Browse Source

timeout when waiting for mmu OK

PavelSindler 6 years ago
parent
commit
0a43b9ce6b
4 changed files with 9171 additions and 15 deletions
  1. 3 1
      Firmware/Marlin.h
  2. 24 13
      Firmware/Marlin_main.cpp
  3. 9143 0
      Firmware/Marlin_main.cpp~RF6ca149ac.TMP
  4. 1 1
      Firmware/ultralcd.cpp

+ 3 - 1
Firmware/Marlin.h

@@ -464,4 +464,6 @@ void gcode_M701();
 
 #define UVLO !(PINE & (1<<4))
 
-void proc_commands();
+void proc_commands();
+
+bool mmu_get_reponse();

+ 24 - 13
Firmware/Marlin_main.cpp

@@ -3364,7 +3364,12 @@ void process_commands()
 		}
 		else if (code_seen("thx")) {
 			no_response = false;
-		}		
+		}	
+		else if (code_seen("MMURES")) {
+			fprintf_P(uart2io, PSTR("x0"));
+			bool response = mmu_get_reponse();
+			if (!response) printf_P(PSTR("MMU not responding"));
+		}
 		else if (code_seen("RESET")) {
             // careful!
             if (farm_mode) {
@@ -7119,18 +7124,7 @@ Sigma_Exit:
               fprintf_P(uart2io, PSTR("T0\n"));
               break;
           }
-
-          
-
-          
-              // get response
-            uart2_rx_clr();
-              while (!uart2_rx_ok())
-              {
-                  //printf_P(PSTR("waiting..\n"));
-                  delay_keep_alive(100);
-              }
-			  snmm_extruder = tmp_extruder; //filament change is finished
+    	  snmm_extruder = tmp_extruder; //filament change is finished
 
 		  if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
 			  bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
@@ -9137,4 +9131,21 @@ static void print_time_remaining_init() {
 	print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
 }
 
+bool mmu_get_reponse() {
+	bool response = true;
+	LongTimer mmu_get_reponse_timeout;
+    uart2_rx_clr();
+	
+	mmu_get_reponse_timeout.start();
+	while (!uart2_rx_ok())
+    {
+      delay_keep_alive(100);
+	  if (mmu_get_reponse_timeout.expired(30 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
+			response = false;
+			break;
+	  }
+    }
+	return response;
+}
+
 #define FIL_LOAD_LENGTH 60

+ 9143 - 0
Firmware/Marlin_main.cpp~RF6ca149ac.TMP

@@ -0,0 +1,9143 @@
+/* -*- c++ -*- */
+/**
+ * @file
+ */
+
+/**
+ * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
+ *
+ * @section intro_sec Introduction
+ *
+ * This firmware is a mashup between Sprinter and grbl.
+ * https://github.com/kliment/Sprinter
+ * https://github.com/simen/grbl/tree
+ *
+ * It has preliminary support for Matthew Roberts advance algorithm
+ * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ *
+ * Prusa Research s.r.o. https://www.prusa3d.cz
+ *
+ * @section copyright_sec Copyright
+ *
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ * @section notes_sec Notes
+ *
+ * * Do not create static objects in global functions.
+ *   Otherwise constructor guard against concurrent calls is generated costing
+ *   about 8B RAM and 14B flash.
+ *
+ *
+ */
+
+#include "Marlin.h"
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#include "vector_3.h"
+  #ifdef AUTO_BED_LEVELING_GRID
+    #include "qr_solve.h"
+  #endif
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+  #include "mesh_bed_leveling.h"
+  #include "mesh_bed_calibration.h"
+#endif
+
+#include "printers.h"
+
+#include "menu.h"
+#include "ultralcd.h"
+
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+#include "cardreader.h"
+#include "ConfigurationStore.h"
+#include "language.h"
+#include "pins_arduino.h"
+#include "math.h"
+#include "util.h"
+#include "Timer.h"
+#include "uart2.h"
+
+#include <avr/wdt.h>
+#include <avr/pgmspace.h>
+
+#include "Dcodes.h"
+
+
+#ifdef SWSPI
+#include "swspi.h"
+#endif //SWSPI
+
+#include "spi.h"
+
+#ifdef SWI2C
+#include "swi2c.h"
+#endif //SWI2C
+
+#ifdef PAT9125
+#include "pat9125.h"
+#include "fsensor.h"
+#endif //PAT9125
+
+#ifdef TMC2130
+#include "tmc2130.h"
+#endif //TMC2130
+
+#ifdef W25X20CL
+#include "w25x20cl.h"
+#include "optiboot_w25x20cl.h"
+#endif //W25X20CL
+
+#ifdef BLINKM
+#include "BlinkM.h"
+#include "Wire.h"
+#endif
+
+#ifdef ULTRALCD
+#include "ultralcd.h"
+#endif
+
+#if NUM_SERVOS > 0
+#include "Servo.h"
+#endif
+
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+#include <SPI.h>
+#endif
+
+#define VERSION_STRING  "1.0.2"
+
+
+#include "ultralcd.h"
+
+#include "cmdqueue.h"
+
+// Macros for bit masks
+#define BIT(b) (1<<(b))
+#define TEST(n,b) (((n)&BIT(b))!=0)
+#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
+
+//Macro for print fan speed
+#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
+
+#define PRINTING_TYPE_SD 0
+#define PRINTING_TYPE_USB 1
+
+// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+
+// PRUSA CODES
+// P F - Returns FW versions
+// P R - Returns revision of printer
+
+// G0  -> G1
+// G1  - Coordinated Movement X Y Z E
+// G2  - CW ARC
+// G3  - CCW ARC
+// G4  - Dwell S<seconds> or P<milliseconds>
+// G10 - retract filament according to settings of M207
+// G11 - retract recover filament according to settings of M208
+// G28 - Home all Axis
+// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
+// G30 - Single Z Probe, probes bed at current XY location.
+// G31 - Dock sled (Z_PROBE_SLED only)
+// G32 - Undock sled (Z_PROBE_SLED only)
+// G80 - Automatic mesh bed leveling
+// G81 - Print bed profile
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to coordinates given
+
+// M Codes
+// M0   - Unconditional stop - Wait for user to press a button on the LCD
+// M1   - Same as M0
+// M17  - Enable/Power all stepper motors
+// M18  - Disable all stepper motors; same as M84
+// M20  - List SD card
+// M21  - Init SD card
+// M22  - Release SD card
+// M23  - Select SD file (M23 filename.g)
+// M24  - Start/resume SD print
+// M25  - Pause SD print
+// M26  - Set SD position in bytes (M26 S12345)
+// M27  - Report SD print status
+// M28  - Start SD write (M28 filename.g)
+// M29  - Stop SD write
+// M30  - Delete file from SD (M30 filename.g)
+// M31  - Output time since last M109 or SD card start to serial
+// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
+//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
+//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
+//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
+// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
+// M73  - Show percent done and print time remaining
+// M80  - Turn on Power Supply
+// M81  - Turn off Power Supply
+// M82  - Set E codes absolute (default)
+// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84  - Disable steppers until next move,
+//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
+// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
+// M86  - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
+// M92  - Set axis_steps_per_unit - same syntax as G92
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
+//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
+//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
+// M112 - Emergency stop
+// M113 - Get or set the timeout interval for Host Keepalive "busy" messages
+// M114 - Output current position to serial port
+// M115 - Capabilities string
+// M117 - display message
+// M119 - Output Endstop status to serial port
+// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
+// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
+// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M140 - Set bed target temp
+// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
+// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
+//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
+// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
+// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
+// M206 - set additional homing offset
+// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
+// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
+// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
+// M220 S<factor in percent>- set speed factor override percentage
+// M221 S<factor in percent>- set extrude factor override percentage
+// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
+// M240 - Trigger a camera to take a photograph
+// M250 - Set LCD contrast C<contrast value> (value 0..63)
+// M280 - set servo position absolute. P: servo index, S: angle or microseconds
+// M300 - Play beep sound S<frequency Hz> P<duration ms>
+// M301 - Set PID parameters P I and D
+// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
+// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
+// M304 - Set bed PID parameters P I and D
+// M400 - Finish all moves
+// M401 - Lower z-probe if present
+// M402 - Raise z-probe if present
+// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
+// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
+// M406 - Turn off Filament Sensor extrusion control 
+// M407 - Displays measured filament diameter 
+// M500 - stores parameters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
+// M503 - print the current settings (from memory not from EEPROM)
+// M509 - force language selection on next restart
+// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
+// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
+// M860 - Wait for PINDA thermistor to reach target temperature.
+// M861 - Set / Read PINDA temperature compensation offsets
+// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
+// M907 - Set digital trimpot motor current using axis codes.
+// M908 - Control digital trimpot directly.
+// M350 - Set microstepping mode.
+// M351 - Toggle MS1 MS2 pins directly.
+
+// M928 - Start SD logging (M928 filename.g) - ended by M29
+// M999 - Restart after being stopped by error
+
+//Stepper Movement Variables
+
+//===========================================================================
+//=============================imported variables============================
+//===========================================================================
+
+
+//===========================================================================
+//=============================public variables=============================
+//===========================================================================
+#ifdef SDSUPPORT
+CardReader card;
+#endif
+
+unsigned long PingTime = millis();
+unsigned long NcTime;
+
+union Data
+{
+byte b[2];
+int value;
+};
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+// Currently only the extruder axis may be switched to a relative mode.
+// Other axes are always absolute or relative based on the common relative_mode flag.
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+int extrudemultiply=100; //100->1 200->2
+int extruder_multiply[EXTRUDERS] = {100
+  #if EXTRUDERS > 1
+    , 100
+    #if EXTRUDERS > 2
+      , 100
+    #endif
+  #endif
+};
+
+int bowden_length[4] = {385, 385, 385, 385};
+
+bool is_usb_printing = false;
+bool homing_flag = false;
+
+bool temp_cal_active = false;
+
+unsigned long kicktime = millis()+100000;
+
+unsigned int  usb_printing_counter;
+
+int lcd_change_fil_state = 0;
+
+int feedmultiplyBckp = 100;
+float HotendTempBckp = 0;
+int fanSpeedBckp = 0;
+float pause_lastpos[4];
+unsigned long pause_time = 0;
+unsigned long start_pause_print = millis();
+unsigned long t_fan_rising_edge = millis();
+static LongTimer safetyTimer;
+static LongTimer crashDetTimer;
+
+//unsigned long load_filament_time;
+
+bool mesh_bed_leveling_flag = false;
+bool mesh_bed_run_from_menu = false;
+
+int8_t FarmMode = 0;
+
+bool prusa_sd_card_upload = false;
+
+unsigned int status_number = 0;
+
+unsigned long total_filament_used;
+unsigned int heating_status;
+unsigned int heating_status_counter;
+bool custom_message;
+bool loading_flag = false;
+unsigned int custom_message_type;
+unsigned int custom_message_state;
+char snmm_filaments_used = 0;
+
+bool fan_state[2];
+int fan_edge_counter[2];
+int fan_speed[2];
+
+char dir_names[3][9];
+
+bool sortAlpha = false;
+
+bool volumetric_enabled = false;
+float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
+  #if EXTRUDERS > 1
+      , DEFAULT_NOMINAL_FILAMENT_DIA
+    #if EXTRUDERS > 2
+       , DEFAULT_NOMINAL_FILAMENT_DIA
+    #endif
+  #endif
+};
+float extruder_multiplier[EXTRUDERS] = {1.0
+  #if EXTRUDERS > 1
+    , 1.0
+    #if EXTRUDERS > 2
+      , 1.0
+    #endif
+  #endif
+};
+
+float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
+//shortcuts for more readable code
+#define _x current_position[X_AXIS]
+#define _y current_position[Y_AXIS]
+#define _z current_position[Z_AXIS]
+#define _e current_position[E_AXIS]
+
+
+float add_homing[3]={0,0,0};
+
+float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
+float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
+bool axis_known_position[3] = {false, false, false};
+float zprobe_zoffset;
+
+// Extruder offset
+#if EXTRUDERS > 1
+  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
+float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
+#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
+  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
+#endif
+};
+#endif
+
+uint8_t active_extruder = 0;
+int fanSpeed=0;
+
+#ifdef FWRETRACT
+  bool autoretract_enabled=false;
+  bool retracted[EXTRUDERS]={false
+    #if EXTRUDERS > 1
+    , false
+     #if EXTRUDERS > 2
+      , false
+     #endif
+  #endif
+  };
+  bool retracted_swap[EXTRUDERS]={false
+    #if EXTRUDERS > 1
+    , false
+     #if EXTRUDERS > 2
+      , false
+     #endif
+  #endif
+  };
+
+  float retract_length = RETRACT_LENGTH;
+  float retract_length_swap = RETRACT_LENGTH_SWAP;
+  float retract_feedrate = RETRACT_FEEDRATE;
+  float retract_zlift = RETRACT_ZLIFT;
+  float retract_recover_length = RETRACT_RECOVER_LENGTH;
+  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
+  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+#endif
+
+  #ifdef PS_DEFAULT_OFF
+    bool powersupply = false;
+  #else
+	  bool powersupply = true;
+  #endif
+
+bool cancel_heatup = false ;
+
+#ifdef HOST_KEEPALIVE_FEATURE
+  
+  int busy_state = NOT_BUSY;
+  static long prev_busy_signal_ms = -1;
+  uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
+#else
+  #define host_keepalive();
+  #define KEEPALIVE_STATE(n);
+#endif
+
+
+const char errormagic[] PROGMEM = "Error:";
+const char echomagic[] PROGMEM = "echo:";
+
+bool no_response = false;
+uint8_t important_status;
+uint8_t saved_filament_type;
+
+// save/restore printing
+bool saved_printing = false;
+
+// storing estimated time to end of print counted by slicer
+uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
+uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
+uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
+uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
+
+//===========================================================================
+//=============================Private Variables=============================
+//===========================================================================
+const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};
+
+static float delta[3] = {0.0, 0.0, 0.0};
+
+// For tracing an arc
+static float offset[3] = {0.0, 0.0, 0.0};
+static float feedrate = 1500.0, next_feedrate, saved_feedrate;
+
+// Determines Absolute or Relative Coordinates.
+// Also there is bool axis_relative_modes[] per axis flag.
+static bool relative_mode = false;  
+
+#ifndef _DISABLE_M42_M226
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+#endif //_DISABLE_M42_M226
+
+//static float tt = 0;
+//static float bt = 0;
+
+//Inactivity shutdown variables
+static unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
+static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+unsigned long _usb_timer = 0;
+
+static uint8_t tmp_extruder;
+
+bool extruder_under_pressure = true;
+
+
+bool Stopped=false;
+
+#if NUM_SERVOS > 0
+  Servo servos[NUM_SERVOS];
+#endif
+
+bool CooldownNoWait = true;
+bool target_direction;
+
+//Insert variables if CHDK is defined
+#ifdef CHDK
+unsigned long chdkHigh = 0;
+boolean chdkActive = false;
+#endif
+
+// save/restore printing
+static uint32_t saved_sdpos = 0;
+static uint8_t saved_printing_type = PRINTING_TYPE_SD;
+static float saved_pos[4] = { 0, 0, 0, 0 };
+// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
+static float saved_feedrate2 = 0;
+static uint8_t saved_active_extruder = 0;
+static bool saved_extruder_under_pressure = false;
+static bool saved_extruder_relative_mode = false;
+
+//===========================================================================
+//=============================Routines======================================
+//===========================================================================
+
+void get_arc_coordinates();
+bool setTargetedHotend(int code);
+
+void serial_echopair_P(const char *s_P, float v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, double v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, unsigned long v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+
+#ifdef SDSUPPORT
+  #include "SdFatUtil.h"
+  int freeMemory() { return SdFatUtil::FreeRam(); }
+#else
+  extern "C" {
+    extern unsigned int __bss_end;
+    extern unsigned int __heap_start;
+    extern void *__brkval;
+
+    int freeMemory() {
+      int free_memory;
+
+      if ((int)__brkval == 0)
+        free_memory = ((int)&free_memory) - ((int)&__bss_end);
+      else
+        free_memory = ((int)&free_memory) - ((int)__brkval);
+
+      return free_memory;
+    }
+  }
+#endif //!SDSUPPORT
+
+void setup_killpin()
+{
+  #if defined(KILL_PIN) && KILL_PIN > -1
+    SET_INPUT(KILL_PIN);
+    WRITE(KILL_PIN,HIGH);
+  #endif
+}
+
+// Set home pin
+void setup_homepin(void)
+{
+#if defined(HOME_PIN) && HOME_PIN > -1
+   SET_INPUT(HOME_PIN);
+   WRITE(HOME_PIN,HIGH);
+#endif
+}
+
+void setup_photpin()
+{
+  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+    SET_OUTPUT(PHOTOGRAPH_PIN);
+    WRITE(PHOTOGRAPH_PIN, LOW);
+  #endif
+}
+
+void setup_powerhold()
+{
+  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+    SET_OUTPUT(SUICIDE_PIN);
+    WRITE(SUICIDE_PIN, HIGH);
+  #endif
+  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+    SET_OUTPUT(PS_ON_PIN);
+	#if defined(PS_DEFAULT_OFF)
+	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+    #else
+	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
+	#endif
+  #endif
+}
+
+void suicide()
+{
+  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+    SET_OUTPUT(SUICIDE_PIN);
+    WRITE(SUICIDE_PIN, LOW);
+  #endif
+}
+
+void servo_init()
+{
+  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
+    servos[0].attach(SERVO0_PIN);
+  #endif
+  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
+    servos[1].attach(SERVO1_PIN);
+  #endif
+  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
+    servos[2].attach(SERVO2_PIN);
+  #endif
+  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
+    servos[3].attach(SERVO3_PIN);
+  #endif
+  #if (NUM_SERVOS >= 5)
+    #error "TODO: enter initalisation code for more servos"
+  #endif
+}
+
+
+void stop_and_save_print_to_ram(float z_move, float e_move);
+void restore_print_from_ram_and_continue(float e_move);
+
+bool fans_check_enabled = true;
+bool filament_autoload_enabled = true;
+
+
+#ifdef TMC2130
+
+extern int8_t CrashDetectMenu;
+
+void crashdet_enable()
+{
+	tmc2130_sg_stop_on_crash = true;
+	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); 
+	CrashDetectMenu = 1;
+
+}
+
+void crashdet_disable()
+{
+	tmc2130_sg_stop_on_crash = false;
+	tmc2130_sg_crash = 0;
+	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); 
+	CrashDetectMenu = 0;
+}
+
+void crashdet_stop_and_save_print()
+{
+	stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
+}
+
+void crashdet_restore_print_and_continue()
+{
+	restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
+//	babystep_apply();
+}
+
+
+void crashdet_stop_and_save_print2()
+{
+	cli();
+	planner_abort_hard(); //abort printing
+	cmdqueue_reset(); //empty cmdqueue
+	card.sdprinting = false;
+	card.closefile();
+  // Reset and re-enable the stepper timer just before the global interrupts are enabled.
+  st_reset_timer();
+	sei();
+}
+
+void crashdet_detected(uint8_t mask)
+{
+//	printf("CRASH_DETECTED");
+/*	while (!is_buffer_empty())
+	{
+		process_commands();
+	    cmdqueue_pop_front();
+	}*/
+	st_synchronize();
+	static uint8_t crashDet_counter = 0;
+	bool automatic_recovery_after_crash = true;
+
+	if (crashDet_counter++ == 0) {
+		crashDetTimer.start();
+	}
+	else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
+		crashDetTimer.stop();
+		crashDet_counter = 0;
+	}
+	else if(crashDet_counter == CRASHDET_COUNTER_MAX){
+		automatic_recovery_after_crash = false;
+		crashDetTimer.stop();
+		crashDet_counter = 0;
+	}
+	else {
+		crashDetTimer.start();
+	}
+
+	lcd_update_enable(true);
+	lcd_clear();
+	lcd_update(2);
+
+	if (mask & X_AXIS_MASK)
+	{
+		eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
+		eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
+	}
+	if (mask & Y_AXIS_MASK)
+	{
+		eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
+		eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
+	}
+    
+
+
+	lcd_update_enable(true);
+	lcd_update(2);
+	lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
+	gcode_G28(true, true, false); //home X and Y
+	st_synchronize();
+
+	if (automatic_recovery_after_crash) {
+		enquecommand_P(PSTR("CRASH_RECOVER"));
+	}else{
+		HotendTempBckp = degTargetHotend(active_extruder);
+		setTargetHotend(0, active_extruder);
+		bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
+		lcd_update_enable(true);
+		if (yesno)
+		{
+			char cmd1[10];
+			strcpy(cmd1, "M109 S");
+			strcat(cmd1, ftostr3(HotendTempBckp));
+			enquecommand(cmd1);
+			enquecommand_P(PSTR("CRASH_RECOVER"));
+		}
+		else
+		{
+			enquecommand_P(PSTR("CRASH_CANCEL"));
+		}
+	}
+}
+
+void crashdet_recover()
+{
+	crashdet_restore_print_and_continue();
+	tmc2130_sg_stop_on_crash = true;
+}
+
+void crashdet_cancel()
+{
+	tmc2130_sg_stop_on_crash = true;
+	if (saved_printing_type == PRINTING_TYPE_SD) {
+		lcd_print_stop();
+	}else if(saved_printing_type == PRINTING_TYPE_USB){
+		SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
+		SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
+	}
+}
+
+#endif //TMC2130
+
+void failstats_reset_print()
+{
+	eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
+	eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
+	eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
+	eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
+}
+
+
+
+#ifdef MESH_BED_LEVELING
+   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
+#endif
+
+
+// Factory reset function
+// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
+// Level input parameter sets depth of reset
+// Quiet parameter masks all waitings for user interact.
+int  er_progress = 0;
+void factory_reset(char level, bool quiet)
+{	
+	lcd_clear();
+	int cursor_pos = 0;
+    switch (level) {
+                   
+        // Level 0: Language reset
+        case 0:
+            WRITE(BEEPER, HIGH);
+            _delay_ms(100);
+            WRITE(BEEPER, LOW);
+			lang_reset();
+            break;
+         
+		//Level 1: Reset statistics
+		case 1:
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+
+			eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
+			eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
+			eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
+			eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
+
+			eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
+			eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
+			eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
+			eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
+
+			lcd_menu_statistics();
+            
+			break;
+
+        // Level 2: Prepare for shipping
+        case 2:
+			//lcd_puts_P(PSTR("Factory RESET"));
+            //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
+            
+            // Force language selection at the next boot up.
