|
@@ -28,26 +28,73 @@
|
|
|
|
|
|
*/
|
|
|
|
|
|
-
|
|
|
-#include "Marlin.h"
|
|
|
-#include "cmdqueue.h"
|
|
|
+#include "temperature.h"
|
|
|
+#include "stepper.h"
|
|
|
#include "ultralcd.h"
|
|
|
#include "menu.h"
|
|
|
-#include "conv2str.h"
|
|
|
#include "sound.h"
|
|
|
-#include "temperature.h"
|
|
|
-#include "cardreader.h"
|
|
|
+#include "fancheck.h"
|
|
|
+#include "messages.h"
|
|
|
+#include "language.h"
|
|
|
|
|
|
#include "SdFatUtil.h"
|
|
|
|
|
|
#include <avr/wdt.h>
|
|
|
+#include <util/atomic.h>
|
|
|
#include "adc.h"
|
|
|
#include "ConfigurationStore.h"
|
|
|
-#include "messages.h"
|
|
|
#include "Timer.h"
|
|
|
#include "Configuration_prusa.h"
|
|
|
|
|
|
-#include "config.h"
|
|
|
+#if (ADC_OVRSAMPL != OVERSAMPLENR)
|
|
|
+#error "ADC_OVRSAMPL oversampling must match OVERSAMPLENR"
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifdef SYSTEM_TIMER_2
|
|
|
+#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK2 |= (1<<OCIE2B)
|
|
|
+#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK2 &= ~(1<<OCIE2B)
|
|
|
+#else //SYSTEM_TIMER_2
|
|
|
+#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK0 |= (1<<OCIE0B)
|
|
|
+#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK0 &= ~(1<<OCIE0B)
|
|
|
+#endif //SYSTEM_TIMER_2
|
|
|
+
|
|
|
+// temperature manager timer configuration
|
|
|
+#define TEMP_MGR_INTV 0.27 // seconds, ~3.7Hz
|
|
|
+#define TEMP_TIM_PRESCALE 256
|
|
|
+#define TEMP_TIM_OCRA_OVF (uint16_t)(TEMP_MGR_INTV / ((long double)TEMP_TIM_PRESCALE / F_CPU))
|
|
|
+#define TEMP_TIM_REGNAME(registerbase,number,suffix) _REGNAME(registerbase,number,suffix)
|
|
|
+#undef B0 //Necessary hack because of "binary.h" included in "Arduino.h" included in "system_timer.h" included in this file...
|
|
|
+#define TCCRxA TEMP_TIM_REGNAME(TCCR, TEMP_TIM, A)
|
|
|
+#define TCCRxB TEMP_TIM_REGNAME(TCCR, TEMP_TIM, B)
|
|
|
+#define TCCRxC TEMP_TIM_REGNAME(TCCR, TEMP_TIM, C)
|
|
|
+#define TCNTx TEMP_TIM_REGNAME(TCNT, TEMP_TIM,)
|
|
|
+#define OCRxA TEMP_TIM_REGNAME(OCR, TEMP_TIM, A)
|
|
|
+#define TIMSKx TEMP_TIM_REGNAME(TIMSK, TEMP_TIM,)
|
|
|
+#define TIFRx TEMP_TIM_REGNAME(TIFR, TEMP_TIM,)
|
|
|
+#define TIMERx_COMPA_vect TEMP_TIM_REGNAME(TIMER, TEMP_TIM, _COMPA_vect)
|
|
|
+#define CSx0 TEMP_TIM_REGNAME(CS, TEMP_TIM, 0)
|
|
|
+#define CSx1 TEMP_TIM_REGNAME(CS, TEMP_TIM, 1)
|
|
|
+#define CSx2 TEMP_TIM_REGNAME(CS, TEMP_TIM, 2)
|
|
|
+#define WGMx0 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 0)
|
|
|
+#define WGMx1 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 1)
|
|
|
+#define WGMx2 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 2)
|
|
|
+#define WGMx3 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 3)
|
|
|
+#define COMxA0 TEMP_TIM_REGNAME(COM, TEMP_TIM, A0)
|
|
|
+#define COMxB0 TEMP_TIM_REGNAME(COM, TEMP_TIM, B0)
|
|
|
+#define COMxC0 TEMP_TIM_REGNAME(COM, TEMP_TIM, C0)
|
|
|
+#define OCIExA TEMP_TIM_REGNAME(OCIE, TEMP_TIM, A)
|
|
|
+#define OCFxA TEMP_TIM_REGNAME(OCF, TEMP_TIM, A)
|
|
|
+
|
|
|
+#define TEMP_MGR_INT_FLAG_STATE() (TIFRx & (1<<OCFxA))
|
|
|
+#define TEMP_MGR_INT_FLAG_CLEAR() TIFRx |= (1<<OCFxA)
|
|
|
+#define TEMP_MGR_INTERRUPT_STATE() (TIMSKx & (1<<OCIExA))
|
|
|
+#define ENABLE_TEMP_MGR_INTERRUPT() TIMSKx |= (1<<OCIExA)
|
|
|
+#define DISABLE_TEMP_MGR_INTERRUPT() TIMSKx &= ~(1<<OCIExA)
|
|
|
+
|
|
|
+#ifdef TEMP_MODEL
|
|
|
+// temperature model interface
|
|
|
+#include "temp_model.h"
|
|
|
+#endif
|
|
|
|
|
|
//===========================================================================
|
|
|
//=============================public variables============================
|
|
@@ -58,13 +105,12 @@ int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
|
|
|
|
#ifdef PINDA_THERMISTOR
|
|
|
-uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
|
|
|
-uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
|
|
|
+uint16_t current_temperature_raw_pinda = 0;
|
|
|
float current_temperature_pinda = 0.0;
|
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
|
-int current_temperature_raw_ambient = 0 ;
|
|
|
+int current_temperature_raw_ambient = 0;
|
|
|
float current_temperature_ambient = 0.0;
|
|
|
#endif //AMBIENT_THERMISTOR
|
|
|
|
|
@@ -87,17 +133,19 @@ float current_temperature_bed = 0.0;
|
|
|
#ifdef PIDTEMP
|
|
|
float _Kp, _Ki, _Kd;
|
|
|
int pid_cycle, pid_number_of_cycles;
|
|
|
- bool pid_tuning_finished = false;
|
|
|
-#endif //PIDTEMP
|
|
|
-
|
|
|
-#ifdef FAN_SOFT_PWM
|
|
|
- unsigned char fanSpeedSoftPwm;
|
|
|
-#endif
|
|
|
+ static bool pid_tuning_finished = true;
|
|
|
|
|
|
-#ifdef FANCHECK
|
|
|
- volatile uint8_t fan_check_error = EFCE_OK;
|
|
|
-#endif
|
|
|
+ bool pidTuningRunning() {
|
|
|
+ return !pid_tuning_finished;
|
|
|
+ }
|
|
|
|
|
|
+ void preparePidTuning() {
|
|
|
+ // ensure heaters are disabled before we switch off PID management!
|
|
|
+ disable_heater();
|
|
|
+ pid_tuning_finished = false;
|
|
|
+ }
|
|
|
+#endif //PIDTEMP
|
|
|
+
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
|
|
#ifdef BABYSTEPPING
|
|
@@ -116,12 +164,9 @@ static volatile bool temp_meas_ready = false;
|
|
|
static float pTerm[EXTRUDERS];
|
|
|
static float iTerm[EXTRUDERS];
|
|
|
static float dTerm[EXTRUDERS];
|
|
|
- //int output;
|
|
|
static float pid_error[EXTRUDERS];
|
|
|
static float iState_sum_min[EXTRUDERS];
|
|
|
static float iState_sum_max[EXTRUDERS];
|
|
|
- // static float pid_input[EXTRUDERS];
|
|
|
- // static float pid_output[EXTRUDERS];
|
|
|
static bool pid_reset[EXTRUDERS];
|
|
|
#endif //PIDTEMP
|
|
|
#ifdef PIDTEMPBED
|
|
@@ -131,7 +176,6 @@ static volatile bool temp_meas_ready = false;
|
|
|
static float pTerm_bed;
|
|
|
static float iTerm_bed;
|
|
|
static float dTerm_bed;
|
|
|
- //int output;
|
|
|
static float pid_error_bed;
|
|
|
static float temp_iState_min_bed;
|
|
|
static float temp_iState_max_bed;
|
|
@@ -141,26 +185,11 @@ static volatile bool temp_meas_ready = false;
|
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
|
+ unsigned char fanSpeedSoftPwm;
|
|
|
static unsigned char soft_pwm_fan;
|
|
|
#endif
|
|
|
-
|
|
|
uint8_t fanSpeedBckp = 255;
|
|
|
|
|
|
-#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
|
|
|
- unsigned long extruder_autofan_last_check = _millis();
|
|
|
-
|
|
|
- bool fan_measuring = false;
|
|
|
- uint8_t fanState = 0;
|
|
|
-#ifdef EXTRUDER_ALTFAN_DETECT
|
|
|
- struct
|
|
|
- {
|
|
|
- uint8_t isAltfan : 1;
|
|
|
- uint8_t altfanOverride : 1;
|
|
|
- } altfanStatus;
|
|
|
-#endif //EXTRUDER_ALTFAN_DETECT
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
#if EXTRUDERS > 3
|
|
|
# error Unsupported number of extruders
|
|
|
#elif EXTRUDERS > 2
|
|
@@ -171,8 +200,6 @@ uint8_t fanSpeedBckp = 255;
|
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
|
|
|
#endif
|
|
|
|
|
|
-static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
|
|
|
-
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
|
|
|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
|
|
@@ -199,7 +226,7 @@ static float analog2tempBed(int raw);
|
|
|
#ifdef AMBIENT_MAXTEMP
|
|
|
static float analog2tempAmbient(int raw);
|
|
|
#endif
|
|
|
-static void updateTemperaturesFromRawValues();
|
|
|
+static void updateTemperatures();
|
|
|
|
|
|
enum TempRunawayStates : uint8_t
|
|
|
{
|
|
@@ -226,56 +253,6 @@ static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, fl
|
|
|
static void temp_runaway_stop(bool isPreheat, bool isBed);
|
|
|
#endif
|
|
|
|
|
|
-#ifdef EXTRUDER_ALTFAN_DETECT
|
|
|
-ISR(INT6_vect) {
|
|
|
- fan_edge_counter[0]++;
|
|
|
-}
|
|
|
-
|
|
|
-bool extruder_altfan_detect()
|
|
|
-{
|
|
|
- setExtruderAutoFanState(3);
|
|
|
-
|
|
|
- SET_INPUT(TACH_0);
|
|
|
-
|
|
|
- uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
|
|
|
- if (overrideVal == EEPROM_EMPTY_VALUE)
|
|
|
- {
|
|
|
- overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
|
|
|
- eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
|
|
|
- }
|
|
|
- altfanStatus.altfanOverride = overrideVal;
|
|
|
-
|
|
|
- CRITICAL_SECTION_START;
|
|
|
- EICRB &= ~(1 << ISC61);
|
|
|
- EICRB |= (1 << ISC60);
|
|
|
- EIMSK |= (1 << INT6);
|
|
|
- fan_edge_counter[0] = 0;
|
|
|
- CRITICAL_SECTION_END;
|
|
|
- extruder_autofan_last_check = _millis();
|
|
|
-
|
|
|
- _delay(1000);
|
|
|
-
|
|
|
- EIMSK &= ~(1 << INT6);
|
|
|
-
|
|
|
- countFanSpeed();
|
|
|
- altfanStatus.isAltfan = fan_speed[0] > 100;
|
|
|
- setExtruderAutoFanState(1);
|
|
|
- return altfanStatus.isAltfan;
|
|
|
-}
|
|
|
-
|
|
|
-void altfanOverride_toggle()
|
|
|
-{
|
|
|
- altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
|
|
|
- eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
|
|
|
-}
|
|
|
-
|
|
|
-bool altfanOverride_get()
|
|
|
-{
|
|
|
- return altfanStatus.altfanOverride;
|
|
|
-}
|
|
|
-
|
|
|
-#endif //EXTRUDER_ALTFAN_DETECT
|
|
|
-
|
|
|
// return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
|
|
|
bool checkAllHotends(void)
|
|
|
{
|
|
@@ -288,8 +265,9 @@ bool checkAllHotends(void)
|
|
|
// codegen bug causing a stack overwrite issue in process_commands()
|
|
|
void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
|
|
|
{
|
|
|
+ preparePidTuning();
|
|
|
+
|
|
|
pid_number_of_cycles = ncycles;
|
|
|
- pid_tuning_finished = false;
|
|
|
float input = 0.0;
|
|
|
pid_cycle=0;
|
|
|
bool heating = true;
|
|
@@ -316,15 +294,13 @@ void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycle
|
|
|
||(extruder < 0)
|
|
|
#endif
|
|
|
){
|
|
|
- SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
|
|
|
+ SERIAL_ECHOLNPGM("PID Autotune failed. Bad extruder number.");
|
|
|
pid_tuning_finished = true;
|
|
|
pid_cycle = 0;
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- SERIAL_ECHOLN("PID Autotune start");
|
|
|
-
|
|
|
- disable_heater(); // switch off all heaters.
