main.rs 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. #![cfg_attr(test, allow(unused_imports))]
  2. #![cfg_attr(not(test), no_std)]
  3. #![cfg_attr(not(test), no_main)]
  4. #![feature(half_open_range_patterns)]
  5. #![feature(exclusive_range_pattern)]
  6. #![allow(dead_code)]
  7. // custom panic handler
  8. #[cfg(not(test))]
  9. use core::panic::PanicInfo;
  10. use core::{cell::RefCell, ops::DerefMut};
  11. use cortex_m::{interrupt::free, interrupt::Mutex, peripheral::NVIC};
  12. use cortex_m_rt::entry;
  13. use stm32l4xx_hal::{
  14. delay::Delay,
  15. device::{I2C1, TIM2, TIM7},
  16. gpio::{
  17. Alternate, Edge, Floating, Input, OpenDrain, Output, PullUp, PushPull, AF4, PA3, PB5, PC15,
  18. },
  19. gpio::{State, PA10, PA9},
  20. i2c::I2c,
  21. interrupt, pac,
  22. prelude::*,
  23. rcc,
  24. stm32::Interrupt,
  25. timer::Timer,
  26. };
  27. mod ds3231;
  28. mod nixie;
  29. mod pca9685;
  30. mod tusb322;
  31. use nixie::*;
  32. static RTC_INT: Mutex<RefCell<Option<PB5<Input<Floating>>>>> = Mutex::new(RefCell::new(None));
  33. static FAULT_INT: Mutex<RefCell<Option<PA3<Input<PullUp>>>>> = Mutex::new(RefCell::new(None));
  34. static FAULT_LED: Mutex<RefCell<Option<PC15<Output<PushPull>>>>> = Mutex::new(RefCell::new(None));
  35. static I2C: Mutex<
  36. RefCell<
  37. Option<
  38. I2c<
  39. I2C1,
  40. (
  41. PA9<Alternate<AF4, Output<OpenDrain>>>,
  42. PA10<Alternate<AF4, Output<OpenDrain>>>,
  43. ),
  44. >,
  45. >,
  46. >,
  47. > = Mutex::new(RefCell::new(None));
  48. static FPS_TIMER: Mutex<RefCell<Option<Timer<TIM2>>>> = Mutex::new(RefCell::new(None));
  49. static CYCLE_TIMER: Mutex<RefCell<Option<Timer<TIM7>>>> = Mutex::new(RefCell::new(None));
  50. // unsafe fn any_as_u8_slice<T: Sized>(p: &T) -> &[u8] {
  51. // core::slice::from_raw_parts(
  52. // (p as *const T) as *const u8,
  53. // core::mem::size_of::<T>(),
  54. // )
  55. // }
  56. // pub fn concat<T: Copy + Default, const A: usize, const B: usize>(a: &[T; A], b: &[T; B]) -> [T; A+B] {
  57. // let mut whole: [T; A+B] = [Default::default(); A+B];
  58. // let (one, two) = whole.split_at_mut(A);
  59. // one.copy_from_slice(a);
  60. // two.copy_from_slice(b);
  61. // whole
  62. // }
  63. #[cfg(not(test))]
  64. #[entry]
  65. fn main() -> ! {
  66. // Acquire a singleton instance for the chip's peripherals
  67. let mut dp = pac::Peripherals::take().unwrap();
  68. let cp = pac::CorePeripherals::take().unwrap();
  69. // Consume the raw peripheral and return a new object that implements a higher level API
  70. let mut flash = dp.FLASH.constrain();
  71. let mut rcc = dp.RCC.constrain();
  72. let mut pwr = dp.PWR.constrain(&mut rcc.apb1r1);
  73. // Configure clocks to run at maximum frequency off internal oscillator
  74. let clocks = rcc
  75. .cfgr
  76. .pll_source(rcc::PllSource::HSI16)
  77. .sysclk(64.mhz())
  78. .hclk(64.mhz())
  79. .pclk1(64.mhz())
  80. .pclk2(64.mhz())
  81. .freeze(&mut flash.acr, &mut pwr);
  82. // Configure delay timer that operates off systick timer
  83. let mut delay_timer = Delay::new(cp.SYST, clocks);
  84. // Split GPIO peripheral into independent pins and registers
  85. let mut gpioa = dp.GPIOA.split(&mut rcc.ahb2);
  86. let mut gpiob = dp.GPIOB.split(&mut rcc.ahb2);
  87. let mut gpioc = dp.GPIOC.split(&mut rcc.ahb2);
  88. // Configure high voltage PSU enable pin on PA2
  89. let mut hv_enable =
  90. gpioa
  91. .pa2
  92. .into_push_pull_output_with_state(&mut gpioa.moder, &mut gpioa.otyper, State::Low);
  93. // Configure serial port
