL clock to be checked.
* This parameter can be one of the following values:
* @arg @ref RCC_PLL_SAI3CLK This clock is used to generate an accurate clock to achieve
* high-quality audio performance on SAI interface in case.
* @arg @ref RCC_PLL_48M1CLK This Clock is used to generate the clock for the USB OTG FS (48 MHz),
* the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
* @arg @ref RCC_PLL_SYSCLK This Clock is used to generate the high speed system clock (up to 80MHz)
* @retval SET / RESET
*/
#define __HAL_RCC_GET_PLLCLKOUT_CONFIG(__PLLCLOCKOUT__) READ_BIT(RCC->PLLCFGR, (__PLLCLOCKOUT__))
/**
* @brief Macro to configure the system clock source.
* @param __SYSCLKSOURCE__ specifies the system clock source.
* This parameter can be one of the following values:
* - RCC_SYSCLKSOURCE_MSI: MSI oscillator is used as system clock source.
* - RCC_SYSCLKSOURCE_HSI: HSI oscillator is used as system clock source.
* - RCC_SYSCLKSOURCE_HSE: HSE oscillator is used as system clock source.
* - RCC_SYSCLKSOURCE_PLLCLK: PLL output is used as system clock source.
* @retval None
*/
#define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__))
/** @brief Macro to get the clock source used as system clock.
* @retval The clock source used as system clock. The returned value can be one
* of the following:
* - RCC_SYSCLKSOURCE_STATUS_MSI: MSI used as system clock.
* - RCC_SYSCLKSOURCE_STATUS_HSI: HSI used as system clock.
* - RCC_SYSCLKSOURCE_STATUS_HSE: HSE used as system clock.
* - RCC_SYSCLKSOURCE_STATUS_PLLCLK: PLL used as system clock.
*/
#define __HAL_RCC_GET_SYSCLK_SOURCE() (READ_BIT(RCC->CFGR, RCC_CFGR_SWS))
/**
* @brief Macro to configure the External Low Speed oscillator (LSE) drive capability.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @param __LSEDRIVE__ specifies the new state of the LSE drive capability.
* This parameter can be one of the following values:
* @arg @ref RCC_LSEDRIVE_LOW LSE oscillator low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUMLOW LSE oscillator medium low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUMHIGH LSE oscillator medium high drive capability.
* @arg @ref RCC_LSEDRIVE_HIGH LSE oscillator high drive capability.
* @retval None
*/
#define __HAL_RCC_LSEDRIVE_CONFIG(__LSEDRIVE__) \
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEDRV, (__LSEDRIVE__))
/**
* @brief Macro to configure the wake up from stop clock.
* @param __STOPWUCLK__ specifies the clock source used after wake up from stop.
* This parameter can be one of the following values:
* @arg @ref RCC_STOP_WAKEUPCLOCK_MSI MSI selected as system clock source
* @arg @ref RCC_STOP_WAKEUPCLOCK_HSI HSI selected as system clock source
* @retval None
*/
#define __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(__STOPWUCLK__) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_STOPWUCK, (__STOPWUCLK__))
/** @brief Macro to configure the MCO clock.
* @param __MCOCLKSOURCE__ specifies the MCO clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled
* @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
* @arg @ref RCC_MCO1SOURCE_PLLCLK Main PLL clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
@if STM32L443xx
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
@endif
@if STM32L4A6xx
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
@endif
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 MCO clock source is divided by 1
* @arg @ref RCC_MCODIV_2 MCO clock source is divided by 2
* @arg @ref RCC_MCODIV_4 MCO clock source is divided by 4
* @arg @ref RCC_MCODIV_8 MCO clock source is divided by 8
* @arg @ref RCC_MCODIV_16 MCO clock source is divided by 16
*/
#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
/** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management
* @brief macros to manage the specified RCC Flags and interrupts.
* @{
*/
/** @brief Enable RCC interrupt(s).
* @param __INTERRUPT__ specifies the RCC interrupt source(s) to be enabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_MSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_PLLSAI1RDY PLLSAI1 ready interrupt
* @arg @ref RCC_IT_PLLSAI2RDY PLLSAI2 ready interrupt for devices with PLLSAI2
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
@if STM32L443xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
@if STM32L4A6xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval None
*/
#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Disable RCC interrupt(s).
