main.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. #include "mbed.h"
  2. #include "SWO.h"
  3. #include "pca9685.h"
  4. #include "tusb322.h"
  5. DigitalIn nFault(PA_3);
  6. DigitalIn Usb(PB_4);
  7. DigitalOut HvEn(PA_2);
  8. DigitalOut nNixieEn(PA_7);
  9. DigitalOut AmpEn(PB_1);
  10. DigitalOut LED(PB_6);
  11. AnalogIn Imon(PA_0);
  12. AnalogIn Vout(PA_1);
  13. AnalogOut Aout(PA_5);
  14. I2C i2c(PA_10, PA_9);
  15. SWO_Channel swo("channel");
  16. PCM9685_REGS Regs[3] = {0};
  17. // Calculate the byte offset of a field in a structure of type type.
  18. #define FIELD_OFFSET(type, field) ((uint32_t)(uint32_t*)&(((type *)0)->field))
  19. void Clock_Update(int tube, int digit, int brightness) {
  20. char buffer[sizeof(LED_CTRL)+1] = {0};
  21. if (!nFault.read()) { LED.write(1); while(1); }
  22. buffer[0] = FIELD_OFFSET(PCM9685_REGS, LED0) +
  23. (Tube_Mapping[tube][digit][MAP_PIN] * sizeof(LED_CTRL));
  24. LED_CTRL *reg = (LED_CTRL*)&buffer[1];
  25. if (brightness >= 1000) {
  26. reg->ON_FULL = 1;
  27. } else if (brightness == 0) {
  28. reg->OFF_FULL = 1;
  29. } else {
  30. reg->OFF = brightness * 4;
  31. }
  32. i2c.write(Tube_Mapping[tube][digit][MAP_ADDR] << 1, buffer, sizeof(buffer));
  33. }
  34. void Dot_Update(int brightness) {
  35. char buffer[sizeof(LED_CTRL)+1] = {0};
  36. buffer[0] = FIELD_OFFSET(PCM9685_REGS, TUBE_DOT_PIN);
  37. LED_CTRL *reg = (LED_CTRL*)&buffer[1];
  38. if (brightness == 0) {
  39. reg->OFF_FULL = 1;
  40. } else {
  41. reg->OFF = brightness;
  42. }
  43. i2c.write(TUBE_DOT_ADDR << 1, buffer, sizeof(buffer));
  44. }
  45. void Clock_Init() {
  46. char buffer[sizeof(REG_MODE1)+sizeof(REG_MODE2)+1] = {0};
  47. buffer[0] = FIELD_OFFSET(PCM9685_REGS, MODE1);
  48. REG_MODE1 *reg1 = (REG_MODE1*)&buffer[1];
  49. reg1->AI = 1; // Turn on autoincrement
  50. reg1->SLEEP = 1; // Start disabled
  51. reg1->ALLCALL = 1; // Enable response to all call address
  52. REG_MODE2 *reg2 = (REG_MODE2*)&buffer[1+sizeof(REG_MODE1)];
  53. reg2->OUTDRV = 1; // Configure output for totem pole drive
  54. i2c.write(PCM9685_All_Call << 1, buffer, sizeof(buffer));
  55. char pre_scale[2] = {0};
  56. pre_scale[0] = FIELD_OFFSET(PCM9685_REGS, PRE_SCALE);
  57. pre_scale[1] = 0x03; // Set PWM frequency to 1526 Hz
  58. i2c.write(PCM9685_All_Call << 1, pre_scale, sizeof(pre_scale));
  59. Dot_Update(0);
  60. for (int i = 0; i < 4; i++) {
  61. for (int j = 0; j < 10; j++) {
  62. Clock_Update(i, j, 0);
  63. }
  64. }
  65. reg1->SLEEP = 0;
  66. i2c.write(PCM9685_All_Call << 1, buffer, sizeof(buffer));
  67. }
  68. void Set_Analog(float voltage) {
  69. voltage = voltage * 0.6;
  70. Aout.write(voltage);
  71. }
  72. void USB_Init() {
  73. char buffer[sizeof(TUSB322_REGS)] = {0};
  74. // Disable UFP accessory support (otherwise IC stays in DRP mode)
  75. buffer[0] = FIELD_OFFSET(TUSB322_REGS, Status2);
  76. CONN_STATUS2 *stat = (CONN_STATUS2*)&buffer[1];
  77. stat->UFP_ACCESSORY = 0x1;
  78. i2c.write(TUSB322_ADDR << 1, buffer, 2);
  79. // Disable CC termination to change to UFP mode
  80. buffer[0] = FIELD_OFFSET(TUSB322_REGS, Control);