|
|
|
+ SERIAL_ECHOLNPGM("PID Autotune start");
|
|
|
|
|
|
if (extruder<0)
|
|
|
{
|
|
@@ -340,15 +316,12 @@ void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycle
|
|
|
target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- for(;;) {
|
|
|
+ for(;;) {
|
|
|
#ifdef WATCHDOG
|
|
|
wdt_reset();
|
|
|
#endif //WATCHDOG
|
|
|
if(temp_meas_ready == true) { // temp sample ready
|
|
|
- updateTemperaturesFromRawValues();
|
|
|
+ updateTemperatures();
|
|
|
|
|
|
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
|
|
|
|
@@ -495,6 +468,7 @@ void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycle
|
|
|
|
|
|
void updatePID()
|
|
|
{
|
|
|
+ // TODO: iState_sum_max and PID values should be synchronized for temp_mgr_isr
|
|
|
#ifdef PIDTEMP
|
|
|
for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
|
|
|
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
|
|
@@ -511,399 +485,109 @@ int getHeaterPower(int heater) {
|
|
|
return soft_pwm[heater];
|
|
|
}
|
|
|
|
|
|
-#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
|
|
|
-
|
|
|
- #if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
- #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
|
|
|
- #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
|
|
|
- #endif
|
|
|
- #endif
|
|
|
+// reset PID state after changing target_temperature
|
|
|
+void resetPID(uint8_t extruder _UNUSED) {}
|
|
|
|
|
|
-void setExtruderAutoFanState(uint8_t state)
|
|
|
+enum class TempErrorSource : uint8_t
|
|
|
{
|
|
|
- //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
|
|
|
- //the fan to either On or Off during certain tests/errors.
|
|
|
-
|
|
|
- fanState = state;
|
|
|
- newFanSpeed = 0;
|
|
|
- if (fanState & 0x01)
|
|
|
- {
|
|
|
-#ifdef EXTRUDER_ALTFAN_DETECT
|
|
|
- if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
|
|
|
- else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
|
|
|
-#else //EXTRUDER_ALTFAN_DETECT
|
|
|
- newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
|
|
|
-#endif //EXTRUDER_ALTFAN_DETECT
|
|
|
- }
|
|
|
- timer4_set_fan0(newFanSpeed);
|
|
|
-}
|
|
|
-
|
|
|
-#if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
|
|
|
+ hotend,
|
|
|
+ bed,
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+ ambient,
|
|
|
+#endif
|
|
|
+};
|
|
|
|
|
|
-void countFanSpeed()
|
|
|
+// thermal error type (in order of decreasing priority!)
|
|
|
+enum class TempErrorType : uint8_t
|
|
|
{
|
|
|
- //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
|
|
|
- fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
|
|
|
- fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
|
|
|
- /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
|
|
|
- SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
|
|
|
- SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
|
|
|
- SERIAL_ECHOLNPGM(" ");*/
|
|
|
- fan_edge_counter[0] = 0;
|
|
|
- fan_edge_counter[1] = 0;
|
|
|
-}
|
|
|
+ max,
|
|
|
+ min,
|
|
|
+ preheat,
|
|
|
+ runaway,
|
|
|
+#ifdef TEMP_MODEL
|
|
|
+ model,
|
|
|
+#endif
|
|
|
+};
|
|
|
|
|
|
-void checkFanSpeed()
|
|
|
+// error state (updated via set_temp_error from isr context)
|
|
|
+volatile static union
|
|
|
{
|
|
|
- uint8_t max_fan_errors[2];
|
|
|
-#ifdef FAN_SOFT_PWM
|
|
|
- max_fan_errors[1] = 3; // 15 seconds (Print fan)
|
|
|
- max_fan_errors[0] = 2; // 10 seconds (Extruder fan)
|
|
|
-#else //FAN_SOFT_PWM
|
|
|
- max_fan_errors[1] = 15; // 15 seconds (Print fan)
|
|
|
- max_fan_errors[0] = 5; // 5 seconds (Extruder fan)
|
|
|
-#endif //FAN_SOFT_PWM
|
|
|
-
|
|
|
- if(fans_check_enabled)
|
|
|
- fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
|
|
|
- static uint8_t fan_speed_errors[2] = { 0,0 };
|
|
|
-#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
|
|
|
- if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
|
|
|
- else fan_speed_errors[0] = 0;
|
|
|
-#endif
|
|
|
-#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
|
|
|
- if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
|
|
|
- else fan_speed_errors[1] = 0;
|
|
|
-#endif
|
|
|
-
|
|
|
- // drop the fan_check_error flag when both fans are ok
|
|
|
- if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
|
|
|
- // we may even send some info to the LCD from here
|
|
|
- fan_check_error = EFCE_FIXED;
|
|
|
- }
|
|
|
- if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
|
|
|
- fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
|
|
|
- lcd_reset_alert_level(); //for another fan speed error
|
|
|
- }
|
|
|
- if (fans_check_enabled && (fan_check_error == EFCE_OK))
|
|
|
- {
|
|
|
- for (uint8_t fan = 0; fan < 2; fan++)
|
|
|
- {
|
|
|
- if (fan_speed_errors[fan] > max_fan_errors[fan])
|
|
|
- {
|
|
|
- fan_speed_errors[fan] = 0;
|
|
|
- fanSpeedError(fan);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-//! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
|
|
|
-//! Extracted from fanSpeedError to save some space.
|
|
|
-//! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
|
|
|
-//! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
|
|
|
-static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
|
|
|
- SERIAL_ECHOLNRPGM(serialMsg);
|
|
|
- if (get_message_level() == 0) {
|
|
|
- Sound_MakeCustom(200,0,true);
|
|
|
- LCD_ALERTMESSAGERPGM(lcdMsg);
|
|
|
- }
|
|
|
-}
|
|
|
+ uint8_t v;
|
|
|
+ struct
|
|
|
+ {
|
|
|
+ uint8_t error: 1; // error condition
|
|
|
+ uint8_t assert: 1; // error is still asserted
|
|
|
+ uint8_t source: 2; // source
|
|
|
+ uint8_t index: 1; // source index
|
|
|
+ uint8_t type: 3; // error type
|
|
|
+ };
|
|
|
+} temp_error_state;
|
|
|
+
|
|
|
+// set the error type from within the temp_mgr isr to be handled in manager_heater
|
|
|
+// - immediately disable all heaters and turn on all fans at full speed
|
|
|
+// - prevent the user to set temperatures until all errors are cleared
|
|
|
+void set_temp_error(TempErrorSource source, uint8_t index, TempErrorType type)
|
|
|
+{
|
|
|
+ // save the original target temperatures for recovery before disabling heaters
|
|
|
+ if(!temp_error_state.error && !saved_printing) {
|
|
|
+ saved_bed_temperature = target_temperature_bed;
|
|
|
+ saved_extruder_temperature = target_temperature[index];
|
|
|
+ saved_fan_speed = fanSpeed;
|
|
|
+ }
|
|
|
|
|
|
-void fanSpeedError(unsigned char _fan) {
|
|
|
- if (get_message_level() != 0 && isPrintPaused) return;
|
|
|
- //to ensure that target temp. is not set to zero in case that we are resuming print
|
|
|
- if (card.sdprinting || usb_timer.running()) {
|
|
|
- if (heating_status != HeatingStatus::NO_HEATING) {
|
|
|
- lcd_print_stop();
|
|
|
- }
|
|
|
- else {
|
|
|
- fan_check_error = EFCE_DETECTED; //plans error for next processed command
|
|
|
- }
|
|
|
- }
|
|
|
- else {
|
|
|
- // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? usb_timer.running() would be true in that case, so there is no need for this.
|
|
|
- setTargetHotend0(0);
|
|
|
- heating_status = HeatingStatus::NO_HEATING;
|
|
|
- fan_check_error = EFCE_REPORTED;
|
|
|
- }
|
|
|
- switch (_fan) {
|
|
|
- case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
|
|
|
- fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
|
|
|
- break;
|
|
|
- }
|
|
|
-}
|
|
|
-#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
|
|
|
+ // keep disabling heaters and keep fans on as long as the condition is asserted
|
|
|
+ disable_heater();
|
|
|
+ hotendFanSetFullSpeed();
|
|
|
|
|
|
+ // set the initial error source to the highest priority error
|
|
|
+ if(!temp_error_state.error || (uint8_t)type < temp_error_state.type) {
|
|
|
+ temp_error_state.source = (uint8_t)source;
|
|
|
+ temp_error_state.index = index;
|
|
|
+ temp_error_state.type = (uint8_t)type;
|
|
|
+ }
|
|
|
|
|
|
-void checkExtruderAutoFans()
|
|
|
-{
|
|
|
-#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
|
|
- if (!(fanState & 0x02))
|
|
|
- {
|
|
|
- fanState &= ~1;
|
|
|
- fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
|
|
|
- }
|
|
|
- setExtruderAutoFanState(fanState);
|
|
|
-#endif
|
|
|
+ // always set the error state
|
|
|
+ temp_error_state.error = true;
|
|
|
+ temp_error_state.assert = true;
|
|
|
}
|
|
|
|
|
|
-#endif // any extruder auto fan pins set
|
|
|
-
|
|
|
-// ready for eventually parameters adjusting
|
|
|
-void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
|
|
|
-//void resetPID(uint8_t extruder)
|
|
|
+bool get_temp_error()
|
|
|
{
|
|
|
+ return temp_error_state.v;
|
|
|
}
|
|
|
|
|
|
+void handle_temp_error();
|
|
|
+
|
|
|
void manage_heater()
|
|
|
{
|
|
|
#ifdef WATCHDOG
|
|
|
wdt_reset();
|
|
|
#endif //WATCHDOG
|
|
|
|
|
|
- float pid_input;
|
|
|
- float pid_output;
|
|
|
-
|
|
|
- if(temp_meas_ready != true) //better readability
|
|
|
- return;
|
|
|
-// more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
|
|
|
-
|
|
|
- // ADC values need to be converted before checking: converted values are later used in MINTEMP
|
|
|
- updateTemperaturesFromRawValues();
|
|
|
+ // limit execution to the same rate as temp_mgr (low-level fault handling is already handled -
|
|
|
+ // any remaining error handling is just user-facing and can wait one extra cycle)
|
|
|
+ if(!temp_meas_ready)
|
|
|
+ return;
|
|
|
|
|
|
- check_max_temp();
|
|
|
- check_min_temp();
|
|
|
+ // syncronize temperatures with isr
|
|
|
+ updateTemperatures();
|
|
|
|
|
|
-#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
|
|
|
- temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
|
|
|
-#endif
|
|
|
-
|
|
|
- for(uint8_t e = 0; e < EXTRUDERS; e++)
|
|
|
- {
|
|
|
-
|
|
|
-#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
|
|
|
- temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
|
|
|
+#ifdef TEMP_MODEL
|
|
|
+ // handle model warnings first, so not to override the error handler
|
|
|
+ if(temp_model::warning_state.warning)
|
|
|
+ temp_model::handle_warning();
|
|
|
#endif
|
|
|
|
|
|
- #ifdef PIDTEMP
|
|
|
- pid_input = current_temperature[e];
|
|
|
-
|
|
|
- #ifndef PID_OPENLOOP
|
|
|
- if(target_temperature[e] == 0) {
|
|
|
- pid_output = 0;
|
|
|
- pid_reset[e] = true;
|
|
|
- } else {
|
|
|
- pid_error[e] = target_temperature[e] - pid_input;
|
|
|
- if(pid_reset[e]) {
|
|
|
- iState_sum[e] = 0.0;
|
|
|
- dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
|
|
|
- pid_reset[e] = false;
|
|
|
- }
|
|
|
-#ifndef PonM
|
|
|
- pTerm[e] = cs.Kp * pid_error[e];
|
|
|
- iState_sum[e] += pid_error[e];
|
|
|
- iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
|
|
|
- iTerm[e] = cs.Ki * iState_sum[e];
|
|
|
- // PID_K1 defined in Configuration.h in the PID settings
|
|
|
- #define K2 (1.0-PID_K1)
|
|
|
- dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
|
|
|
- pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
|
|
- if (pid_output > PID_MAX) {
|
|
|
- if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
|
|
- pid_output=PID_MAX;
|
|
|
- } else if (pid_output < 0) {
|
|
|
- if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
|
|
- pid_output=0;
|
|
|
- }
|
|
|
-#else // PonM ("Proportional on Measurement" method)
|
|
|
- iState_sum[e] += cs.Ki * pid_error[e];
|
|
|
- iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
|
|
|
- iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
|
|
|
- dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
|
|
|
- pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
|
|
- pid_output = constrain(pid_output, 0, PID_MAX);
|
|
|
-#endif // PonM
|
|
|
- }
|
|
|
- dState_last[e] = pid_input;
|
|
|
- #else
|
|
|
- pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
|
|
- #endif //PID_OPENLOOP
|
|
|
- #ifdef PID_DEBUG
|
|
|
- SERIAL_ECHO_START;
|
|
|
- SERIAL_ECHO(" PID_DEBUG ");
|
|
|
- SERIAL_ECHO(e);
|
|
|
- SERIAL_ECHO(": Input ");
|
|
|
- SERIAL_ECHO(pid_input);
|
|
|
- SERIAL_ECHO(" Output ");
|
|
|
- SERIAL_ECHO(pid_output);
|
|
|
- SERIAL_ECHO(" pTerm ");
|
|
|
- SERIAL_ECHO(pTerm[e]);
|
|
|
- SERIAL_ECHO(" iTerm ");
|
|
|
- SERIAL_ECHO(iTerm[e]);
|
|
|
- SERIAL_ECHO(" dTerm ");
|
|
|
- SERIAL_ECHOLN(-dTerm[e]);
|
|
|
- #endif //PID_DEBUG
|
|
|
- #else /* PID off */
|
|
|
- pid_output = 0;
|
|
|
- if(current_temperature[e] < target_temperature[e]) {
|
|
|
- pid_output = PID_MAX;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- // Check if temperature is within the correct range
|
|
|
- if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
|
|
|
- {
|
|
|
- soft_pwm[e] = (int)pid_output >> 1;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- soft_pwm[e] = 0;
|
|
|
- }
|
|
|
- } // End extruder for loop
|
|
|
-
|
|
|
-#define FAN_CHECK_PERIOD 5000 //5s
|
|
|
-#define FAN_CHECK_DURATION 100 //100ms
|
|
|
-
|
|
|
-#ifndef DEBUG_DISABLE_FANCHECK
|
|
|
- #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
|
|
|
-
|
|
|
-#ifdef FAN_SOFT_PWM
|
|
|
-#ifdef FANCHECK
|
|
|
- if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
|
|
|
- extruder_autofan_last_check = _millis();
|
|
|
- fanSpeedBckp = fanSpeedSoftPwm;
|
|
|
-
|
|
|
- if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
|
|
|
- // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