+			lang_reset();
+            // Force the "Follow calibration flow" message at the next boot up.
+            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
+			eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
+            farm_no = 0;
+			farm_mode = false;
+			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
+            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
+
+            eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+            eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+            eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
+            eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
+            eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
+            eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
+
+            fsensor_enable();
+            fautoload_set(true);
+                       
+            WRITE(BEEPER, HIGH);
+            _delay_ms(100);
+            WRITE(BEEPER, LOW);
+			//_delay_ms(2000);
+            break;
+
+			// Level 3: erase everything, whole EEPROM will be set to 0xFF
+
+		case 3:
+			lcd_puts_P(PSTR("Factory RESET"));
+			lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
+
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+
+			er_progress = 0;
+			lcd_puts_at_P(3, 3, PSTR("      "));
+			lcd_set_cursor(3, 3);
+			lcd_print(er_progress);
+
+			// Erase EEPROM
+			for (int i = 0; i < 4096; i++) {
+				eeprom_write_byte((uint8_t*)i, 0xFF);
+
+				if (i % 41 == 0) {
+					er_progress++;
+					lcd_puts_at_P(3, 3, PSTR("      "));
+					lcd_set_cursor(3, 3);
+					lcd_print(er_progress);
+					lcd_puts_P(PSTR("%"));
+				}
+
+			}
+
+
+			break;
+		case 4:
+			bowden_menu();
+			break;
+        
+        default:
+            break;
+    }
+    
+
+}
+
+
+FILE _uartout = {0};
+
+int uart_putchar(char c, FILE *stream)
+{
+	MYSERIAL.write(c);
+	return 0;
+}
+
+
+void lcd_splash()
+{
+//	lcd_puts_at_P(0, 1, PSTR("   Original Prusa   "));
+//	lcd_puts_at_P(0, 2, PSTR("    3D  Printers    "));
+//	lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D  Printers"));
+//    fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
+    lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
+//	lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
+}
+
+
+void factory_reset() 
+{
+	KEEPALIVE_STATE(PAUSED_FOR_USER);
+	if (!READ(BTN_ENC))
+	{
+		_delay_ms(1000);
+		if (!READ(BTN_ENC))
+		{
+			lcd_clear();
+
+
+			lcd_puts_P(PSTR("Factory RESET"));
+
+
+			SET_OUTPUT(BEEPER);
+			WRITE(BEEPER, HIGH);
+
+			while (!READ(BTN_ENC));
+
+			WRITE(BEEPER, LOW);
+
+
+
+			_delay_ms(2000);
+
+			char level = reset_menu();
+			factory_reset(level, false);
+
+			switch (level) {
+			case 0: _delay_ms(0); break;
+			case 1: _delay_ms(0); break;
+			case 2: _delay_ms(0); break;
+			case 3: _delay_ms(0); break;
+			}
+			// _delay_ms(100);
+			/*
+			#ifdef MESH_BED_LEVELING
+			_delay_ms(2000);
+
+			if (!READ(BTN_ENC))
+			{
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+			_delay_ms(200);
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+
+			int _z = 0;
+			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+			EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
+			EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
+			EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
+			}
+			else
+			{
+
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+			}
+			#endif // mesh */
+
+		}
+	}
+	else
+	{
+		//_delay_ms(1000);  // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
+	}
+	KEEPALIVE_STATE(IN_HANDLER);
+}
+
+void show_fw_version_warnings() {
+	if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
+	switch (FW_DEV_VERSION) {
+	case(FW_VERSION_ALPHA):   lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage."));   break;////MSG_FW_VERSION_ALPHA c=20 r=8
+	case(FW_VERSION_BETA):    lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage."));    break;////MSG_FW_VERSION_BETA c=20 r=8
+  case(FW_VERSION_DEVEL):
+	case(FW_VERSION_DEBUG):
+    lcd_update_enable(false);
+    lcd_clear();
+  #if FW_DEV_VERSION == FW_VERSION_DEVEL
+    lcd_puts_at_P(0, 0, PSTR("Development build !!"));
+  #else
+    lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
+  #endif
+    lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
+    lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
+    lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
+    lcd_wait_for_click();
+    break;
+//	default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
+	}
+	lcd_update_enable(true);
+}
+
+uint8_t check_printer_version()
+{
+	uint8_t version_changed = 0;
+	uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
+	uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
+
+	if (printer_type != PRINTER_TYPE) {
+		if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
+		else version_changed |= 0b10;
+	}
+	if (motherboard != MOTHERBOARD) {
+		if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
+		else version_changed |= 0b01;
+	}
+	return version_changed;
+}
+
+void erase_eeprom_section(uint16_t offset, uint16_t bytes)
+{
+	for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
+}
+
+
+#if (LANG_MODE != 0) //secondary language support
+
+#ifdef W25X20CL
+
+#include "bootapp.h" //bootloader support
+
+// language update from external flash
+#define LANGBOOT_BLOCKSIZE 0x1000  
+#define LANGBOOT_RAMBUFFER 0x0800
+
+void update_sec_lang_from_external_flash()
+{
+	if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
+	{
+		uint8_t lang = boot_reserved >> 4;
+		uint8_t state = boot_reserved & 0xf;
+		lang_table_header_t header;
+		uint32_t src_addr;
+		if (lang_get_header(lang, &header, &src_addr))
+		{
+			fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
+			for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
+			delay(100);
+			boot_reserved = (state + 1) | (lang << 4);
+			if ((state * LANGBOOT_BLOCKSIZE) < header.size)
+			{
+				cli();
+				uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
+				if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
+				w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
+				if (state == 0)
+				{
+					//TODO - check header integrity
+				}
+				bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
+			}
+			else
+			{
+				//TODO - check sec lang data integrity
+				eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
+			}
+		}
+	}
+	boot_app_flags &= ~BOOT_APP_FLG_USER0;
+}
+
+
+#ifdef DEBUG_W25X20CL
+
+uint8_t lang_xflash_enum_codes(uint16_t* codes)
+{
+	lang_table_header_t header;
+	uint8_t count = 0;
+	uint32_t addr = 0x00000;
+	while (1)
+	{
+		printf_P(_n("LANGTABLE%d:"), count);
+		w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
+		if (header.magic != LANG_MAGIC)
+		{
+			printf_P(_n("NG!\n"));
+			break;
+		}
+		printf_P(_n("OK\n"));
+		printf_P(_n(" _lt_magic        = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
+		printf_P(_n(" _lt_size         = 0x%04x (%d)\n"), header.size, header.size);
+		printf_P(_n(" _lt_count        = 0x%04x (%d)\n"), header.count, header.count);
+		printf_P(_n(" _lt_chsum        = 0x%04x\n"), header.checksum);
+		printf_P(_n(" _lt_code         = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
+		printf_P(_n(" _lt_sign         = 0x%08lx\n"), header.signature);
+
+		addr += header.size;
+		codes[count] = header.code;
+		count ++;
+	}
+	return count;
+}
+
+void list_sec_lang_from_external_flash()
+{
+	uint16_t codes[8];
+	uint8_t count = lang_xflash_enum_codes(codes);
+	printf_P(_n("XFlash lang count = %hhd\n"), count);
+}
+
+#endif //DEBUG_W25X20CL
+
+#endif //W25X20CL
+
+#endif //(LANG_MODE != 0)
+
+
+// "Setup" function is called by the Arduino framework on startup.
+// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code 
+// are initialized by the main() routine provided by the Arduino framework.
+void setup()
+{
+    ultralcd_init();
+
+	spi_init();
+
+	lcd_splash();
+
+#ifdef W25X20CL
+  // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
+ // optiboot_w25x20cl_enter();
+#endif
+
+#if (LANG_MODE != 0) //secondary language support
+#ifdef W25X20CL
+	if (w25x20cl_init())
+		update_sec_lang_from_external_flash();
+	else
+		kill(_i("External SPI flash W25X20CL not responding."));
+#endif //W25X20CL
+#endif //(LANG_MODE != 0)
+
+	setup_killpin();
+	setup_powerhold();
+
+	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); 
+	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+	if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF)) 
+		farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
+	if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
+	
+	selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
+	if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
+	if (farm_mode)
+	{
+		no_response = true; //we need confirmation by recieving PRUSA thx
+		important_status = 8;
+		prusa_statistics(8);
+		selectedSerialPort = 1;
+#ifdef TMC2130
+		//increased extruder current (PFW363)
+		tmc2130_current_h[E_AXIS] = 36;
+		tmc2130_current_r[E_AXIS] = 36;
+#endif //TMC2130
+		//disabled filament autoload (PFW360)
+		filament_autoload_enabled = false;
+		eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
+	}
+	MYSERIAL.begin(BAUDRATE);
+	fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
+	stdout = uartout;
+	SERIAL_PROTOCOLLNPGM("start");
+	SERIAL_ECHO_START;
+	printf_P(PSTR(" " FW_VERSION_FULL "\n"));
+
+	uart2_init();
+
+
+#ifdef DEBUG_SEC_LANG
+	lang_table_header_t header;
+	uint32_t src_addr = 0x00000;
+	if (lang_get_header(1, &header, &src_addr))
+	{
+//this is comparsion of some printing-methods regarding to flash space usage and code size/readability
+#define LT_PRINT_TEST 2
+//  flash usage
+//  total   p.test
+//0 252718  t+c  text code
+//1 253142  424  170  254
+//2 253040  322  164  158
+//3 253248  530  135  395
+#if (LT_PRINT_TEST==1) //not optimized printf
+		printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
+		printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
+		printf_P(_n(" _lt_size  = 0x%04x (%d)\n"), header.size, header.size);
+		printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
+		printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
+		printf_P(_n(" _lt_code  = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
+		printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
+#elif (LT_PRINT_TEST==2) //optimized printf
+		printf_P(
+		 _n(
+		  " _src_addr = 0x%08lx\n"
+		  " _lt_magic = 0x%08lx %S\n"
+		  " _lt_size  = 0x%04x (%d)\n"
+		  " _lt_count = 0x%04x (%d)\n"
+		  " _lt_chsum = 0x%04x\n"
+		  " _lt_code  = 0x%04x (%c%c)\n"
+		  " _lt_resv1 = 0x%08lx\n"
+		 ),
+		 src_addr,
+		 header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
+		 header.size, header.size,
+		 header.count, header.count,
+		 header.checksum,
+		 header.code, header.code >> 8, header.code & 0xff,
+		 header.signature
+		);
+#elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
+		MYSERIAL.print(" _src_addr = 0x");
+		MYSERIAL.println(src_addr, 16);
+		MYSERIAL.print(" _lt_magic = 0x");
+		MYSERIAL.print(header.magic, 16);
+		MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
+		MYSERIAL.print(" _lt_size  = 0x");
+		MYSERIAL.print(header.size, 16);
+		MYSERIAL.print(" (");
+		MYSERIAL.print(header.size, 10);
+		MYSERIAL.println(")");
+		MYSERIAL.print(" _lt_count = 0x");
+		MYSERIAL.print(header.count, 16);
+		MYSERIAL.print(" (");
+		MYSERIAL.print(header.count, 10);
+		MYSERIAL.println(")");
+		MYSERIAL.print(" _lt_chsum = 0x");
+		MYSERIAL.println(header.checksum, 16);
+		MYSERIAL.print(" _lt_code  = 0x");
+		MYSERIAL.print(header.code, 16);
+		MYSERIAL.print(" (");
+		MYSERIAL.print((char)(header.code >> 8), 0);
+		MYSERIAL.print((char)(header.code & 0xff), 0);
+		MYSERIAL.println(")");
+		MYSERIAL.print(" _lt_resv1 = 0x");
+		MYSERIAL.println(header.signature, 16);
+#endif //(LT_PRINT_TEST==)
+#undef LT_PRINT_TEST
+
+#if 0
+		w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
+		for (uint16_t i = 0; i < 1024; i++)
+		{
+			if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
+			printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
+			if ((i % 16) == 15) putchar('\n');
+		}
+#endif
+		uint16_t sum = 0;
+		for (uint16_t i = 0; i < header.size; i++)
+			sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
+		printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
+		sum -= header.checksum; //subtract checksum
+		printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
+		sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
+		if (sum == header.checksum)
+			printf_P(_n("Checksum OK\n"), sum);
+		else
+			printf_P(_n("Checksum NG\n"), sum);
+	}
+	else
+		printf_P(_n("lang_get_header failed!\n"));
+
+#if 0
+		for (uint16_t i = 0; i < 1024*10; i++)
+		{
+			if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
+			printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
+			if ((i % 16) == 15) putchar('\n');
+		}
+#endif
+
+#if 0
+	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
+	for (int i = 0; i < 4096; ++i) {
+		int b = eeprom_read_byte((unsigned char*)i);
+		if (b != 255) {
+			SERIAL_ECHO(i);
+			SERIAL_ECHO(":");
+			SERIAL_ECHO(b);
+			SERIAL_ECHOLN("");
+		}
+	}
+	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
+#endif
+
+#endif //DEBUG_SEC_LANG
+
+	// Check startup - does nothing if bootloader sets MCUSR to 0
+	byte mcu = MCUSR;
+/*	if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
+	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
+	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
+	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
+	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
+	if (mcu & 1) puts_P(_T(MSG_POWERUP));
+	if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
+	if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
+	if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
+	if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
+	MCUSR = 0;
+
+	//SERIAL_ECHORPGM(MSG_MARLIN);
+	//SERIAL_ECHOLNRPGM(VERSION_STRING);
+
+#ifdef STRING_VERSION_CONFIG_H
+#ifdef STRING_CONFIG_H_AUTHOR
+	SERIAL_ECHO_START;
+	SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
+	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
+	SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
+	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
+	SERIAL_ECHOPGM("Compiled: ");
+	SERIAL_ECHOLNPGM(__DATE__);
+#endif
+#endif
+
+	SERIAL_ECHO_START;
+	SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
+	SERIAL_ECHO(freeMemory());
+	SERIAL_ECHORPGM(_i("  PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
+	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+	//lcd_update_enable(false); // why do we need this?? - andre
+	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
+	
+	bool previous_settings_retrieved = false; 
+	uint8_t hw_changed = check_printer_version();
+	if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
+		previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
+	} 
+	else { //printer version was changed so use default settings 
+		Config_ResetDefault();
+	}
+	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
+
+	tp_init();    // Initialize temperature loop
+
+	lcd_splash(); // we need to do this again, because tp_init() kills lcd
+
+	plan_init();  // Initialize planner;
+
+	factory_reset();
+
+#ifdef TMC2130
+	uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+	if (silentMode == 0xff) silentMode = 0;
+//	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
+	tmc2130_mode = TMC2130_MODE_NORMAL;
+	uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
+	if (crashdet && !farm_mode)
+	{
+		crashdet_enable();
+	    puts_P(_N("CrashDetect ENABLED!"));
+	}
+	else
+	{
+		crashdet_disable();
+	    puts_P(_N("CrashDetect DISABLED"));
+	}
+
+#ifdef TMC2130_LINEARITY_CORRECTION
+#ifdef TMC2130_LINEARITY_CORRECTION_XYZ
+	tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
+	tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
+	tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
+#endif //TMC2130_LINEARITY_CORRECTION_XYZ
+	tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
+	if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
+	if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
+	if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
+	if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
+#endif //TMC2130_LINEARITY_CORRECTION
+
+#ifdef TMC2130_VARIABLE_RESOLUTION
+	tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
+	tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
+	tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
+	tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
+	if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+	if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+	if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
+	if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
+	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
+	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
+	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
+	eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
+#else //TMC2130_VARIABLE_RESOLUTION
+	tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+	tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
+	tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
+	tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
+#endif //TMC2130_VARIABLE_RESOLUTION
+
+#endif //TMC2130
+
+
+	st_init();    // Initialize stepper, this enables interrupts!
+
+#ifdef TMC2130
+	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
+	tmc2130_init();
+#endif //TMC2130
+    
+	setup_photpin();
+
+	servo_init();
+	// Reset the machine correction matrix.
+	// It does not make sense to load the correction matrix until the machine is homed.
+	world2machine_reset();
+    
+#ifdef PAT9125
+	fsensor_init();
+#endif //PAT9125
+
+
+#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
+	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
+#endif
+
+
+	setup_homepin();
+
+#ifdef TMC2130
+
+  if (1) {
+    // try to run to zero phase before powering the Z motor.    
+    // Move in negative direction
+    WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+    // Round the current micro-micro steps to micro steps.
+    for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
+      // Until the phase counter is reset to zero.
+      WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
+      delay(2);
+      WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
+      delay(2);
+    }
+  }
+#endif //TMC2130
+
+#if defined(Z_AXIS_ALWAYS_ON)
+	enable_z();
+#endif
+	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
+	if (farm_no == 0xFFFF) farm_no = 0;
+	if (farm_mode)
+	{
+		prusa_statistics(8);
+	}
+
+	// Enable Toshiba FlashAir SD card / WiFi enahanced card.
+	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
+
+	if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
+		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
+		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
+		// where all the EEPROM entries are set to 0x0ff.
+		// Once a firmware boots up, it forces at least a language selection, which changes
+		// EEPROM_LANG to number lower than 0x0ff.
+		// 1) Set a high power mode.
+#ifdef TMC2130
+		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
+		tmc2130_mode = TMC2130_MODE_NORMAL;
+#endif //TMC2130
+		eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
+	}
+
+	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 
+	// but this times out if a blocking dialog is shown in setup().
+	card.initsd();
+#ifdef DEBUG_SD_SPEED_TEST
+	if (card.cardOK)
+	{
+		uint8_t* buff = (uint8_t*)block_buffer;
+		uint32_t block = 0;
+		uint32_t sumr = 0;
+		uint32_t sumw = 0;
+		for (int i = 0; i < 1024; i++)
+		{
+			uint32_t u = micros();
+			bool res = card.card.readBlock(i, buff);
+			u = micros() - u;
+			if (res)
+			{
+				printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
+				sumr += u;
+				u = micros();
+				res = card.card.writeBlock(i, buff);
+				u = micros() - u;
+				if (res)
+				{
+					printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
+					sumw += u;
+				}
+				else
+				{
+					printf_P(PSTR("writeBlock %4d error\n"), i);
+					break;
+				}
+			}
+			else
+			{
+				printf_P(PSTR("readBlock %4d error\n"), i);
+				break;
+			}
+		}
+		uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
+		uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
+		printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
+		printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
+	}
+	else
+		printf_P(PSTR("Card NG!\n"));
+#endif //DEBUG_SD_SPEED_TEST
+
+	if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
+	if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
+	if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
+	if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
+	if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
+	if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
+	if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
+	if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
+#ifdef SNMM
+	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
+	  int _z = BOWDEN_LENGTH;
+	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
+	}
+#endif
+
+  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
+  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
+  // is being written into the EEPROM, so the update procedure will be triggered only once.
+
+
+#if (LANG_MODE != 0) //secondary language support
+
+#ifdef DEBUG_W25X20CL
+	W25X20CL_SPI_ENTER();
+	uint8_t uid[8]; // 64bit unique id
+	w25x20cl_rd_uid(uid);
+	puts_P(_n("W25X20CL UID="));
+	for (uint8_t i = 0; i < 8; i ++)
+		printf_P(PSTR("%02hhx"), uid[i]);
+	putchar('\n');
+	list_sec_lang_from_external_flash();
+#endif //DEBUG_W25X20CL
+
+//	lang_reset();
+	if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
+		lcd_language();
+
+#ifdef DEBUG_SEC_LANG
+
+	uint16_t sec_lang_code = lang_get_code(1);
+	uint16_t ui = _SEC_LANG_TABLE; //table pointer
+	printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
+
+//	lang_print_sec_lang(uartout);
+#endif //DEBUG_SEC_LANG
+
+#endif //(LANG_MODE != 0)
+
+	if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+		temp_cal_active = false;
+	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
+
+	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
+		//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
+		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+		int16_t z_shift = 0;
+		for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+		temp_cal_active = false;
+	}
+	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
+	}
+	if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
+	}
+
+	check_babystep(); //checking if Z babystep is in allowed range
+
+#ifdef UVLO_SUPPORT
+	setup_uvlo_interrupt();
+#endif //UVLO_SUPPORT
+
+#if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
+	setup_fan_interrupt();
+#endif //DEBUG_DISABLE_FANCHECK
+
+#ifdef PAT9125
+#ifndef DEBUG_DISABLE_FSENSORCHECK
+	fsensor_setup_interrupt();
+#endif //DEBUG_DISABLE_FSENSORCHECK
+#endif //PAT9125
+	for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); 
+	
+#ifndef DEBUG_DISABLE_STARTMSGS
+  KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+  show_fw_version_warnings();
+
+  switch (hw_changed) { 
+	  //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
+	  //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
+	case(0b01): 
+		lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
+		eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); 
+		break;
+	case(0b10): 
+		lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
+		eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); 
+		break;
+	case(0b11): 
+		lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
+		eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
+		eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); 
+		break;
+	default: break; //no change, show no message
+  }
+
+  if (!previous_settings_retrieved) {
+	  lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
+	  erase_eeprom_section(EEPROM_OFFSET, 156); 							   //erase M500 part of eeprom
+  }
+  if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
+	  lcd_wizard(0);
+  }
+  if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
+	  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
+		  calibration_status() == CALIBRATION_STATUS_UNKNOWN || 
+		  calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
+		  // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
+		  eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+		  // Show the message.
+		  lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
+	  }
+	  else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
+		  // Show the message.
+		  lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
+		  lcd_update_enable(true);
+	  }
+	  else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
+		  //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
+		  lcd_update_enable(true);
+	  }
+	  else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
+		  // Show the message.
+		  lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
+	  }
+  }
+
+#if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
+  if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
+	  lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
+	  update_current_firmware_version_to_eeprom();
+	  lcd_selftest();
+  }
+#endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
+
+  KEEPALIVE_STATE(IN_PROCESS);
+#endif //DEBUG_DISABLE_STARTMSGS
+  lcd_update_enable(true);
+  lcd_clear();
+  lcd_update(2);
+  // Store the currently running firmware into an eeprom,
+  // so the next time the firmware gets updated, it will know from which version it has been updated.
