main.rs 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. #![cfg_attr(test, allow(unused_imports))]
  2. #![cfg_attr(not(test), no_std)]
  3. #![cfg_attr(not(test), no_main)]
  4. #![feature(half_open_range_patterns)]
  5. #![feature(exclusive_range_pattern)]
  6. #![allow(dead_code)]
  7. // custom panic handler
  8. #[cfg(not(test))]
  9. use core::panic::PanicInfo;
  10. use core::{cell::RefCell, ops::DerefMut};
  11. use cortex_m::{interrupt::free, interrupt::Mutex, peripheral::NVIC};
  12. use cortex_m_rt::entry;
  13. use stm32l4xx_hal::{
  14. delay::Delay,
  15. device::{I2C1, TIM2, TIM7},
  16. gpio::{
  17. Alternate, Edge, Floating, Input, OpenDrain, Output, PullUp, PushPull, AF4, PA3, PB5, PC15,
  18. },
  19. gpio::{State, PA10, PA9},
  20. i2c::I2c,
  21. interrupt, pac,
  22. prelude::*,
  23. rcc,
  24. stm32::Interrupt,
  25. timer::{Timer, Event},
  26. };
  27. mod ds3231;
  28. mod nixie;
  29. mod pca9685;
  30. mod tusb322;
  31. use nixie::*;
  32. static RTC_INT: Mutex<RefCell<Option<PB5<Input<Floating>>>>> = Mutex::new(RefCell::new(None));
  33. static FAULT_INT: Mutex<RefCell<Option<PA3<Input<PullUp>>>>> = Mutex::new(RefCell::new(None));
  34. static FAULT_LED: Mutex<RefCell<Option<PC15<Output<PushPull>>>>> = Mutex::new(RefCell::new(None));
  35. static I2C: Mutex<RefCell<Option<
  36. I2c<I2C1, (PA9<Alternate<AF4, Output<OpenDrain>>>,PA10<Alternate<AF4,Output<OpenDrain>>>,),>,
  37. >,>,> = Mutex::new(RefCell::new(None));
  38. static FPS_TIMER: Mutex<RefCell<Option<Timer<TIM2>>>> = Mutex::new(RefCell::new(None));
  39. static CYCLE_TIMER: Mutex<RefCell<Option<Timer<TIM7>>>> = Mutex::new(RefCell::new(None));
  40. #[cfg(not(test))]
  41. #[entry]
  42. fn main() -> ! {
  43. // Acquire a singleton instance for the chip's peripherals
  44. let mut dp = pac::Peripherals::take().unwrap();
  45. let cp = pac::CorePeripherals::take().unwrap();
  46. // Consume the raw peripheral and return a new object that implements a higher level API
  47. let mut flash = dp.FLASH.constrain();
  48. let mut rcc = dp.RCC.constrain();
  49. let mut pwr = dp.PWR.constrain(&mut rcc.apb1r1);
  50. // Configure clocks to run at maximum frequency off internal oscillator
  51. let clocks = rcc
  52. .cfgr
  53. .pll_source(rcc::PllSource::HSI16)
  54. .sysclk(64.mhz())
  55. .hclk(64.mhz())
  56. .pclk1(64.mhz())
  57. .pclk2(64.mhz())
  58. .hsi48(true)
  59. .freeze(&mut flash.acr, &mut pwr);
  60. // Configure delay timer that operates off systick timer
  61. let mut delay_timer = Delay::new(cp.SYST, clocks);
  62. // Split GPIO peripheral into independent pins and registers
  63. let mut gpioa = dp.GPIOA.split(&mut rcc.ahb2);
  64. let mut gpiob = dp.GPIOB.split(&mut rcc.ahb2);
  65. let mut gpioc = dp.GPIOC.split(&mut rcc.ahb2);
  66. // Configure high voltage PSU enable pin on PA2
  67. let mut hv_enable = gpioa.pa2.into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::Low);
  68. // Configure serial port
  69. // let tx = gpiob.pb6.into_af7(&mut gpiob.moder, &mut gpiob.afrl);
  70. // let rx = gpiob.pb7.into_af7(&mut gpiob.moder, &mut gpiob.afrl);
  71. // let _serial = Serial::usart1(
  72. // dp.USART1,
  73. // (tx, rx),
  74. // Config::default().baudrate(115_200.bps()),
  75. // clocks,
  76. // &mut rcc.apb2,
  77. // );