|
|
|
- fanSpeedSoftPwm = 255;
|
|
|
- }
|
|
|
- fan_measuring = true;
|
|
|
- }
|
|
|
- if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
|
|
|
- countFanSpeed();
|
|
|
- checkFanSpeed();
|
|
|
- //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
|
|
|
- fanSpeedSoftPwm = fanSpeedBckp;
|
|
|
- //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
|
|
|
- extruder_autofan_last_check = _millis();
|
|
|
- fan_measuring = false;
|
|
|
- }
|
|
|
-#endif //FANCHECK
|
|
|
- checkExtruderAutoFans();
|
|
|
-#else //FAN_SOFT_PWM
|
|
|
- if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
|
|
|
- {
|
|
|
-#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
|
|
|
- countFanSpeed();
|
|
|
- checkFanSpeed();
|
|
|
-#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
|
|
|
- checkExtruderAutoFans();
|
|
|
- extruder_autofan_last_check = _millis();
|
|
|
- }
|
|
|
-#endif //FAN_SOFT_PWM
|
|
|
+ // handle temperature errors
|
|
|
+ if(temp_error_state.v)
|
|
|
+ handle_temp_error();
|
|
|
|
|
|
- #endif
|
|
|
-#endif //DEBUG_DISABLE_FANCHECK
|
|
|
-
|
|
|
- #ifndef PIDTEMPBED
|
|
|
- if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
|
- return;
|
|
|
- previous_millis_bed_heater = _millis();
|
|
|
- #endif
|
|
|
+ // periodically check fans
|
|
|
+ checkFans();
|
|
|
|
|
|
- #if TEMP_SENSOR_BED != 0
|
|
|
-
|
|
|
- #ifdef PIDTEMPBED
|
|
|
- pid_input = current_temperature_bed;
|
|
|
-
|
|
|
- #ifndef PID_OPENLOOP
|
|
|
- pid_error_bed = target_temperature_bed - pid_input;
|
|
|
- pTerm_bed = cs.bedKp * pid_error_bed;
|
|
|
- temp_iState_bed += pid_error_bed;
|
|
|
- temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
|
|
- iTerm_bed = cs.bedKi * temp_iState_bed;
|
|
|
-
|
|
|
- //PID_K1 defined in Configuration.h in the PID settings
|
|
|
- #define K2 (1.0-PID_K1)
|
|
|
- dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
|
|
|
- temp_dState_bed = pid_input;
|
|
|
-
|
|
|
- pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
|
|
- if (pid_output > MAX_BED_POWER) {
|
|
|
- if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
- pid_output=MAX_BED_POWER;
|
|
|
- } else if (pid_output < 0){
|
|
|
- if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
- pid_output=0;
|
|
|
- }
|
|
|
-
|
|
|
- #else
|
|
|
- pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
|
|
- #endif //PID_OPENLOOP
|
|
|
-
|
|
|
- if(current_temperature_bed < BED_MAXTEMP)
|
|
|
- {
|
|
|
- soft_pwm_bed = (int)pid_output >> 1;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
- else {
|
|
|
- soft_pwm_bed = 0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
-
|
|
|
- #elif !defined(BED_LIMIT_SWITCHING)
|
|
|
- // Check if temperature is within the correct range
|
|
|
- if(current_temperature_bed < BED_MAXTEMP)
|
|
|
- {
|
|
|
- if(current_temperature_bed >= target_temperature_bed)
|
|
|
- {
|
|
|
- soft_pwm_bed = 0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- soft_pwm_bed = MAX_BED_POWER>>1;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- soft_pwm_bed = 0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- WRITE(HEATER_BED_PIN,LOW);
|
|
|
- }
|
|
|
- #else //#ifdef BED_LIMIT_SWITCHING
|
|
|
- // Check if temperature is within the correct band
|
|
|
- if(current_temperature_bed < BED_MAXTEMP)
|
|
|
- {
|
|
|
- if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
|
|
|
- {
|
|
|
- soft_pwm_bed = 0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
- else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
|
|
- {
|
|
|
- soft_pwm_bed = MAX_BED_POWER>>1;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- soft_pwm_bed = 0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- WRITE(HEATER_BED_PIN,LOW);
|
|
|
- }
|
|
|
- #endif
|
|
|
- if(target_temperature_bed==0)
|
|
|
- {
|
|
|
- soft_pwm_bed = 0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- }
|
|
|
- #endif
|
|
|
+#ifdef TEMP_MODEL_DEBUG
|
|
|
+ temp_model::log_usr();
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
@@ -1029,36 +713,7 @@ static float analog2tempAmbient(int raw)
|
|
|
}
|
|
|
#endif //AMBIENT_THERMISTOR
|
|
|
|
|
|
-/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
|
|
|
- and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
|
|
|
-static void updateTemperaturesFromRawValues()
|
|
|
-{
|
|
|
- for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
|
- {
|
|
|
- current_temperature[e] = analog2temp(current_temperature_raw[e], e);
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
- current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
|
|
|
- current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef AMBIENT_THERMISTOR
|
|
|
- current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef DEBUG_HEATER_BED_SIM
|
|
|
- current_temperature_bed = target_temperature_bed;
|
|
|
-#else //DEBUG_HEATER_BED_SIM
|
|
|
- current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
|
|
|
-#endif //DEBUG_HEATER_BED_SIM
|
|
|
-
|
|
|
- CRITICAL_SECTION_START;
|
|
|
- temp_meas_ready = false;
|
|
|
- CRITICAL_SECTION_END;
|
|
|
-}
|
|
|
-
|
|
|
-void tp_init()
|
|
|
+void soft_pwm_init()
|
|
|
{
|
|
|
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
|
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
@@ -1122,20 +777,6 @@ void tp_init()
|
|
|
digitalWrite(MAX6675_SS,1);
|
|
|
#endif
|
|
|
|
|
|
- adc_init();
|
|
|
-
|
|
|
- timer0_init(); //enables the heatbed timer.
|
|
|
-
|
|
|
- // timer2 already enabled earlier in the code
|
|
|
- // now enable the COMPB temperature interrupt
|
|
|
- OCR2B = 128;
|
|
|
- TIMSK2 |= (1<<OCIE2B);
|
|
|
-
|
|
|
- timer4_init(); //for tone and Extruder fan PWM
|
|
|
-
|
|
|
- // Wait for temperature measurement to settle
|
|
|
- _delay(250);
|
|
|
-
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
|
minttemp[0] = HEATER_0_MINTEMP;
|
|
|
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
|
|
@@ -1236,19 +877,27 @@ void tp_init()
|
|
|
#endif
|
|
|
}
|
|
|
#endif //AMBIENT_MAXTEMP
|
|
|
+
|
|
|
+ timer0_init(); //enables the heatbed timer.
|
|
|
+
|
|
|
+ // timer2 already enabled earlier in the code
|
|
|
+ // now enable the COMPB temperature interrupt
|
|
|
+ OCR2B = 128;
|
|
|
+ ENABLE_SOFT_PWM_INTERRUPT();
|
|
|
+
|
|
|
+ timer4_init(); //for tone and Extruder fan PWM
|
|
|
}
|
|
|
|
|
|
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
|
|
|
-void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
|
|
|
+static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
|
|
|
{
|
|
|
- float __delta;
|
|
|
+ float __delta;
|
|
|
float __hysteresis = 0;
|
|
|
uint16_t __timeout = 0;
|
|
|
bool temp_runaway_check_active = false;
|
|
|
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
|
|
|
static uint8_t __preheat_counter[2] = { 0,0};
|
|
|
static uint8_t __preheat_errors[2] = { 0,0};
|
|
|
-
|
|
|
|
|
|
if (_millis() - temp_runaway_timer[_heater_id] > 2000)
|
|
|
{
|
|
@@ -1325,11 +974,8 @@ void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _cu
|
|
|
}
|
|
|
|
|
|
if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
|
|
|
- {
|
|
|
- if (farm_mode) { prusa_statistics(0); }
|
|
|
- temp_runaway_stop(true, _isbed);
|
|
|
- if (farm_mode) { prusa_statistics(91); }
|
|
|
- }
|
|
|
+ set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::preheat);
|
|
|
+
|
|
|
__preheat_start[_heater_id] = _current_temperature;
|
|
|
__preheat_counter[_heater_id] = 0;
|
|
|
}
|
|
@@ -1366,11 +1012,7 @@ void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _cu
|
|
|
{
|
|
|
temp_runaway_error_counter[_heater_id]++;
|
|
|
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
|
|
|
- {
|
|
|
- if (farm_mode) { prusa_statistics(0); }
|
|
|
- temp_runaway_stop(false, _isbed);
|
|
|
- if (farm_mode) { prusa_statistics(90); }
|
|
|
- }
|
|
|
+ set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::runaway);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -1378,106 +1020,44 @@ void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _cu
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void temp_runaway_stop(bool isPreheat, bool isBed)
|
|
|
+static void temp_runaway_stop(bool isPreheat, bool isBed)
|
|
|
{
|
|
|
- disable_heater();
|
|
|
- Sound_MakeCustom(200,0,true);
|
|
|
-
|
|
|
- if (isPreheat)
|
|
|
- {
|
|
|
- lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
|
|
|
- SERIAL_ERROR_START;
|
|
|
- isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
|
|
|
-
|
|
|
-#ifdef EXTRUDER_ALTFAN_DETECT
|
|
|
- altfanStatus.altfanOverride = 1; //full speed
|
|
|
-#endif //EXTRUDER_ALTFAN_DETECT
|
|
|
- setExtruderAutoFanState(3);
|
|
|
- SET_OUTPUT(FAN_PIN);
|
|
|
-#ifdef FAN_SOFT_PWM
|
|
|
- fanSpeedSoftPwm = 255;
|
|
|
-#else //FAN_SOFT_PWM
|
|
|
- analogWrite(FAN_PIN, 255);
|
|
|
-#endif //FAN_SOFT_PWM
|
|
|
- fanSpeed = 255;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
|
|
|
- SERIAL_ERROR_START;
|
|
|
- isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
|
|
|
- }
|
|
|
-
|
|
|
- Stop();
|
|
|
+ if(IsStopped() == false) {
|
|
|
+ if (isPreheat) {
|
|
|
+ lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
|
|
|
+ SERIAL_ERROR_START;
|
|
|
+ if (isBed) {
|
|
|
+ SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)");
|
|
|
+ } else {
|
|
|
+ SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
|
|
|
+ SERIAL_ERROR_START;
|
|
|
+ if (isBed) {
|
|
|
+ SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY");
|
|
|
+ } else {
|
|
|
+ SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (farm_mode) {
|
|
|
+ prusa_statistics(0);
|
|
|
+ prusa_statistics(isPreheat? 91 : 90);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ThermalStop();
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
-void disable_heater()
|
|
|
-{
|
|
|
- setAllTargetHotends(0);
|
|
|
- setTargetBed(0);
|
|
|
- #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
|
- target_temperature[0]=0;
|
|
|
- soft_pwm[0]=0;
|
|
|
- #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
|
|
|
- WRITE(HEATER_0_PIN,LOW);
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-
|
|
|
- #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
|
|
|
- target_temperature[1]=0;
|
|
|
- soft_pwm[1]=0;
|
|
|
- #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
|
- WRITE(HEATER_1_PIN,LOW);
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-
|
|
|
- #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
|
|
|
- target_temperature[2]=0;
|
|
|
- soft_pwm[2]=0;
|
|
|
- #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
|
- WRITE(HEATER_2_PIN,LOW);
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-
|
|
|
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
- target_temperature_bed=0;
|
|
|
- soft_pwm_bed=0;
|
|
|
- timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
- bedPWMDisabled = 0;
|
|
|
- #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
|
- //WRITE(HEATER_BED_PIN,LOW);
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-}
|
|
|
-//! codes of alert messages for the LCD - it is shorter to compare an uin8_t
|
|
|
-//! than raw const char * of the messages themselves.
|
|
|
-//! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
|
|
|
-//! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
|
|
|
-enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
|
|
|
-
|
|
|
-//! remember the last alert message sent to the LCD
|
|
|
-//! to prevent flicker and improve speed
|
|
|
-uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
|
|
|
-
|
|
|
-
|
|
|
-//! update the current temperature error message
|
|
|
+//! signal a temperature error on both the lcd and serial
|
|
|
//! @param type short error abbreviation (PROGMEM)
|
|
|
-void temp_update_messagepgm(const char* PROGMEM type)
|
|
|
+//! @param e optional extruder index for hotend errors
|
|
|
+static void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
|
|
|
{
|
|
|
char msg[LCD_WIDTH];
|
|
|
strcpy_P(msg, PSTR("Err: "));
|
|
|
strcat_P(msg, type);
|
|
|
lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
|
|
|
-}
|
|
|
-
|
|
|
-//! signal a temperature error on both the lcd and serial
|
|
|
-//! @param type short error abbreviation (PROGMEM)
|
|
|
-//! @param e optional extruder index for hotend errors
|
|
|
-void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
|
|
|
-{
|
|
|
- temp_update_messagepgm(type);
|
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
@@ -1492,106 +1072,54 @@ void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
|
|
|
}
|
|
|
|
|
|
|
|
|
-void max_temp_error(uint8_t e) {
|
|
|
- disable_heater();
|
|
|
- if(IsStopped() == false) {
|
|
|
- temp_error_messagepgm(PSTR("MAXTEMP"), e);
|
|
|
- }
|
|
|
- #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
- Stop();
|
|
|
- #endif
|
|
|
-
|
|
|
- SET_OUTPUT(FAN_PIN);
|
|
|
- SET_OUTPUT(BEEPER);
|
|
|
- WRITE(FAN_PIN, 1);
|
|
|
- WRITE(BEEPER, 1);
|
|
|
-#ifdef EXTRUDER_ALTFAN_DETECT
|
|
|
- altfanStatus.altfanOverride = 1; //full speed
|
|
|
-#endif //EXTRUDER_ALTFAN_DETECT
|
|
|
- setExtruderAutoFanState(3);
|
|
|
- // fanSpeed will consumed by the check_axes_activity() routine.