+  update_current_firmware_version_to_eeprom();
+
+#ifdef TMC2130
+  	tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
+	tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
+	tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
+	if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
+	if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
+	if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
+
+	tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
+	tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
+	tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
+	if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
+	if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
+	if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
+
+	tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
+	if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
+#endif //TMC2130
+
+#ifdef UVLO_SUPPORT
+  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
+/*
+	  if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false))	recover_print();
+	  else {
+		  eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+		  lcd_update_enable(true);
+		  lcd_update(2);
+		  lcd_setstatuspgm(_T(WELCOME_MSG));
+	  }
+*/
+      manage_heater(); // Update temperatures 
+#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
+		printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
+#endif 
+     if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ 
+          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
+        puts_P(_N("Automatic recovery!")); 
+          #endif 
+         recover_print(1); 
+      } 
+      else{ 
+          #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER 
+        puts_P(_N("Normal recovery!")); 
+          #endif 
+          if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0); 
+          else { 
+              eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); 
+              lcd_update_enable(true); 
+              lcd_update(2); 
+              lcd_setstatuspgm(_T(WELCOME_MSG)); 
+          } 
+           
+      } 
+	   
+  }
+#endif //UVLO_SUPPORT
+
+  KEEPALIVE_STATE(NOT_BUSY);
+#ifdef WATCHDOG
+  wdt_enable(WDTO_4S);
+#endif //WATCHDOG
+}
+
+#ifdef PAT9125
+void fsensor_init() {
+	int pat9125 = pat9125_init();
+	printf_P(_N("PAT9125_init:%d\n"), pat9125);
+	uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
+     filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
+	if (!pat9125)
+	{
+		fsensor = 0; //disable sensor
+		fsensor_not_responding = true;
+	}
+	else {
+		fsensor_not_responding = false;
+	}
+	puts_P(PSTR("FSensor "));
+	if (fsensor)
+	{
+		puts_P(PSTR("ENABLED\n"));
+		fsensor_enable();
+	}
+	else
+	{
+		puts_P(PSTR("DISABLED\n"));
+		fsensor_disable();
+	}
+#ifdef DEBUG_DISABLE_FSENSORCHECK
+	filament_autoload_enabled = false;
+	fsensor_disable();
+#endif //DEBUG_DISABLE_FSENSORCHECK
+}
+
+#endif //PAT9125
+
+void trace();
+
+#define CHUNK_SIZE 64 // bytes
+#define SAFETY_MARGIN 1
+char chunk[CHUNK_SIZE+SAFETY_MARGIN];
+int chunkHead = 0;
+
+int serial_read_stream() {
+
+    setTargetHotend(0, 0);
+    setTargetBed(0);
+
+    lcd_clear();
+    lcd_puts_P(PSTR(" Upload in progress"));
+
+    // first wait for how many bytes we will receive
+    uint32_t bytesToReceive;
+
+    // receive the four bytes
+    char bytesToReceiveBuffer[4];
+    for (int i=0; i<4; i++) {
+        int data;
+        while ((data = MYSERIAL.read()) == -1) {};
+        bytesToReceiveBuffer[i] = data;
+
+    }
+
+    // make it a uint32
+    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
+
+    // we're ready, notify the sender
+    MYSERIAL.write('+');
+
+    // lock in the routine
+    uint32_t receivedBytes = 0;
+    while (prusa_sd_card_upload) {
+        int i;
+        for (i=0; i<CHUNK_SIZE; i++) {
+            int data;
+
+            // check if we're not done
+            if (receivedBytes == bytesToReceive) {
+                break;
+            }
+
+            // read the next byte
+            while ((data = MYSERIAL.read()) == -1) {};
+            receivedBytes++;
+
+            // save it to the chunk
+            chunk[i] = data;
+        }
+
+        // write the chunk to SD
+        card.write_command_no_newline(&chunk[0]);
+
+        // notify the sender we're ready for more data
+        MYSERIAL.write('+');
+
+        // for safety
+        manage_heater();
+
+        // check if we're done
+        if(receivedBytes == bytesToReceive) {
+            trace(); // beep
+            card.closefile();
+            prusa_sd_card_upload = false;
+            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+            return 0;
+        }
+
+    }
+}
+
+#ifdef HOST_KEEPALIVE_FEATURE
+/**
+* Output a "busy" message at regular intervals
+* while the machine is not accepting commands.
+*/
+void host_keepalive() {
+  if (farm_mode) return;
+  long ms = millis();
+  if (host_keepalive_interval && busy_state != NOT_BUSY) {
+    if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
+     switch (busy_state) {
+      case IN_HANDLER:
+      case IN_PROCESS:
+        SERIAL_ECHO_START;
+        SERIAL_ECHOLNPGM("busy: processing");
+        break;
+      case PAUSED_FOR_USER:
+        SERIAL_ECHO_START;
+        SERIAL_ECHOLNPGM("busy: paused for user");
+        break;
+      case PAUSED_FOR_INPUT:
+        SERIAL_ECHO_START;
+        SERIAL_ECHOLNPGM("busy: paused for input");
+        break;
+      default:
+	break;
+    }
+  }
+  prev_busy_signal_ms = ms;
+}
+#endif
+
+// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
+// Before loop(), the setup() function is called by the main() routine.
+void loop()
+{
+	KEEPALIVE_STATE(NOT_BUSY);
+	bool stack_integrity = true;
+
+	if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
+	{
+		is_usb_printing = true;
+		usb_printing_counter--;
+		_usb_timer = millis();
+	}
+	if (usb_printing_counter == 0)
+	{
+		is_usb_printing = false;
+	}
+
+    if (prusa_sd_card_upload)
+    {
+        //we read byte-by byte
+        serial_read_stream();
+    } else 
+    {
+
+        get_command();
+
+  #ifdef SDSUPPORT
+  card.checkautostart(false);
+  #endif
+  if(buflen)
+  {
+    cmdbuffer_front_already_processed = false;
+    #ifdef SDSUPPORT
+      if(card.saving)
+      {
+        // Saving a G-code file onto an SD-card is in progress.
+        // Saving starts with M28, saving until M29 is seen.
+        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
+          card.write_command(CMDBUFFER_CURRENT_STRING);
+          if(card.logging)
+            process_commands();
+          else
+           SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
+        } else {
+          card.closefile();
+          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+        }
+      } else {
+        process_commands();
+      }
+    #else
+      process_commands();
+    #endif //SDSUPPORT
+
+    if (! cmdbuffer_front_already_processed && buflen)
+    {
+      // ptr points to the start of the block currently being processed.
+      // The first character in the block is the block type.      
+      char *ptr = cmdbuffer + bufindr;
+      if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+        // To support power panic, move the lenght of the command on the SD card to a planner buffer.
+        union {
+          struct {
+              char lo;
+              char hi;
+          } lohi;
+          uint16_t value;
+        } sdlen;
+        sdlen.value = 0;
+        {
+          // This block locks the interrupts globally for 3.25 us,
+          // which corresponds to a maximum repeat frequency of 307.69 kHz.
+          // This blocking is safe in the context of a 10kHz stepper driver interrupt
+          // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
+          cli();
+          // Reset the command to something, which will be ignored by the power panic routine,
+          // so this buffer length will not be counted twice.
+          *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
+          // Extract the current buffer length.
+          sdlen.lohi.lo = *ptr ++;
+          sdlen.lohi.hi = *ptr;
+          // and pass it to the planner queue.
+          planner_add_sd_length(sdlen.value);
+          sei();
+        }
+	  }
+	  else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){ 
+		  
+		  cli();
+          *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
+          // and one for each command to previous block in the planner queue.
+          planner_add_sd_length(1);
+          sei();
+	  }
+      // Now it is safe to release the already processed command block. If interrupted by the power panic now,
+      // this block's SD card length will not be counted twice as its command type has been replaced 
+      // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
+      cmdqueue_pop_front();
+    }
+	host_keepalive();
+  }
+}
+  //check heater every n milliseconds
+  manage_heater();
+  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
+  checkHitEndstops();
+  lcd_update(0);
+#ifdef PAT9125
+	fsensor_update();
+#endif //PAT9125
+#ifdef TMC2130
+	tmc2130_check_overtemp();
+	if (tmc2130_sg_crash)
+	{
+		uint8_t crash = tmc2130_sg_crash;
+		tmc2130_sg_crash = 0;
+//		crashdet_stop_and_save_print();
+		switch (crash)
+		{
+		case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
+		case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
+		case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
+		}
+	}
+#endif //TMC2130
+
+}
+
+#define DEFINE_PGM_READ_ANY(type, reader)       \
+    static inline type pgm_read_any(const type *p)  \
+    { return pgm_read_##reader##_near(p); }
+
+DEFINE_PGM_READ_ANY(float,       float);
+DEFINE_PGM_READ_ANY(signed char, byte);
+
+#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
+static const PROGMEM type array##_P[3] =        \
+    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
+static inline type array(int axis)              \
+    { return pgm_read_any(&array##_P[axis]); }  \
+type array##_ext(int axis)                      \
+    { return pgm_read_any(&array##_P[axis]); }
+
+XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
+XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
+XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
+XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
+
+static void axis_is_at_home(int axis) {
+  current_position[axis] = base_home_pos(axis) + add_homing[axis];
+  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
+  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
+}
+
+
+inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
+inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
+
+
+static void setup_for_endstop_move(bool enable_endstops_now = true) {
+    saved_feedrate = feedrate;
+    saved_feedmultiply = feedmultiply;
+    feedmultiply = 100;
+    previous_millis_cmd = millis();
+    
+    enable_endstops(enable_endstops_now);
+}
+
+static void clean_up_after_endstop_move() {
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+    enable_endstops(false);
+#endif
+    
+    feedrate = saved_feedrate;
+    feedmultiply = saved_feedmultiply;
+    previous_millis_cmd = millis();
+}
+
+
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef AUTO_BED_LEVELING_GRID
+static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
+{
+    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
+    planeNormal.debug("planeNormal");
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+    //bedLevel.debug("bedLevel");
+
+    //plan_bed_level_matrix.debug("bed level before");
+    //vector_3 uncorrected_position = plan_get_position_mm();
+    //uncorrected_position.debug("position before");
+
+    vector_3 corrected_position = plan_get_position();
+//    corrected_position.debug("position after");
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = corrected_position.z;
+
+    // put the bed at 0 so we don't go below it.
+    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
+
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+#else // not AUTO_BED_LEVELING_GRID
+
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
+
+    plan_bed_level_matrix.set_to_identity();
+
+    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
+    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
+    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
+
+    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
+    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
+    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
+    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
+
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+    vector_3 corrected_position = plan_get_position();
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = corrected_position.z;
+
+    // put the bed at 0 so we don't go below it.
+    current_position[Z_AXIS] = zprobe_zoffset;
+
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+}
+
+#endif // AUTO_BED_LEVELING_GRID
+
+static void run_z_probe() {
+    plan_bed_level_matrix.set_to_identity();
+    feedrate = homing_feedrate[Z_AXIS];
+
+    // move down until you find the bed
+    float zPosition = -10;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+        // we have to let the planner know where we are right now as it is not where we said to go.
+    zPosition = st_get_position_mm(Z_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+
+    // move up the retract distance
+    zPosition += home_retract_mm(Z_AXIS);
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    // move back down slowly to find bed
+    feedrate = homing_feedrate[Z_AXIS]/4;
+    zPosition -= home_retract_mm(Z_AXIS) * 2;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+    // make sure the planner knows where we are as it may be a bit different than we last said to move to
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+static void do_blocking_move_to(float x, float y, float z) {
+    float oldFeedRate = feedrate;
+
+    feedrate = homing_feedrate[Z_AXIS];
+
+    current_position[Z_AXIS] = z;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    feedrate = XY_TRAVEL_SPEED;
+
+    current_position[X_AXIS] = x;
+    current_position[Y_AXIS] = y;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    feedrate = oldFeedRate;
+}
+
+static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
+    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
+}
+
+
+/// Probe bed height at position (x,y), returns the measured z value
+static float probe_pt(float x, float y, float z_before) {
+  // move to right place
+  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
+  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
+
+  run_z_probe();
+  float measured_z = current_position[Z_AXIS];
+
+  SERIAL_PROTOCOLRPGM(_T(MSG_BED));
+  SERIAL_PROTOCOLPGM(" x: ");
+  SERIAL_PROTOCOL(x);
+  SERIAL_PROTOCOLPGM(" y: ");
+  SERIAL_PROTOCOL(y);
+  SERIAL_PROTOCOLPGM(" z: ");
+  SERIAL_PROTOCOL(measured_z);
+  SERIAL_PROTOCOLPGM("\n");
+  return measured_z;
+}
+
+#endif // #ifdef ENABLE_AUTO_BED_LEVELING
+
+#ifdef LIN_ADVANCE
+   /**
+    * M900: Set and/or Get advance K factor and WH/D ratio
+    *
+    *  K<factor>                  Set advance K factor
+    *  R<ratio>                   Set ratio directly (overrides WH/D)
+    *  W<width> H<height> D<diam> Set ratio from WH/D
+    */
+inline void gcode_M900() {
+    st_synchronize();
+    
+    const float newK = code_seen('K') ? code_value_float() : -1;
+    if (newK >= 0) extruder_advance_k = newK;
+    
+    float newR = code_seen('R') ? code_value_float() : -1;
+    if (newR < 0) {
+        const float newD = code_seen('D') ? code_value_float() : -1,
+        newW = code_seen('W') ? code_value_float() : -1,
+        newH = code_seen('H') ? code_value_float() : -1;
+        if (newD >= 0 && newW >= 0 && newH >= 0)
+            newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
+    }
+    if (newR >= 0) advance_ed_ratio = newR;
+    
+    SERIAL_ECHO_START;
+    SERIAL_ECHOPGM("Advance K=");
+    SERIAL_ECHOLN(extruder_advance_k);
+    SERIAL_ECHOPGM(" E/D=");
+    const float ratio = advance_ed_ratio;
+    if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
+    }
+#endif // LIN_ADVANCE
+
+bool check_commands() {
+	bool end_command_found = false;
+	
+		while (buflen)
+		{
+		if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
+		if (!cmdbuffer_front_already_processed)
+			 cmdqueue_pop_front();
+		cmdbuffer_front_already_processed = false;
+		}
+	return end_command_found;
+	
+}
+
+#ifdef TMC2130
+bool calibrate_z_auto()
+{
+	//lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
+	lcd_clear();
+	lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
+	bool endstops_enabled  = enable_endstops(true);
+	int axis_up_dir = -home_dir(Z_AXIS);
+	tmc2130_home_enter(Z_AXIS_MASK);
+	current_position[Z_AXIS] = 0;
+	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	set_destination_to_current();
+	destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
+	feedrate = homing_feedrate[Z_AXIS];
+	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+	st_synchronize();
+//	current_position[axis] = 0;
+//	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	tmc2130_home_exit();
+    enable_endstops(false);
+	current_position[Z_AXIS] = 0;
+	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	set_destination_to_current();
+	destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
+	feedrate = homing_feedrate[Z_AXIS] / 2;
+	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+	st_synchronize();
+    enable_endstops(endstops_enabled);
+    current_position[Z_AXIS] = Z_MAX_POS+2.0;
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+	return true;
+}
+#endif //TMC2130
+
+void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
+{
+	bool endstops_enabled  = enable_endstops(true); //RP: endstops should be allways enabled durring homing
+#define HOMEAXIS_DO(LETTER) \
+((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
+    if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
+	{
+        int axis_home_dir = home_dir(axis);
+        feedrate = homing_feedrate[axis];
+
+#ifdef TMC2130
+    	tmc2130_home_enter(X_AXIS_MASK << axis);
+#endif //TMC2130
+
+
+        // Move right a bit, so that the print head does not touch the left end position,
+        // and the following left movement has a chance to achieve the required velocity
+        // for the stall guard to work.
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+		set_destination_to_current();
+//        destination[axis] = 11.f;
+        destination[axis] = 3.f;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        // Move left away from the possible collision with the collision detection disabled.
+        endstops_hit_on_purpose();
+        enable_endstops(false);
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = - 1.;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        // Now continue to move up to the left end stop with the collision detection enabled.
+        enable_endstops(true);
+        destination[axis] = - 1.1 * max_length(axis);
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+		for (uint8_t i = 0; i < cnt; i++)
+		{
+			// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
+			endstops_hit_on_purpose();
+			enable_endstops(false);
+			current_position[axis] = 0;
+			plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+			destination[axis] = 10.f;
+			plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+			st_synchronize();
+			endstops_hit_on_purpose();
+			// Now move left up to the collision, this time with a repeatable velocity.
+			enable_endstops(true);
+			destination[axis] = - 11.f;
+#ifdef TMC2130
+			feedrate = homing_feedrate[axis];
+#else //TMC2130
+			feedrate = homing_feedrate[axis] / 2;
+#endif //TMC2130
+			plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+			st_synchronize();
+#ifdef TMC2130
+			uint16_t mscnt = tmc2130_rd_MSCNT(axis);
+			if (pstep) pstep[i] = mscnt >> 4;
+			printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
+#endif //TMC2130
+		}
+		endstops_hit_on_purpose();
+		enable_endstops(false);
+
+#ifdef TMC2130
+		uint8_t orig = tmc2130_home_origin[axis];
+		uint8_t back = tmc2130_home_bsteps[axis];
+		if (tmc2130_home_enabled && (orig <= 63))
+		{
+			tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
+			if (back > 0)
+				tmc2130_do_steps(axis, back, 1, 1000);
+		}
+		else
+			tmc2130_do_steps(axis, 8, 2, 1000);
+		tmc2130_home_exit();
+#endif //TMC2130
+
+        axis_is_at_home(axis);
+        axis_known_position[axis] = true;
+        // Move from minimum
+#ifdef TMC2130
+        float dist = 0.01f * tmc2130_home_fsteps[axis];
+#else //TMC2130
+        float dist = 0.01f * 64;
+#endif //TMC2130
+        current_position[axis] -= dist;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        current_position[axis] += dist;
+        destination[axis] = current_position[axis];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
+        st_synchronize();
+
+   		feedrate = 0.0;
+    }
+    else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
+	{
+#ifdef TMC2130
+		FORCE_HIGH_POWER_START;
+#endif	
+        int axis_home_dir = home_dir(axis);
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
+        feedrate = homing_feedrate[axis];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+#ifdef TMC2130
+		if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
+			FORCE_HIGH_POWER_END;
+			kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
+			return; 
+		}
+#endif //TMC2130
+        current_position[axis] = 0;
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[axis] = -home_retract_mm(axis) * axis_home_dir;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+        destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
+        feedrate = homing_feedrate[axis]/2 ;
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+#ifdef TMC2130
+		if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
+			FORCE_HIGH_POWER_END;
+			kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
+			return; 
+		}
+#endif //TMC2130
+        axis_is_at_home(axis);
+        destination[axis] = current_position[axis];
+        feedrate = 0.0;
+        endstops_hit_on_purpose();
+        axis_known_position[axis] = true;
+#ifdef TMC2130
+		FORCE_HIGH_POWER_END;
+#endif	
+    }
+    enable_endstops(endstops_enabled);
+}
+
+/**/
+void home_xy()
+{
+    set_destination_to_current();
+    homeaxis(X_AXIS);
+    homeaxis(Y_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+    endstops_hit_on_purpose();
+}
+
+void refresh_cmd_timeout(void)
+{
+  previous_millis_cmd = millis();
+}
+
+#ifdef FWRETRACT
+  void retract(bool retracting, bool swapretract = false) {
+    if(retracting && !retracted[active_extruder]) {
+      destination[X_AXIS]=current_position[X_AXIS];
+      destination[Y_AXIS]=current_position[Y_AXIS];
+      destination[Z_AXIS]=current_position[Z_AXIS];
+      destination[E_AXIS]=current_position[E_AXIS];
+      current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
+      plan_set_e_position(current_position[E_AXIS]);
+      float oldFeedrate = feedrate;
+      feedrate=retract_feedrate*60;
+      retracted[active_extruder]=true;
+      prepare_move();
+      current_position[Z_AXIS]-=retract_zlift;
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      prepare_move();
+      feedrate = oldFeedrate;
+    } else if(!retracting && retracted[active_extruder]) {
+      destination[X_AXIS]=current_position[X_AXIS];
+      destination[Y_AXIS]=current_position[Y_AXIS];
+      destination[Z_AXIS]=current_position[Z_AXIS];
+      destination[E_AXIS]=current_position[E_AXIS];
+      current_position[Z_AXIS]+=retract_zlift;
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
+      plan_set_e_position(current_position[E_AXIS]);
+      float oldFeedrate = feedrate;
+      feedrate=retract_recover_feedrate*60;
+      retracted[active_extruder]=false;
+      prepare_move();
+      feedrate = oldFeedrate;
+    }
+  } //retract
+#endif //FWRETRACT
+
+void trace() {
+    tone(BEEPER, 440);
+    delay(25);
+    noTone(BEEPER);
+    delay(20);
+}
+/*
+void ramming() {
+//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;
+	if (current_temperature[0] < 230) {
+		//PLA
+
+		max_feedrate[E_AXIS] = 50;
+		//current_position[E_AXIS] -= 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		//current_position[E_AXIS] += 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		current_position[E_AXIS] += 5.4;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
+		current_position[E_AXIS] += 3.2;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		current_position[E_AXIS] += 3;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
+		st_synchronize();
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= 82;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
+		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+		current_position[E_AXIS] -= 20;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		st_synchronize();
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] += 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] += 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		st_synchronize();
+	}
+	else {
+		//ABS
+		max_feedrate[E_AXIS] = 50;
+		//current_position[E_AXIS] -= 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		//current_position[E_AXIS] += 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		current_position[E_AXIS] += 3.1;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
+		current_position[E_AXIS] += 3.1;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
+		current_position[E_AXIS] += 4;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		//current_position[X_AXIS] += 23; //delay
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+		//current_position[X_AXIS] -= 23; //delay
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+		delay(4700);
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= 92;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
+		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		st_synchronize();
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		st_synchronize();
+
+	}
+  }
+*/
+
+#ifdef TMC2130
+void force_high_power_mode(bool start_high_power_section) {
+	uint8_t silent;
+	silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+	if (silent == 1) {
+		//we are in silent mode, set to normal mode to enable crash detection
+
+    // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
+		st_synchronize();
+		cli();
+		tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
+		tmc2130_init();
+    // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
+    // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
+    st_reset_timer();
+		sei();
+	}
+}
+#endif //TMC2130
+
+void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
+	gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
+}
+
+void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
+	st_synchronize();
+
+#if 0
+	SERIAL_ECHOPGM("G28, initial ");  print_world_coordinates();
+	SERIAL_ECHOPGM("G28, initial ");  print_physical_coordinates();
+#endif
+
+	// Flag for the display update routine and to disable the print cancelation during homing.