  94. // let tx = gpiob.pb6.into_af7(&mut gpiob.moder, &mut gpiob.afrl);
  95. // let rx = gpiob.pb7.into_af7(&mut gpiob.moder, &mut gpiob.afrl);
  96. // let _serial = Serial::usart1(
  97. // dp.USART1,
  98. // (tx, rx),
  99. // Config::default().baudrate(115_200.bps()),
  100. // clocks,
  101. // &mut rcc.apb2,
  102. // );
  103. // Configure fault LED output on PC15
  104. let fault_led = gpioc.pc15.into_push_pull_output_with_state(
  105. &mut gpioc.moder,
  106. &mut gpioc.otyper,
  107. State::Low,
  108. );
  109. // Store fault LED in static singleton so that interrupt has access to it
  110. free(|cs| {
  111. FAULT_LED.borrow(cs).replace(Some(fault_led));
  112. });
  113. // Configure fault input interrupt on PA3
  114. let mut fault_int = gpioa
  115. .pa3
  116. .into_pull_up_input(&mut gpioa.moder, &mut gpioa.pupdr);
  117. fault_int.make_interrupt_source(&mut dp.SYSCFG, &mut rcc.apb2);
  118. fault_int.enable_interrupt(&mut dp.EXTI);
  119. fault_int.trigger_on_edge(&mut dp.EXTI, Edge::FALLING);
  120. // Sanity check that fault pin isn't already set (active low) before enabling interrupt
  121. if fault_int.is_high().unwrap() {
  122. // Configure NVIC mask to enable interrupt source
  123. unsafe {
  124. NVIC::unmask(Interrupt::EXTI3);
  125. }
  126. // Store fault interrupt in static singleton so that interrupt has access to it
  127. free(|cs| {
  128. FAULT_INT.borrow(cs).replace(Some(fault_int));
  129. });
  130. } else {
  131. panic!();
  132. }
  133. // Configure I2C SCL
  134. let scl = gpioa
  135. .pa9
  136. .into_open_drain_output(&mut gpioa.moder, &mut gpioa.otyper);
  137. let scl = scl.into_af4(&mut gpioa.moder, &mut gpioa.afrh);
  138. // Configure I2C SDA
  139. let sda = gpioa
  140. .pa10
  141. .into_open_drain_output(&mut gpioa.moder, &mut gpioa.otyper);
  142. let sda = sda.into_af4(&mut gpioa.moder, &mut gpioa.afrh);
  143. // Initialize I2C (configured for 1Mhz, but actually runs at 600kHz)
  144. let mut i2c = I2c::i2c1(dp.I2C1, (scl, sda), 1.mhz(), clocks, &mut rcc.apb1r1);
  145. // Initialize TUSB322 (USB Type-C configuration chip)
  146. tusb322::init(TUSB322_ADDR, &mut i2c);
  147. // Initialize DS3231 (RTC)
  148. ds3231::init(DS3231_ADDR, &mut i2c);
  149. // Configure input interrupt pin from DS3231 on PB5
  150. // Interrupt is pulled high, with open drain on DS3231 to pull low
  151. let mut rtc_int = gpiob
  152. .pb5
  153. .into_floating_input(&mut gpiob.moder, &mut gpiob.pupdr);
  154. rtc_int.make_interrupt_source(&mut dp.SYSCFG, &mut rcc.apb2);
  155. rtc_int.enable_interrupt(&mut dp.EXTI);
  156. rtc_int.trigger_on_edge(&mut dp.EXTI, Edge::FALLING);
  157. // Configure NVIC mask to enable interrupt source
  158. unsafe { NVIC::unmask(Interrupt::EXTI9_5); }
  159. // Store RTC interrupt in static singleton so that interrupt has access to it
  160. free(|cs| {
  161. RTC_INT.borrow(cs).replace(Some(rtc_int));
  162. });
  163. // Configure DAC AMP enable pin for AD8591 on PB1
  164. let mut _dac_enable = gpiob.pb1.into_push_pull_output_with_state(
  165. &mut gpiob.moder,
  166. &mut gpiob.otyper,
  167. State::High,
  168. );
  169. // Configure DAC VIN for AD8591 on PA5
  170. // Note that this pin should actually be configured as analog output (for DAC)
  171. // but stm32l4xx_hal doesn't have support for the DAC as of now. We also currently
  172. // set the output to only the highest possible voltage, so the same functionality
  173. // can be achieved by configuring the pin as a digital output set to high.