* @param __INTERRUPT__ specifies the RCC interrupt source(s) to be disabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_MSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_PLLSAI1RDY PLLSAI1 ready interrupt
* @arg @ref RCC_IT_PLLSAI2RDY PLLSAI2 ready interrupt for devices with PLLSAI2
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
@if STM32L443xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
@if STM32L4A6xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval None
*/
#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Clear the RCC's interrupt pending bits.
* @param __INTERRUPT__ specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_MSIRDY MSI ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_PLLSAI1RDY PLLSAI1 ready interrupt
* @arg @ref RCC_IT_PLLSAI2RDY PLLSAI2 ready interrupt for devices with PLLSAI2
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
@if STM32L443xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
@if STM32L4A6xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval None
*/
#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) WRITE_REG(RCC->CICR, (__INTERRUPT__))
/** @brief Check whether the RCC interrupt has occurred or not.
* @param __INTERRUPT__ specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_MSIRDY MSI ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_PLLRDY Main PLL ready interrupt
* @arg @ref RCC_IT_PLLSAI1RDY PLLSAI1 ready interrupt
* @arg @ref RCC_IT_PLLSAI2RDY PLLSAI2 ready interrupt for devices with PLLSAI2
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
@if STM32L443xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
@if STM32L4A6xx
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48
@endif
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_IT(__INTERRUPT__) (READ_BIT(RCC->CIFR, (__INTERRUPT__)) == (__INTERRUPT__))
/** @brief Set RMVF bit to clear the reset flags.
* The reset flags are: RCC_FLAG_FWRRST, RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_BORRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST and RCC_FLAG_LPWRRST.
* @retval None
*/
#define __HAL_RCC_CLEAR_RESET_FLAGS() SET_BIT(RCC->CSR, RCC_CSR_RMVF)
/** @brief Check whether the selected RCC flag is set or not.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg @ref RCC_FLAG_MSIRDY MSI oscillator clock ready
* @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready
* @arg @ref RCC_FLAG_HSERDY HSE oscillator clock ready
* @arg @ref RCC_FLAG_PLLRDY Main PLL clock ready
* @arg @ref RCC_FLAG_PLLSAI1RDY PLLSAI1 clock ready
* @arg @ref RCC_FLAG_PLLSAI2RDY PLLSAI2 clock ready for devices with PLLSAI2
@if STM32L443xx
* @arg @ref RCC_FLAG_HSI48RDY HSI48 clock ready for devices with HSI48
@endif
@if STM32L4A6xx
* @arg @ref RCC_FLAG_HSI48RDY HSI48 clock ready for devices with HSI48
@endif
* @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready
* @arg @ref RCC_FLAG_LSECSSD Clock security system failure on LSE oscillator detection
* @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready
* @arg @ref RCC_FLAG_BORRST BOR reset
* @arg @ref RCC_FLAG_OBLRST OBLRST reset
* @arg @ref RCC_FLAG_PINRST Pin reset
* @arg @ref RCC_FLAG_FWRST FIREWALL reset
* @arg @ref RCC_FLAG_RMVF Remove reset Flag
* @arg @ref RCC_FLAG_SFTRST Software reset
* @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset
* @arg @ref RCC_FLAG_WWDGRST Window Watchdog reset
* @arg @ref RCC_FLAG_LPWRRST Low Power reset
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#if defined(RCC_HSI48_SUPPORT)
#define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == 1U) ? RCC->CR : \
((((__FLAG__) >> 5U) == 4U) ? RCC->CRRCR : \