+	homing_flag = true;
+
+	// Which axes should be homed?
+	bool home_x = home_x_axis;
+	bool home_y = home_y_axis;
+	bool home_z = home_z_axis;
+
+	// Either all X,Y,Z codes are present, or none of them.
+	bool home_all_axes = home_x == home_y && home_x == home_z;
+	if (home_all_axes)
+		// No X/Y/Z code provided means to home all axes.
+		home_x = home_y = home_z = true;
+
+	//if we are homing all axes, first move z higher to protect heatbed/steel sheet
+	if (home_all_axes) {
+		current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
+		feedrate = homing_feedrate[Z_AXIS];
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
+		st_synchronize();
+	}
+#ifdef ENABLE_AUTO_BED_LEVELING
+      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
+#endif //ENABLE_AUTO_BED_LEVELING
+            
+      // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+      // the planner will not perform any adjustments in the XY plane. 
+      // Wait for the motors to stop and update the current position with the absolute values.
+      world2machine_revert_to_uncorrected();
+
+      // For mesh bed leveling deactivate the matrix temporarily.
+      // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
+      // in a single axis only.
+      // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
+#ifdef MESH_BED_LEVELING
+      uint8_t mbl_was_active = mbl.active;
+      mbl.active = 0;
+      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+#endif
+
+      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+      // consumed during the first movements following this statement.
+      if (home_z)
+        babystep_undo();
+
+      saved_feedrate = feedrate;
+      saved_feedmultiply = feedmultiply;
+      feedmultiply = 100;
+      previous_millis_cmd = millis();
+
+      enable_endstops(true);
+
+      memcpy(destination, current_position, sizeof(destination));
+      feedrate = 0.0;
+
+      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
+      if(home_z)
+        homeaxis(Z_AXIS);
+      #endif
+
+      #ifdef QUICK_HOME
+      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
+      if(home_x && home_y)  //first diagonal move
+      {
+        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
+
+        int x_axis_home_dir = home_dir(X_AXIS);
+
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
+        feedrate = homing_feedrate[X_AXIS];
+        if(homing_feedrate[Y_AXIS]<feedrate)
+          feedrate = homing_feedrate[Y_AXIS];
+        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
+          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
+        } else {
+          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
+        }
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+
+        axis_is_at_home(X_AXIS);
+        axis_is_at_home(Y_AXIS);
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[X_AXIS] = current_position[X_AXIS];
+        destination[Y_AXIS] = current_position[Y_AXIS];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        feedrate = 0.0;
+        st_synchronize();
+        endstops_hit_on_purpose();
+
+        current_position[X_AXIS] = destination[X_AXIS];
+        current_position[Y_AXIS] = destination[Y_AXIS];
+        current_position[Z_AXIS] = destination[Z_AXIS];
+      }
+      #endif /* QUICK_HOME */
+
+#ifdef TMC2130	 
+      if(home_x)
+	  {
+		if (!calib)
+			homeaxis(X_AXIS);
+		else
+			tmc2130_home_calibrate(X_AXIS);
+	  }
+
+      if(home_y)
+	  {
+		if (!calib)
+	        homeaxis(Y_AXIS);
+		else
+			tmc2130_home_calibrate(Y_AXIS);
+	  }
+#endif //TMC2130
+
+
+      if(home_x_axis && home_x_value != 0)
+        current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
+
+      if(home_y_axis && home_y_value != 0)
+        current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
+
+      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
+        #ifndef Z_SAFE_HOMING
+          if(home_z) {
+            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+              feedrate = max_feedrate[Z_AXIS];
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, move X&Y to safe position for home
+      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) 
+      			  {
+                homeaxis(X_AXIS);
+                homeaxis(Y_AXIS);
+      			  } 
+              // 1st mesh bed leveling measurement point, corrected.
+              world2machine_initialize();
+              world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
+              world2machine_reset();
+              if (destination[Y_AXIS] < Y_MIN_POS)
+                  destination[Y_AXIS] = Y_MIN_POS;
+              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed
+              feedrate = homing_feedrate[Z_AXIS]/10;
+              current_position[Z_AXIS] = 0;
+              enable_endstops(false);
+#ifdef DEBUG_BUILD
+              SERIAL_ECHOLNPGM("plan_set_position()");
+              MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
+              MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
+#endif
+              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+#ifdef DEBUG_BUILD
+              SERIAL_ECHOLNPGM("plan_buffer_line()");
+              MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
+              MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
+              MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
+#endif
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+              current_position[X_AXIS] = destination[X_AXIS];
+              current_position[Y_AXIS] = destination[Y_AXIS];
+              enable_endstops(true);
+              endstops_hit_on_purpose();
+              homeaxis(Z_AXIS);
+            #else // MESH_BED_LEVELING
+              homeaxis(Z_AXIS);
+            #endif // MESH_BED_LEVELING
+          }
+        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
+          if(home_all_axes) {
+            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
+            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
+            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+            feedrate = XY_TRAVEL_SPEED/60;
+            current_position[Z_AXIS] = 0;
+
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+            st_synchronize();
+            current_position[X_AXIS] = destination[X_AXIS];
+            current_position[Y_AXIS] = destination[Y_AXIS];
+
+            homeaxis(Z_AXIS);
+          }
+                                                // Let's see if X and Y are homed and probe is inside bed area.
+          if(home_z) {
+            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
+              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
+              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
+              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
+              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
+
+              current_position[Z_AXIS] = 0;
+              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+              feedrate = max_feedrate[Z_AXIS];
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+
+              homeaxis(Z_AXIS);
+            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
+                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+            } else {
+                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
+            }
+          }
+        #endif // Z_SAFE_HOMING
+      #endif // Z_HOME_DIR < 0
+
+      if(home_z_axis && home_z_value != 0)
+        current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
+      #ifdef ENABLE_AUTO_BED_LEVELING
+        if(home_z)
+          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
+      #endif
+      
+      // Set the planner and stepper routine positions.
+      // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
+      // contains the machine coordinates.
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+      #ifdef ENDSTOPS_ONLY_FOR_HOMING
+        enable_endstops(false);
+      #endif
+
+      feedrate = saved_feedrate;
+      feedmultiply = saved_feedmultiply;
+      previous_millis_cmd = millis();
+      endstops_hit_on_purpose();
+#ifndef MESH_BED_LEVELING
+      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
+      // Offer the user to load the baby step value, which has been adjusted at the previous print session.
+      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
+          lcd_adjust_z();
+#endif
+
+    // Load the machine correction matrix
+    world2machine_initialize();
+    // and correct the current_position XY axes to match the transformed coordinate system.
+    world2machine_update_current();
+
+#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
+	if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
+		{
+      if (! home_z && mbl_was_active) {
+        // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
+        mbl.active = true;
+        // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
+        current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
+      }
+		}
+	else
+		{
+			st_synchronize();
+			homing_flag = false;
+	  }
+#endif
+
+	  if (farm_mode) { prusa_statistics(20); };
+
+	  homing_flag = false;
+#if 0
+      SERIAL_ECHOPGM("G28, final ");  print_world_coordinates();
+      SERIAL_ECHOPGM("G28, final ");  print_physical_coordinates();
+      SERIAL_ECHOPGM("G28, final ");  print_mesh_bed_leveling_table();
+#endif
+}
+
+
+bool gcode_M45(bool onlyZ, int8_t verbosity_level)
+{
+	bool final_result = false;
+	#ifdef TMC2130
+	FORCE_HIGH_POWER_START;
+	#endif // TMC2130
+	// Only Z calibration?
+	if (!onlyZ)
+	{
+		setTargetBed(0);
+		setTargetHotend(0, 0);
+		setTargetHotend(0, 1);
+		setTargetHotend(0, 2);
+		adjust_bed_reset(); //reset bed level correction
+	}
+
+	// Disable the default update procedure of the display. We will do a modal dialog.
+	lcd_update_enable(false);
+	// Let the planner use the uncorrected coordinates.
+	mbl.reset();
+	// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+	// the planner will not perform any adjustments in the XY plane. 
+	// Wait for the motors to stop and update the current position with the absolute values.
+	world2machine_revert_to_uncorrected();
+	// Reset the baby step value applied without moving the axes.
+	babystep_reset();
+	// Mark all axes as in a need for homing.
+	memset(axis_known_position, 0, sizeof(axis_known_position));
+
+	// Home in the XY plane.
+	//set_destination_to_current();
+	setup_for_endstop_move();
+	lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
+	home_xy();
+
+	enable_endstops(false);
+	current_position[X_AXIS] += 5;
+	current_position[Y_AXIS] += 5;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+	st_synchronize();
+
+	// Let the user move the Z axes up to the end stoppers.
+#ifdef TMC2130
+	if (calibrate_z_auto())
+	{
+#else //TMC2130
+	if (lcd_calibrate_z_end_stop_manual(onlyZ))
+	{
+#endif //TMC2130
+		refresh_cmd_timeout();
+		#ifndef STEEL_SHEET
+		if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
+		{
+			lcd_wait_for_cool_down();
+		}
+		#endif //STEEL_SHEET
+		if(!onlyZ)
+		{
+			KEEPALIVE_STATE(PAUSED_FOR_USER);
+			#ifdef STEEL_SHEET
+			bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
+			if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
+			#endif //STEEL_SHEET
+			lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
+		    lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
+			KEEPALIVE_STATE(IN_HANDLER);
+			lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
+			lcd_set_cursor(0, 2);
+			lcd_print(1);
+			lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
+		}
+		// Move the print head close to the bed.
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+
+		bool endstops_enabled  = enable_endstops(true);
+#ifdef TMC2130
+		tmc2130_home_enter(Z_AXIS_MASK);
+#endif //TMC2130
+
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+
+		st_synchronize();
+#ifdef TMC2130
+		tmc2130_home_exit();
+#endif //TMC2130
+		enable_endstops(endstops_enabled);
+
+		if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
+		{
+
+			int8_t verbosity_level = 0;
+			if (code_seen('V'))
+			{
+				// Just 'V' without a number counts as V1.
+				char c = strchr_pointer[1];
+				verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+			}
+
+			if (onlyZ)
+			{
+				clean_up_after_endstop_move();
+				// Z only calibration.
+				// Load the machine correction matrix
+				world2machine_initialize();
+				// and correct the current_position to match the transformed coordinate system.
+				world2machine_update_current();
+				//FIXME
+				bool result = sample_mesh_and_store_reference();
+				if (result)
+				{
+					if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
+						// Shipped, the nozzle height has been set already. The user can start printing now.
+						calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+						final_result = true;
+					// babystep_apply();
+				}
+			}
+			else
+			{
+				// Reset the baby step value and the baby step applied flag.
+				calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
+				eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+				// Complete XYZ calibration.
+				uint8_t point_too_far_mask = 0;
+				BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
+				clean_up_after_endstop_move();
+				// Print head up.
+				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+				st_synchronize();
+//#ifndef NEW_XYZCAL
+				if (result >= 0)
+				{
+					#ifdef HEATBED_V2
+					sample_z();
+					#else //HEATBED_V2
+					point_too_far_mask = 0;
+					// Second half: The fine adjustment.
+					// Let the planner use the uncorrected coordinates.
+					mbl.reset();
+					world2machine_reset();
+					// Home in the XY plane.
+					setup_for_endstop_move();
+					home_xy();
+					result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
+					clean_up_after_endstop_move();
+					// Print head up.
+					current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+					st_synchronize();
+					// if (result >= 0) babystep_apply();					
+					#endif //HEATBED_V2
+				}
+//#endif //NEW_XYZCAL
+				lcd_update_enable(true);
+				lcd_update(2);
+
+				lcd_bed_calibration_show_result(result, point_too_far_mask);
+				if (result >= 0)
+				{
+					// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
+					calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+					if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
+					final_result = true;
+				}
+			}
+#ifdef TMC2130
+			tmc2130_home_exit();
+#endif
+		}
+		else
+		{
+			lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
+			final_result = false;
+		}
+	}
+	else
+	{
+		// Timeouted.
+	}
+	lcd_update_enable(true);
+#ifdef TMC2130
+	FORCE_HIGH_POWER_END;
+#endif // TMC2130
+	return final_result;
+}
+
+void gcode_M114()
+{
+	SERIAL_PROTOCOLPGM("X:");
+	SERIAL_PROTOCOL(current_position[X_AXIS]);
+	SERIAL_PROTOCOLPGM(" Y:");
+	SERIAL_PROTOCOL(current_position[Y_AXIS]);
+	SERIAL_PROTOCOLPGM(" Z:");
+	SERIAL_PROTOCOL(current_position[Z_AXIS]);
+	SERIAL_PROTOCOLPGM(" E:");
+	SERIAL_PROTOCOL(current_position[E_AXIS]);
+
+	SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
+	SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
+	SERIAL_PROTOCOLPGM(" Y:");
+	SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
+	SERIAL_PROTOCOLPGM(" Z:");
+	SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
+	SERIAL_PROTOCOLPGM(" E:");
+	SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
+
+	SERIAL_PROTOCOLLN("");
+}
+
+void gcode_M701()
+{
+#if defined (SNMM) || defined (SNMM_V2)
+	extr_adj(snmm_extruder);//loads current extruder
+#else
+	enable_z();
+	custom_message = true;
+	custom_message_type = 2;
+
+	
+
+	lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
+	current_position[E_AXIS] += 40;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
+	st_synchronize();
+
+	if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
+	current_position[E_AXIS] += 30;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
+	st_synchronize();
+	current_position[E_AXIS] += 25;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+	st_synchronize();
+
+	tone(BEEPER, 500);
+	delay_keep_alive(50);
+	noTone(BEEPER);
+
+	if (!farm_mode && loading_flag) {
+		bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
+
+		while (!clean) {
+			lcd_update_enable(true);
+			lcd_update(2);
+			current_position[E_AXIS] += 25;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+			st_synchronize();
+			clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
+
+		}
+
+	}
+	lcd_update_enable(true);
+	lcd_update(2);
+	lcd_setstatuspgm(_T(WELCOME_MSG));
+	disable_z();
+	loading_flag = false;
+	custom_message = false;
+	custom_message_type = 0;
+#endif
+
+}
+/**
+ * @brief Get serial number from 32U2 processor
+ *
+ * Typical format of S/N is:CZPX0917X003XC13518
+ *
+ * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
+ *
+ * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
+ * reply is transmitted to serial port 1 character by character.
+ * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
+ * it is interrupted, so less, or no characters are retransmitted, only newline character is send
+ * in any case.
+ */
+static void gcode_PRUSA_SN()
+{
+    if (farm_mode) {
+        selectedSerialPort = 0;
+        putchar(';');
+        putchar('S');
+        int numbersRead = 0;
+        ShortTimer timeout;
+        timeout.start();
+
+        while (numbersRead < 19) {
+            while (MSerial.available() > 0) {
+                uint8_t serial_char = MSerial.read();
+                selectedSerialPort = 1;
+                putchar(serial_char);
+                numbersRead++;
+                selectedSerialPort = 0;
+            }
+            if (timeout.expired(100u)) break;
+        }
+        selectedSerialPort = 1;
+        putchar('\n');
+#if 0
+        for (int b = 0; b < 3; b++) {
+            tone(BEEPER, 110);
+            delay(50);
+            noTone(BEEPER);
+            delay(50);
+        }
+#endif
+    } else {
+        puts_P(_N("Not in farm mode."));
+    }
+}
+
+#ifdef BACKLASH_X
+extern uint8_t st_backlash_x;
+#endif //BACKLASH_X
+#ifdef BACKLASH_Y
+extern uint8_t st_backlash_y;
+#endif //BACKLASH_Y
+
+void process_commands()
+{
+	if (!buflen) return; //empty command
+  #ifdef FILAMENT_RUNOUT_SUPPORT
+    SET_INPUT(FR_SENS);
+  #endif
+
+#ifdef CMDBUFFER_DEBUG
+  SERIAL_ECHOPGM("Processing a GCODE command: ");
+  SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
+  SERIAL_ECHOLNPGM("");
+  SERIAL_ECHOPGM("In cmdqueue: ");
+  SERIAL_ECHO(buflen);
+  SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+  
+  unsigned long codenum; //throw away variable
+  char *starpos = NULL;
+#ifdef ENABLE_AUTO_BED_LEVELING
+  float x_tmp, y_tmp, z_tmp, real_z;
+#endif
+
+  // PRUSA GCODES
+  KEEPALIVE_STATE(IN_HANDLER);
+
+#ifdef SNMM
+  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+  int8_t SilentMode;
+#endif
+  
+  if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
+	  starpos = (strchr(strchr_pointer + 5, '*'));
+	  if (starpos != NULL)
+		  *(starpos) = '\0';
+	  lcd_setstatus(strchr_pointer + 5);
+  }
+
+#ifdef TMC2130
+	else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
+	{
+	  if(code_seen("CRASH_DETECTED"))
+	  {
+		  uint8_t mask = 0;
+		  if (code_seen("X")) mask |= X_AXIS_MASK;
+		  if (code_seen("Y")) mask |= Y_AXIS_MASK;
+		  crashdet_detected(mask);
+	  }
+	  else if(code_seen("CRASH_RECOVER"))
+		  crashdet_recover();
+	  else if(code_seen("CRASH_CANCEL"))
+		  crashdet_cancel();
+	}
+	else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
+	{
+		if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
+		{
+			uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
+			axis = (axis == 'E')?3:(axis - 'X');
+			if (axis < 4)
+			{
+				uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
+				tmc2130_set_wave(axis, 247, fac);
+			}
+		}
+		else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
+		{
+			uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
+			axis = (axis == 'E')?3:(axis - 'X');
+			if (axis < 4)
+			{
+				uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
+				uint16_t res = tmc2130_get_res(axis);
+				tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
+			}
+		}
+		else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
+		{
+			uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
+			axis = (axis == 'E')?3:(axis - 'X');
+			if (axis < 4)
+			{
+				uint8_t chop0 = tmc2130_chopper_config[axis].toff;
+				uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
+				uint8_t chop2 = tmc2130_chopper_config[axis].hend;
+				uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
+				char* str_end = 0;
+				if (CMDBUFFER_CURRENT_STRING[14])
+				{
+					chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
+					if (str_end && *str_end)
+					{
+						chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
+						if (str_end && *str_end)
+						{
+							chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
+							if (str_end && *str_end)
+								chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
+						}
+					}
+				}
+				tmc2130_chopper_config[axis].toff = chop0;
+				tmc2130_chopper_config[axis].hstr = chop1 & 7;
+				tmc2130_chopper_config[axis].hend = chop2 & 15;
+				tmc2130_chopper_config[axis].tbl = chop3 & 3;
+				tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
+				//printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
+			}
+		}
+	}
+#ifdef BACKLASH_X
+	else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
+	{
+		uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
+		st_backlash_x = bl;
+		printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
+	}
+#endif //BACKLASH_X
+#ifdef BACKLASH_Y
+	else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
+	{
+		uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
+		st_backlash_y = bl;
+		printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
+	}
+#endif //BACKLASH_Y
+#endif //TMC2130
+
+  else if(code_seen("PRUSA")){
+		if (code_seen("Ping")) {  //PRUSA Ping
+			if (farm_mode) {
+				PingTime = millis();
+				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
+			}	  
+		}
+		else if (code_seen("PRN")) {
+		  printf_P(_N("%d"), status_number);
+
+        }else if (code_seen("FAN")) {
+			printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
+		}else if (code_seen("fn")) {
+		  if (farm_mode) {
+			printf_P(_N("%d"), farm_no);
+		  }
+		  else {
+			  puts_P(_N("Not in farm mode."));
+		  }
+		  
+		}
+		else if (code_seen("thx")) {
+			no_response = false;
+		}	
+		else if (code_seen("MMURES")) {
+			fprintf_P(uart2io, PSTR("x0"));
+		}
+		else if (code_seen("RESET")) {
+            // careful!