|
|
|
- fanSpeed=255;
|
|
|
- if (farm_mode) { prusa_statistics(93); }
|
|
|
-}
|
|
|
-
|
|
|
-void min_temp_error(uint8_t e) {
|
|
|
-#ifdef DEBUG_DISABLE_MINTEMP
|
|
|
- return;
|
|
|
-#endif
|
|
|
- disable_heater();
|
|
|
-//if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
|
|
|
- static const char err[] PROGMEM = "MINTEMP";
|
|
|
- if(IsStopped() == false) {
|
|
|
- temp_error_messagepgm(err, e);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
|
|
|
- } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
|
|
|
- // we are already stopped due to some error, only update the status message without flickering
|
|
|
- temp_update_messagepgm(err);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
|
|
|
- }
|
|
|
- #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
-// if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
|
|
|
-// last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
|
|
|
-// lcd_print_stop();
|
|
|
-// }
|
|
|
- Stop();
|
|
|
- #endif
|
|
|
- if (farm_mode) { prusa_statistics(92); }
|
|
|
+static void max_temp_error(uint8_t e) {
|
|
|
+ if(IsStopped() == false) {
|
|
|
+ temp_error_messagepgm(PSTR("MAXTEMP"), e);
|
|
|
+ if (farm_mode) prusa_statistics(93);
|
|
|
+ }
|
|
|
+#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
+ ThermalStop();
|
|
|
+#endif
|
|
|
+}
|
|
|
|
|
|
+static void min_temp_error(uint8_t e) {
|
|
|
+ static const char err[] PROGMEM = "MINTEMP";
|
|
|
+ if(IsStopped() == false) {
|
|
|
+ temp_error_messagepgm(err, e);
|
|
|
+ if (farm_mode) prusa_statistics(92);
|
|
|
+ }
|
|
|
+ ThermalStop();
|
|
|
}
|
|
|
|
|
|
-void bed_max_temp_error(void) {
|
|
|
- disable_heater();
|
|
|
- if(IsStopped() == false) {
|
|
|
- temp_error_messagepgm(PSTR("MAXTEMP BED"));
|
|
|
- }
|
|
|
- #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
- Stop();
|
|
|
- #endif
|
|
|
+static void bed_max_temp_error(void) {
|
|
|
+ if(IsStopped() == false) {
|
|
|
+ temp_error_messagepgm(PSTR("MAXTEMP BED"));
|
|
|
+ }
|
|
|
+ ThermalStop();
|
|
|
}
|
|
|
|
|
|
-void bed_min_temp_error(void) {
|
|
|
-#ifdef DEBUG_DISABLE_MINTEMP
|
|
|
- return;
|
|
|
-#endif
|
|
|
- disable_heater();
|
|
|
+static void bed_min_temp_error(void) {
|
|
|
static const char err[] PROGMEM = "MINTEMP BED";
|
|
|
if(IsStopped() == false) {
|
|
|
temp_error_messagepgm(err);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
|
|
|
- } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
|
|
|
- // we are already stopped due to some error, only update the status message without flickering
|
|
|
- temp_update_messagepgm(err);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
|
|
|
- }
|
|
|
-#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
- Stop();
|
|
|
-#endif
|
|
|
+ }
|
|
|
+ ThermalStop();
|
|
|
}
|
|
|
|
|
|
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
|
-void ambient_max_temp_error(void) {
|
|
|
- disable_heater();
|
|
|
+static void ambient_max_temp_error(void) {
|
|
|
if(IsStopped() == false) {
|
|
|
temp_error_messagepgm(PSTR("MAXTEMP AMB"));
|
|
|
}
|
|
|
-#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
- Stop();
|
|
|
-#endif
|
|
|
+ ThermalStop();
|
|
|
}
|
|
|
|
|
|
-void ambient_min_temp_error(void) {
|
|
|
-#ifdef DEBUG_DISABLE_MINTEMP
|
|
|
- return;
|
|
|
-#endif
|
|
|
- disable_heater();
|
|
|
+static void ambient_min_temp_error(void) {
|
|
|
if(IsStopped() == false) {
|
|
|
temp_error_messagepgm(PSTR("MINTEMP AMB"));
|
|
|
}
|
|
|
-#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
|
- Stop();
|
|
|
-#endif
|
|
|
+ ThermalStop();
|
|
|
}
|
|
|
#endif
|
|
|
|
|
@@ -1652,49 +1180,33 @@ int read_max6675()
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
+#ifdef BABYSTEPPING
|
|
|
+FORCE_INLINE static void applyBabysteps() {
|
|
|
+ for(uint8_t axis=0;axis<3;axis++)
|
|
|
+ {
|
|
|
+ int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
|
|
|
|
|
-extern "C" {
|
|
|
-
|
|
|
-
|
|
|
-void adc_ready(void) //callback from adc when sampling finished
|
|
|
-{
|
|
|
- current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
- current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
|
|
|
-#endif //PINDA_THERMISTOR
|
|
|
- current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
|
|
|
-#ifdef VOLT_PWR_PIN
|
|
|
- current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
|
|
|
-#endif
|
|
|
-#ifdef AMBIENT_THERMISTOR
|
|
|
- current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
|
|
|
-#endif //AMBIENT_THERMISTOR
|
|
|
-#ifdef VOLT_BED_PIN
|
|
|
- current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
|
|
|
-#endif
|
|
|
-#ifdef IR_SENSOR_ANALOG
|
|
|
- current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
|
|
|
-#endif //IR_SENSOR_ANALOG
|
|
|
- temp_meas_ready = true;
|
|
|
+ if(curTodo>0)
|
|
|
+ {
|
|
|
+ ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
+ babystep(axis,/*fwd*/true);
|
|
|
+ babystepsTodo[axis]--; //less to do next time
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ if(curTodo<0)
|
|
|
+ {
|
|
|
+ ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
+ babystep(axis,/*fwd*/false);
|
|
|
+ babystepsTodo[axis]++; //less to do next time
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
+#endif //BABYSTEPPING
|
|
|
|
|
|
-} // extern "C"
|
|
|
-
|
|
|
-FORCE_INLINE static void temperature_isr()
|
|
|
+FORCE_INLINE static void soft_pwm_core()
|
|
|
{
|
|
|
-#ifdef DEBUG_PULLUP_CRASH
|
|
|
- // check for faulty pull-ups enabled on thermistor inputs
|
|
|
- if ((PORTF & (uint8_t)(ADC_DIDR_MSK & 0xff)) || (PORTK & (uint8_t)((ADC_DIDR_MSK >> 8) & 0xff)))
|
|
|
- pullup_error(true);
|
|
|
-#else
|
|
|
- PORTF &= ~(uint8_t)(ADC_DIDR_MSK & 0xff);
|
|
|
- PORTK &= ~(uint8_t)((ADC_DIDR_MSK >> 8) & 0xff);
|
|
|
-#endif // DEBUG_PULLUP_CRASH
|
|
|
-
|
|
|
-
|
|
|
- if (!temp_meas_ready) adc_cycle();
|
|
|
- lcd_buttons_update();
|
|
|
-
|
|
|
static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
|
|
|
static uint8_t soft_pwm_0;
|
|
|
#ifdef SLOW_PWM_HEATERS
|
|
@@ -2029,36 +1541,22 @@ FORCE_INLINE static void temperature_isr()
|
|
|
} //if ((pwm_count % 64) == 0) {
|
|
|
|
|
|
#endif //ifndef SLOW_PWM_HEATERS
|
|
|
+}
|
|
|
+
|
|
|
+FORCE_INLINE static void soft_pwm_isr()
|
|
|
+{
|
|
|
+ lcd_buttons_update();
|
|
|
+ soft_pwm_core();
|
|
|
|
|
|
-
|
|
|
#ifdef BABYSTEPPING
|
|
|
- for(uint8_t axis=0;axis<3;axis++)
|
|
|
- {
|
|
|
- int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
|
|
-
|
|
|
- if(curTodo>0)
|
|
|
- {
|
|
|
- CRITICAL_SECTION_START;
|
|
|
- babystep(axis,/*fwd*/true);
|
|
|
- babystepsTodo[axis]--; //less to do next time
|
|
|
- CRITICAL_SECTION_END;
|
|
|
- }
|
|
|
- else
|
|
|
- if(curTodo<0)
|
|
|
- {
|
|
|
- CRITICAL_SECTION_START;
|
|
|
- babystep(axis,/*fwd*/false);
|
|
|
- babystepsTodo[axis]++; //less to do next time
|
|
|
- CRITICAL_SECTION_END;
|
|
|
- }
|
|
|
- }
|
|
|
+ applyBabysteps();
|
|
|
#endif //BABYSTEPPING
|
|
|
|
|
|
// Check if a stack overflow happened
|
|
|
if (!SdFatUtil::test_stack_integrity()) stack_error();
|
|
|
|
|
|
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
|
|
|
- check_fans();
|
|
|
+ readFanTach();
|
|
|
#endif //(defined(TACH_0))
|
|
|
}
|
|
|
|
|
@@ -2069,48 +1567,45 @@ ISR(TIMER2_COMPB_vect)
|
|
|
ISR(TIMER0_COMPB_vect)
|
|
|
#endif //SYSTEM_TIMER_2
|
|
|
{
|
|
|
- static bool _lock = false;
|
|
|
- if (!_lock)
|
|
|
- {
|
|
|
- _lock = true;
|
|
|
- sei();
|
|
|
- temperature_isr();
|
|
|
- cli();
|
|
|
- _lock = false;
|
|
|
+ DISABLE_SOFT_PWM_INTERRUPT();
|
|
|
+ NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
|
|
|
+ soft_pwm_isr();
|
|
|
}
|
|
|
+ ENABLE_SOFT_PWM_INTERRUPT();
|
|
|
}
|
|
|
|
|
|
-void check_max_temp()
|
|
|
+void check_max_temp_raw()
|
|
|
{
|
|
|
-//heater
|
|
|
+ //heater
|
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
|
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
|
|
|
#else
|
|
|
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
|
|
|
#endif
|
|
|
- max_temp_error(0);
|
|
|
+ set_temp_error(TempErrorSource::hotend, 0, TempErrorType::max);
|
|
|
}
|
|
|
-//bed
|
|
|
+ //bed
|
|
|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
|
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
|
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
|
|
|
#else
|
|
|
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
|
|
|
#endif
|
|
|
- bed_max_temp_error();
|
|
|
+ set_temp_error(TempErrorSource::bed, 0, TempErrorType::max);
|
|
|
}
|
|
|
#endif
|
|
|
-//ambient
|
|
|
+ //ambient
|
|
|
#if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
|
|
|
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
|
|
|
if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
|
|
|
#else
|
|
|
if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
|
|
|
#endif
|
|
|
- ambient_max_temp_error();
|
|
|
+ set_temp_error(TempErrorSource::ambient, 0, TempErrorType::max);
|
|
|
}
|
|
|
#endif
|
|
|
}
|
|
|
+
|
|
|
//! number of repeating the same state with consecutive step() calls
|
|
|
//! used to slow down text switching
|
|
|
struct alert_automaton_mintemp {
|
|
@@ -2122,9 +1617,10 @@ private:
|
|
|
States state = States::Init;
|
|
|
uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
|
|
|
|
|
|
- void substep(States next_state){
|
|
|
+ void substep(const char* next_msg, States next_state){
|
|
|
if( repeat == 0 ){
|
|
|
state = next_state; // advance to the next state
|
|
|
+ lcd_setalertstatuspgm(next_msg, LCD_STATUS_CRITICAL);
|
|
|
repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
|
|
|
} else {
|
|
|
--repeat;
|
|
@@ -2139,25 +1635,18 @@ public:
|
|
|
switch(state){
|
|
|
case States::Init: // initial state - check hysteresis
|
|
|
if( current_temp > mintemp ){
|
|
|
+ lcd_setalertstatuspgm(m2, LCD_STATUS_CRITICAL);
|
|
|
state = States::TempAboveMintemp;
|
|
|
}
|
|
|
// otherwise keep the Err MINTEMP alert message on the display,
|
|
|
// i.e. do not transfer to state 1
|
|
|
break;
|
|
|
case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
|
|
|
- lcd_setalertstatuspgm(m2);
|
|
|
- substep(States::ShowMintemp);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
|
|
|
+ case States::ShowMintemp: // displaying "MINTEMP fixed"
|
|
|
+ substep(m1, States::ShowPleaseRestart);
|
|
|
break;
|
|
|
case States::ShowPleaseRestart: // displaying "Please restart"
|
|
|
- lcd_updatestatuspgm(m1);
|
|
|
- substep(States::ShowMintemp);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
|
|
|
- break;
|
|
|
- case States::ShowMintemp: // displaying "MINTEMP fixed"
|
|
|
- lcd_updatestatuspgm(m2);
|
|
|
- substep(States::ShowPleaseRestart);
|
|
|
- last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
|
|
|
+ substep(m2, States::ShowMintemp);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
@@ -2168,23 +1657,12 @@ static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton
|
|
|
|
|
|
void check_min_temp_heater0()
|
|
|
{
|
|
|
-//heater
|
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
|
if (current_temperature_raw[0] >= minttemp_raw[0]) {
|
|
|
#else
|
|
|
if (current_temperature_raw[0] <= minttemp_raw[0]) {
|
|
|
#endif
|
|
|
- menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
|
|
|
- min_temp_error(0);
|
|
|
- } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
|
|
|
- // no recovery, just force the user to restart the printer
|
|
|
- // which is a safer variant than just continuing printing
|
|
|
- // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
|
|
|
- // we shall signalize, that MINTEMP has been fixed
|
|
|
- // Code notice: normally the alert_automaton instance would have been placed here
|
|
|
- // as static alert_automaton_mintemp alert_automaton_hotend, but
|
|
|
- // due to stupid compiler that takes 16 more bytes.