  174. let mut _dac_output = gpioa.pa5.into_push_pull_output_with_state(
  175. &mut gpioa.moder,
  176. &mut gpioa.otyper,
  177. State::High,
  178. );
  179. // Configure PWM enable pin (active low) for PCA9685 on PA7
  180. let mut pwm_enable = gpioa.pa7.into_push_pull_output_with_state(
  181. &mut gpioa.moder,
  182. &mut gpioa.otyper,
  183. State::High,
  184. );
  185. // Initialize the PCA9685 display refresh timer
  186. let fps_timer = Timer::tim2(
  187. dp.TIM2,
  188. nixie::REFRESH_RATE_HZ.hz(),
  189. clocks,
  190. &mut rcc.apb1r1,
  191. );
  192. // Configure NVIC mask to enable interrupt for TIM2
  193. unsafe { NVIC::unmask(Interrupt::TIM2) };
  194. // Save display refresh timer in static singleton so that interrupt has access to it
  195. free(|cs| {
  196. FPS_TIMER.borrow(cs).replace(Some(fps_timer));
  197. });
  198. // Small delay to ensure that PCA9685 is fully powered on before writing to it
  199. delay_timer.delay_us(10_u32);
  200. // Initialize PCA9685 (PWM driver)
  201. pca9685::init(PCA9685_ALL_CALL, &mut i2c);
  202. // Enable PWM output after PCA9685 has been initialized
  203. pwm_enable.set_low().unwrap();
  204. // Store I2C peripheral in global static variable as it is used in interrupt
  205. free(|cs| {
  206. I2C.borrow(cs).replace(Some(i2c));
  207. });
  208. let cycle_timer = Timer::tim7(
  209. dp.TIM7,
  210. (1_000_000 / nixie::CYCLE_FADE_DURATION_MS).hz(),
  211. clocks,
  212. &mut rcc.apb1r1,
  213. );
  214. unsafe { NVIC::unmask(Interrupt::TIM7) };
  215. // Save display refresh timer in static singleton so that interrupt has access to it
  216. free(|cs| {
  217. CYCLE_TIMER.borrow(cs).replace(Some(cycle_timer));
  218. });
  219. // let rng = dp.RNG.enable(&mut rcc.ahb2, clocks);
  220. // Enable the high voltage power supply last
  221. hv_enable.set_high().unwrap();
  222. nixie::cycle_start(0);
  223. nixie::cycle_start(1);
  224. nixie::cycle_start(2);
  225. nixie::cycle_start(3);
  226. loop {
  227. // let rng_delay =
  228. // nixie::RNG_REFRESH_INTERVAL + (rng.get_random_data() % nixie::RNG_REFRESH_VARIANCE);
  229. // delay_timer.delay_ms(rng_delay * 1000);
  230. // let tube = (rng.get_random_data() % 4) as usize;
  231. // nixie::rng_refresh(tube);
  232. }
  233. }
  234. fn set_fault_led(state: State) {
  235. free(|cs| {
  236. let mut led_ref = FAULT_LED.borrow(cs).borrow_mut();
  237. if let Some(ref mut led) = led_ref.deref_mut() {
  238. match state {
  239. State::High => led.set_high().unwrap(),
  240. State::Low => led.set_low().unwrap(),
  241. };
  242. }
  243. });
  244. }
  245. #[interrupt]
  246. fn EXTI9_5() {
  247. free(|cs| {
  248. let mut rtc_int_ref = RTC_INT.borrow(cs).borrow_mut();
  249. let mut i2c_int_ref = I2C.borrow(cs).borrow_mut();
  250. if let Some(ref mut rtc_int) = rtc_int_ref.deref_mut() {
  251. if let Some(ref mut i2c) = i2c_int_ref.deref_mut() {
  252. if rtc_int.check_interrupt() {
  253. // nixie::rtc_interrupt(i2c);
  254. rtc_int.clear_interrupt_pending_bit();
  255. }
  256. }
  257. }
  258. });
  259. }
  260. #[interrupt]
  261. fn EXTI3() {
  262. free(|cs| {
  263. let mut nfault_ref = FAULT_INT.borrow(cs).borrow_mut();
  264. if let Some(ref mut nfault) = nfault_ref.deref_mut() {
  265. if nfault.check_interrupt() {
  266. nfault.clear_interrupt_pending_bit();
  267. panic!();
  268. }
  269. }
  270. });
  271. }
  272. #[interrupt]
  273. fn TIM2() {
  274. free(|cs| {
  275. let mut i2c_int_ref = I2C.borrow(cs).borrow_mut();
  276. if let Some(ref mut i2c) = i2c_int_ref.deref_mut() {
  277. nixie::fps_interrupt(i2c);
  278. }
  279. });
  280. }
  281. #[interrupt]
  282. fn TIM7() {
  283. nixie::cycle_interrupt();
  284. }
  285. #[panic_handler]
  286. #[cfg(not(test))]
  287. /// Custom panic handler
  288. fn panic(_info: &PanicInfo) -> ! {
  289. set_fault_led(State::High);
  290. loop {
  291. continue;
  292. }
  293. }