  81. CTRL *ctrl = (CTRL*)&buffer[1];
  82. ctrl->DISABLE_TERM = 0x1;
  83. i2c.write(TUSB322_ADDR << 1, buffer, 2);
  84. // For operation in UFP mode
  85. ctrl->MODE_SELECT = 0x01;
  86. i2c.write(TUSB322_ADDR << 1, buffer, 2);
  87. // Reenable CC termination
  88. ctrl->DISABLE_TERM = 0x0;
  89. i2c.write(TUSB322_ADDR << 1, buffer, 2);
  90. // do {
  91. // wait(0.1);
  92. // buffer[0] = FIELD_OFFSET(TUSB322_REGS, Status2);
  93. // i2c.write(TUSB322_ADDR << 1, buffer, 1);
  94. // i2c.read(TUSB322_ADDR << 1, buffer, 2);
  95. // } while (stat->ATTACHED_STATE != 0x10);
  96. }
  97. //#define CURRENT_TEST
  98. #define CYCLE_DISPLAY
  99. #define CYCLE_BASIC
  100. //#define CYCLE_ANALOG
  101. #define CYCLE_PWM
  102. #define CYCLE_FADE
  103. #define CYCLE_FADE_RANDOM
  104. #define CYCLE_FAST
  105. #define CYCLE_FAST_RANDOM
  106. int main() {
  107. // Initialize pins
  108. i2c.frequency(1000000);
  109. // Power up PCA9685 at 3.3V with outputs disabled
  110. Aout.write(1);
  111. AmpEn.write(1);
  112. nNixieEn.write(1);
  113. // Start with HV PSU disabled
  114. HvEn.write(0);
  115. USB_Init();
  116. LED.write(1);
  117. wait(1);
  118. LED.write(0);
  119. Clock_Init();
  120. nNixieEn.write(0);
  121. // Enable HV PSU
  122. HvEn.write(1);
  123. // Reduce PCA9685 voltage
  124. Set_Analog(1);
  125. swo.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
  126. #ifdef CURRENT_TEST
  127. Dot_Update(100);
  128. // Clock_Update(3, 1, 100);
  129. // Clock_Update(2, 2, 100);
  130. // Clock_Update(1, 3, 100);
  131. // Clock_Update(0, 4, 100);
  132. #endif
  133. while(1) {
  134. int i_curr[4];
  135. int i_next[4];
  136. #ifdef CYCLE_DISPLAY
  137. Set_Analog(1);
  138. #ifdef CYCLE_BASIC
  139. // Switch each digit from 0 to 100%
  140. for (int i = 0; i < 10; i++) {
  141. if (i % 2 == 0) {
  142. Dot_Update(0);
  143. } else {
  144. Dot_Update(1000);
  145. }
  146. for (int j = 0; j < 4; j++) {
  147. Clock_Update(j, i, 1000);
  148. }
  149. wait(0.5);
  150. for (int j = 0; j < 4; j++) {
  151. Clock_Update(j, i, 0);
  152. }
  153. }
  154. #endif
  155. #ifdef CYCLE_ANALOG
  156. // Analog dim
  157. for (int i = 0; i < 10; i++) {
  158. nNixieEn.write(1);
  159. for (int j = 0; j < 4; j++) {
  160. Clock_Update(j, i, 1000);
  161. Dot_Update(1000);
  162. }
  163. for (double k = 1; k >= 0.1; k -= 0.001) {
  164. Set_Analog(k);
  165. wait(0.0001);
  166. }
  167. nNixieEn.write(0);
  168. for (double k = 0.1; k <= 1; k += 0.001) {
  169. Set_Analog(k);
  170. wait(0.001);
  171. }
  172. wait(0.2);
  173. for (double k = 1; k >= 0.1; k -= 0.001) {
  174. Set_Analog(k);
  175. wait(0.001);
  176. }
  177. nNixieEn.write(1);
  178. for (double k = 0.1; k <= 1; k += 0.001) {
  179. Set_Analog(k);
  180. wait(0.0001);
  181. }
  182. for (int j = 0; j < 4; j++) {
  183. Clock_Update(j, i, 0);
  184. Dot_Update(0);
  185. }
  186. }
  187. nNixieEn.write(0);
  188. Set_Analog(1);
  189. #endif
  190. #ifdef CYCLE_PWM
  191. // PWM dim
  192. for (int i = 0; i < 10; i++) {
  193. for (int k = 0; k <= 1000; k++) {
  194. for (int j = 0; j < 4; j++) {