|
|
|
- alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
|
|
|
+ set_temp_error(TempErrorSource::hotend, 0, TempErrorType::min);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -2195,12 +1673,7 @@ void check_min_temp_bed()
|
|
|
#else
|
|
|
if (current_temperature_bed_raw <= bed_minttemp_raw) {
|
|
|
#endif
|
|
|
- menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
|
|
|
- bed_min_temp_error();
|
|
|
- } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
|
|
|
- // no recovery, just force the user to restart the printer
|
|
|
- // which is a safer variant than just continuing printing
|
|
|
- alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
|
|
|
+ set_temp_error(TempErrorSource::bed, 0, TempErrorType::min);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -2212,89 +1685,105 @@ void check_min_temp_ambient()
|
|
|
#else
|
|
|
if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
|
|
|
#endif
|
|
|
- ambient_min_temp_error();
|
|
|
+ set_temp_error(TempErrorSource::ambient, 0, TempErrorType::min);
|
|
|
}
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
-void check_min_temp()
|
|
|
+void handle_temp_error()
|
|
|
{
|
|
|
-static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
|
|
|
-static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
|
|
|
+ // relay to the original handler
|
|
|
+ switch((TempErrorType)temp_error_state.type) {
|
|
|
+ case TempErrorType::min:
|
|
|
+ switch((TempErrorSource)temp_error_state.source) {
|
|
|
+ case TempErrorSource::hotend:
|
|
|
+ if(temp_error_state.assert) {
|
|
|
+ min_temp_error(temp_error_state.index);
|
|
|
+ } else {
|
|
|
+ // no recovery, just force the user to restart the printer
|
|
|
+ // which is a safer variant than just continuing printing
|
|
|
+ // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
|
|
|
+ // we shall signalize, that MINTEMP has been fixed
|
|
|
+ // Code notice: normally the alert_automaton instance would have been placed here
|
|
|
+ // as static alert_automaton_mintemp alert_automaton_hotend, but
|
|
|
+ alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case TempErrorSource::bed:
|
|
|
+ if(temp_error_state.assert) {
|
|
|
+ bed_min_temp_error();
|
|
|
+ } else {
|
|
|
+ // no recovery, just force the user to restart the printer
|
|
|
+ // which is a safer variant than just continuing printing
|
|
|
+ alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
|
|
|
+ }
|
|
|
+ break;
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
|
-#ifdef AMBIENT_MINTEMP
|
|
|
-check_min_temp_ambient();
|
|
|
+ case TempErrorSource::ambient:
|
|
|
+ ambient_min_temp_error();
|
|
|
+ break;
|
|
|
#endif
|
|
|
-#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
|
|
|
-if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
|
|
|
-#else
|
|
|
-if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case TempErrorType::max:
|
|
|
+ switch((TempErrorSource)temp_error_state.source) {
|
|
|
+ case TempErrorSource::hotend:
|
|
|
+ max_temp_error(temp_error_state.index);
|
|
|
+ break;
|
|
|
+ case TempErrorSource::bed:
|
|
|
+ bed_max_temp_error();
|
|
|
+ break;
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+ case TempErrorSource::ambient:
|
|
|
+ ambient_max_temp_error();
|
|
|
+ break;
|
|
|
#endif
|
|
|
- { // ambient temperature is low
|
|
|
-#endif //AMBIENT_THERMISTOR
|
|
|
-// *** 'common' part of code for MK2.5 & MK3
|
|
|
-// * nozzle checking
|
|
|
-if(target_temperature[active_extruder]>minttemp[active_extruder])
|
|
|
- { // ~ nozzle heating is on
|
|
|
- bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
|
|
|
- if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
|
|
|
- {
|
|
|
- bCheckingOnHeater=true; // not necessary
|
|
|
- check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
|
|
- }
|
|
|
- }
|
|
|
-else { // ~ nozzle heating is off
|
|
|
- oTimer4minTempHeater.start();
|
|
|
- bCheckingOnHeater=false;
|
|
|
- }
|
|
|
-// * bed checking
|
|
|
-if(target_temperature_bed>BED_MINTEMP)
|
|
|
- { // ~ bed heating is on
|
|
|
- bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
|
|
|
- if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
|
|
|
- {
|
|
|
- bCheckingOnBed=true; // not necessary
|
|
|
- check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
|
|
- }
|
|
|
- }
|
|
|
-else { // ~ bed heating is off
|
|
|
- oTimer4minTempBed.start();
|
|
|
- bCheckingOnBed=false;
|
|
|
- }
|
|
|
-// *** end of 'common' part
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case TempErrorType::preheat:
|
|
|
+ case TempErrorType::runaway:
|
|
|
+ switch((TempErrorSource)temp_error_state.source) {
|
|
|
+ case TempErrorSource::hotend:
|
|
|
+ case TempErrorSource::bed:
|
|
|
+ temp_runaway_stop(
|
|
|
+ ((TempErrorType)temp_error_state.type == TempErrorType::preheat),
|
|
|
+ ((TempErrorSource)temp_error_state.source == TempErrorSource::bed));
|
|
|
+ break;
|
|
|
#ifdef AMBIENT_THERMISTOR
|
|
|
- }
|
|
|
-else { // ambient temperature is standard
|
|
|
- check_min_temp_heater0();
|
|
|
- check_min_temp_bed();
|
|
|
- }
|
|
|
-#endif //AMBIENT_THERMISTOR
|
|
|
-}
|
|
|
-
|
|
|
-#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
|
|
|
-void check_fans() {
|
|
|
-#ifdef FAN_SOFT_PWM
|
|
|
- if (READ(TACH_0) != fan_state[0]) {
|
|
|
- if(fan_measuring) fan_edge_counter[0] ++;
|
|
|
- fan_state[0] = !fan_state[0];
|
|
|
- }
|
|
|
-#else //FAN_SOFT_PWM
|
|
|
- if (READ(TACH_0) != fan_state[0]) {
|
|
|
- fan_edge_counter[0] ++;
|
|
|
- fan_state[0] = !fan_state[0];
|
|
|
- }
|
|
|
+ case TempErrorSource::ambient:
|
|
|
+ // not needed
|
|
|
+ break;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ break;
|
|
|
+#ifdef TEMP_MODEL
|
|
|
+ case TempErrorType::model:
|
|
|
+ if(temp_error_state.assert) {
|
|
|
+ if(IsStopped() == false) {
|
|
|
+ lcd_setalertstatuspgm(MSG_PAUSED_THERMAL_ERROR, LCD_STATUS_CRITICAL);
|
|
|
+ SERIAL_ECHOLNPGM("TM: error triggered!");
|
|
|
+ }
|
|
|
+ ThermalStop(true);
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
+ } else {
|
|
|
+ temp_error_state.v = 0;
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
+ menu_unset_block(MENU_BLOCK_THERMAL_ERROR);
|
|
|
+
|
|
|
+ // hotend error was transitory and disappeared, re-enable bed
|
|
|
+ if (!target_temperature_bed)
|
|
|
+ target_temperature_bed = saved_bed_temperature;
|
|
|
+
|
|
|
+ SERIAL_ECHOLNPGM("TM: error cleared");
|
|
|
+ }
|
|
|
+ break;
|
|
|
#endif
|
|
|
- //if (READ(TACH_1) != fan_state[1]) {
|
|
|
- // fan_edge_counter[1] ++;
|
|
|
- // fan_state[1] = !fan_state[1];
|
|
|
- //}
|
|
|
+ }
|
|
|
}
|
|
|
-#endif //TACH_0
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
|
// Apply the scale factors to the PID values
|
|
|
|
|
|
-
|
|
|
float scalePID_i(float i)
|
|
|
{
|
|
|
return i*PID_dT;
|
|
@@ -2345,3 +1834,1056 @@ bool has_temperature_compensation()
|
|
|
#endif //PINDA_THERMISTOR
|
|
|
|
|
|
|
|
|
+// RAII helper class to run a code block with temp_mgr_isr disabled
|
|
|
+class TempMgrGuard
|
|
|
+{
|
|
|
+ bool temp_mgr_state;
|
|
|
+
|
|
|
+public:
|
|
|
+ TempMgrGuard() {
|
|
|
+ ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
+ temp_mgr_state = TEMP_MGR_INTERRUPT_STATE();
|
|
|
+ DISABLE_TEMP_MGR_INTERRUPT();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ~TempMgrGuard() throw() {
|
|
|
+ ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
+ if(temp_mgr_state) ENABLE_TEMP_MGR_INTERRUPT();
|
|
|
+ }
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+void temp_mgr_init()
|
|
|
+{
|
|
|
+ // initialize the ADC and start a conversion
|
|
|
+ adc_init();
|
|
|
+ adc_start_cycle();
|
|
|
+
|
|
|
+ // initialize temperature timer
|
|
|
+ ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
+
|
|
|
+ // CTC
|
|
|
+ TCCRxB &= ~(1<<WGMx3);
|
|
|
+ TCCRxB |= (1<<WGMx2);
|
|
|
+ TCCRxA &= ~(1<<WGMx1);
|
|
|
+ TCCRxA &= ~(1<<WGMx0);
|
|
|
+
|
|
|
+ // output mode = 00 (disconnected)
|
|
|
+ TCCRxA &= ~(3<<COMxA0);
|
|
|
+ TCCRxA &= ~(3<<COMxB0);
|
|
|
+
|
|
|
+ // x/256 prescaler
|
|
|
+ TCCRxB |= (1<<CSx2);
|
|
|
+ TCCRxB &= ~(1<<CSx1);
|
|
|
+ TCCRxB &= ~(1<<CSx0);
|
|
|
+
|
|
|
+ // reset counter
|
|
|
+ TCNTx = 0;
|
|
|
+ OCRxA = TEMP_TIM_OCRA_OVF;
|
|
|
+
|
|
|
+ // clear pending interrupts, enable COMPA
|
|
|
+ TEMP_MGR_INT_FLAG_CLEAR();
|
|
|
+ ENABLE_TEMP_MGR_INTERRUPT();
|
|
|
+
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void pid_heater(uint8_t e, const float current, const int target)
|
|
|
+{
|
|
|
+ float pid_input;
|
|
|
+ float pid_output;
|
|
|
+
|
|
|
+#ifdef PIDTEMP
|
|
|
+ pid_input = current;
|
|
|
+
|
|
|
+#ifndef PID_OPENLOOP
|
|
|
+ if(target == 0) {
|
|
|
+ pid_output = 0;
|
|
|
+ pid_reset[e] = true;
|
|
|
+ } else {
|
|
|
+ pid_error[e] = target - pid_input;
|
|
|
+ if(pid_reset[e]) {
|
|
|
+ iState_sum[e] = 0.0;
|
|
|
+ dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
|
|
|
+ pid_reset[e] = false;
|
|
|
+ }
|
|
|
+#ifndef PonM
|
|
|
+ pTerm[e] = cs.Kp * pid_error[e];
|
|
|
+ iState_sum[e] += pid_error[e];
|
|
|
+ iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
|
|
|
+ iTerm[e] = cs.Ki * iState_sum[e];
|
|
|
+ // PID_K1 defined in Configuration.h in the PID settings
|
|
|
+#define K2 (1.0-PID_K1)
|
|
|
+ dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
|
|
|
+ pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
|
|
+ if (pid_output > PID_MAX) {
|
|
|
+ if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
|
|
+ pid_output=PID_MAX;
|
|
|
+ } else if (pid_output < 0) {
|
|
|
+ if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
|
|
+ pid_output=0;
|
|
|
+ }
|
|
|
+#else // PonM ("Proportional on Measurement" method)
|
|
|
+ iState_sum[e] += cs.Ki * pid_error[e];
|
|
|
+ iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
|
|
|
+ iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
|
|
|
+ dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
|
|
|
+ pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
|
|
+ pid_output = constrain(pid_output, 0, PID_MAX);
|
|
|
+#endif // PonM
|
|
|
+ }
|
|
|
+ dState_last[e] = pid_input;
|
|
|
+#else //PID_OPENLOOP
|
|
|
+ pid_output = constrain(target[e], 0, PID_MAX);
|
|
|
+#endif //PID_OPENLOOP