+            if (farm_mode) {
+#ifdef WATCHDOG
+                boot_app_magic = BOOT_APP_MAGIC;
+                boot_app_flags = BOOT_APP_FLG_RUN;
+				wdt_enable(WDTO_15MS);
+				cli();
+				while(1);
+#else //WATCHDOG
+                asm volatile("jmp 0x3E000");
+#endif //WATCHDOG
+            }
+            else {
+                MYSERIAL.println("Not in farm mode.");
+            }
+		}else if (code_seen("fv")) {
+        // get file version
+        #ifdef SDSUPPORT
+        card.openFile(strchr_pointer + 3,true);
+        while (true) {
+            uint16_t readByte = card.get();
+            MYSERIAL.write(readByte);
+            if (readByte=='\n') {
+                break;
+            }
+        }
+        card.closefile();
+
+        #endif // SDSUPPORT
+
+    } else if (code_seen("M28")) {
+        trace();
+        prusa_sd_card_upload = true;
+        card.openFile(strchr_pointer+4,false);
+
+	} else if (code_seen("SN")) { 
+        gcode_PRUSA_SN();
+
+	} else if(code_seen("Fir")){
+
+      SERIAL_PROTOCOLLN(FW_VERSION);
+
+    } else if(code_seen("Rev")){
+
+      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
+
+    } else if(code_seen("Lang")) {
+	  lang_reset();
+
+	} else if(code_seen("Lz")) {
+      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
+
+	} else if(code_seen("Beat")) {
+        // Kick farm link timer
+        kicktime = millis();
+
+    } else if(code_seen("FR")) {
+        // Factory full reset
+        factory_reset(0,true);        
+    }
+    //else if (code_seen('Cal')) {
+		//  lcd_calibration();
+	  // }
+
+  }  
+  else if (code_seen('^')) {
+    // nothing, this is a version line
+  } else if(code_seen('G'))
+  {
+    switch((int)code_value())
+    {
+    case 0: // G0 -> G1
+    case 1: // G1
+      if(Stopped == false) {
+
+        #ifdef FILAMENT_RUNOUT_SUPPORT
+            
+            if(READ(FR_SENS)){
+
+                        feedmultiplyBckp=feedmultiply;
+                        float target[4];
+                        float lastpos[4];
+                        target[X_AXIS]=current_position[X_AXIS];
+                        target[Y_AXIS]=current_position[Y_AXIS];
+                        target[Z_AXIS]=current_position[Z_AXIS];
+                        target[E_AXIS]=current_position[E_AXIS];
+                        lastpos[X_AXIS]=current_position[X_AXIS];
+                        lastpos[Y_AXIS]=current_position[Y_AXIS];
+                        lastpos[Z_AXIS]=current_position[Z_AXIS];
+                        lastpos[E_AXIS]=current_position[E_AXIS];
+                        //retract by E
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+                        
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
+
+                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+                        
+                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+                         
+                 
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
+
+                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
+                          
+
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+                        //finish moves
+                        st_synchronize();
+                        //disable extruder steppers so filament can be removed
+                        disable_e0();
+                        disable_e1();
+                        disable_e2();
+                        delay(100);
+                        
+                        //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
+                        uint8_t cnt=0;
+                        int counterBeep = 0;
+                        lcd_wait_interact();
+                        while(!lcd_clicked()){
+                          cnt++;
+                          manage_heater();
+                          manage_inactivity(true);
+                          //lcd_update(0);
+                          if(cnt==0)
+                          {
+                          #if BEEPER > 0
+                          
+                            if (counterBeep== 500){
+                              counterBeep = 0;
+                              
+                            }
+                          
+                            
+                            SET_OUTPUT(BEEPER);
+                            if (counterBeep== 0){
+                              WRITE(BEEPER,HIGH);
+                            }
+                            
+                            if (counterBeep== 20){
+                              WRITE(BEEPER,LOW);
+                            }
+                            
+                            
+                            
+                          
+                            counterBeep++;
+                          #else
+                          #endif
+                          }
+                        }
+                        
+                        WRITE(BEEPER,LOW);
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
+                        
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                        
+                 
+                        
+                        
+                        
+                        lcd_change_fil_state = 0;
+                        lcd_loading_filament();
+                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+                        
+                          lcd_change_fil_state = 0;
+                          lcd_alright();
+                          switch(lcd_change_fil_state){
+                          
+                             case 2:
+                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
+                        
+                        
+                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                                      
+                                     
+                                     lcd_loading_filament();
+                                     break;
+                             case 3:
+                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                                     lcd_loading_color();
+                                     break;
+                                          
+                             default:
+                                     lcd_change_success();
+                                     break;
+                          }
+                          
+                        }
+                        
+
+                        
+                      target[E_AXIS]+= 5;
+                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+                        
+                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+                        
+
+                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
+                        //plan_set_e_position(current_position[E_AXIS]);
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
+                        
+                        
+                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+                        
+                      
+                             
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
+                        
+                        
+                        plan_set_e_position(lastpos[E_AXIS]);
+                        
+                        feedmultiply=feedmultiplyBckp;
+                        
+                     
+                        
+                        char cmd[9];
+
+                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+                        enquecommand(cmd);
+
+            }
+
+
+
+        #endif
+
+
+        get_coordinates(); // For X Y Z E F
+		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
+			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
+		}
+          #ifdef FWRETRACT
+            if(autoretract_enabled)
+            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
+              float echange=destination[E_AXIS]-current_position[E_AXIS];
+
+              if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
+                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
+                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
+                  retract(!retracted[active_extruder]);
+                  return;
+              }
+
+
+            }
+          #endif //FWRETRACT
+        prepare_move();
+        //ClearToSend();
+      }
+      break;
+    case 2: // G2  - CW ARC
+      if(Stopped == false) {
+        get_arc_coordinates();
+        prepare_arc_move(true);
+      }
+      break;
+    case 3: // G3  - CCW ARC
+      if(Stopped == false) {
+        get_arc_coordinates();
+        prepare_arc_move(false);
+      }
+      break;
+    case 4: // G4 dwell      
+      codenum = 0;
+      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+	  if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
+      st_synchronize();
+      codenum += millis();  // keep track of when we started waiting
+      previous_millis_cmd = millis();
+      while(millis() < codenum) {
+        manage_heater();
+        manage_inactivity();
+        lcd_update(0);
+      }
+      break;
+      #ifdef FWRETRACT
+      case 10: // G10 retract
+       #if EXTRUDERS > 1
+        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
+        retract(true,retracted_swap[active_extruder]);
+       #else
+        retract(true);
+       #endif
+      break;
+      case 11: // G11 retract_recover
+       #if EXTRUDERS > 1
+        retract(false,retracted_swap[active_extruder]);
+       #else
+        retract(false);
+       #endif 
+      break;
+      #endif //FWRETRACT
+    case 28: //G28 Home all Axis one at a time
+    {
+      long home_x_value = 0;
+      long home_y_value = 0;
+      long home_z_value = 0;
+      // Which axes should be homed?
+      bool home_x = code_seen(axis_codes[X_AXIS]);
+      home_x_value = code_value_long();
+      bool home_y = code_seen(axis_codes[Y_AXIS]);
+      home_y_value = code_value_long();
+      bool home_z = code_seen(axis_codes[Z_AXIS]);
+      home_z_value = code_value_long();
+      bool without_mbl = code_seen('W');
+      // calibrate?
+      bool calib = code_seen('C');
+      gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
+      if ((home_x || home_y || without_mbl || home_z) == false) {
+         // Push the commands to the front of the message queue in the reverse order!
+         // There shall be always enough space reserved for these commands.
+         goto case_G80;
+      }
+      break;
+    }
+#ifdef ENABLE_AUTO_BED_LEVELING
+    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+        {
+            #if Z_MIN_PIN == -1
+            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
+            #endif
+
+            // Prevent user from running a G29 without first homing in X and Y
+            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
+            {
+                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+                break; // abort G29, since we don't know where we are
+            }
+
+            st_synchronize();
+            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
+            //vector_3 corrected_position = plan_get_position_mm();
+            //corrected_position.debug("position before G29");
+            plan_bed_level_matrix.set_to_identity();
+            vector_3 uncorrected_position = plan_get_position();
+            //uncorrected_position.debug("position durring G29");
+            current_position[X_AXIS] = uncorrected_position.x;
+            current_position[Y_AXIS] = uncorrected_position.y;
+            current_position[Z_AXIS] = uncorrected_position.z;
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+#ifdef AUTO_BED_LEVELING_GRID
+            // probe at the points of a lattice grid
+
+            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+
+
+            // solve the plane equation ax + by + d = z
+            // A is the matrix with rows [x y 1] for all the probed points
+            // B is the vector of the Z positions
+            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+
+            // "A" matrix of the linear system of equations
+            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
+            // "B" vector of Z points
+            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
+
+
+            int probePointCounter = 0;
+            bool zig = true;
+
+            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
+            {
+              int xProbe, xInc;
+              if (zig)
+              {
+                xProbe = LEFT_PROBE_BED_POSITION;
+                //xEnd = RIGHT_PROBE_BED_POSITION;
+                xInc = xGridSpacing;
+                zig = false;
+              } else // zag
+              {
+                xProbe = RIGHT_PROBE_BED_POSITION;
+                //xEnd = LEFT_PROBE_BED_POSITION;
+                xInc = -xGridSpacing;
+                zig = true;
+              }
+
+              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
+              {
+                float z_before;
+                if (probePointCounter == 0)
+                {
+                  // raise before probing
+                  z_before = Z_RAISE_BEFORE_PROBING;
+                } else
+                {
+                  // raise extruder
+                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
+                }
+
+                float measured_z = probe_pt(xProbe, yProbe, z_before);
+
+                eqnBVector[probePointCounter] = measured_z;
+
+                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
+                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
+                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
+                probePointCounter++;
+                xProbe += xInc;
+              }
+            }
+            clean_up_after_endstop_move();
+
+            // solve lsq problem
+            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
+
+            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
+            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
+            SERIAL_PROTOCOLPGM(" b: ");
+            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
+            SERIAL_PROTOCOLPGM(" d: ");
+            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
+
+
+            set_bed_level_equation_lsq(plane_equation_coefficients);
+
+            free(plane_equation_coefficients);
+
+#else // AUTO_BED_LEVELING_GRID not defined
+
+            // Probe at 3 arbitrary points
+            // probe 1
+            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
+
+            // probe 2
+            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+            // probe 3
+            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+            clean_up_after_endstop_move();
+
+            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
+
+
+#endif // AUTO_BED_LEVELING_GRID
+            st_synchronize();
+
+            // The following code correct the Z height difference from z-probe position and hotend tip position.
+            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
+            // When the bed is uneven, this height must be corrected.
+            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
+            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
+            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+            z_tmp = current_position[Z_AXIS];
+
+            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
+            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        }
+        break;
+#ifndef Z_PROBE_SLED
+    case 30: // G30 Single Z Probe
+        {
+            st_synchronize();
+            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+
+            run_z_probe();
+            SERIAL_PROTOCOLPGM(_T(MSG_BED));
+            SERIAL_PROTOCOLPGM(" X: ");
+            SERIAL_PROTOCOL(current_position[X_AXIS]);
+            SERIAL_PROTOCOLPGM(" Y: ");
+            SERIAL_PROTOCOL(current_position[Y_AXIS]);
+            SERIAL_PROTOCOLPGM(" Z: ");
+            SERIAL_PROTOCOL(current_position[Z_AXIS]);
+            SERIAL_PROTOCOLPGM("\n");
+
+            clean_up_after_endstop_move();
+        }
+        break;
+#else
+    case 31: // dock the sled
+        dock_sled(true);
+        break;
+    case 32: // undock the sled
+        dock_sled(false);
+        break;
+#endif // Z_PROBE_SLED
+#endif // ENABLE_AUTO_BED_LEVELING
+            
+#ifdef MESH_BED_LEVELING
+    case 30: // G30 Single Z Probe
+        {
+            st_synchronize();
+            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+
+            find_bed_induction_sensor_point_z(-10.f, 3);
+
+			printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
+
+            clean_up_after_endstop_move();
+        }
+        break;
+	
+
+	case 75:
+	{
+		for (int i = 40; i <= 110; i++)
+			printf_P(_N("%d  %.2f"), i, temp_comp_interpolation(i));
+	}
+	break;
+
+	case 76: //PINDA probe temperature calibration
+	{
+#ifdef PINDA_THERMISTOR
+		if (true)
+		{
+
+			if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
+				//we need to know accurate position of first calibration point
+				//if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
+				lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
+				break;
+			}
+			
+			if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
+			{
+				// We don't know where we are! HOME!
+				// Push the commands to the front of the message queue in the reverse order!
+				// There shall be always enough space reserved for these commands.
+				repeatcommand_front(); // repeat G76 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+				break;
+			}
+			lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
+			bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
+			
+			if (result)
+			{
+				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				current_position[Z_AXIS] = 50;
+				current_position[Y_AXIS] = 180;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				st_synchronize();
+				lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
+				current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
+				current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				st_synchronize();
+				gcode_G28(false, false, true);
+
+			}
+			if ((current_temperature_pinda > 35) && (farm_mode == false)) {
+				//waiting for PIDNA probe to cool down in case that we are not in farm mode
+				current_position[Z_AXIS] = 100;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
+					lcd_temp_cal_show_result(false);
+					break;
+				}
+			}
+			lcd_update_enable(true);
+			KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
+			SERIAL_ECHOLNPGM("PINDA probe calibration start");
+
+			float zero_z;
+			int z_shift = 0; //unit: steps
+			float start_temp = 5 * (int)(current_temperature_pinda / 5);
+			if (start_temp < 35) start_temp = 35;
+			if (start_temp < current_temperature_pinda) start_temp += 5;
+			printf_P(_N("start temperature: %.1f\n"), start_temp);
+
+//			setTargetHotend(200, 0);
+			setTargetBed(70 + (start_temp - 30));
+
+			custom_message = true;
+			custom_message_type = 4;
+			custom_message_state = 1;
+			custom_message = _T(MSG_TEMP_CALIBRATION);
+			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[X_AXIS] = PINDA_PREHEAT_X;
+			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+
+			while (current_temperature_pinda < start_temp)
+			{
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+
+			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
+
+			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+
+			bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
+			if (find_z_result == false) {
+				lcd_temp_cal_show_result(find_z_result);
+				break;
+			}
+			zero_z = current_position[Z_AXIS];
+
+			printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
+
+			int i = -1; for (; i < 5; i++)
+			{
+				float temp = (40 + i * 5);
+				printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
+				if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+				if (start_temp <= temp) break;
+			}
+
+			for (i++; i < 5; i++)
+			{
+				float temp = (40 + i * 5);
+				printf_P(_N("\nStep: %d/6\n"), i + 2);
+				custom_message_state = i + 2;
+				setTargetBed(50 + 10 * (temp - 30) / 5);
+//				setTargetHotend(255, 0);
+				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				current_position[X_AXIS] = PINDA_PREHEAT_X;
+				current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				st_synchronize();
+				while (current_temperature_pinda < temp)
+				{
+					delay_keep_alive(1000);
+					serialecho_temperatures();
+				}
+				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
+				current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+				st_synchronize();
+				find_z_result = find_bed_induction_sensor_point_z(-1.f);
+				if (find_z_result == false) {
+					lcd_temp_cal_show_result(find_z_result);
+					break;
+				}
+				z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+				printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
+
+				EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+
+			}
+			lcd_temp_cal_show_result(true);
+
+			break;
+		}
+#endif //PINDA_THERMISTOR
+
+		setTargetBed(PINDA_MIN_T);
+		float zero_z;
+		int z_shift = 0; //unit: steps
+		int t_c; // temperature
+
+		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+			// We don't know where we are! HOME!
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			repeatcommand_front(); // repeat G76 with all its parameters
+			enquecommand_front_P((PSTR("G28 W0")));
+			break;
+		}
+		puts_P(_N("PINDA probe calibration start"));
+		custom_message = true;
+		custom_message_type = 4;
+		custom_message_state = 1;
+		custom_message = _T(MSG_TEMP_CALIBRATION);
+		current_position[X_AXIS] = PINDA_PREHEAT_X;
+		current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+		current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		
+		while (abs(degBed() - PINDA_MIN_T) > 1) {
+			delay_keep_alive(1000);
+			serialecho_temperatures();
+		}
+		
+		//enquecommand_P(PSTR("M190 S50"));
+		for (int i = 0; i < PINDA_HEAT_T; i++) {
+			delay_keep_alive(1000);
+			serialecho_temperatures();
+		}
+		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
+
+		current_position[Z_AXIS] = 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		
+		find_bed_induction_sensor_point_z(-1.f);
+		zero_z = current_position[Z_AXIS];
+
+		printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
+
+		for (int i = 0; i<5; i++) {
+			printf_P(_N("\nStep: %d/6\n"), i + 2);
+			custom_message_state = i + 2;
+			t_c = 60 + i * 10;
+
+			setTargetBed(t_c);
+			current_position[X_AXIS] = PINDA_PREHEAT_X;
+			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+			while (degBed() < t_c) {
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+			for (int i = 0; i < PINDA_HEAT_T; i++) {
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+			current_position[Z_AXIS] = 5;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+			find_bed_induction_sensor_point_z(-1.f);
+			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+			printf_P(_N("\nTemperature: %d  Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
+
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
+			
+		
+		}
+		custom_message_type = 0;
+		custom_message = false;
+
+		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+		puts_P(_N("Temperature calibration done."));
+			disable_x();
+			disable_y();
+			disable_z();
+			disable_e0();
+			disable_e1();
+			disable_e2();
+			setTargetBed(0); //set bed target temperature back to 0
+		lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
+		temp_cal_active = true;
+		eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
+		lcd_update_enable(true);
+		lcd_update(2);		
+
+		
+
+	}
+	break;
+
+#ifdef DIS
+	case 77:
+	{
+		//G77 X200 Y150 XP100 YP15 XO10 Y015
+
+		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
+
+
+		//G77 X232 Y218 XP116 YP109 XO-11 YO0 
+
+		float dimension_x = 40;
+		float dimension_y = 40;
+		int points_x = 40;
+		int points_y = 40;
+		float offset_x = 74;
+		float offset_y = 33;
+
+		if (code_seen('X')) dimension_x = code_value();
+		if (code_seen('Y')) dimension_y = code_value();
+		if (code_seen('XP')) points_x = code_value();
+		if (code_seen('YP')) points_y = code_value();
+		if (code_seen('XO')) offset_x = code_value();
+		if (code_seen('YO')) offset_y = code_value();
+		
+		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+		
+	} break;
+	
+#endif
+
+	case 79: {
+		for (int i = 255; i > 0; i = i - 5) {
+			fanSpeed = i;
+			//delay_keep_alive(2000);
+			for (int j = 0; j < 100; j++) {
+				delay_keep_alive(100);
+
+			}
+			fan_speed[1];
+			printf_P(_N("%d: %d\n"), i, fan_speed[1]);
+		}
+	}break;
+
+	/**
+	* G80: Mesh-based Z probe, probes a grid and produces a
+	*      mesh to compensate for variable bed height
+	*
+	* The S0 report the points as below
+	*
+	*  +----> X-axis
+	*  |
+	*  |
+	*  v Y-axis
+	*
+	*/
+
+	case 80:
+#ifdef MK1BP
+		break;
+#endif //MK1BP
+	case_G80:
+	{
+		mesh_bed_leveling_flag = true;
+		int8_t verbosity_level = 0;
+		static bool run = false;
+
+		if (code_seen('V')) {
+			// Just 'V' without a number counts as V1.
+			char c = strchr_pointer[1];
+			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+		}
+		// Firstly check if we know where we are
+		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+			// We don't know where we are! HOME!
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+				repeatcommand_front(); // repeat G80 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+			}
+			else {
+				mesh_bed_leveling_flag = false;
+			}
+			break;
+		} 
+		
+		
+		bool temp_comp_start = true;
+#ifdef PINDA_THERMISTOR
+		temp_comp_start = false;
+#endif //PINDA_THERMISTOR
+
+		if (temp_comp_start)
+		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+				temp_compensation_start();
+				run = true;
+				repeatcommand_front(); // repeat G80 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+			}
+			else {
+				mesh_bed_leveling_flag = false;
+			}
+			break;
+		}
+		run = false;
+		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
+			mesh_bed_leveling_flag = false;
+			break;
+		}
+		// Save custom message state, set a new custom message state to display: Calibrating point 9.
+		bool custom_message_old = custom_message;
+		unsigned int custom_message_type_old = custom_message_type;
+		unsigned int custom_message_state_old = custom_message_state;
+		custom_message = true;
+		custom_message_type = 1;
+		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
+		lcd_update(1);
+
+		mbl.reset(); //reset mesh bed leveling
+
+					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+					 // consumed during the first movements following this statement.
+		babystep_undo();
+
+		// Cycle through all points and probe them
+		// First move up. During this first movement, the babystepping will be reverted.
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+		// The move to the first calibration point.
+		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+
+		#ifdef SUPPORT_VERBOSITY
+		if (verbosity_level >= 1) {
+			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
+		}
+		#endif //SUPPORT_VERBOSITY
+		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
+		// Wait until the move is finished.
+		st_synchronize();
+
+		int mesh_point = 0; //index number of calibration point
+
+		int ix = 0;
+		int iy = 0;
+
+		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+		#ifdef SUPPORT_VERBOSITY
+		if (verbosity_level >= 1) {
+			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
+		}
+		#endif // SUPPORT_VERBOSITY
+		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
+		const char *kill_message = NULL;
+		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+			// Get coords of a measuring point.
+			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
+			float z0 = 0.f;
+			if (has_z && mesh_point > 0) {
+				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
+				//#if 0
+				#ifdef SUPPORT_VERBOSITY
+				if (verbosity_level >= 1) {
+					SERIAL_ECHOLNPGM("");
+					SERIAL_ECHOPGM("Bed leveling, point: ");
+					MYSERIAL.print(mesh_point);
+					SERIAL_ECHOPGM(", calibration z: ");
+					MYSERIAL.print(z0, 5);
+					SERIAL_ECHOLNPGM("");
+				}
+				#endif // SUPPORT_VERBOSITY
+				//#endif
+			}
+
+			// Move Z up to MESH_HOME_Z_SEARCH.
+			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+			st_synchronize();
+
+			// Move to XY position of the sensor point.
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
+
+
+
+			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+			#ifdef SUPPORT_VERBOSITY
+			if (verbosity_level >= 1) {
+
+				SERIAL_PROTOCOL(mesh_point);
+				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
+			}
+			#endif // SUPPORT_VERBOSITY
+
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+			st_synchronize();
+
+			// Go down until endstop is hit
+			const float Z_CALIBRATION_THRESHOLD = 1.f;
+			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+				kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
+				break;
+			}
+			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
+				kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
+				break;
+			}
+			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
+				kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
+				break;
+			}
+			#ifdef SUPPORT_VERBOSITY
+			if (verbosity_level >= 10) {
+				SERIAL_ECHOPGM("X: ");
+				MYSERIAL.print(current_position[X_AXIS], 5);
+				SERIAL_ECHOLNPGM("");
+				SERIAL_ECHOPGM("Y: ");
+				MYSERIAL.print(current_position[Y_AXIS], 5);
+				SERIAL_PROTOCOLPGM("\n");
+			}
+			#endif // SUPPORT_VERBOSITY
+			float offset_z = 0;
+
+#ifdef PINDA_THERMISTOR
+			offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
+#endif //PINDA_THERMISTOR
+//			#ifdef SUPPORT_VERBOSITY
+/*			if (verbosity_level >= 1)
+			{
+				SERIAL_ECHOPGM("mesh bed leveling: ");
+				MYSERIAL.print(current_position[Z_AXIS], 5);
+				SERIAL_ECHOPGM(" offset: ");
+				MYSERIAL.print(offset_z, 5);
+				SERIAL_ECHOLNPGM("");
+			}*/
+//			#endif // SUPPORT_VERBOSITY
+			mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
+
+			custom_message_state--;
+			mesh_point++;
+			lcd_update(1);
+		}
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+		#ifdef SUPPORT_VERBOSITY
+		if (verbosity_level >= 20) {
+			SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
+			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
+			MYSERIAL.print(current_position[Z_AXIS], 5);
+		}
+		#endif // SUPPORT_VERBOSITY
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		st_synchronize();
+		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+			kill(kill_message);
+			SERIAL_ECHOLNPGM("killed");
+		}
+		clean_up_after_endstop_move();
+//		SERIAL_ECHOLNPGM("clean up finished ");
+
+		bool apply_temp_comp = true;
+#ifdef PINDA_THERMISTOR
+		apply_temp_comp = false;
+#endif
+		if (apply_temp_comp)
+		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
+		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
+//		SERIAL_ECHOLNPGM("babystep applied");
+		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
+		#ifdef SUPPORT_VERBOSITY
+		if (verbosity_level >= 1) {
+			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
+		}
+		#endif // SUPPORT_VERBOSITY
+
+		for (uint8_t i = 0; i < 4; ++i) {
+			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
+			long correction = 0;
+			if (code_seen(codes[i]))
+				correction = code_value_long();
+			else if (eeprom_bed_correction_valid) {
+				unsigned char *addr = (i < 2) ?
