| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 | #![cfg_attr(test, allow(unused_imports))]#![cfg_attr(not(test), no_std)]#![cfg_attr(not(test), no_main)]#![feature(half_open_range_patterns)]#![feature(exclusive_range_pattern)]#![allow(dead_code)]// custom panic handler#[cfg(not(test))]use core::panic::PanicInfo;use core::{cell::RefCell, ops::DerefMut};use cortex_m::{interrupt::free, interrupt::Mutex, peripheral::NVIC};use cortex_m_rt::entry;use stm32l4xx_hal::{delay::Delay, device::{I2C1, TIM2, TIM7}, gpio::{        Alternate, Edge, Floating, Input, OpenDrain, Output, PullUp, PushPull, AF4, PA3, PB5, PC15,    }, gpio::{State, PA10, PA9}, i2c::I2c, interrupt, pac, prelude::*, rcc, stm32::Interrupt, timer::{Timer, Event},};mod ds3231;mod nixie;mod pca9685;mod tusb322;use nixie::*;// Local peripheral mappingstype RtcInt = PB5<Input<Floating>>;type FaultInt = PA3<Input<PullUp>>;type FaultLed = PC15<Output<PushPull>>;type I2c1 = I2c<I2C1, (PA9<Alternate<AF4, Output<OpenDrain>>>,PA10<Alternate<AF4,Output<OpenDrain>>>)>;type FpsTimer = Timer<TIM2>;type CycleTimer = Timer<TIM7>;// Global peripheral singletonsstatic RTC_INT: Mutex<RefCell<Option<RtcInt>>> = Mutex::new(RefCell::new(None));static FAULT_INT: Mutex<RefCell<Option<FaultInt>>> = Mutex::new(RefCell::new(None));static FAULT_LED: Mutex<RefCell<Option<FaultLed>>> = Mutex::new(RefCell::new(None));static I2C: Mutex<RefCell<Option<I2c1>>> = Mutex::new(RefCell::new(None));static REFRESH_TIMER: Mutex<RefCell<Option<FpsTimer>>> = Mutex::new(RefCell::new(None));static CYCLE_TIMER: Mutex<RefCell<Option<CycleTimer>>> = Mutex::new(RefCell::new(None));static CLOCK: Mutex<RefCell<Clock>> = Mutex::new(RefCell::new(Clock::default()));#[cfg(not(test))]#[entry]fn main() -> ! {    // Acquire a singleton instance for the chip's peripherals    let mut dp = pac::Peripherals::take().unwrap();    let cp = pac::CorePeripherals::take().unwrap();    // Consume the raw peripheral and return a new object that implements a higher level API    let mut flash = dp.FLASH.constrain();    let mut rcc = dp.RCC.constrain();    let mut pwr = dp.PWR.constrain(&mut rcc.apb1r1);    // Configure clocks to run at maximum frequency off internal oscillator    let clocks = rcc        .cfgr        .pll_source(rcc::PllSource::HSI16)        .sysclk(64.mhz())        .hclk(64.mhz())        .pclk1(64.mhz())        .pclk2(64.mhz())        .hsi48(true)        .freeze(&mut flash.acr, &mut pwr);    // Configure delay timer that operates off systick timer    let mut delay_timer = Delay::new(cp.SYST, clocks);    // Split GPIO peripheral into independent pins and registers    let mut gpioa = dp.GPIOA.split(&mut rcc.ahb2);    let mut gpiob = dp.GPIOB.split(&mut rcc.ahb2);    let mut gpioc = dp.GPIOC.split(&mut rcc.ahb2);    // Configure high voltage PSU enable pin on PA2    let mut hv_enable = gpioa.pa2.into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::Low);    // Configure serial port    // let tx = gpiob.pb6.into_af7(&mut gpiob.moder, &mut gpiob.afrl);    // let rx = gpiob.pb7.into_af7(&mut gpiob.moder, &mut gpiob.afrl);    // let _serial = Serial::usart1(    //     dp.USART1,    //     (tx, rx),    //     Config::default().baudrate(115_200.bps()),    //     clocks,    //     &mut rcc.apb2,    // );    // Configure fault LED output on PC15    let fault_led = gpioc.pc15.into_push_pull_output_with_state(&mut gpioc.moder, &mut gpioc.otyper, State::Low);    // Store fault LED in static singleton so that interrupt has access to it    free(|cs| {        FAULT_LED.borrow(cs).replace(Some(fault_led));    });    // Configure fault input interrupt on PA3    let mut fault_int = gpioa.pa3.into_pull_up_input(&mut gpioa.moder, &mut gpioa.pupdr);    fault_int.make_interrupt_source(&mut dp.SYSCFG, &mut rcc.apb2);    fault_int.enable_interrupt(&mut dp.EXTI);    fault_int.trigger_on_edge(&mut dp.EXTI, Edge::FALLING);    // Sanity check that fault pin isn't already set (active low) before enabling interrupt    if fault_int.is_high().unwrap() {        // Configure NVIC mask to enable interrupt source        unsafe {            NVIC::unmask(Interrupt::EXTI3);        }        // Store fault interrupt in static singleton so that interrupt has access to it        free(|cs| {            FAULT_INT.borrow(cs).replace(Some(fault_int));        });    } else {        panic!