  78. // Configure fault LED output on PC15
  79. let fault_led = gpioc.pc15.into_push_pull_output_with_state(&mut gpioc.moder, &mut gpioc.otyper, State::Low);
  80. // Store fault LED in static singleton so that interrupt has access to it
  81. free(|cs| {
  82. FAULT_LED.borrow(cs).replace(Some(fault_led));
  83. });
  84. // Configure fault input interrupt on PA3
  85. let mut fault_int = gpioa.pa3.into_pull_up_input(&mut gpioa.moder, &mut gpioa.pupdr);
  86. fault_int.make_interrupt_source(&mut dp.SYSCFG, &mut rcc.apb2);
  87. fault_int.enable_interrupt(&mut dp.EXTI);
  88. fault_int.trigger_on_edge(&mut dp.EXTI, Edge::FALLING);
  89. // Sanity check that fault pin isn't already set (active low) before enabling interrupt
  90. if fault_int.is_high().unwrap() {
  91. // Configure NVIC mask to enable interrupt source
  92. unsafe {
  93. NVIC::unmask(Interrupt::EXTI3);
  94. }
  95. // Store fault interrupt in static singleton so that interrupt has access to it
  96. free(|cs| {
  97. FAULT_INT.borrow(cs).replace(Some(fault_int));
  98. });
  99. } else {
  100. panic!();
  101. }
  102. // Enable RNG peripheral
  103. let rng = dp.RNG.enable(&mut rcc.ahb2, clocks);
  104. // Configure I2C SCL pin
  105. let scl = gpioa.pa9.into_open_drain_output(&mut gpioa.moder, &mut gpioa.otyper);
  106. let scl = scl.into_af4(&mut gpioa.moder, &mut gpioa.afrh);
  107. // Configure I2C SDA pin
  108. let sda = gpioa.pa10.into_open_drain_output(&mut gpioa.moder, &mut gpioa.otyper);
  109. let sda = sda.into_af4(&mut gpioa.moder, &mut gpioa.afrh);
  110. // Initialize I2C (configured for 1Mhz, but actually runs at 600kHz)
  111. let mut i2c = I2c::i2c1(dp.I2C1, (scl, sda), 1.mhz(), clocks, &mut rcc.apb1r1);
  112. // Initialize TUSB322 (USB Type-C configuration chip)
  113. tusb322::init(TUSB322_ADDR, &mut i2c);
  114. // Initialize DS3231 (RTC)
  115. ds3231::init(DS3231_ADDR, &mut i2c);
  116. // ds3231::set_date(DS3231_ADDR, &mut i2c, ds3231::Weekday::Wednesday, 15, 9, 21, 20);
  117. // ds3231::set_time(DS3231_ADDR, &mut i2c, 00, 37, 12);
  118. // Configure input interrupt pin from DS3231 on PB5
  119. // Interrupt is pulled high, with open drain on DS3231
  120. let mut rtc_int = gpiob.pb5.into_floating_input(&mut gpiob.moder, &mut gpiob.pupdr);
  121. rtc_int.make_interrupt_source(&mut dp.SYSCFG, &mut rcc.apb2);
  122. rtc_int.enable_interrupt(&mut dp.EXTI);
  123. rtc_int.trigger_on_edge(&mut dp.EXTI, Edge::FALLING);
  124. // Configure NVIC mask to enable interrupt from DS3231
  125. unsafe { NVIC::unmask(Interrupt::EXTI9_5); }
  126. // Store RTC interrupt in static singleton so that interrupt has access to it
  127. free(|cs| {
  128. RTC_INT.borrow(cs).replace(Some(rtc_int));
  129. });
  130. // Configure DAC AMP enable pin for AD8591 on PB1
  131. let mut _dac_enable = gpiob.pb1.into_push_pull_output_with_state(&mut gpiob.moder, &mut gpiob.otyper, State::High);
  132. // Configure DAC VIN for AD8591 on PA5
  133. // Note that this pin should actually be configured as analog output (for DAC)
  134. // but stm32l4xx_hal doesn't have support for the DAC as of now. We also currently
  135. // set the output to only the highest possible voltage, so the same functionality
  136. // can be achieved by configuring the pin as a digital output set to high.