+					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
+					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
+				correction = eeprom_read_int8(addr);
+			}
+			if (correction == 0)
+				continue;
+			float offset = float(correction) * 0.001f;
+			if (fabs(offset) > 0.101f) {
+				SERIAL_ERROR_START;
+				SERIAL_ECHOPGM("Excessive bed leveling correction: ");
+				SERIAL_ECHO(offset);
+				SERIAL_ECHOLNPGM(" microns");
+			}
+			else {
+				switch (i) {
+				case 0:
+					for (uint8_t row = 0; row < 3; ++row) {
+						mbl.z_values[row][1] += 0.5f * offset;
+						mbl.z_values[row][0] += offset;
+					}
+					break;
+				case 1:
+					for (uint8_t row = 0; row < 3; ++row) {
+						mbl.z_values[row][1] += 0.5f * offset;
+						mbl.z_values[row][2] += offset;
+					}
+					break;
+				case 2:
+					for (uint8_t col = 0; col < 3; ++col) {
+						mbl.z_values[1][col] += 0.5f * offset;
+						mbl.z_values[0][col] += offset;
+					}
+					break;
+				case 3:
+					for (uint8_t col = 0; col < 3; ++col) {
+						mbl.z_values[1][col] += 0.5f * offset;
+						mbl.z_values[2][col] += offset;
+					}
+					break;
+				}
+			}
+		}
+//		SERIAL_ECHOLNPGM("Bed leveling correction finished");
+		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+//		SERIAL_ECHOLNPGM("Upsample finished");
+		mbl.active = 1; //activate mesh bed leveling
+//		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
+		go_home_with_z_lift();
+//		SERIAL_ECHOLNPGM("Go home finished");
+		//unretract (after PINDA preheat retraction)
+		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+			current_position[E_AXIS] += DEFAULT_RETRACTION;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+		}
+		KEEPALIVE_STATE(NOT_BUSY);
+		// Restore custom message state
+		lcd_setstatuspgm(_T(WELCOME_MSG));
+		custom_message = custom_message_old;
+		custom_message_type = custom_message_type_old;
+		custom_message_state = custom_message_state_old;
+		mesh_bed_leveling_flag = false;
+		mesh_bed_run_from_menu = false;
+		lcd_update(2);
+		
+	}
+	break;
+
+        /**
+         * G81: Print mesh bed leveling status and bed profile if activated
+         */
+        case 81:
+            if (mbl.active) {
+                SERIAL_PROTOCOLPGM("Num X,Y: ");
+                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+                SERIAL_PROTOCOLPGM(",");
+                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+                SERIAL_PROTOCOLPGM("\nZ search height: ");
+                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+                        SERIAL_PROTOCOLPGM("  ");
+                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+                    }
+                    SERIAL_PROTOCOLPGM("\n");
+                }
+            }
+            else
+                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
+            break;
+            
+#if 0
+        /**
+         * G82: Single Z probe at current location
+         *
+         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
+         *
+         */
+        case 82:
+            SERIAL_PROTOCOLLNPGM("Finding bed ");
+            setup_for_endstop_move();
+            find_bed_induction_sensor_point_z();
+            clean_up_after_endstop_move();
+            SERIAL_PROTOCOLPGM("Bed found at: ");
+            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
+            SERIAL_PROTOCOLPGM("\n");
+            break;
+
+            /**
+             * G83: Prusa3D specific: Babystep in Z and store to EEPROM
+             */
+        case 83:
+        {
+            int babystepz = code_seen('S') ? code_value() : 0;
+            int BabyPosition = code_seen('P') ? code_value() : 0;
+            
+            if (babystepz != 0) {
+                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
+                // Is the axis indexed starting with zero or one?
+                if (BabyPosition > 4) {
+                    SERIAL_PROTOCOLLNPGM("Index out of bounds");
+                }else{
+                    // Save it to the eeprom
+                    babystepLoadZ = babystepz;
+                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
+                    // adjust the Z
+                    babystepsTodoZadd(babystepLoadZ);
+                }
+            
+            }
+            
+        }
+        break;
+            /**
+             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
+             */
+        case 84:
+            babystepsTodoZsubtract(babystepLoadZ);
+            // babystepLoadZ = 0;
+            break;
+            
+            /**
+             * G85: Prusa3D specific: Pick best babystep
+             */
+        case 85:
+            lcd_pick_babystep();
+            break;
+#endif
+            
+            /**
+             * G86: Prusa3D specific: Disable babystep correction after home.
+             * This G-code will be performed at the start of a calibration script.
+             */
+        case 86:
+            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+            break;
+            /**
+             * G87: Prusa3D specific: Enable babystep correction after home
+             * This G-code will be performed at the end of a calibration script.
+             */
+        case 87:
+			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+            break;
+
+            /**
+             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
+             */
+		    case 88:
+			      break;
+
+
+#endif  // ENABLE_MESH_BED_LEVELING
+            
+            
+    case 90: // G90
+      relative_mode = false;
+      break;
+    case 91: // G91
+      relative_mode = true;
+      break;
+    case 92: // G92
+      if(!code_seen(axis_codes[E_AXIS]))
+        st_synchronize();
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) {
+           if(i == E_AXIS) {
+             current_position[i] = code_value();
+             plan_set_e_position(current_position[E_AXIS]);
+           }
+           else {
+		current_position[i] = code_value()+add_homing[i];
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+           }
+        }
+      }
+      break;
+
+	case 98: // G98 (activate farm mode)
+		farm_mode = 1;
+		PingTime = millis();
+		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+          SilentModeMenu = SILENT_MODE_OFF;
+          eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
+		break;
+
+	case 99: // G99 (deactivate farm mode)
+		farm_mode = 0;
+		lcd_printer_connected();
+		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+		lcd_update(2);
+		break;
+	default:
+		printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
+    }
+  } // end if(code_seen('G'))
+
+  else if(code_seen('M'))
+  {
+	  int index;
+	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+	   
+	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
+	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
+		  printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
+
+	  } else
+    switch((int)code_value())
+    {
+
+    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
+    case 1: // M1 - Conditional stop - Wait for user button press on LCD
+    {
+      char *src = strchr_pointer + 2;
+
+      codenum = 0;
+
+      bool hasP = false, hasS = false;
+      if (code_seen('P')) {
+        codenum = code_value(); // milliseconds to wait
+        hasP = codenum > 0;
+      }
+      if (code_seen('S')) {
+        codenum = code_value() * 1000; // seconds to wait
+        hasS = codenum > 0;
+      }
+      starpos = strchr(src, '*');
+      if (starpos != NULL) *(starpos) = '\0';
+      while (*src == ' ') ++src;
+      if (!hasP && !hasS && *src != '\0') {
+        lcd_setstatus(src);
+      } else {
+        LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
+      }
+
+      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???
+      st_synchronize();
+      previous_millis_cmd = millis();
+      if (codenum > 0){
+        codenum += millis();  // keep track of when we started waiting
+		KEEPALIVE_STATE(PAUSED_FOR_USER);
+        while(millis() < codenum && !lcd_clicked()){
+          manage_heater();
+          manage_inactivity(true);
+          lcd_update(0);
+        }
+		KEEPALIVE_STATE(IN_HANDLER);
+        lcd_ignore_click(false);
+      }else{
+		KEEPALIVE_STATE(PAUSED_FOR_USER);
+        while(!lcd_clicked()){
+          manage_heater();
+          manage_inactivity(true);
+          lcd_update(0);
+        }
+		KEEPALIVE_STATE(IN_HANDLER);
+      }
+      if (IS_SD_PRINTING)
+        LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
+      else
+        LCD_MESSAGERPGM(_T(WELCOME_MSG));
+    }
+    break;
+    case 17:
+        LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
+        enable_x();
+        enable_y();
+        enable_z();
+        enable_e0();
+        enable_e1();
+        enable_e2();
+      break;
+
+#ifdef SDSUPPORT
+    case 20: // M20 - list SD card
+      SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
+      card.ls();
+      SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
+      break;
+    case 21: // M21 - init SD card
+
+      card.initsd();
+
+      break;
+    case 22: //M22 - release SD card
+      card.release();
+
+      break;
+    case 23: //M23 - Select file
+      starpos = (strchr(strchr_pointer + 4,'*'));
+      if(starpos!=NULL)
+        *(starpos)='\0';
+      card.openFile(strchr_pointer + 4,true);
+      break;
+    case 24: //M24 - Start SD print
+	  if (!card.paused) 
+		failstats_reset_print();
+      card.startFileprint();
+      starttime=millis();
+	  break;
+    case 25: //M25 - Pause SD print
+      card.pauseSDPrint();
+      break;
+    case 26: //M26 - Set SD index
+      if(card.cardOK && code_seen('S')) {
+        card.setIndex(code_value_long());
+      }
+      break;
+    case 27: //M27 - Get SD status
+      card.getStatus();
+      break;
+    case 28: //M28 - Start SD write
+      starpos = (strchr(strchr_pointer + 4,'*'));
+      if(starpos != NULL){
+        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+        strchr_pointer = strchr(npos,' ') + 1;
+        *(starpos) = '\0';
+      }
+      card.openFile(strchr_pointer+4,false);
+      break;
+    case 29: //M29 - Stop SD write
+      //processed in write to file routine above
+      //card,saving = false;
+      break;
+    case 30: //M30 <filename> Delete File
+      if (card.cardOK){
+        card.closefile();
+        starpos = (strchr(strchr_pointer + 4,'*'));
+        if(starpos != NULL){
+          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+          strchr_pointer = strchr(npos,' ') + 1;
+          *(starpos) = '\0';
+        }
+        card.removeFile(strchr_pointer + 4);
+      }
+      break;
+    case 32: //M32 - Select file and start SD print
+    {
+      if(card.sdprinting) {
+        st_synchronize();
+
+      }
+      starpos = (strchr(strchr_pointer + 4,'*'));
+
+      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
+      if(namestartpos==NULL)
+      {
+        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
+      }
+      else
+        namestartpos++; //to skip the '!'
+
+      if(starpos!=NULL)
+        *(starpos)='\0';
+
+      bool call_procedure=(code_seen('P'));
+
+      if(strchr_pointer>namestartpos)
+        call_procedure=false;  //false alert, 'P' found within filename
+
+      if( card.cardOK )
+      {
+        card.openFile(namestartpos,true,!call_procedure);
+        if(code_seen('S'))
+          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
+            card.setIndex(code_value_long());
+        card.startFileprint();
+        if(!call_procedure)
+          starttime=millis(); //procedure calls count as normal print time.
+      }
+    } break;
+    case 928: //M928 - Start SD write
+      starpos = (strchr(strchr_pointer + 5,'*'));
+      if(starpos != NULL){
+        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+        strchr_pointer = strchr(npos,' ') + 1;
+        *(starpos) = '\0';
+      }
+      card.openLogFile(strchr_pointer+5);
+      break;
+
+#endif //SDSUPPORT
+
+    case 31: //M31 take time since the start of the SD print or an M109 command
+      {
+      stoptime=millis();
+      char time[30];
+      unsigned long t=(stoptime-starttime)/1000;
+      int sec,min;
+      min=t/60;
+      sec=t%60;
+      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
+      SERIAL_ECHO_START;
+      SERIAL_ECHOLN(time);
+      lcd_setstatus(time);
+      autotempShutdown();
+      }
+      break;
+#ifndef _DISABLE_M42_M226
+    case 42: //M42 -Change pin status via gcode
+      if (code_seen('S'))
+      {
+        int pin_status = code_value();
+        int pin_number = LED_PIN;
+        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
+          pin_number = code_value();
+        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+        {
+          if (sensitive_pins[i] == pin_number)
+          {
+            pin_number = -1;
+            break;
+          }
+        }
+      #if defined(FAN_PIN) && FAN_PIN > -1
+        if (pin_number == FAN_PIN)
+          fanSpeed = pin_status;
+      #endif
+        if (pin_number > -1)
+        {
+          pinMode(pin_number, OUTPUT);
+          digitalWrite(pin_number, pin_status);
+          analogWrite(pin_number, pin_status);
+        }
+      }
+     break;
+#endif //_DISABLE_M42_M226
+    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
+
+		// Reset the baby step value and the baby step applied flag.
+		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+
+        // Reset the skew and offset in both RAM and EEPROM.
+        reset_bed_offset_and_skew();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        break;
+
+    case 45: // M45: Prusa3D: bed skew and offset with manual Z up
+    {
+		int8_t verbosity_level = 0;
+		bool only_Z = code_seen('Z');
+		#ifdef SUPPORT_VERBOSITY
+		if (code_seen('V'))
+		{
+			// Just 'V' without a number counts as V1.
+			char c = strchr_pointer[1];
+			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+		}
+		#endif //SUPPORT_VERBOSITY
+		gcode_M45(only_Z, verbosity_level);
+    }
+	break;
+
+    /*
+    case 46:
+    {
+        // M46: Prusa3D: Show the assigned IP address.
+        uint8_t ip[4];
+        bool hasIP = card.ToshibaFlashAir_GetIP(ip);
+        if (hasIP) {
+            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
+            SERIAL_ECHO(int(ip[0]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[1]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[2]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[3]));
+            SERIAL_ECHOLNPGM("");
+        } else {
+            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");          
+        }
+        break;
+    }
+    */
+
+    case 47:
+        // M47: Prusa3D: Show end stops dialog on the display.
+		KEEPALIVE_STATE(PAUSED_FOR_USER);
+        lcd_diag_show_end_stops();
+		KEEPALIVE_STATE(IN_HANDLER);
+        break;
+
+#if 0
+    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
+    {
+        // Disable the default update procedure of the display. We will do a modal dialog.
+        lcd_update_enable(false);
+        // Let the planner use the uncorrected coordinates.
+        mbl.reset();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        // Move the print head close to the bed.
+        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+        st_synchronize();
+        // Home in the XY plane.
+        set_destination_to_current();
+        setup_for_endstop_move();
+        home_xy();
+        int8_t verbosity_level = 0;
+        if (code_seen('V')) {
+            // Just 'V' without a number counts as V1.
+            char c = strchr_pointer[1];
+            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+        }
+        bool success = scan_bed_induction_points(verbosity_level);
+        clean_up_after_endstop_move();
+        // Print head up.
+        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+        st_synchronize();
+        lcd_update_enable(true);
+        break;
+    }
+#endif
+
+// M48 Z-Probe repeatability measurement function.
+//
+// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
+//	
+// This function assumes the bed has been homed.  Specificaly, that a G28 command
+// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
+// Any information generated by a prior G29 Bed leveling command will be lost and need to be
+// regenerated.
+//
+// The number of samples will default to 10 if not specified.  You can use upper or lower case
+// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
+// N for its communication protocol and will get horribly confused if you send it a capital N.
+//
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef Z_PROBE_REPEATABILITY_TEST 
+
+    case 48: // M48 Z-Probe repeatability
+        {
+            #if Z_MIN_PIN == -1
+            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
+            #endif
+
+	double sum=0.0; 
+	double mean=0.0; 
+	double sigma=0.0;
+	double sample_set[50];
+	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
+	double X_current, Y_current, Z_current;
+	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
+	
+	if (code_seen('V') || code_seen('v')) {
+        	verbose_level = code_value();
+		if (verbose_level<0 || verbose_level>4 ) {
+			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (verbose_level > 0)   {
+		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
+		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
+	}
+
+	if (code_seen('n')) {
+        	n_samples = code_value();
+		if (n_samples<4 || n_samples>50 ) {
+			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	X_current = X_probe_location = st_get_position_mm(X_AXIS);
+	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
+	Z_current = st_get_position_mm(Z_AXIS);
+	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+	ext_position	 = st_get_position_mm(E_AXIS);
+
+	if (code_seen('X') || code_seen('x') ) {
+        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
+		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
+			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (code_seen('Y') || code_seen('y') ) {
+        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
+		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
+			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (code_seen('L') || code_seen('l') ) {
+        	n_legs = code_value();
+		if ( n_legs==1 ) 
+			n_legs = 2;
+		if ( n_legs<0 || n_legs>15 ) {
+			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+//
+// Do all the preliminary setup work.   First raise the probe.
+//
+
+        st_synchronize();
+        plan_bed_level_matrix.set_to_identity();
+	plan_buffer_line( X_current, Y_current, Z_start_location,
+			ext_position,
+    			homing_feedrate[Z_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+
+//
+// Now get everything to the specified probe point So we can safely do a probe to
+// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
+// use that as a starting point for each probe.
+//
+	if (verbose_level > 2) 
+		SERIAL_PROTOCOL("Positioning probe for the test.\n");
+
+	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+			ext_position,
+    			homing_feedrate[X_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+
+	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
+	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
+
+// 
+// OK, do the inital probe to get us close to the bed.
+// Then retrace the right amount and use that in subsequent probes
+//
+
+	setup_for_endstop_move();
+	run_z_probe();
+
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+
+	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+			ext_position,
+    			homing_feedrate[X_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+
+        for( n=0; n<n_samples; n++) {
+
+		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
+
+		if ( n_legs)  {
+		double radius=0.0, theta=0.0, x_sweep, y_sweep;
+		int rotational_direction, l;
+
+			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
+			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
+			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians
+
+//SERIAL_ECHOPAIR("starting radius: ",radius);
+//SERIAL_ECHOPAIR("   theta: ",theta);
+//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
+//SERIAL_PROTOCOLLNPGM("");
+
+			for( l=0; l<n_legs-1; l++) {
+				if (rotational_direction==1)
+					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
+				else
+					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
+
+				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
+				if ( radius<0.0 )
+					radius = -radius;
+
+				X_current = X_probe_location + cos(theta) * radius;
+				Y_current = Y_probe_location + sin(theta) * radius;
+
+				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
+					 X_current = X_MIN_POS;
+				if ( X_current>X_MAX_POS)
+					 X_current = X_MAX_POS;
+
+				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
+					 Y_current = Y_MIN_POS;
+				if ( Y_current>Y_MAX_POS)
+					 Y_current = Y_MAX_POS;
+
+				if (verbose_level>3 ) {
+					SERIAL_ECHOPAIR("x: ", X_current);
+					SERIAL_ECHOPAIR("y: ", Y_current);
+					SERIAL_PROTOCOLLNPGM("");
+				}
+
+				do_blocking_move_to( X_current, Y_current, Z_current );
+			}
+			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
+		}
+
+		setup_for_endstop_move();
+                run_z_probe();
+
+		sample_set[n] = current_position[Z_AXIS];
+
+//
+// Get the current mean for the data points we have so far
+//
+		sum=0.0; 
+		for( j=0; j<=n; j++) {
+			sum = sum + sample_set[j];
+		}
+		mean = sum / (double (n+1));
+//
+// Now, use that mean to calculate the standard deviation for the
+// data points we have so far
+//
+
+		sum=0.0; 
+		for( j=0; j<=n; j++) {
+			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
+		}
+		sigma = sqrt( sum / (double (n+1)) );
+
+		if (verbose_level > 1) {
+			SERIAL_PROTOCOL(n+1);
+			SERIAL_PROTOCOL(" of ");
+			SERIAL_PROTOCOL(n_samples);
+			SERIAL_PROTOCOLPGM("   z: ");
+			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
+		}
+
+		if (verbose_level > 2) {
+			SERIAL_PROTOCOL(" mean: ");
+			SERIAL_PROTOCOL_F(mean,6);
+
+			SERIAL_PROTOCOL("   sigma: ");
+			SERIAL_PROTOCOL_F(sigma,6);
+		}
+
+		if (verbose_level > 0) 
+			SERIAL_PROTOCOLPGM("\n");
+
+		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
+				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
+        	st_synchronize();
+
+	}
+
+	delay(1000);
+
+        clean_up_after_endstop_move();
+
+//      enable_endstops(true);
+
+	if (verbose_level > 0) {
+		SERIAL_PROTOCOLPGM("Mean: ");
+		SERIAL_PROTOCOL_F(mean, 6);
+		SERIAL_PROTOCOLPGM("\n");
+	}
+
+SERIAL_PROTOCOLPGM("Standard Deviation: ");
+SERIAL_PROTOCOL_F(sigma, 6);
+SERIAL_PROTOCOLPGM("\n\n");
+
+Sigma_Exit:
+        break;
+	}
+#endif		// Z_PROBE_REPEATABILITY_TEST 
+#endif		// ENABLE_AUTO_BED_LEVELING
+	case 73: //M73 show percent done and time remaining
+		if(code_seen('P')) print_percent_done_normal = code_value();
+		if(code_seen('R')) print_time_remaining_normal = code_value();
+		if(code_seen('Q')) print_percent_done_silent = code_value();
+		if(code_seen('S')) print_time_remaining_silent = code_value();
+
+		{
+			const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
+			printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
+			printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
+		}
+		break;
+
+    case 104: // M104
+      if(setTargetedHotend(104)){
+        break;
+      }
+      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
+      setWatch();
+      break;
+    case 112: //  M112 -Emergency Stop
+      kill(_n(""), 3);
+      break;
+    case 140: // M140 set bed temp
+      if (code_seen('S')) setTargetBed(code_value());
+      break;
+    case 105 : // M105
+      if(setTargetedHotend(105)){
+        break;
+        }
+      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
+        SERIAL_PROTOCOLPGM("ok T:");
+        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
+        SERIAL_PROTOCOLPGM(" /");
+        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
+        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+          SERIAL_PROTOCOLPGM(" B:");
+          SERIAL_PROTOCOL_F(degBed(),1);
+          SERIAL_PROTOCOLPGM(" /");
+          SERIAL_PROTOCOL_F(degTargetBed(),1);
+        #endif //TEMP_BED_PIN
+        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+          SERIAL_PROTOCOLPGM(" T");
+          SERIAL_PROTOCOL(cur_extruder);
+          SERIAL_PROTOCOLPGM(":");
+          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+          SERIAL_PROTOCOLPGM(" /");
+          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
+        }
+      #else
+        SERIAL_ERROR_START;
+        SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
+      #endif
+
+        SERIAL_PROTOCOLPGM(" @:");
+      #ifdef EXTRUDER_WATTS
+        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
+        SERIAL_PROTOCOLPGM("W");
+      #else
+        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
+      #endif
+
+        SERIAL_PROTOCOLPGM(" B@:");
+      #ifdef BED_WATTS
+        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
+        SERIAL_PROTOCOLPGM("W");
+      #else
+        SERIAL_PROTOCOL(getHeaterPower(-1));
+      #endif
+
+#ifdef PINDA_THERMISTOR
+		SERIAL_PROTOCOLPGM(" P:");
+		SERIAL_PROTOCOL_F(current_temperature_pinda,1);
+#endif //PINDA_THERMISTOR
+
+#ifdef AMBIENT_THERMISTOR
+		SERIAL_PROTOCOLPGM(" A:");
+		SERIAL_PROTOCOL_F(current_temperature_ambient,1);
+#endif //AMBIENT_THERMISTOR
+
+
+        #ifdef SHOW_TEMP_ADC_VALUES
+          {float raw = 0.0;
+
+          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+            SERIAL_PROTOCOLPGM("    ADC B:");
+            SERIAL_PROTOCOL_F(degBed(),1);
+            SERIAL_PROTOCOLPGM("C->");
+            raw = rawBedTemp();
+            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+            SERIAL_PROTOCOLPGM(" Rb->");
+            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+            SERIAL_PROTOCOLPGM(" Rxb->");
+            SERIAL_PROTOCOL_F(raw, 5);
+          #endif
+          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+            SERIAL_PROTOCOLPGM("  T");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM(":");
+            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+            SERIAL_PROTOCOLPGM("C->");
+            raw = rawHotendTemp(cur_extruder);
+            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+            SERIAL_PROTOCOLPGM(" Rt");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM("->");
+            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+            SERIAL_PROTOCOLPGM(" Rx");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM("->");
+            SERIAL_PROTOCOL_F(raw, 5);
+          }}
+        #endif
+		SERIAL_PROTOCOLLN("");
+		KEEPALIVE_STATE(NOT_BUSY);
+      return;
+      break;
+    case 109:
+    {// M109 - Wait for extruder heater to reach target.