|
|
|
+
|
|
|
+#ifdef PID_DEBUG
|
|
|
+ SERIAL_ECHO_START;
|
|
|
+ SERIAL_ECHO(" PID_DEBUG ");
|
|
|
+ SERIAL_ECHO(e);
|
|
|
+ SERIAL_ECHO(": Input ");
|
|
|
+ SERIAL_ECHO(pid_input);
|
|
|
+ SERIAL_ECHO(" Output ");
|
|
|
+ SERIAL_ECHO(pid_output);
|
|
|
+ SERIAL_ECHO(" pTerm ");
|
|
|
+ SERIAL_ECHO(pTerm[e]);
|
|
|
+ SERIAL_ECHO(" iTerm ");
|
|
|
+ SERIAL_ECHO(iTerm[e]);
|
|
|
+ SERIAL_ECHO(" dTerm ");
|
|
|
+ SERIAL_ECHOLN(-dTerm[e]);
|
|
|
+#endif //PID_DEBUG
|
|
|
+
|
|
|
+#else /* PID off */
|
|
|
+ pid_output = 0;
|
|
|
+ if(current[e] < target[e]) {
|
|
|
+ pid_output = PID_MAX;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ // Check if temperature is within the correct range
|
|
|
+ if((current < maxttemp[e]) && (target != 0))
|
|
|
+ soft_pwm[e] = (int)pid_output >> 1;
|
|
|
+ else
|
|
|
+ soft_pwm[e] = 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void pid_bed(const float current, const int target)
|
|
|
+{
|
|
|
+ float pid_input;
|
|
|
+ float pid_output;
|
|
|
+
|
|
|
+#ifndef PIDTEMPBED
|
|
|
+ if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
|
+ return;
|
|
|
+ previous_millis_bed_heater = _millis();
|
|
|
+#endif
|
|
|
+
|
|
|
+#if TEMP_SENSOR_BED != 0
|
|
|
+
|
|
|
+#ifdef PIDTEMPBED
|
|
|
+ pid_input = current;
|
|
|
+
|
|
|
+#ifndef PID_OPENLOOP
|
|
|
+ pid_error_bed = target - pid_input;
|
|
|
+ pTerm_bed = cs.bedKp * pid_error_bed;
|
|
|
+ temp_iState_bed += pid_error_bed;
|
|
|
+ temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
|
|
+ iTerm_bed = cs.bedKi * temp_iState_bed;
|
|
|
+
|
|
|
+ //PID_K1 defined in Configuration.h in the PID settings
|
|
|
+#define K2 (1.0-PID_K1)
|
|
|
+ dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
|
|
|
+ temp_dState_bed = pid_input;
|
|
|
+
|
|
|
+ pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
|
|
+ if (pid_output > MAX_BED_POWER) {
|
|
|
+ if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
+ pid_output=MAX_BED_POWER;
|
|
|
+ } else if (pid_output < 0){
|
|
|
+ if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
|
+ pid_output=0;
|
|
|
+ }
|
|
|
+
|
|
|
+#else
|
|
|
+ pid_output = constrain(target, 0, MAX_BED_POWER);
|
|
|
+#endif //PID_OPENLOOP
|
|
|
+
|
|
|
+ if(current < BED_MAXTEMP)
|
|
|
+ {
|
|
|
+ soft_pwm_bed = (int)pid_output >> 1;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ soft_pwm_bed = 0;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+
|
|
|
+#elif !defined(BED_LIMIT_SWITCHING)
|
|
|
+ // Check if temperature is within the correct range
|
|
|
+ if(current < BED_MAXTEMP)
|
|
|
+ {
|
|
|
+ if(current >= target)
|
|
|
+ {
|
|
|
+ soft_pwm_bed = 0;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ soft_pwm_bed = MAX_BED_POWER>>1;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ soft_pwm_bed = 0;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ WRITE(HEATER_BED_PIN,LOW);
|
|
|
+ }
|
|
|
+#else //#ifdef BED_LIMIT_SWITCHING
|
|
|
+ // Check if temperature is within the correct band
|
|
|
+ if(current < BED_MAXTEMP)
|
|
|
+ {
|
|
|
+ if(current > target + BED_HYSTERESIS)
|
|
|
+ {
|
|
|
+ soft_pwm_bed = 0;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+ else if(current <= target - BED_HYSTERESIS)
|
|
|
+ {
|
|
|
+ soft_pwm_bed = MAX_BED_POWER>>1;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ soft_pwm_bed = 0;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ WRITE(HEATER_BED_PIN,LOW);
|
|
|
+ }
|
|
|
+#endif //BED_LIMIT_SWITCHING
|
|
|
+
|
|
|
+ if(target==0)
|
|
|
+ {
|
|
|
+ soft_pwm_bed = 0;
|
|
|
+ timer02_set_pwm0(soft_pwm_bed << 1);
|
|
|
+ }
|
|
|
+#endif //TEMP_SENSOR_BED
|
|
|
+}
|
|
|
+
|
|
|
+// ISR-safe temperatures
|
|
|
+static volatile bool adc_values_ready = false;
|
|
|
+float current_temperature_isr[EXTRUDERS];
|
|
|
+int target_temperature_isr[EXTRUDERS];
|
|
|
+float current_temperature_bed_isr;
|
|
|
+int target_temperature_bed_isr;
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
+float current_temperature_pinda_isr;
|
|
|
+#endif
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+float current_temperature_ambient_isr;
|
|
|
+#endif
|
|
|
+
|
|
|
+// ISR callback from adc when sampling finished
|
|
|
+void adc_callback()
|
|
|
+{
|
|
|
+ current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
|
|
|
+ current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
+ current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
|
|
|
+#endif //PINDA_THERMISTOR
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+ current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
|
|
|
+#endif //AMBIENT_THERMISTOR
|
|
|
+#ifdef VOLT_PWR_PIN
|
|
|
+ current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
|
|
|
+#endif
|
|
|
+#ifdef VOLT_BED_PIN
|
|
|
+ current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
|
|
|
+#endif
|
|
|
+#ifdef IR_SENSOR_ANALOG
|
|
|
+ current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
|
|
|
+#endif //IR_SENSOR_ANALOG
|
|
|
+ adc_values_ready = true;
|
|
|
+}
|
|
|
+
|
|
|
+static void setCurrentTemperaturesFromIsr()
|
|
|
+{
|
|
|
+ for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
|
+ current_temperature[e] = current_temperature_isr[e];
|
|
|
+ current_temperature_bed = current_temperature_bed_isr;
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
+ current_temperature_pinda = current_temperature_pinda_isr;
|
|
|
+#endif
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+ current_temperature_ambient = current_temperature_ambient_isr;
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+static void setIsrTargetTemperatures()
|
|
|
+{
|
|
|
+ for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
|
+ target_temperature_isr[e] = target_temperature[e];
|
|
|
+ target_temperature_bed_isr = target_temperature_bed;
|
|
|
+}
|
|
|
+
|
|
|
+/* Synchronize temperatures:
|
|
|
+ - fetch updated values from temp_mgr_isr to current values
|
|
|
+ - update target temperatures for temp_mgr_isr regulation *if* no temperature error is set
|
|
|
+ This function is blocking: check temp_meas_ready before calling! */
|
|
|
+static void updateTemperatures()
|
|
|
+{
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+ setCurrentTemperaturesFromIsr();
|
|
|
+ if(!temp_error_state.v) {
|
|
|
+ // refuse to update target temperatures in any error condition!
|
|
|
+ setIsrTargetTemperatures();
|
|
|
+ }
|
|
|
+ temp_meas_ready = false;
|
|
|
+}
|
|
|
+
|
|
|
+/* Convert raw values into actual temperatures for temp_mgr. The raw values are created in the ADC
|
|
|
+ interrupt context, while this function runs from temp_mgr_isr which *is* preemptible as
|
|
|
+ analog2temp is relatively slow */
|
|
|
+static void setIsrTemperaturesFromRawValues()
|
|
|
+{
|
|
|
+ for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
|
+ current_temperature_isr[e] = analog2temp(current_temperature_raw[e], e);
|
|
|
+ current_temperature_bed_isr = analog2tempBed(current_temperature_bed_raw);
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
+ current_temperature_pinda_isr = analog2tempBed(current_temperature_raw_pinda);
|
|
|
+#endif
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+ current_temperature_ambient_isr = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
|
|
|
+#endif
|
|
|
+ temp_meas_ready = true;
|
|
|
+}
|
|
|
+
|
|
|
+static void temp_mgr_pid()
|
|
|
+{
|
|
|
+ for(uint8_t e = 0; e < EXTRUDERS; e++)
|
|
|
+ pid_heater(e, current_temperature_isr[e], target_temperature_isr[e]);
|
|
|
+ pid_bed(current_temperature_bed_isr, target_temperature_bed_isr);
|
|
|
+}
|
|
|
+
|
|
|
+static void check_temp_runaway()
|
|
|
+{
|
|
|
+#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
|
|
|
+ for(uint8_t e = 0; e < EXTRUDERS; e++)
|
|
|
+ temp_runaway_check(e+1, target_temperature_isr[e], current_temperature_isr[e], soft_pwm[e], false);
|
|
|
+#endif
|
|
|
+#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
|
|
|
+ temp_runaway_check(0, target_temperature_bed_isr, current_temperature_bed_isr, soft_pwm_bed, true);
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+static void check_temp_raw();
|
|
|
+
|
|
|
+static void temp_mgr_isr()
|
|
|
+{
|
|
|
+ // update *_isr temperatures from raw values for PID regulation
|
|
|
+ setIsrTemperaturesFromRawValues();
|
|
|
+
|
|
|
+ // clear the error assertion flag before checking again
|
|
|
+ temp_error_state.assert = false;
|
|
|
+ check_temp_raw(); // check min/max temp using raw values
|
|
|
+ check_temp_runaway(); // classic temperature hysteresis check
|
|
|
+#ifdef TEMP_MODEL
|
|
|
+ temp_model::check(); // model-based heater check
|
|
|
+#ifdef TEMP_MODEL_DEBUG
|
|
|
+ temp_model::log_isr();
|
|
|
+#endif
|
|
|
+#endif
|
|
|
+
|
|
|
+ // PID regulation
|
|
|
+ if (pid_tuning_finished)
|
|
|
+ temp_mgr_pid();
|
|
|
+}
|
|
|
+
|
|
|
+ISR(TIMERx_COMPA_vect)
|
|
|
+{
|
|
|
+ // immediately schedule a new conversion
|
|
|
+ if(adc_values_ready != true) return;
|
|
|
+ adc_values_ready = false;
|
|
|
+ adc_start_cycle();
|
|
|
+
|
|
|
+ // run temperature management with interrupts enabled to reduce latency
|
|
|
+ DISABLE_TEMP_MGR_INTERRUPT();
|
|
|
+ NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
|
|
|
+ temp_mgr_isr();
|
|
|
+ }
|
|
|
+ ENABLE_TEMP_MGR_INTERRUPT();
|
|
|
+}
|
|
|
+
|
|
|
+void disable_heater()
|
|
|
+{
|
|
|
+ setAllTargetHotends(0);
|
|
|
+ setTargetBed(0);
|
|
|
+
|
|
|
+ ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
|
+ // propagate all values down the chain
|
|
|
+ setIsrTargetTemperatures();
|
|
|
+ temp_mgr_pid();
|
|
|
+
|
|
|
+ // we can't call soft_pwm_core directly to toggle the pins as it would require removing the inline
|
|
|
+ // attribute, so disable each pin individually
|
|
|
+#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 && EXTRUDERS > 0
|
|
|
+ WRITE(HEATER_0_PIN,LOW);
|
|
|
+#endif
|
|
|
+#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 && EXTRUDERS > 1
|
|
|
+ WRITE(HEATER_1_PIN,LOW);
|
|
|
+#endif
|
|
|
+#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 && EXTRUDERS > 2
|
|
|
+ WRITE(HEATER_2_PIN,LOW);
|
|
|
+#endif
|
|
|
+#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
|
+ // TODO: this doesn't take immediate effect!