  137. let mut _dac_output = gpioa.pa5.into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::High);
  138. // Configure PWM enable pin (active low) for PCA9685 on PA7
  139. let mut pwm_enable = gpioa.pa7.into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::High);
  140. // Initialize the PCA9685 display refresh timer
  141. let fps_timer = Timer::tim2(dp.TIM2, nixie::DISPLAY_REFRESH_FPS.hz(), clocks, &mut rcc.apb1r1);
  142. // Configure NVIC mask to enable interrupt for the display refresh timer
  143. unsafe { NVIC::unmask(Interrupt::TIM2) };
  144. // Save display refresh timer in static singleton so that interrupt has access to it
  145. free(|cs| {
  146. FPS_TIMER.borrow(cs).replace(Some(fps_timer));
  147. });
  148. // Initiaize display cycle timer
  149. let cycle_timer = Timer::tim7(dp.TIM7, (1000 / nixie::CYCLE_FADE_DURATION_MS).hz(), clocks, &mut rcc.apb1r1);
  150. // Configure NVIC mask to enable interrupt for display cycle timer
  151. unsafe { NVIC::unmask(Interrupt::TIM7) };
  152. // Save display cycle timer in static singleton so that interrupt has access to it
  153. free(|cs| {
  154. CYCLE_TIMER.borrow(cs).replace(Some(cycle_timer));
  155. });
  156. // Small delay to ensure that PCA9685 is fully powered on before writing to it
  157. delay_timer.delay_us(10_u32);
  158. // Initialize PCA9685 (PWM driver)
  159. pca9685::init(PCA9685_ALL_CALL, &mut i2c);
  160. // Enable PWM output after PCA9685 has been initialized
  161. pwm_enable.set_low().unwrap();
  162. // Store I2C peripheral in global static variable as it is used in interrupt
  163. free(|cs| {
  164. I2C.borrow(cs).replace(Some(i2c));
  165. });
  166. // Enable the high voltage power supply last
  167. hv_enable.set_high().unwrap();
  168. // Cycle through all tubes on powerup
  169. nixie::cycle_start(0);
  170. nixie::cycle_start(1);
  171. nixie::cycle_start(2);
  172. nixie::cycle_start(3);
  173. loop {
  174. // Delay before cycling digits to prevent cathode poisoning
  175. delay_timer.delay_ms(CYCLE_REFRESH_INTERVAL * 1000);
  176. // Choose a random tube to cycle
  177. let tube = (rng.get_random_data() % 4) as usize;
  178. nixie::cycle_start(tube);
  179. }
  180. }
  181. // Helper function to set onboard LED state
  182. fn set_fault_led(state: State) {
  183. free(|cs| {
  184. let mut led_ref = FAULT_LED.borrow(cs).borrow_mut();
  185. if let Some(ref mut led) = led_ref.deref_mut() {
  186. match state {
  187. State::High => led.set_high().unwrap(),
  188. State::Low => led.set_low().unwrap(),
  189. };
  190. }
  191. });
  192. }
  193. // Interrupt handler for 1HZ signal from offchip RTC (DS3231)
  194. #[interrupt]
  195. fn EXTI9_5() {
  196. free(|cs| {
  197. let mut rtc_int_ref = RTC_INT.borrow(cs).borrow_mut();
  198. let mut i2c_int_ref = I2C.borrow(cs).borrow_mut();
  199. if let Some(ref mut rtc_int) = rtc_int_ref.deref_mut() {
  200. if let Some(ref mut i2c) = i2c_int_ref.deref_mut() {
  201. if rtc_int.check_interrupt() {
  202. nixie::rtc_interrupt(i2c);
  203. rtc_int.clear_interrupt_pending_bit();
  204. }
  205. }
  206. }
  207. });
  208. }
  209. // Interrupt handler for fault interrupt from USB monitor (TUSB322)
  210. #[interrupt]
  211. fn EXTI3() {
  212. free(|cs| {
  213. let mut nfault_ref = FAULT_INT.borrow(cs).borrow_mut();
  214. if let Some(ref mut nfault) = nfault_ref.deref_mut() {
  215. if nfault.check_interrupt() {
  216. nfault.clear_interrupt_pending_bit();
  217. panic!();
  218. }
  219. }
  220. });
  221. }
  222. // Interrupt handler for internal timer that drives display refresh rate
  223. #[interrupt]
  224. fn TIM2() {
  225. free(|cs| {
  226. let mut i2c_int_ref = I2C.borrow(cs).borrow_mut();
  227. if let Some(ref mut i2c) = i2c_int_ref.deref_mut() {
  228. nixie::fps_interrupt(i2c);
  229. }
  230. });
  231. }
  232. // Interrupt handler for internal timer that drives individual digits within a cycle sequence
  233. #[interrupt]
  234. fn TIM7() {
  235. free(|cs| {
  236. let mut cycle_timer_ref = CYCLE_TIMER.borrow(cs).borrow_mut();
  237. if let Some(ref mut cycle_timer) = cycle_timer_ref.deref_mut() {
  238. if nixie::cycle_interrupt() {
  239. cycle_timer.unlisten(Event::TimeOut);
  240. } else {
  241. cycle_timer.clear_interrupt(Event::TimeOut);
  242. }
  243. }
  244. });
  245. }
  246. // Custom panic handler
  247. #[panic_handler]
  248. #[cfg(not(test))]
  249. fn panic(_info: &PanicInfo) -> ! {
  250. set_fault_led(State::High);
  251. loop {
  252. continue;
  253. }
  254. }