((((__FLAG__) >> 5U) == 2U) ? RCC->BDCR : \
((((__FLAG__) >> 5U) == 3U) ? RCC->CSR : RCC->CIFR)))) & \
(1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) ? 1U : 0U)
#else
#define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == 1U) ? RCC->CR : \
((((__FLAG__) >> 5U) == 2U) ? RCC->BDCR : \
((((__FLAG__) >> 5U) == 3U) ? RCC->CSR : RCC->CIFR))) & \
(1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) ? 1U : 0U)
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
* @{
*/
/* Defines used for Flags */
#define CR_REG_INDEX 1U
#define BDCR_REG_INDEX 2U
#define CSR_REG_INDEX 3U
#if defined(RCC_HSI48_SUPPORT)
#define CRRCR_REG_INDEX 4U
#endif /* RCC_HSI48_SUPPORT */
#define RCC_FLAG_MASK 0x1FU
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_Private_Macros
* @{
*/
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#else
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) (((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#endif /* RCC_HSI48_SUPPORT */
#define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \
((__HSE__) == RCC_HSE_BYPASS))
#define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \
((__LSE__) == RCC_LSE_BYPASS))
#define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON))
#define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= (RCC_ICSCR_HSITRIM >> RCC_ICSCR_HSITRIM_Pos))
#define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON))
#define IS_RCC_MSI(__MSI__) (((__MSI__) == RCC_MSI_OFF) || ((__MSI__) == RCC_MSI_ON))
#define IS_RCC_MSICALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= 255U)
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_HSI48(__HSI48__) (((__HSI48__) == RCC_HSI48_OFF) || ((__HSI48__) == RCC_HSI48_ON))
#endif /* RCC_HSI48_SUPPORT */
#define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) ||((__PLL__) == RCC_PLL_OFF) || \
((__PLL__) == RCC_PLL_ON))
#define IS_RCC_PLLSOURCE(__SOURCE__) (((__SOURCE__) == RCC_PLLSOURCE_NONE) || \
((__SOURCE__) == RCC_PLLSOURCE_MSI) || \
((__SOURCE__) == RCC_PLLSOURCE_HSI) || \
((__SOURCE__) == RCC_PLLSOURCE_HSE))
#if defined(RCC_PLLM_DIV_1_16_SUPPORT)
#define IS_RCC_PLLM_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 16U))
#else
#define IS_RCC_PLLM_VALUE(__VALUE__) ((1U <= (__VALUE__)) && ((__VALUE__) <= 8U))
#endif /*RCC_PLLM_DIV_1_16_SUPPORT */
#define IS_RCC_PLLN_VALUE(__VALUE__) ((8U <= (__VALUE__)) && ((__VALUE__) <= 86U))
#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
#define IS_RCC_PLLP_VALUE(__VALUE__) (((__VALUE__) >= 2U) && ((__VALUE__) <= 31U))
#else
#define IS_RCC_PLLP_VALUE(__VALUE__) (((__VALUE__) == 7U) || ((__VALUE__) == 17U))
#endif /*RCC_PLLP_DIV_2_31_SUPPORT */
#define IS_RCC_PLLQ_VALUE(__VALUE__) (((__VALUE__) == 2U) || ((__VALUE__) == 4U) || \
((__VALUE__) == 6U) || ((__VALUE__) == 8U))
#define IS_RCC_PLLR_VALUE(__VALUE__) (((__VALUE__) == 2U) || ((__VALUE__) == 4U) || \
((__VALUE__) == 6U) || ((__VALUE__) == 8U))
#define IS_RCC_PLLSAI1CLOCKOUT_VALUE(__VALUE__) (((((__VALUE__) & RCC_PLLSAI1_SAI1CLK) == RCC_PLLSAI1_SAI1CLK) || \
(((__VALUE__) & RCC_PLLSAI1_48M2CLK) == RCC_PLLSAI1_48M2CLK) || \
(((__VALUE__) & RCC_PLLSAI1_ADC1CLK) == RCC_PLLSAI1_ADC1CLK)) && \
(((__VALUE__) & ~(RCC_PLLSAI1_SAI1CLK|RCC_PLLSAI1_48M2CLK|RCC_PLLSAI1_ADC1CLK)) == 0U))
#if defined(RCC_PLLSAI2_SUPPORT)
#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || defined(STM32L496xx) || defined(STM32L4A6xx)
#define IS_RCC_PLLSAI2CLOCKOUT_VALUE(__VALUE__) (((((__VALUE__) & RCC_PLLSAI2_SAI2CLK) == RCC_PLLSAI2_SAI2CLK) || \
(((__VALUE__) & RCC_PLLSAI2_ADC2CLK) == RCC_PLLSAI2_ADC2CLK)) && \