|
|
|
+ timer02_set_pwm0(0);
|
|
|
+ bedPWMDisabled = 0;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void check_min_temp_raw()
|
|
|
+{
|
|
|
+ static bool bCheckingOnHeater = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
|
|
|
+ static bool bCheckingOnBed = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
|
|
|
+ static ShortTimer oTimer4minTempHeater;
|
|
|
+ static ShortTimer oTimer4minTempBed;
|
|
|
+
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+#ifdef AMBIENT_MINTEMP
|
|
|
+ // we need to check ambient temperature
|
|
|
+ check_min_temp_ambient();
|
|
|
+#endif
|
|
|
+#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
|
|
|
+ if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
|
|
|
+#else
|
|
|
+ if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
|
|
|
+#endif
|
|
|
+ {
|
|
|
+ // ambient temperature is low
|
|
|
+#endif //AMBIENT_THERMISTOR
|
|
|
+ // *** 'common' part of code for MK2.5 & MK3
|
|
|
+ // * nozzle checking
|
|
|
+ if(target_temperature_isr[active_extruder]>minttemp[active_extruder]) {
|
|
|
+ // ~ nozzle heating is on
|
|
|
+ bCheckingOnHeater=bCheckingOnHeater||(current_temperature_isr[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
|
|
|
+ if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater) {
|
|
|
+ bCheckingOnHeater=true; // not necessary
|
|
|
+ check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ // ~ nozzle heating is off
|
|
|
+ oTimer4minTempHeater.start();
|
|
|
+ bCheckingOnHeater=false;
|
|
|
+ }
|
|
|
+ // * bed checking
|
|
|
+ if(target_temperature_bed_isr>BED_MINTEMP) {
|
|
|
+ // ~ bed heating is on
|
|
|
+ bCheckingOnBed=bCheckingOnBed||(current_temperature_bed_isr>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
|
|
|
+ if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed) {
|
|
|
+ bCheckingOnBed=true; // not necessary
|
|
|
+ check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ // ~ bed heating is off
|
|
|
+ oTimer4minTempBed.start();
|
|
|
+ bCheckingOnBed=false;
|
|
|
+ }
|
|
|
+ // *** end of 'common' part
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ // ambient temperature is standard
|
|
|
+ check_min_temp_heater0();
|
|
|
+ check_min_temp_bed();
|
|
|
+ }
|
|
|
+#endif //AMBIENT_THERMISTOR
|
|
|
+}
|
|
|
+
|
|
|
+static void check_temp_raw()
|
|
|
+{
|
|
|
+ // order is relevant: check_min_temp_raw requires max to be reliable due to
|
|
|
+ // ambient temperature being used for low handling temperatures
|
|
|
+ check_max_temp_raw();
|
|
|
+ check_min_temp_raw();
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef TEMP_MODEL
|
|
|
+namespace temp_model {
|
|
|
+
|
|
|
+void model_data::reset(uint8_t heater_pwm, uint8_t fan_pwm, float heater_temp, float ambient_temp)
|
|
|
+{
|
|
|
+ // pre-compute invariant values
|
|
|
+ C_i = (TEMP_MGR_INTV / C);
|
|
|
+ warn_s = warn * TEMP_MGR_INTV;
|
|
|
+ err_s = err * TEMP_MGR_INTV;
|
|
|
+
|
|
|
+ // initial values
|
|
|
+ memset(dT_lag_buf, 0, sizeof(dT_lag_buf));
|
|
|
+ dT_lag_idx = 0;
|
|
|
+ dT_err_prev = 0;
|
|
|
+ T_prev = heater_temp;
|
|
|
+
|
|
|
+ // perform one step to initialize the first delta
|
|
|
+ step(heater_pwm, fan_pwm, heater_temp, ambient_temp);
|
|
|
+
|
|
|
+ // clear the initialization flag
|
|
|
+ flag_bits.uninitialized = false;
|
|
|
+}
|
|
|
+
|
|
|
+void model_data::step(uint8_t heater_pwm, uint8_t fan_pwm, float heater_temp, float ambient_temp)
|
|
|
+{
|
|
|
+ constexpr float soft_pwm_inv = 1. / ((1 << 7) - 1);
|
|
|
+
|
|
|
+ // input values
|
|
|
+ const float heater_scale = soft_pwm_inv * heater_pwm;
|
|
|
+ const float cur_heater_temp = heater_temp;
|
|
|
+ const float cur_ambient_temp = ambient_temp + Ta_corr;
|
|
|
+ const float cur_R = R[fan_pwm]; // resistance at current fan power (K/W)
|
|
|
+
|
|
|
+ float dP = P * heater_scale; // current power [W]
|
|
|
+ float dPl = (cur_heater_temp - cur_ambient_temp) / cur_R; // [W] leakage power
|
|
|
+ float dT = (dP - dPl) * C_i; // expected temperature difference (K)
|
|
|
+
|
|
|
+ // filter and lag dT
|
|
|
+ uint8_t dT_next_idx = (dT_lag_idx == (TEMP_MODEL_LAG_SIZE - 1) ? 0: dT_lag_idx + 1);
|
|
|
+ float dT_lag = dT_lag_buf[dT_next_idx];
|
|
|
+ float dT_lag_prev = dT_lag_buf[dT_lag_idx];
|
|
|
+ float dT_f = (dT_lag_prev * (1.f - TEMP_MODEL_fS)) + (dT * TEMP_MODEL_fS);
|
|
|
+ dT_lag_buf[dT_next_idx] = dT_f;
|
|
|
+ dT_lag_idx = dT_next_idx;
|
|
|
+
|
|
|
+ // calculate and filter dT_err
|
|
|
+ float dT_err = (cur_heater_temp - T_prev) - dT_lag;
|
|
|
+ float dT_err_f = (dT_err_prev * (1.f - TEMP_MODEL_fE)) + (dT_err * TEMP_MODEL_fE);
|
|
|
+ T_prev = cur_heater_temp;
|
|
|
+ dT_err_prev = dT_err_f;
|
|
|
+
|
|
|
+ // check and trigger errors
|
|
|
+ flag_bits.error = (fabsf(dT_err_f) > err_s);
|
|
|
+ flag_bits.warning = (fabsf(dT_err_f) > warn_s);
|
|
|
+}
|
|
|
+
|
|
|
+// verify calibration status and trigger a model reset if valid
|
|
|
+void setup()
|
|
|
+{
|
|
|
+ if(!calibrated()) enabled = false;
|
|
|
+ data.flag_bits.uninitialized = true;
|
|
|
+}
|
|
|
+
|
|
|
+bool calibrated()
|
|
|
+{
|
|
|
+ if(!(data.P >= 0)) return false;
|
|
|
+ if(!(data.C >= 0)) return false;
|
|
|
+ if(!(data.Ta_corr != NAN)) return false;
|
|
|
+ for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i) {
|
|
|
+ if(!(temp_model::data.R[i] >= 0))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if(!(data.warn != NAN)) return false;
|
|
|
+ if(!(data.err != NAN)) return false;
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+void check()
|
|
|
+{
|
|
|
+ if(!enabled) return;
|
|
|
+
|
|
|
+ uint8_t heater_pwm = soft_pwm[0];
|
|
|
+ uint8_t fan_pwm = soft_pwm_fan;
|
|
|
+ float heater_temp = current_temperature_isr[0];
|
|
|
+ float ambient_temp = current_temperature_ambient_isr;
|
|
|
+
|
|
|
+ // check if a reset is required to seed the model: this needs to be done with valid
|
|
|
+ // ADC values, so we can't do that directly in init()
|
|
|
+ if(data.flag_bits.uninitialized)
|
|
|
+ data.reset(heater_pwm, fan_pwm, heater_temp, ambient_temp);
|
|
|
+
|
|
|
+ // step the model
|
|
|
+ data.step(heater_pwm, fan_pwm, heater_temp, ambient_temp);
|
|
|
+
|
|
|
+ // handle errors
|
|
|
+ if(data.flag_bits.error)
|
|
|
+ set_temp_error(TempErrorSource::hotend, 0, TempErrorType::model);
|
|
|
+
|
|
|
+ // handle warning conditions as lower-priority but with greater feedback
|
|
|
+ warning_state.assert = data.flag_bits.warning;
|
|
|
+ if(warning_state.assert) {
|
|
|
+ warning_state.warning = true;
|
|
|
+ warning_state.dT_err = temp_model::data.dT_err_prev;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void handle_warning()
|
|
|
+{
|
|
|
+ // update values
|
|
|
+ float warn = data.warn;
|
|
|
+ float dT_err;
|
|
|
+ {
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+ dT_err = warning_state.dT_err;
|
|
|
+ }
|
|
|
+ dT_err /= TEMP_MGR_INTV; // per-sample => K/s
|
|
|
+
|
|
|
+ printf_P(PSTR("TM: error |%f|>%f\n"), (double)dT_err, (double)warn);
|
|
|
+
|
|
|
+ static bool first = true;
|
|
|
+ if(warning_state.assert) {
|
|
|
+ if (first) {
|
|
|
+ if(warn_beep) {
|
|
|
+ lcd_setalertstatuspgm(MSG_THERMAL_ANOMALY, LCD_STATUS_INFO);
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if(warn_beep) TOGGLE(BEEPER);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // warning cleared, reset state
|
|
|
+ warning_state.warning = false;
|
|
|
+ if(warn_beep) WRITE(BEEPER, LOW);
|
|
|
+ first = true;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef TEMP_MODEL_DEBUG
|
|
|
+void log_usr()
|
|
|
+{
|
|
|
+ if(!log_buf.enabled) return;
|
|
|
+
|
|
|
+ uint8_t counter = log_buf.entry.counter;
|
|
|
+ if (counter == log_buf.serial) return;
|
|
|
+
|
|
|
+ int8_t delta_ms;
|
|
|
+ uint8_t cur_pwm;
|
|
|
+
|
|
|
+ // avoid strict-aliasing warnings
|
|
|
+ union { float cur_temp; uint32_t cur_temp_b; };
|
|
|
+ union { float cur_amb; uint32_t cur_amb_b; };
|
|
|
+
|
|
|
+ {
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+ delta_ms = log_buf.entry.delta_ms;
|
|
|
+ counter = log_buf.entry.counter;
|
|
|
+ cur_pwm = log_buf.entry.cur_pwm;
|
|
|
+ cur_temp = log_buf.entry.cur_temp;
|
|
|
+ cur_amb = log_buf.entry.cur_amb;
|
|
|
+ }
|
|
|
+
|
|
|
+ uint8_t d = counter - log_buf.serial;
|
|
|
+ log_buf.serial = counter;
|
|
|
+
|
|
|
+ printf_P(PSTR("TML %d %d %x %lx %lx\n"), (unsigned)d - 1, (int)delta_ms + 1,
|
|
|
+ (int)cur_pwm, (unsigned long)cur_temp_b, (unsigned long)cur_amb_b);
|
|
|
+}
|
|
|
+
|
|
|
+void log_isr()
|
|
|
+{
|
|
|
+ if(!log_buf.enabled) return;
|
|
|
+
|
|
|
+ uint32_t stamp = _millis();
|
|
|
+ uint8_t delta_ms = stamp - log_buf.entry.stamp - (TEMP_MGR_INTV * 1000);
|
|
|
+ log_buf.entry.stamp = stamp;
|
|
|
+
|
|
|
+ ++log_buf.entry.counter;
|
|
|
+ log_buf.entry.delta_ms = delta_ms;
|
|
|
+ log_buf.entry.cur_pwm = soft_pwm[0];
|
|
|
+ log_buf.entry.cur_temp = current_temperature_isr[0];
|
|
|
+ log_buf.entry.cur_amb = current_temperature_ambient_isr;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+} // namespace temp_model
|
|
|
+
|
|
|
+void temp_model_set_enabled(bool enabled)
|
|
|
+{
|
|
|
+ // set the enabled flag
|
|
|
+ {
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+ temp_model::enabled = enabled;
|
|
|
+ temp_model::setup();
|
|
|
+ }
|
|
|
+
|
|
|
+ // verify that the model has been enabled
|
|
|
+ if(enabled && !temp_model::enabled)
|
|
|
+ SERIAL_ECHOLNPGM("TM: invalid parameters, cannot enable");
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_set_warn_beep(bool enabled)
|
|
|
+{
|
|
|
+ temp_model::warn_beep = enabled;
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_set_params(float C, float P, float Ta_corr, float warn, float err)
|
|
|
+{
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+
|
|
|
+ if(!isnan(C) && C > 0) temp_model::data.C = C;
|
|
|
+ if(!isnan(P) && P > 0) temp_model::data.P = P;
|
|
|
+ if(!isnan(Ta_corr)) temp_model::data.Ta_corr = Ta_corr;
|
|
|
+ if(!isnan(err) && err > 0) temp_model::data.err = err;
|
|
|
+ if(!isnan(warn) && warn > 0) temp_model::data.warn = warn;
|
|
|
+
|
|
|
+ // ensure warn <= err
|
|
|
+ if (temp_model::data.warn > temp_model::data.err)
|
|
|
+ temp_model::data.warn = temp_model::data.err;
|
|
|
+
|
|
|
+ temp_model::setup();
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_set_resistance(uint8_t index, float R)
|
|
|
+{
|
|
|
+ if(index >= TEMP_MODEL_R_SIZE || R <= 0)
|
|
|
+ return;
|
|
|
+
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+ temp_model::data.R[index] = R;
|
|
|
+ temp_model::setup();
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_report_settings()
|
|
|
+{
|
|
|
+ SERIAL_ECHO_START;
|
|
|
+ SERIAL_ECHOLNPGM("Temperature Model settings:");
|
|
|
+ for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
|
+ printf_P(PSTR("%S M310 I%u R%.2f\n"), echomagic, (unsigned)i, (double)temp_model::data.R[i]);
|
|
|
+ printf_P(PSTR("%S M310 P%.2f C%.2f S%u B%u E%.2f W%.2f T%.2f\n"),
|
|
|
+ echomagic, (double)temp_model::data.P, (double)temp_model::data.C,
|
|
|
+ (unsigned)temp_model::enabled, (unsigned)temp_model::warn_beep,
|
|
|
+ (double)temp_model::data.err, (double)temp_model::data.warn,
|
|
|
+ (double)temp_model::data.Ta_corr);
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_reset_settings()
|
|
|
+{
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+
|
|
|
+ temp_model::data.P = TEMP_MODEL_P;
|
|
|
+ temp_model::data.C = NAN;
|
|
|
+ for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
|
+ temp_model::data.R[i] = NAN;
|
|
|