();    }    // Enable RNG peripheral    let rng = dp.RNG.enable(&mut rcc.ahb2, clocks);    // Configure I2C SCL pin    let scl = gpioa.pa9.into_open_drain_output(&mut gpioa.moder, &mut gpioa.otyper);    let scl = scl.into_af4(&mut gpioa.moder, &mut gpioa.afrh);    // Configure I2C SDA pin    let sda = gpioa.pa10.into_open_drain_output(&mut gpioa.moder, &mut gpioa.otyper);    let sda = sda.into_af4(&mut gpioa.moder, &mut gpioa.afrh);    // Initialize I2C (configured for 1Mhz, but actually runs at 600kHz)    let mut i2c = I2c::i2c1(dp.I2C1, (scl, sda), 1.mhz(), clocks, &mut rcc.apb1r1);    // Initialize TUSB322 (USB Type-C configuration chip)    tusb322::init(TUSB322_ADDR, &mut i2c);    // Initialize DS3231 (RTC)    ds3231::init(DS3231_ADDR, &mut i2c);    // ds3231::set_date(DS3231_ADDR, &mut i2c, ds3231::Weekday::Wednesday, 15, 9, 21, 20);    // ds3231::set_time(DS3231_ADDR, &mut i2c, 00, 37, 12);    // Configure input interrupt pin from DS3231 on PB5    // Interrupt is pulled high, with open drain on DS3231     let mut rtc_int = gpiob.pb5.into_floating_input(&mut gpiob.moder, &mut gpiob.pupdr);    rtc_int.make_interrupt_source(&mut dp.SYSCFG, &mut rcc.apb2);    rtc_int.enable_interrupt(&mut dp.EXTI);    rtc_int.trigger_on_edge(&mut dp.EXTI, Edge::FALLING);    // Configure NVIC mask to enable interrupt from DS3231    unsafe { NVIC::unmask(Interrupt::EXTI9_5); }    // Store RTC interrupt in static singleton so that interrupt has access to it    free(|cs| {        RTC_INT.borrow(cs).replace(Some(rtc_int));    });    // Configure DAC AMP enable pin for AD8591 on PB1    let mut _dac_enable = gpiob.pb1.into_push_pull_output_with_state(&mut gpiob.moder, &mut gpiob.otyper, State::High);    // Configure DAC VIN for AD8591 on PA5    // Note that this pin should actually be configured as analog output (for DAC)    // but stm32l4xx_hal doesn't have support for the DAC as of now. We also currently    // set the output to only the highest possible voltage, so the same functionality    // can be achieved by configuring the pin as a digital output set to high.    let mut _dac_output = gpioa.pa5.into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::High);    // Configure PWM enable pin (active low) for PCA9685 on PA7    let mut pwm_enable = gpioa.pa7.into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::High);    // Initialize the PCA9685 display refresh timer    let refresh_timer = Timer::tim2(dp.TIM2, nixie::DISPLAY_REFRESH_FPS.hz(), clocks, &mut rcc.apb1r1);    // Configure NVIC mask to enable interrupt for the display refresh timer    unsafe { NVIC::unmask(Interrupt::TIM2) };    // Save display refresh timer in static singleton so that interrupt has access to it    free(|cs| {        REFRESH_TIMER.borrow(cs).replace(Some(refresh_timer));    });    // Initiaize display cycle timer    let cycle_timer = Timer::tim7(dp.TIM7, (1000 / nixie::CYCLE_FADE_DURATION_MS).hz(), clocks, &mut rcc.apb1r1);    // Configure NVIC mask to enable interrupt for display cycle timer    unsafe { NVIC::unmask(Interrupt::TIM7) };    // Save display cycle timer in static singleton so that interrupt has access to it    free(|cs| {        CYCLE_TIMER.borrow(cs).replace(Some(cycle_timer));    });    // Small delay to ensure that PCA9685 is fully powered on before writing to it    delay_timer.delay_us(10_u32);    // Initialize PCA9685 (PWM driver)    pca9685::init(PCA9685_ALL_CALL, &mut i2c);    // Enable PWM output after PCA9685 has been initialized    pwm_enable.set_low().unwrap();    // Store I2C peripheral in global static variable as it is used in interrupt    free(|cs| {        I2C.borrow(cs).replace(Some(i2c));    });    // Enable the high voltage power supply last    hv_enable.set_high().unwrap();    // Cycle through all tubes on powerup    trigger_cycle(0);    trigger_cycle(1);    trigger_cycle(2);    trigger_cycle(3);    loop {        // Delay before cycling digits to prevent cathode poisoning        delay_timer.delay_ms(CYCLE_REFRESH_INTERVAL * 1000);        // Choose a random tube to cycle        let tube = (rng.get_random_data() % 4) as usize;        trigger_cycle(tube);    }}// Helper function to set onboard LED statefn set_fault_led(state: State) {    free(|cs| {        let mut led_ref = FAULT_LED.borrow(cs).borrow_mut();        if let Some(ref mut led) = led_ref.deref_mut() {            match state {                State::High => led.set_high().unwrap(),                State::Low => led.set_low().unwrap(),            };        }    });}// Trigger the start of a new cycle sequencefn trigger_cycle(tube: usize) {    free(|cs| {        let mut cycle_timer_ref = CYCLE_TIMER.borrow(cs).borrow_mut();        let mut clock_ref = CLOCK.borrow(cs).borrow_mut();        if let Some(ref mut cycle_timer) = cycle_timer_ref.deref_mut() {            // Trigger the start of a cycling sequence            clock_ref.deref_mut().cycle_start(tube);            // Start the timer to cycle through individual digits            cycle_timer.listen(Event::TimeOut);        }    });}// Interrupt handler for 1HZ signal from offchip RTC (DS3231)#[interrupt]fn EXTI9_5() {    free(|cs| {        let mut rtc_int_ref = RTC_INT.borrow(cs).borrow_mut();        let mut i2c_int_ref = I2C.borrow(cs).borrow_mut();        let mut refresh_timer_ref = REFRESH_TIMER.borrow(cs).borrow_mut();        let mut clock_ref = CLOCK.borrow(cs).borrow_mut();        if let Some(ref mut rtc_int) = rtc_int_ref.deref_mut() {            if let Some(ref mut i2c) = i2c_int_ref.deref_mut() {                if let Some(ref mut refresh_timer) = refresh_timer_ref.deref_mut() {                    if rtc_int.check_interrupt() {                        // Read new time from DS3231                        let (second, minute, hour) = ds3231::get_time(DS3231_ADDR, i2c);                        let (weekday, day, month, _, _) = ds3231::get_date(DS3231_ADDR, i2c);                        // Calculate new values and account for DST                        let hour = if ds3231::in_dst(weekday, day, month, hour) { (hour + 1) % 12 } else { hour % 12 };                        let hour = if hour == 0 { 12 } else { hour };                        // Trigger the processing of a new time value                        clock_ref.deref_mut().rtc_tick(second, minute, hour);                        // Start the refresh timer to update the display                        refresh_timer.listen(Event::TimeOut);                                                // Clear the interrupt flag for the timer                        rtc_int.clear_interrupt_pending_bit();                    }                }            }        }    });}// Interrupt handler for fault interrupt from USB monitor (TUSB322)#[interrupt]fn EXTI3() {    free(|cs| {        let mut nfault_ref = FAULT_INT.borrow(cs).borrow_mut();        if let Some(ref mut nfault) = nfault_ref.deref_mut() {            if nfault.check_interrupt() {                nfault.clear_interrupt_pending_bit();                panic!();            }        }    });}// Interrupt handler for internal timer that drives display refresh rate#[interrupt]fn TIM2() {    free(|cs| {        let mut i2c_int_ref = I2C.borrow(cs).borrow_mut();        let mut refresh_timer_ref = REFRESH_TIMER.borrow(cs).borrow_mut();        let mut clock_ref = CLOCK.borrow(cs).borrow_mut();        if let Some(ref mut i2c) = i2c_int_ref.deref_mut() {            if let Some(ref mut refresh_timer) = refresh_timer_ref.deref_mut() {                // Compute updates for non-static digits                let updated = clock_ref.deref_mut().fps_tick();                // Write new values if values have changed, otherwise disable the refresh timer                if updated {                    clock_ref.deref_mut().write_i2c(i2c);                    refresh_timer.clear_interrupt(Event::TimeOut);                } else {                    refresh_timer.unlisten(Event::TimeOut);                }            }        }    });}// Interrupt handler for internal timer that drives individual digits within a cycle sequence#[interrupt]fn TIM7() {    free(|cs| {        let mut cycle_timer_ref = CYCLE_TIMER.borrow(cs).borrow_mut();        let mut refresh_timer_ref = REFRESH_TIMER.borrow(cs).borrow_mut();        let mut clock_ref = CLOCK.borrow(cs).borrow_mut();        if let Some(ref mut cycle_timer) = cycle_timer_ref.deref_mut() {            if let Some(ref mut refresh_timer) = refresh_timer_ref.deref_mut() {                // Trigger the next step in the cycling sequence                if clock_ref.deref_mut().cycle_tick() {                    cycle_timer.unlisten(Event::TimeOut);                } else {                    cycle_timer.clear_interrupt(Event::TimeOut);                }                // Start the refresh timer to update the display                refresh_timer.listen(Event::TimeOut);            }        }    });}// Custom panic handler#[panic_handler]#[cfg(not(test))]fn panic(_info: &PanicInfo) -> ! {    set_fault_led(State::High);    loop {        continue;    }}
 |