(((__VALUE__) & ~(RCC_PLLSAI2_SAI2CLK|RCC_PLLSAI2_ADC2CLK)) == 0U))
#elif defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
#define IS_RCC_PLLSAI2CLOCKOUT_VALUE(__VALUE__) (((((__VALUE__) & RCC_PLLSAI2_SAI2CLK) == RCC_PLLSAI2_SAI2CLK) || \
(((__VALUE__) & RCC_PLLSAI2_DSICLK) == RCC_PLLSAI2_DSICLK) || \
(((__VALUE__) & RCC_PLLSAI2_LTDCCLK) == RCC_PLLSAI2_LTDCCLK)) && \
(((__VALUE__) & ~(RCC_PLLSAI2_SAI2CLK|RCC_PLLSAI2_DSICLK|RCC_PLLSAI2_LTDCCLK)) == 0U))
#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || STM32L496xx || STM32L4A6xx */
#endif /* RCC_PLLSAI2_SUPPORT */
#define IS_RCC_MSI_CLOCK_RANGE(__RANGE__) (((__RANGE__) == RCC_MSIRANGE_0) || \
((__RANGE__) == RCC_MSIRANGE_1) || \
((__RANGE__) == RCC_MSIRANGE_2) || \
((__RANGE__) == RCC_MSIRANGE_3) || \
((__RANGE__) == RCC_MSIRANGE_4) || \
((__RANGE__) == RCC_MSIRANGE_5) || \
((__RANGE__) == RCC_MSIRANGE_6) || \
((__RANGE__) == RCC_MSIRANGE_7) || \
((__RANGE__) == RCC_MSIRANGE_8) || \
((__RANGE__) == RCC_MSIRANGE_9) || \
((__RANGE__) == RCC_MSIRANGE_10) || \
((__RANGE__) == RCC_MSIRANGE_11))
#define IS_RCC_MSI_STANDBY_CLOCK_RANGE(__RANGE__) (((__RANGE__) == RCC_MSIRANGE_4) || \
((__RANGE__) == RCC_MSIRANGE_5) || \
((__RANGE__) == RCC_MSIRANGE_6) || \
((__RANGE__) == RCC_MSIRANGE_7))
#define IS_RCC_CLOCKTYPE(__CLK__) ((1U <= (__CLK__)) && ((__CLK__) <= 15U))
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_MSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_PLLCLK))
#define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \
((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \
((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \
((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \
((__HCLK__) == RCC_SYSCLK_DIV512))
#define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \
((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \
((__PCLK__) == RCC_HCLK_DIV16))
#define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV32))
#define IS_RCC_MCO(__MCOX__) ((__MCOX__) == RCC_MCO1)
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_MSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI48))
#else
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_MSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE))
#endif /* RCC_HSI48_SUPPORT */
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16))
#define IS_RCC_LSE_DRIVE(__DRIVE__) (((__DRIVE__) == RCC_LSEDRIVE_LOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUMLOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUMHIGH) || \
((__DRIVE__) == RCC_LSEDRIVE_HIGH))
#define IS_RCC_STOP_WAKEUPCLOCK(__SOURCE__) (((__SOURCE__) == RCC_STOP_WAKEUPCLOCK_MSI) || \
((__SOURCE__) == RCC_STOP_WAKEUPCLOCK_HSI))
/**
* @}
*/
/* Include RCC HAL Extended module */
#include "stm32l4xx_hal_rcc_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_Exported_Functions
* @{
*/
/** @addtogroup RCC_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions ******************************/
HAL_StatusTypeDef HAL_RCC_DeInit(void);
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
/**
* @}
*/
/** @addtogroup RCC_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
void HAL_RCC_EnableCSS(void);
uint32_t HAL_RCC_GetSysClockFreq(void);
uint32_t HAL_RCC_GetHCLKFreq(void);
uint32_t HAL_RCC_GetPCLK1Freq(void);
uint32_t HAL_RCC_GetPCLK2Freq(void);
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency);
/* CSS NMI IRQ handler */
void HAL_RCC_NMI_IRQHandler(void);
/* User Callbacks in non blocking mode (IT mode) */
void HAL_RCC_CSSCallback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32L4xx_HAL_RCC_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/