+ temp_model::data.Ta_corr = TEMP_MODEL_Ta_corr;
|
|
|
+ temp_model::data.warn = TEMP_MODEL_W;
|
|
|
+ temp_model::data.err = TEMP_MODEL_E;
|
|
|
+ temp_model::warn_beep = true;
|
|
|
+ temp_model::enabled = false;
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_load_settings()
|
|
|
+{
|
|
|
+ static_assert(TEMP_MODEL_R_SIZE == 16); // ensure we don't desync with the eeprom table
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+
|
|
|
+ temp_model::enabled = eeprom_read_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE);
|
|
|
+ temp_model::data.P = eeprom_read_float((float*)EEPROM_TEMP_MODEL_P);
|
|
|
+ temp_model::data.C = eeprom_read_float((float*)EEPROM_TEMP_MODEL_C);
|
|
|
+ for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
|
+ temp_model::data.R[i] = eeprom_read_float((float*)EEPROM_TEMP_MODEL_R + i);
|
|
|
+ temp_model::data.Ta_corr = eeprom_read_float((float*)EEPROM_TEMP_MODEL_Ta_corr);
|
|
|
+ temp_model::data.warn = eeprom_read_float((float*)EEPROM_TEMP_MODEL_W);
|
|
|
+ temp_model::data.err = eeprom_read_float((float*)EEPROM_TEMP_MODEL_E);
|
|
|
+
|
|
|
+ if(!temp_model::calibrated()) {
|
|
|
+ SERIAL_ECHOLNPGM("TM: stored calibration invalid, resetting");
|
|
|
+ temp_model_reset_settings();
|
|
|
+ }
|
|
|
+ temp_model::setup();
|
|
|
+}
|
|
|
+
|
|
|
+void temp_model_save_settings()
|
|
|
+{
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE, temp_model::enabled);
|
|
|
+ eeprom_update_float((float*)EEPROM_TEMP_MODEL_P, temp_model::data.P);
|
|
|
+ eeprom_update_float((float*)EEPROM_TEMP_MODEL_C, temp_model::data.C);
|
|
|
+ for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
|
|
|
+ eeprom_update_float((float*)EEPROM_TEMP_MODEL_R + i, temp_model::data.R[i]);
|
|
|
+ eeprom_update_float((float*)EEPROM_TEMP_MODEL_Ta_corr, temp_model::data.Ta_corr);
|
|
|
+ eeprom_update_float((float*)EEPROM_TEMP_MODEL_W, temp_model::data.warn);
|
|
|
+ eeprom_update_float((float*)EEPROM_TEMP_MODEL_E, temp_model::data.err);
|
|
|
+}
|
|
|
+
|
|
|
+namespace temp_model_cal {
|
|
|
+
|
|
|
+void waiting_handler()
|
|
|
+{
|
|
|
+ manage_heater();
|
|
|
+ host_keepalive();
|
|
|
+ host_autoreport();
|
|
|
+ checkFans();
|
|
|
+ lcd_update(0);
|
|
|
+}
|
|
|
+
|
|
|
+void wait(unsigned ms)
|
|
|
+{
|
|
|
+ unsigned long mark = _millis() + ms;
|
|
|
+ while(_millis() < mark) {
|
|
|
+ if(temp_error_state.v) break;
|
|
|
+ waiting_handler();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void wait_temp()
|
|
|
+{
|
|
|
+ while(current_temperature[0] < (target_temperature[0] - TEMP_HYSTERESIS)) {
|
|
|
+ if(temp_error_state.v) break;
|
|
|
+ waiting_handler();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void cooldown(float temp)
|
|
|
+{
|
|
|
+ float old_speed = fanSpeedSoftPwm;
|
|
|
+ fanSpeedSoftPwm = 255;
|
|
|
+ while(current_temperature[0] >= temp) {
|
|
|
+ if(temp_error_state.v) break;
|
|
|
+ float ambient = current_temperature_ambient + temp_model::data.Ta_corr;
|
|
|
+ if(current_temperature[0] < (ambient + TEMP_HYSTERESIS)) {
|
|
|
+ // do not get stuck waiting very close to ambient temperature
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ waiting_handler();
|
|
|
+ }
|
|
|
+ fanSpeedSoftPwm = old_speed;
|
|
|
+}
|
|
|
+
|
|
|
+uint16_t record(uint16_t samples = REC_BUFFER_SIZE) {
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+
|
|
|
+ uint16_t pos = 0;
|
|
|
+ while(pos < samples) {
|
|
|
+ if(!TEMP_MGR_INT_FLAG_STATE()) {
|
|
|
+ // temperatures not ready yet, just manage heaters while waiting to reduce jitter
|
|
|
+ manage_heater();
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ TEMP_MGR_INT_FLAG_CLEAR();
|
|
|
+
|
|
|
+ // manually repeat what the regular isr would do
|
|
|
+ if(adc_values_ready != true) continue;
|
|
|
+ adc_values_ready = false;
|
|
|
+ adc_start_cycle();
|
|
|
+ temp_mgr_isr();
|
|
|
+
|
|
|
+ // stop recording for an hard error condition
|
|
|
+ if(temp_error_state.v)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ // record a new entry
|
|
|
+ rec_entry& entry = rec_buffer[pos];
|
|
|
+ entry.temp = current_temperature_isr[0];
|
|
|
+ entry.pwm = soft_pwm[0];
|
|
|
+ ++pos;
|
|
|
+
|
|
|
+ // it's now safer to give regular serial/lcd updates a shot
|
|
|
+ waiting_handler();
|
|
|
+ }
|
|
|
+
|
|
|
+ return pos;
|
|
|
+}
|
|
|
+
|
|
|
+float cost_fn(uint16_t samples, float* const var, float v, uint8_t fan_pwm, float ambient)
|
|
|
+{
|
|
|
+ *var = v;
|
|
|
+ temp_model::data.reset(rec_buffer[0].pwm, fan_pwm, rec_buffer[0].temp, ambient);
|
|
|
+ float err = 0;
|
|
|
+ for(uint16_t i = 1; i < samples; ++i) {
|
|
|
+ temp_model::data.step(rec_buffer[i].pwm, fan_pwm, rec_buffer[i].temp, ambient);
|
|
|
+ err += fabsf(temp_model::data.dT_err_prev);
|
|
|
+ }
|
|
|
+ return (err / (samples - 1));
|
|
|
+}
|
|
|
+
|
|
|
+constexpr float GOLDEN_RATIO = 0.6180339887498949;
|
|
|
+
|
|
|
+void update_section(float points[2], const float bounds[2])
|
|
|
+{
|
|
|
+ float d = GOLDEN_RATIO * (bounds[1] - bounds[0]);
|
|
|
+ points[0] = bounds[0] + d;
|
|
|
+ points[1] = bounds[1] - d;
|
|
|
+}
|
|
|
+
|
|
|
+float estimate(uint16_t samples,
|
|
|
+ float* const var, float min, float max,
|
|
|
+ float thr, uint16_t max_itr,
|
|
|
+ uint8_t fan_pwm, float ambient)
|
|
|
+{
|
|
|
+ float orig = *var;
|
|
|
+ float e = NAN;
|
|
|
+ float points[2];
|
|
|
+ float bounds[2] = {min, max};
|
|
|
+ update_section(points, bounds);
|
|
|
+
|
|
|
+ for(uint8_t it = 0; it != max_itr; ++it) {
|
|
|
+ float c1 = cost_fn(samples, var, points[0], fan_pwm, ambient);
|
|
|
+ float c2 = cost_fn(samples, var, points[1], fan_pwm, ambient);
|
|
|
+ bool dir = (c2 < c1);
|
|
|
+ bounds[dir] = points[!dir];
|
|
|
+ update_section(points, bounds);
|
|
|
+ float x = points[!dir];
|
|
|
+ e = (1-GOLDEN_RATIO) * fabsf((bounds[0]-bounds[1]) / x);
|
|
|
+
|
|
|
+ printf_P(PSTR("TM iter:%u v:%.2f e:%.3f\n"), it, x, e);
|
|
|
+ if(e < thr) {
|
|
|
+ if(x == min || x == max) {
|
|
|
+ // real value likely outside of the search boundaries
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ *var = x;
|
|
|
+ return e;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ SERIAL_ECHOLNPGM("TM estimation did not converge");
|
|
|
+ *var = orig;
|
|
|
+ return NAN;
|
|
|
+}
|
|
|
+
|
|
|
+bool autotune(int16_t cal_temp)
|
|
|
+{
|
|
|
+ uint16_t samples;
|
|
|
+ float e;
|
|
|
+
|
|
|
+ // bootstrap C/R values without fan
|
|
|
+ fanSpeedSoftPwm = 0;
|
|
|
+
|
|
|
+ for(uint8_t i = 0; i != 2; ++i) {
|
|
|
+ const char* PROGMEM verb = (i == 0? PSTR("initial"): PSTR("refining"));
|
|
|
+
|
|
|
+ target_temperature[0] = 0;
|
|
|
+ if(current_temperature[0] >= TEMP_MODEL_CAL_Tl) {
|
|
|
+ printf_P(PSTR("TM: cooling down to %dC\n"), TEMP_MODEL_CAL_Tl);
|
|
|
+ cooldown(TEMP_MODEL_CAL_Tl);
|
|
|
+ wait(10000);
|
|
|
+ }
|
|
|
+
|
|
|
+ // we need a valid R value for the initial C guess
|
|
|
+ if(isnan(temp_model::data.R[0]))
|
|
|
+ temp_model::data.R[0] = TEMP_MODEL_Rh;
|
|
|
+
|
|
|
+ printf_P(PSTR("TM: %S C estimation\n"), verb);
|
|
|
+ target_temperature[0] = cal_temp;
|
|
|
+ samples = record();
|
|
|
+ if(temp_error_state.v || !samples)
|
|
|
+ return true;
|
|
|
+
|
|
|
+ e = estimate(samples, &temp_model::data.C,
|
|
|
+ TEMP_MODEL_Cl, TEMP_MODEL_Ch, TEMP_MODEL_C_thr, TEMP_MODEL_C_itr,
|
|
|
+ 0, current_temperature_ambient);
|
|
|
+ if(isnan(e))
|
|
|
+ return true;
|
|
|
+
|
|
|
+ wait_temp();
|
|
|
+ if(i) break; // we don't need to refine R
|
|
|
+ wait(30000); // settle PID regulation
|
|
|
+
|
|
|
+ printf_P(PSTR("TM: %S R estimation @ %dC\n"), verb, cal_temp);
|
|
|
+ samples = record();
|
|
|
+ if(temp_error_state.v || !samples)
|
|
|
+ return true;
|
|
|
+
|
|
|
+ e = estimate(samples, &temp_model::data.R[0],
|
|
|
+ TEMP_MODEL_Rl, TEMP_MODEL_Rh, TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
|
|
|
+ 0, current_temperature_ambient);
|
|
|
+ if(isnan(e))
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Estimate fan losses at regular intervals, starting from full speed to avoid low-speed
|
|
|
+ // kickstart issues, although this requires us to wait more for the PID stabilization.
|
|
|
+ // Normally exhibits logarithmic behavior with the stock fan+shroud, so the shorter interval
|
|
|
+ // at lower speeds is helpful to increase the resolution of the interpolation.
|
|
|
+ fanSpeedSoftPwm = 255;
|
|
|
+ wait(30000);
|
|
|
+
|
|
|
+ for(int8_t i = TEMP_MODEL_R_SIZE - 1; i > 0; i -= TEMP_MODEL_CAL_R_STEP) {
|
|
|
+ fanSpeedSoftPwm = 256 / TEMP_MODEL_R_SIZE * (i + 1) - 1;
|
|
|
+ wait(10000);
|
|
|
+
|
|
|
+ printf_P(PSTR("TM: R[%u] estimation\n"), (unsigned)i);
|
|
|
+ samples = record();
|
|
|
+ if(temp_error_state.v || !samples)
|
|
|
+ return true;
|
|
|
+
|
|
|
+ // a fixed fan pwm (the norminal value) is used here, as soft_pwm_fan will be modified
|
|
|
+ // during fan measurements and we'd like to include that skew during normal operation.
|
|
|
+ e = estimate(samples, &temp_model::data.R[i],
|
|
|
+ TEMP_MODEL_Rl, temp_model::data.R[0], TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
|
|
|
+ i, current_temperature_ambient);
|
|
|
+ if(isnan(e))
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ // interpolate remaining steps to speed-up calibration
|
|
|
+ // TODO: verify that the sampled values are monotically increasing?
|
|
|
+ int8_t next = TEMP_MODEL_R_SIZE - 1;
|
|
|
+ for(uint8_t i = TEMP_MODEL_R_SIZE - 2; i != 0; --i) {
|
|
|
+ if(!((TEMP_MODEL_R_SIZE - i - 1) % TEMP_MODEL_CAL_R_STEP)) {
|
|
|
+ next = i;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ int8_t prev = next - TEMP_MODEL_CAL_R_STEP;
|
|
|
+ if(prev < 0) prev = 0;
|
|
|
+ float f = (float)(i - prev) / TEMP_MODEL_CAL_R_STEP;
|
|
|
+ float d = (temp_model::data.R[next] - temp_model::data.R[prev]);
|
|
|
+ temp_model::data.R[i] = temp_model::data.R[prev] + d * f;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+} // namespace temp_model_cal
|
|
|
+
|
|
|
+void temp_model_autotune(int16_t temp)
|
|
|
+{
|
|
|
+ if(moves_planned() || printer_active()) {
|
|
|
+ SERIAL_ECHOLNPGM("TM: printer needs to be idle for calibration");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // lockout the printer during calibration
|
|
|
+ KEEPALIVE_STATE(IN_PROCESS);
|
|
|
+ menu_set_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
|
|
|
+ lcd_setstatuspgm(_i("Temp. model autotune"));
|
|
|
+ lcd_return_to_status();
|
|
|
+
|
|
|
+ // disable the model checking during self-calibration
|
|
|
+ bool was_enabled = temp_model::enabled;
|
|
|
+ temp_model_set_enabled(false);
|
|
|
+
|
|
|
+ SERIAL_ECHOLNPGM("TM: autotune start");
|
|
|
+ bool err = temp_model_cal::autotune(temp > 0 ? temp : TEMP_MODEL_CAL_Th);
|
|
|
+
|
|
|
+ // always reset temperature
|
|
|
+ target_temperature[0] = 0;
|
|
|
+
|
|
|
+ if(err) {
|
|
|
+ SERIAL_ECHOLNPGM("TM: autotune failed");
|
|
|
+ lcd_setstatuspgm(_i("TM autotune failed"));
|
|
|
+ if(temp_error_state.v)
|
|
|
+ fanSpeedSoftPwm = 255;
|
|
|
+ } else {
|
|
|
+ lcd_setstatuspgm(MSG_WELCOME);
|
|
|
+ fanSpeedSoftPwm = 0;
|
|
|
+ temp_model_set_enabled(was_enabled);
|
|
|
+ temp_model_report_settings();
|
|
|
+ }
|
|
|
+
|
|
|
+ menu_unset_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef TEMP_MODEL_DEBUG
|
|
|
+void temp_model_log_enable(bool enable)
|
|
|
+{
|
|
|
+ if(enable) {
|
|
|
+ TempMgrGuard temp_mgr_guard;
|
|
|
+ temp_model::log_buf.entry.stamp = _millis();
|
|
|
+ }
|
|
|
+ temp_model::log_buf.enabled = enable;
|
|
|
+}
|
|
|
+#endif
|
|
|
+#endif
|