  195. Clock_Update(j, i, k);
  196. Dot_Update(k);
  197. }
  198. wait(0.0001);
  199. }
  200. for (int k = 0; k <= 1000; k++) {
  201. for (int j = 0; j < 4; j++) {
  202. Clock_Update(j, i, 1000-k);
  203. Dot_Update(1000-k);;
  204. }
  205. wait(0.0001);
  206. }
  207. wait(0.2);
  208. }
  209. #endif
  210. #ifdef CYCLE_FADE
  211. Set_Analog(1);
  212. Dot_Update(0);
  213. for (int i = 0; i < 10; i++) {
  214. int i_next = (i == 9) ? 0 : i+1;
  215. for (int k = 0; k <= 1000; k++) {
  216. for (int j = 0; j < 4; j++) {
  217. Clock_Update(j, i, 1000-k);
  218. Clock_Update(j, i_next, k);
  219. }
  220. if (i % 2 == 0) {
  221. Dot_Update(k);
  222. } else {
  223. Dot_Update(1000-k);
  224. }
  225. wait(0.00005);
  226. }
  227. wait(0.2);
  228. }
  229. for (int i = 0; i < 4; i++) {
  230. for (int j = 0; j < 10; j++) {
  231. Clock_Update(i, j, 0);
  232. }
  233. }
  234. #endif
  235. #ifdef CYCLE_FADE_RANDOM
  236. Set_Analog(1);
  237. Dot_Update(0);
  238. for (int i = 0; i < 4; i++) {
  239. i_curr[i] = rand() % 10;
  240. }
  241. for (int k = 0; k <= 1000; k++) {
  242. for (int j = 0; j < 4; j++) {
  243. Clock_Update(j, i_curr[j], k);
  244. }
  245. wait(0.00005);
  246. }
  247. for (int iter = 0; iter < 10; iter++) {
  248. for (int i = 0; i < 4; i++) {
  249. do {
  250. i_next[i] = rand() % 10;
  251. } while (i_next[i] == i_curr[i]);
  252. }
  253. for (int k = 0; k <= 1000; k++) {
  254. for (int j = 0; j < 4; j++) {
  255. Clock_Update(j, i_curr[j], 1000-k);
  256. Clock_Update(j, i_next[j], k);
  257. }
  258. if (iter % 2 == 0) {
  259. Dot_Update(k);
  260. } else {
  261. Dot_Update(1000-k);
  262. }
  263. wait(0.00005);
  264. }
  265. wait(0.2);
  266. for (int i = 0; i < 4; i++) {
  267. i_curr[i] = i_next[i];
  268. }
  269. }
  270. for (int k = 1000; k >= 0; k--) {
  271. for (int j = 0; j < 4; j++) {
  272. Clock_Update(j, i_curr[j], k);
  273. }
  274. wait(0.00005);
  275. }
  276. #endif
  277. #ifdef CYCLE_FAST
  278. Set_Analog(1);
  279. Dot_Update(0);
  280. for (int k = 0; k < 10; k++) {
  281. for (int i = 0; i < 10; i++) {
  282. for (int j = 0; j < 4; j++) {
  283. Clock_Update(j, i, 1000);
  284. }
  285. if (i % 2 == 0) {
  286. Dot_Update(1000);
  287. } else {
  288. Dot_Update(0);
  289. }
  290. wait(0.1);
  291. for (int j = 0; j < 4; j++) {
  292. Clock_Update(j, i, 0);
  293. }
  294. }
  295. }
  296. #endif
  297. #ifdef CYCLE_FAST_RANDOM
  298. Set_Analog(1);
  299. Dot_Update(0);
  300. for (int i = 0; i < 4; i++) {
  301. i_curr[i] = rand() % 10;
  302. }
  303. for (int k = 0; k < 100; k++) {
  304. for (int i = 0; i < 4; i++) {
  305. do {
  306. i_next[i] = rand() % 10;
  307. } while (i_next[i] == i_curr[i]);
  308. }
  309. for (int j = 0; j < 4; j++) {
  310. Clock_Update(j, i_next[j], 1000);
  311. }
  312. if (k % 2 == 0) {
  313. Dot_Update(1000);
  314. } else {
  315. Dot_Update(0);
  316. }
  317. wait(0.1);
  318. for (int j = 0; j < 4; j++) {
  319. Clock_Update(j, i_next[j], 0);
  320. }
  321. for (int i = 0; i < 4; i++) {
  322. i_curr[i] = i_next[i];
  323. }
  324. }
  325. #endif
  326. #endif
  327. }
  328. }