+      if(setTargetedHotend(109)){
+        break;
+      }
+      LCD_MESSAGERPGM(_T(MSG_HEATING));
+	  heating_status = 1;
+	  if (farm_mode) { prusa_statistics(1); };
+
+#ifdef AUTOTEMP
+        autotemp_enabled=false;
+      #endif
+      if (code_seen('S')) {
+        setTargetHotend(code_value(), tmp_extruder);
+              CooldownNoWait = true;
+            } else if (code_seen('R')) {
+              setTargetHotend(code_value(), tmp_extruder);
+        CooldownNoWait = false;
+      }
+      #ifdef AUTOTEMP
+        if (code_seen('S')) autotemp_min=code_value();
+        if (code_seen('B')) autotemp_max=code_value();
+        if (code_seen('F'))
+        {
+          autotemp_factor=code_value();
+          autotemp_enabled=true;
+        }
+      #endif
+
+      setWatch();
+      codenum = millis();
+
+      /* See if we are heating up or cooling down */
+      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
+	  
+	  KEEPALIVE_STATE(NOT_BUSY);
+
+      cancel_heatup = false;
+
+	  wait_for_heater(codenum); //loops until target temperature is reached
+
+        LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
+		KEEPALIVE_STATE(IN_HANDLER);
+		heating_status = 2;
+		if (farm_mode) { prusa_statistics(2); };
+        
+        //starttime=millis();
+        previous_millis_cmd = millis();
+      }
+      break;
+    case 190: // M190 - Wait for bed heater to reach target.
+    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+        LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
+		heating_status = 3;
+		if (farm_mode) { prusa_statistics(1); };
+        if (code_seen('S')) 
+		{
+          setTargetBed(code_value());
+          CooldownNoWait = true;
+        } 
+		else if (code_seen('R')) 
+		{
+          setTargetBed(code_value());
+          CooldownNoWait = false;
+        }
+        codenum = millis();
+        
+        cancel_heatup = false;
+        target_direction = isHeatingBed(); // true if heating, false if cooling
+
+		KEEPALIVE_STATE(NOT_BUSY);
+        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
+        {
+          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+          {
+			  if (!farm_mode) {
+				  float tt = degHotend(active_extruder);
+				  SERIAL_PROTOCOLPGM("T:");
+				  SERIAL_PROTOCOL(tt);
+				  SERIAL_PROTOCOLPGM(" E:");
+				  SERIAL_PROTOCOL((int)active_extruder);
+				  SERIAL_PROTOCOLPGM(" B:");
+				  SERIAL_PROTOCOL_F(degBed(), 1);
+				  SERIAL_PROTOCOLLN("");
+			  }
+				  codenum = millis();
+			  
+          }
+          manage_heater();
+          manage_inactivity();
+          lcd_update(0);
+        }
+        LCD_MESSAGERPGM(_T(MSG_BED_DONE));
+		KEEPALIVE_STATE(IN_HANDLER);
+		heating_status = 4;
+
+        previous_millis_cmd = millis();
+    #endif
+        break;
+
+    #if defined(FAN_PIN) && FAN_PIN > -1
+      case 106: //M106 Fan On
+        if (code_seen('S')){
+           fanSpeed=constrain(code_value(),0,255);
+        }
+        else {
+          fanSpeed=255;
+        }
+        break;
+      case 107: //M107 Fan Off
+        fanSpeed = 0;
+        break;
+    #endif //FAN_PIN
+
+    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+      case 80: // M80 - Turn on Power Supply
+        SET_OUTPUT(PS_ON_PIN); //GND
+        WRITE(PS_ON_PIN, PS_ON_AWAKE);
+
+        // If you have a switch on suicide pin, this is useful
+        // if you want to start another print with suicide feature after
+        // a print without suicide...
+        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
+            SET_OUTPUT(SUICIDE_PIN);
+            WRITE(SUICIDE_PIN, HIGH);
+        #endif
+
+          powersupply = true;
+          LCD_MESSAGERPGM(_T(WELCOME_MSG));
+          lcd_update(0);
+        break;
+      #endif
+
+      case 81: // M81 - Turn off Power Supply
+        disable_heater();
+        st_synchronize();
+        disable_e0();
+        disable_e1();
+        disable_e2();
+        finishAndDisableSteppers();
+        fanSpeed = 0;
+        delay(1000); // Wait a little before to switch off
+      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+        st_synchronize();
+        suicide();
+      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
+        SET_OUTPUT(PS_ON_PIN);
+        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+      #endif
+        powersupply = false;
+        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
+        lcd_update(0);
+	  break;
+
+    case 82:
+      axis_relative_modes[3] = false;
+      break;
+    case 83:
+      axis_relative_modes[3] = true;
+      break;
+    case 18: //compatibility
+    case 84: // M84
+      if(code_seen('S')){
+        stepper_inactive_time = code_value() * 1000;
+      }
+      else
+      {
+        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
+        if(all_axis)
+        {
+          st_synchronize();
+          disable_e0();
+          disable_e1();
+          disable_e2();
+          finishAndDisableSteppers();
+        }
+        else
+        {
+          st_synchronize();
+		  if (code_seen('X')) disable_x();
+		  if (code_seen('Y')) disable_y();
+		  if (code_seen('Z')) disable_z();
+#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
+		  if (code_seen('E')) {
+			  disable_e0();
+			  disable_e1();
+			  disable_e2();
+            }
+          #endif
+        }
+      }
+	  //in the end of print set estimated time to end of print and extruders used during print to default values for next print
+	  print_time_remaining_init();
+	  snmm_filaments_used = 0;
+      break;
+    case 85: // M85
+      if(code_seen('S')) {
+        max_inactive_time = code_value() * 1000;
+      }
+      break;
+#ifdef SAFETYTIMER
+	case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
+	  //when safety timer expires heatbed and nozzle target temperatures are set to zero
+	  if (code_seen('S')) {
+	    safetytimer_inactive_time = code_value() * 1000;
+		safetyTimer.start();
+	  }
+	  break;
+#endif
+    case 92: // M92
+      for(int8_t i=0; i < NUM_AXIS; i++)
+      {
+        if(code_seen(axis_codes[i]))
+        {
+          if(i == 3) { // E
+            float value = code_value();
+            if(value < 20.0) {
+              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
+              max_jerk[E_AXIS] *= factor;
+              max_feedrate[i] *= factor;
+              axis_steps_per_sqr_second[i] *= factor;
+            }
+            axis_steps_per_unit[i] = value;
+          }
+          else {
+            axis_steps_per_unit[i] = code_value();
+          }
+        }
+      }
+      break;
+    case 110:   // M110 - reset line pos
+      if (code_seen('N'))
+	    gcode_LastN = code_value_long();
+    break;
+#ifdef HOST_KEEPALIVE_FEATURE
+	case 113: // M113 - Get or set Host Keepalive interval
+		if (code_seen('S')) {
+			host_keepalive_interval = (uint8_t)code_value_short();
+//			NOMORE(host_keepalive_interval, 60);
+		}
+		else {
+			SERIAL_ECHO_START;
+			SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
+			SERIAL_PROTOCOLLN("");
+		}
+		break;
+#endif
+    case 115: // M115
+      if (code_seen('V')) {
+          // Report the Prusa version number.
+          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
+      } else if (code_seen('U')) {
+          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
+          // pause the print and ask the user to upgrade the firmware.
+          show_upgrade_dialog_if_version_newer(++ strchr_pointer);
+      } else {
+          SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
+          SERIAL_ECHORPGM(FW_VERSION_STR_P());
+          SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
+          SERIAL_ECHOPGM(PROTOCOL_VERSION);
+          SERIAL_ECHOPGM(" MACHINE_TYPE:");
+          SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME); 
+          SERIAL_ECHOPGM(" EXTRUDER_COUNT:"); 
+          SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS)); 
+          SERIAL_ECHOPGM(" UUID:"); 
+          SERIAL_ECHOLNPGM(MACHINE_UUID);
+      }
+      break;
+/*    case 117: // M117 display message
+      starpos = (strchr(strchr_pointer + 5,'*'));
+      if(starpos!=NULL)
+        *(starpos)='\0';
+      lcd_setstatus(strchr_pointer + 5);
+      break;*/
+    case 114: // M114
+		gcode_M114();
+      break;
+    case 120: // M120
+      enable_endstops(false) ;
+      break;
+    case 121: // M121
+      enable_endstops(true) ;
+      break;
+    case 119: // M119
+    SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
+    SERIAL_PROTOCOLLN("");
+      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
+        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+        }else{
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
+        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+        }else{
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
+        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+        }else{
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
+        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+        }else{
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
+        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+        }else{
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
+        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
+        }else{
+          SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      break;
+      //TODO: update for all axis, use for loop
+    #ifdef BLINKM
+    case 150: // M150
+      {
+        byte red;
+        byte grn;
+        byte blu;
+
+        if(code_seen('R')) red = code_value();
+        if(code_seen('U')) grn = code_value();
+        if(code_seen('B')) blu = code_value();
+
+        SendColors(red,grn,blu);
+      }
+      break;
+    #endif //BLINKM
+    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+      {
+
+        tmp_extruder = active_extruder;
+        if(code_seen('T')) {
+          tmp_extruder = code_value();
+		  if(tmp_extruder >= EXTRUDERS) {
+            SERIAL_ECHO_START;
+            SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
+            break;
+          }
+        }
+
+        float area = .0;
+        if(code_seen('D')) {
+		  float diameter = (float)code_value();
+		  if (diameter == 0.0) {
+			// setting any extruder filament size disables volumetric on the assumption that
+			// slicers either generate in extruder values as cubic mm or as as filament feeds
+			// for all extruders
+		    volumetric_enabled = false;
+		  } else {
+            filament_size[tmp_extruder] = (float)code_value();
+			// make sure all extruders have some sane value for the filament size
+			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
+            #if EXTRUDERS > 1
+			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
+            #if EXTRUDERS > 2
+			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
+            #endif
+            #endif
+			volumetric_enabled = true;
+		  }
+        } else {
+          //reserved for setting filament diameter via UFID or filament measuring device
+          break;
+        }
+		calculate_extruder_multipliers();
+      }
+      break;
+    case 201: // M201
+      for(int8_t i=0; i < NUM_AXIS; i++)
+      {
+        if(code_seen(axis_codes[i]))
+        {
+          max_acceleration_units_per_sq_second[i] = code_value();
+        }
+      }
+      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
+      reset_acceleration_rates();
+      break;
+    #if 0 // Not used for Sprinter/grbl gen6
+    case 202: // M202
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+      }
+      break;
+    #endif
+    case 203: // M203 max feedrate mm/sec
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
+      }
+      break;
+    case 204: // M204 acclereration S normal moves T filmanent only moves
+      {
+        if(code_seen('S')) acceleration = code_value() ;
+        if(code_seen('T')) retract_acceleration = code_value() ;
+      }
+      break;
+    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+    {
+      if(code_seen('S')) minimumfeedrate = code_value();
+      if(code_seen('T')) mintravelfeedrate = code_value();
+      if(code_seen('B')) minsegmenttime = code_value() ;
+      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
+      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
+      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
+      if(code_seen('E')) max_jerk[E_AXIS] = code_value();
+		if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
+		if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
+    }
+    break;
+    case 206: // M206 additional homing offset
+      for(int8_t i=0; i < 3; i++)
+      {
+        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
+      }
+      break;
+    #ifdef FWRETRACT
+    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
+    {
+      if(code_seen('S'))
+      {
+        retract_length = code_value() ;
+      }
+      if(code_seen('F'))
+      {
+        retract_feedrate = code_value()/60 ;
+      }
+      if(code_seen('Z'))
+      {
+        retract_zlift = code_value() ;
+      }
+    }break;
+    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
+    {
+      if(code_seen('S'))
+      {
+        retract_recover_length = code_value() ;
+      }
+      if(code_seen('F'))
+      {
+        retract_recover_feedrate = code_value()/60 ;
+      }
+    }break;
+    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+    {
+      if(code_seen('S'))
+      {
+        int t= code_value() ;
+        switch(t)
+        {
+          case 0: 
+          {
+            autoretract_enabled=false;
+            retracted[0]=false;
+            #if EXTRUDERS > 1
+              retracted[1]=false;
+            #endif
+            #if EXTRUDERS > 2
+              retracted[2]=false;
+            #endif
+          }break;
+          case 1: 
+          {
+            autoretract_enabled=true;
+            retracted[0]=false;
+            #if EXTRUDERS > 1
+              retracted[1]=false;
+            #endif
+            #if EXTRUDERS > 2
+              retracted[2]=false;
+            #endif
+          }break;
+          default:
+            SERIAL_ECHO_START;
+            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+            SERIAL_ECHOLNPGM("\"(1)");
+        }
+      }
+
+    }break;
+    #endif // FWRETRACT
+    #if EXTRUDERS > 1
+    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
+    {
+      if(setTargetedHotend(218)){
+        break;
+      }
+      if(code_seen('X'))
+      {
+        extruder_offset[X_AXIS][tmp_extruder] = code_value();
+      }
+      if(code_seen('Y'))
+      {
+        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
+      }
+      SERIAL_ECHO_START;
+      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
+      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
+      {
+         SERIAL_ECHO(" ");
+         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
+         SERIAL_ECHO(",");
+         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
+      }
+      SERIAL_ECHOLN("");
+    }break;
+    #endif
+    case 220: // M220 S<factor in percent>- set speed factor override percentage
+    {
+      if(code_seen('S'))
+      {
+        feedmultiply = code_value() ;
+      }
+    }
+    break;
+    case 221: // M221 S<factor in percent>- set extrude factor override percentage
+    {
+      if(code_seen('S'))
+      {
+        int tmp_code = code_value();
+        if (code_seen('T'))
+        {
+          if(setTargetedHotend(221)){
+            break;
+          }
+          extruder_multiply[tmp_extruder] = tmp_code;
+        }
+        else
+        {
+          extrudemultiply = tmp_code ;
+        }
+      }
+      calculate_extruder_multipliers();
+    }
+    break;
+
+#ifndef _DISABLE_M42_M226
+	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
+	{
+      if(code_seen('P')){
+        int pin_number = code_value(); // pin number
+        int pin_state = -1; // required pin state - default is inverted
+
+        if(code_seen('S')) pin_state = code_value(); // required pin state
+
+        if(pin_state >= -1 && pin_state <= 1){
+
+          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+          {
+            if (sensitive_pins[i] == pin_number)
+            {
+              pin_number = -1;
+              break;
+            }
+          }
+
+          if (pin_number > -1)
+          {
+            int target = LOW;
+
+            st_synchronize();
+
+            pinMode(pin_number, INPUT);
+
+            switch(pin_state){
+            case 1:
+              target = HIGH;
+              break;
+
+            case 0:
+              target = LOW;
+              break;
+
+            case -1:
+              target = !digitalRead(pin_number);
+              break;
+            }
+
+            while(digitalRead(pin_number) != target){
+              manage_heater();
+              manage_inactivity();
+              lcd_update(0);
+            }
+          }
+        }
+      }
+    }
+    break;
+#endif //_DISABLE_M42_M226
+
+    #if NUM_SERVOS > 0
+    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
+      {
+        int servo_index = -1;
+        int servo_position = 0;
+        if (code_seen('P'))
+          servo_index = code_value();
+        if (code_seen('S')) {
+          servo_position = code_value();
+          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+		      servos[servo_index].attach(0);
+#endif
+            servos[servo_index].write(servo_position);
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+              delay(PROBE_SERVO_DEACTIVATION_DELAY);
+              servos[servo_index].detach();
+#endif
+          }
+          else {
+            SERIAL_ECHO_START;
+            SERIAL_ECHO("Servo ");
+            SERIAL_ECHO(servo_index);
+            SERIAL_ECHOLN(" out of range");
+          }
+        }
+        else if (servo_index >= 0) {
+          SERIAL_PROTOCOL(_T(MSG_OK));
+          SERIAL_PROTOCOL(" Servo ");
+          SERIAL_PROTOCOL(servo_index);
+          SERIAL_PROTOCOL(": ");
+          SERIAL_PROTOCOL(servos[servo_index].read());
+          SERIAL_PROTOCOLLN("");
+        }
+      }
+      break;
+    #endif // NUM_SERVOS > 0
+
+    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
+    case 300: // M300
+    {
+      int beepS = code_seen('S') ? code_value() : 110;
+      int beepP = code_seen('P') ? code_value() : 1000;
+      if (beepS > 0)
+      {
+        #if BEEPER > 0
+          tone(BEEPER, beepS);
+          delay(beepP);
+          noTone(BEEPER);
+        #endif
+      }
+      else
+      {
+        delay(beepP);
+      }
+    }
+    break;
+    #endif // M300
+
+    #ifdef PIDTEMP
+    case 301: // M301
+      {
+        if(code_seen('P')) Kp = code_value();
+        if(code_seen('I')) Ki = scalePID_i(code_value());
+        if(code_seen('D')) Kd = scalePID_d(code_value());
+
+        #ifdef PID_ADD_EXTRUSION_RATE
+        if(code_seen('C')) Kc = code_value();
+        #endif
+
+        updatePID();
+        SERIAL_PROTOCOLRPGM(_T(MSG_OK));
+        SERIAL_PROTOCOL(" p:");
+        SERIAL_PROTOCOL(Kp);
+        SERIAL_PROTOCOL(" i:");
+        SERIAL_PROTOCOL(unscalePID_i(Ki));
+        SERIAL_PROTOCOL(" d:");
+        SERIAL_PROTOCOL(unscalePID_d(Kd));
+        #ifdef PID_ADD_EXTRUSION_RATE
+        SERIAL_PROTOCOL(" c:");
+        //Kc does not have scaling applied above, or in resetting defaults
+        SERIAL_PROTOCOL(Kc);
+        #endif
+        SERIAL_PROTOCOLLN("");
+      }
+      break;
+    #endif //PIDTEMP
+    #ifdef PIDTEMPBED
+    case 304: // M304
+      {
+        if(code_seen('P')) bedKp = code_value();
+        if(code_seen('I')) bedKi = scalePID_i(code_value());
+        if(code_seen('D')) bedKd = scalePID_d(code_value());
+
+        updatePID();
+       	SERIAL_PROTOCOLRPGM(_T(MSG_OK));
+        SERIAL_PROTOCOL(" p:");
+        SERIAL_PROTOCOL(bedKp);
+        SERIAL_PROTOCOL(" i:");
+        SERIAL_PROTOCOL(unscalePID_i(bedKi));
+        SERIAL_PROTOCOL(" d:");
+        SERIAL_PROTOCOL(unscalePID_d(bedKd));
+        SERIAL_PROTOCOLLN("");
+      }
+      break;
+    #endif //PIDTEMP
+    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
+     {
+     	#ifdef CHDK
+       
+         SET_OUTPUT(CHDK);
+         WRITE(CHDK, HIGH);
+         chdkHigh = millis();
+         chdkActive = true;
+       
+       #else
+     	
+      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+	const uint8_t NUM_PULSES=16;
+	const float PULSE_LENGTH=0.01524;
+	for(int i=0; i < NUM_PULSES; i++) {
+        WRITE(PHOTOGRAPH_PIN, HIGH);
+        _delay_ms(PULSE_LENGTH);
+        WRITE(PHOTOGRAPH_PIN, LOW);
+        _delay_ms(PULSE_LENGTH);
+        }
+        delay(7.33);
+        for(int i=0; i < NUM_PULSES; i++) {
+        WRITE(PHOTOGRAPH_PIN, HIGH);
+        _delay_ms(PULSE_LENGTH);
+        WRITE(PHOTOGRAPH_PIN, LOW);
+        _delay_ms(PULSE_LENGTH);
+        }
+      	#endif
+      #endif //chdk end if
+     }
+    break;
+    #ifdef PREVENT_DANGEROUS_EXTRUDE
+    case 302: // allow cold extrudes, or set the minimum extrude temperature
+    {
+	  float temp = .0;
+	  if (code_seen('S')) temp=code_value();
+      set_extrude_min_temp(temp);
+    }
+    break;
+	#endif
+    case 303: // M303 PID autotune
+    {
+      float temp = 150.0;
+      int e=0;
+      int c=5;
+      if (code_seen('E')) e=code_value();
+        if (e<0)
+          temp=70;
+      if (code_seen('S')) temp=code_value();
+      if (code_seen('C')) c=code_value();
+      PID_autotune(temp, e, c);
+    }
+    break;
+    case 400: // M400 finish all moves
+    {
+      st_synchronize();
+    }
+    break;
+
+    case 500: // M500 Store settings in EEPROM
+    {
+        Config_StoreSettings(EEPROM_OFFSET);
+    }
+    break;
+    case 501: // M501 Read settings from EEPROM
+    {
+        Config_RetrieveSettings(EEPROM_OFFSET);
+    }
+    break;
+    case 502: // M502 Revert to default settings
+    {
+        Config_ResetDefault();
+    }
+    break;
+    case 503: // M503 print settings currently in memory
+    {
+        Config_PrintSettings();
+    }
+    break;
+    case 509: //M509 Force language selection
+    {
+		lang_reset();
+        SERIAL_ECHO_START;
+        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
+    }
+    break;
+    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
+    case 540:
+    {
+        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
+    }
+    break;
+    #endif
+
+    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
+    {
+      float value;
+      if (code_seen('Z'))
+      {
+        value = code_value();
+        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
+        {
+          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
+          SERIAL_PROTOCOLLN("");
+        }
+        else
+        {
+          SERIAL_ECHO_START;
+          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
+          SERIAL_ECHORPGM(MSG_Z_MIN);
+          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
+          SERIAL_ECHORPGM(MSG_Z_MAX);
+          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
+          SERIAL_PROTOCOLLN("");
+        }
+      }
+      else
+      {
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
+          SERIAL_ECHO(-zprobe_zoffset);
+          SERIAL_PROTOCOLLN("");
+      }
+      break;
+    }
+    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+
+    #ifdef FILAMENTCHANGEENABLE
+    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+    {
+#ifdef PAT9125
+		bool old_fsensor_enabled = fsensor_enabled;
+		fsensor_enabled = false; //temporary solution for unexpected restarting
+#endif //PAT9125
+
+		st_synchronize();
+		float target[4];
+		float lastpos[4];
+
+        if (farm_mode)
+            
+        {
+            
+            prusa_statistics(22);
+            
+        }
+        
+        feedmultiplyBckp=feedmultiply;
+        int8_t TooLowZ = 0;
+
+		float HotendTempBckp = degTargetHotend(active_extruder);
+		int fanSpeedBckp = fanSpeed;
+        target[X_AXIS]=current_position[X_AXIS];
+        target[Y_AXIS]=current_position[Y_AXIS];
+        target[Z_AXIS]=current_position[Z_AXIS];
+        target[E_AXIS]=current_position[E_AXIS];
+        lastpos[X_AXIS]=current_position[X_AXIS];
+        lastpos[Y_AXIS]=current_position[Y_AXIS];
+        lastpos[Z_AXIS]=current_position[Z_AXIS];
+        lastpos[E_AXIS]=current_position[E_AXIS];
+
+        //Restract extruder
+        if(code_seen('E'))
+        {
+          target[E_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_FIRSTRETRACT
+            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+          #endif
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+        //Lift Z
+        if(code_seen('Z'))
+        {
+          target[Z_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_ZADD
+            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+            if(target[Z_AXIS] < 10){
+              target[Z_AXIS]+= 10 ;
+              TooLowZ = 1;
+            }else{
+              TooLowZ = 0;
+            }
+          #endif
+     
+          
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+        //Move XY to side
+        if(code_seen('X'))
+        {
+          target[X_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_XPOS
+            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+          #endif
+        }
+        if(code_seen('Y'))
+        {
+          target[Y_AXIS]= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_YPOS
+            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+          #endif
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+		st_synchronize();
+		KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+		uint8_t cnt = 0;
+		int counterBeep = 0;	
+		fanSpeed = 0;
+		unsigned long waiting_start_time = millis();
+		uint8_t wait_for_user_state = 0;
+		lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
+		while (!(wait_for_user_state == 0 && lcd_clicked())){
+
+			//cnt++;
+			manage_heater();
+			manage_inactivity(true);
+
+			/*#ifdef SNMM
+			target[E_AXIS] += 0.002;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+			#endif // SNMM*/
+
+			//if (cnt == 0)
+			{
+#if BEEPER > 0
+				if (counterBeep == 500) {
+					counterBeep = 0;
+				}
+				SET_OUTPUT(BEEPER);
+				if (counterBeep == 0) {
+					WRITE(BEEPER, HIGH);
+				}
+				if (counterBeep == 20) {
+					WRITE(BEEPER, LOW);
+				}
+				
+				counterBeep++;
+#else
+#endif
+			}
+			
+			switch (wait_for_user_state) {
+			case 0: 
+				delay_keep_alive(4);
+
+				if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
+					lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
+					wait_for_user_state = 1;
+					setTargetHotend(0, 0);
+					setTargetHotend(0, 1);
+					setTargetHotend(0, 2);
+					st_synchronize();
+					disable_e0();
+					disable_e1();
+					disable_e2();
+				}
+				break;
+			case 1:
+				delay_keep_alive(4);
+		
+				if (lcd_clicked()) {
+					setTargetHotend(HotendTempBckp, active_extruder);
+					lcd_wait_for_heater();
+
+					wait_for_user_state = 2;
+				}
+				break;
+			case 2:
+
+				if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
+					lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
+					waiting_start_time = millis();
+					wait_for_user_state = 0;
+				}
+				else {
+					counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
+					lcd_set_cursor(1, 4);
+					lcd_print(ftostr3(degHotend(active_extruder)));
+				}
+				break;
+
+			}
+
+		}
+		WRITE(BEEPER, LOW);
+		
+		lcd_change_fil_state = 0;
+		
+
+		// Unload filament
+			lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
+			KEEPALIVE_STATE(IN_HANDLER);
+			custom_message = true;
+			lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
+
+			if (code_seen('L'))
+			{
+				target[E_AXIS] += code_value();
+			}
+			else
+			{
+#ifdef SNMM
+
+#else
+#ifdef FILAMENTCHANGE_FINALRETRACT
+				target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
+#endif
+#endif // SNMM
+			}
+
+#ifdef SNMM
+			target[E_AXIS] += 12;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
+			target[E_AXIS] += 6;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+			target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+			st_synchronize();
+			target[E_AXIS] += (FIL_COOLING);
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+			target[E_AXIS] += (FIL_COOLING*-1);
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+			target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+			st_synchronize();
+
+#else
+			//		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+			//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
+            
+            target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
+            st_synchronize();
+#ifdef TMC2130
+            uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
+            tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
+#else 
+
+			st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
+			float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+			float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+
+#endif //TMC2130
+
+            target[E_AXIS] -= 45;
+            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
+            st_synchronize();
+            target[E_AXIS] -= 15;
+            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
+            st_synchronize();
+            target[E_AXIS] -= 20;
+            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
+            st_synchronize();
+
+#ifdef TMC2130            
+            tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
+#else
+			uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
+			if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
+			else st_current_set(2, tmp_motor_loud[2]);		
+#endif //TMC2130
+
+#endif // SNMM
+
+
+			//finish moves
+			st_synchronize();
+
+			lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
+			
+			//disable extruder steppers so filament can be removed
+			disable_e0();
+			disable_e1();
+			disable_e2();
+			delay(100);
+			 
+			
+			WRITE(BEEPER, HIGH);
+			counterBeep = 0;
+			while(!lcd_clicked() && (counterBeep < 50)) {
+				if(counterBeep > 5) WRITE(BEEPER, LOW);
+				delay_keep_alive(100);
+				counterBeep++;
+			}
+			WRITE(BEEPER, LOW);
+
+			KEEPALIVE_STATE(PAUSED_FOR_USER);
+			lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
+			if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
+			//lcd_return_to_status();
+			lcd_update_enable(true);
+		
+        //Wait for user to insert filament
+        lcd_wait_interact();
+		//load_filament_time = millis();
+		KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+#ifdef PAT9125
+		if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
+#endif //PAT9125
+//		  printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
+        while(!lcd_clicked())
+		{
+          manage_heater();
+          manage_inactivity(true);
+#ifdef PAT9125
+		  if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
+		  {
+			tone(BEEPER, 1000);
+			delay_keep_alive(50);
+			noTone(BEEPER);
+			  break;
+		  }
+#endif //PAT9125
+/*#ifdef SNMM
+		  target[E_AXIS] += 0.002;
+		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+#endif // SNMM*/
+
+        }
+#ifdef PAT9125
+		if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
+#endif //PAT9125
+		//WRITE(BEEPER, LOW);
+		KEEPALIVE_STATE(IN_HANDLER);
+
+
+#ifdef SNMM
+		display_loading();
+		KEEPALIVE_STATE(PAUSED_FOR_USER);
+		do {
+			target[E_AXIS] += 0.002;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+			delay_keep_alive(2);
+		} while (!lcd_clicked());
+		KEEPALIVE_STATE(IN_HANDLER);
+		/*if (millis() - load_filament_time > 2) {
+			load_filament_time = millis();
+			target[E_AXIS] += 0.001;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
+		}*/
+
+        //Filament inserted     
+		//Feed the filament to the end of nozzle quickly   		
+		st_synchronize();
+		target[E_AXIS] += bowden_length[snmm_extruder];
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+		target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+		target[E_AXIS] += 40;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+		target[E_AXIS] += 10;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+#else
+		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif // SNMM
+        
+        //Extrude some filament
+        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
+        
+        //Wait for user to check the state
+        lcd_change_fil_state = 0;
+        lcd_loading_filament();
+
+		tone(BEEPER, 500);
+		delay_keep_alive(50);
+		noTone(BEEPER);
+
+		while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+          lcd_change_fil_state = 0;
+		  KEEPALIVE_STATE(PAUSED_FOR_USER);
+          lcd_alright();
+		  KEEPALIVE_STATE(IN_HANDLER);
+          switch(lcd_change_fil_state){
+            
+             // Filament failed to load so load it again
+             case 2:
+#ifdef SNMM
+				 display_loading();
+				 do {
+					 target[E_AXIS] += 0.002;
+					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+					 delay_keep_alive(2);
+				 } while (!lcd_clicked());
+
+				 st_synchronize();
+				 target[E_AXIS] += bowden_length[snmm_extruder];
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+				 target[E_AXIS] += 40;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+				 target[E_AXIS] += 10;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+
+#else
+                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
+#endif                
+                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
+
+                     lcd_loading_filament();
+
+                     break;
+
+             // Filament loaded properly but color is not clear
+             case 3:
+                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                     lcd_loading_color();
+                     break;
+                 
+             // Everything good             
+             default:
+                     lcd_change_success();
+					 lcd_update_enable(true);
+                     break;
+          }
+          
+        }
+        
+
+      //Not let's go back to print
+		fanSpeed = fanSpeedBckp;
+
+      //Feed a little of filament to stabilize pressure
+      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
+      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+        
+      //Retract
+      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+        
+
+        
+      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+      
+      //Move XY back
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+      
+      //Move Z back
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+        
+        
+      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+        
+      //Unretract       
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+        
+      //Set E position to original  
+      plan_set_e_position(lastpos[E_AXIS]);
+       
+      //Recover feed rate 
+      feedmultiply=feedmultiplyBckp;
+      char cmd[9];
+      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+      enquecommand(cmd);
+      
+	  lcd_setstatuspgm(_T(WELCOME_MSG));
+	  custom_message = false;
+	  custom_message_type = 0;
+
+#ifdef PAT9125
+      fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
+
+	  if (fsensor_M600)
+	  {
+		cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
+		st_synchronize();
+		while (!is_buffer_empty())
+		{
+			process_commands();
+		    cmdqueue_pop_front();
+		}
+		KEEPALIVE_STATE(IN_HANDLER);
+		fsensor_enable();
+		fsensor_restore_print_and_continue();
+	  }
+
+#endif //PAT9125
+        
+    }
+    break;
+    #endif //FILAMENTCHANGEENABLE
+	case 601: {
+		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
+	}
+	break;
+
+	case 602: {
+		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
+	}
+	break;
+
+#ifdef PINDA_THERMISTOR
+	case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
+	{
+		int set_target_pinda = 0;
+
+		if (code_seen('S')) {
+			set_target_pinda = code_value();
+		}
+		else {
+			break;
+		}
+
+		LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
+
+		SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
+		SERIAL_PROTOCOL(set_target_pinda);
+		SERIAL_PROTOCOLLN("");
+
+		codenum = millis();
+		cancel_heatup = false;
+
+		bool is_pinda_cooling = false;
+		if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
+		    is_pinda_cooling = true;
+		}
+
+		while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
+			if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
+			{
+				SERIAL_PROTOCOLPGM("P:");
+				SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
+				SERIAL_PROTOCOLPGM("/");
+				SERIAL_PROTOCOL(set_target_pinda);
+				SERIAL_PROTOCOLLN("");
+				codenum = millis();
+			}
+			manage_heater();
+			manage_inactivity();
+			lcd_update(0);
+		}
+		LCD_MESSAGERPGM(_T(MSG_OK));
+
+		break;
+	}
+ 
+	case 861: // M861 - Set/Read PINDA temperature compensation offsets
+		if (code_seen('?')) { // ? - Print out current EEPROM offset values
+			uint8_t cal_status = calibration_status_pinda();
+			int16_t usteps = 0;
+			cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
+			SERIAL_PROTOCOLLN("index, temp, ustep, um");
+			for (uint8_t i = 0; i < 6; i++)
+			{
+				if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
+				float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
+				i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
+				SERIAL_PROTOCOLPGM(", ");
+				SERIAL_PROTOCOL(35 + (i * 5));
+				SERIAL_PROTOCOLPGM(", ");
+				SERIAL_PROTOCOL(usteps);
+				SERIAL_PROTOCOLPGM(", ");
+				SERIAL_PROTOCOL(mm * 1000);
+				SERIAL_PROTOCOLLN("");
+			}
+		}
+		else if (code_seen('!')) { // ! - Set factory default values
+			eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+			int16_t z_shift = 8;    //40C -  20um -   8usteps
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
+			z_shift = 24;   //45C -  60um -  24usteps
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
+			z_shift = 48;   //50C - 120um -  48usteps
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
+			z_shift = 80;   //55C - 200um -  80usteps
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
+			z_shift = 120;  //60C - 300um - 120usteps
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
+			SERIAL_PROTOCOLLN("factory restored");
+		}
+		else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
+			eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+			int16_t z_shift = 0;
+			for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
+			SERIAL_PROTOCOLLN("zerorized");
+		}
+		else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
+			int16_t usteps = code_value();
+			if (code_seen('I')) {
+				byte index = code_value();
+				if ((index >= 0) && (index < 5)) {
+					EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
+					SERIAL_PROTOCOLLN("OK");
+					SERIAL_PROTOCOLLN("index, temp, ustep, um");
+					for (uint8_t i = 0; i < 6; i++)
+					{
+						usteps = 0;
+						if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
+						float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
+						i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
+						SERIAL_PROTOCOLPGM(", ");
+						SERIAL_PROTOCOL(35 + (i * 5));
+						SERIAL_PROTOCOLPGM(", ");
+						SERIAL_PROTOCOL(usteps);
+						SERIAL_PROTOCOLPGM(", ");
+						SERIAL_PROTOCOL(mm * 1000);
+						SERIAL_PROTOCOLLN("");
+					}
+				}
+			}
+		}
+		else {
+			SERIAL_PROTOCOLPGM("no valid command");
+		}
+		break;
+
+#endif //PINDA_THERMISTOR
+
+#ifdef LIN_ADVANCE
+    case 900: // M900: Set LIN_ADVANCE options.
+        gcode_M900();
+    break;
+#endif
+
+    case 907: // M907 Set digital trimpot motor current using axis codes.
+    {
+      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
+        if(code_seen('B')) st_current_set(4,code_value());
+        if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_XY_PIN
+        if(code_seen('X')) st_current_set(0, code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_Z_PIN
+        if(code_seen('Z')) st_current_set(1, code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_E_PIN
+        if(code_seen('E')) st_current_set(2, code_value());
+      #endif
+    }
+    break;
+    case 908: // M908 Control digital trimpot directly.
+    {
+      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+        uint8_t channel,current;
+        if(code_seen('P')) channel=code_value();
+        if(code_seen('S')) current=code_value();
+        digitalPotWrite(channel, current);
+      #endif
+    }
+    break;
+
+#ifdef TMC2130
+
+	case 910: // M910 TMC2130 init
+    {
+		tmc2130_init();
+    }
+    break;
+
+	case 911: // M911 Set TMC2130 holding currents
+    {
+		if (code_seen('X')) tmc2130_set_current_h(0, code_value());
+		if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
+        if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
+        if (code_seen('E')) tmc2130_set_current_h(3, code_value());
+    }
+    break;
+
+	case 912: // M912 Set TMC2130 running currents
+    {
+		if (code_seen('X')) tmc2130_set_current_r(0, code_value());
+		if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
+        if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
+        if (code_seen('E')) tmc2130_set_current_r(3, code_value());
+    }
+    break;
+
+	case 913: // M913 Print TMC2130 currents
+    {
+		tmc2130_print_currents();
+    }
+    break;
+
+	case 914: // M914 Set normal mode
+    {
+		tmc2130_mode = TMC2130_MODE_NORMAL;
+		tmc2130_init();
+    }
+    break;
+
+	case 915: // M915 Set silent mode
+    {
+		tmc2130_mode = TMC2130_MODE_SILENT;
+		tmc2130_init();
+    }
+    break;
+
+	case 916: // M916 Set sg_thrs
+    {
+		if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
+		if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
+		if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
+		if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
+		for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
+			printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
+    }
+    break;
+
+	case 917: // M917 Set TMC2130 pwm_ampl
+    {
+		if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
+		if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
+        if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
+        if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
+    }
+    break;
+
+	case 918: // M918 Set TMC2130 pwm_grad
+    {
+		if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
+		if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
+        if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
+        if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
+    }
+    break;
+
+#endif //TMC2130
+
+    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
+    {
+	#ifdef TMC2130
+		if(code_seen('E'))
+		{
+			uint16_t res_new = code_value();
+			if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
+			{
+				st_synchronize();
+				uint8_t axis = E_AXIS;
+				uint16_t res = tmc2130_get_res(axis);
+				tmc2130_set_res(axis, res_new);
+				if (res_new > res)
+				{
+					uint16_t fac = (res_new / res);
+					axis_steps_per_unit[axis] *= fac;
+					position[E_AXIS] *= fac;
+				}
+				else
+				{
+					uint16_t fac = (res / res_new);
+					axis_steps_per_unit[axis] /= fac;
+					position[E_AXIS] /= fac;
+				}
+			}
+		}
+	#else //TMC2130
+      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
+        if(code_seen('B')) microstep_mode(4,code_value());
+        microstep_readings();
+      #endif
+	#endif //TMC2130
+    }
+    break;
+    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
+    {
+      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+      if(code_seen('S')) switch((int)code_value())
+      {
+        case 1:
+          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
+          if(code_seen('B')) microstep_ms(4,code_value(),-1);
+          break;
+        case 2:
+          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
+          if(code_seen('B')) microstep_ms(4,-1,code_value());
+          break;
+      }
+      microstep_readings();
+      #endif
+    }
+    break;
+	case 701: //M701: load filament
+	{
+		#ifdef SNMM_V2
+		if (code_seen('E'))
+		{
+			snmm_extruder = code_value();
+		}
+		#endif
+		
+
+		gcode_M701();
+	}
+	break;
+	case 702:
+	{
+#if defined (SNMM) || defined (SNMM_V2) 
+		if (code_seen('U')) {
+			extr_unload_used(); //unload all filaments which were used in current print
+		}
+		else if (code_seen('C')) {
+			extr_unload(); //unload just current filament 
+		}
+		else {
+			  extr_unload_all(); //unload all filaments
+		}
+#else
+#ifdef PAT9125
+		bool old_fsensor_enabled = fsensor_enabled;
+		fsensor_enabled = false;
+#endif //PAT9125
+		custom_message = true;
+		custom_message_type = 2;
+		lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT)); 
+
+//		extr_unload2();
+		
+		current_position[E_AXIS] -= 45;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
+        st_synchronize();
+        current_position[E_AXIS] -= 15;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
+        st_synchronize();
+        current_position[E_AXIS] -= 20;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
+		st_synchronize();
+
+		lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
+
+		//disable extruder steppers so filament can be removed
+		disable_e0();
+		disable_e1();
+		disable_e2();
+		delay(100);
+
+
+		WRITE(BEEPER, HIGH);
+		uint8_t counterBeep = 0;
+		while (!lcd_clicked() && (counterBeep < 50)) {
+			if (counterBeep > 5) WRITE(BEEPER, LOW);
+			delay_keep_alive(100);
+			counterBeep++;
+		}
+		WRITE(BEEPER, LOW);
+		st_synchronize();	
+		while (lcd_clicked()) delay_keep_alive(100);
+
+		lcd_update_enable(true);
+	
+		lcd_setstatuspgm(_T(WELCOME_MSG));
+		custom_message = false;
+		custom_message_type = 0;
+#ifdef PAT9125
+		fsensor_enabled = old_fsensor_enabled;
+#endif //PAT9125
+#endif	
+	}
+	break;
+
+    case 999: // M999: Restart after being stopped
+      Stopped = false;
+      lcd_reset_alert_level();
+      gcode_LastN = Stopped_gcode_LastN;
+      FlushSerialRequestResend();
+    break;
+	default: 
+		printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
+    }
+	
+  } // end if(code_seen('M')) (end of M codes)
+
+  else if(code_seen('T'))
+  {
+	  int index;
+	  st_synchronize();
+	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+	   
+	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
+		  SERIAL_ECHOLNPGM("Invalid T code.");
+	  }
+	  else {
+		  if (*(strchr_pointer + index) == '?') {
+			  tmp_extruder = choose_extruder_menu();
+		  }
+		  else {
+			  tmp_extruder = code_value();
+		  }
+		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print
+
+#ifdef SNMM_V2
+		  printf_P(PSTR("T code: %d \n"), tmp_extruder);
+          switch (tmp_extruder) 
+          {
+          case 1:
+              
+              fprintf_P(uart2io, PSTR("T1\n"));
+              break;
+          case 2:
+              
+              fprintf_P(uart2io, PSTR("T2\n"));
+              break;
+          case 3:
+              
+              fprintf_P(uart2io, PSTR("T3\n"));
+              break;
+          case 4:
+              
+              fprintf_P(uart2io, PSTR("T4\n"));
+              break;
+          default:
+              
+              fprintf_P(uart2io, PSTR("T0\n"));
+              break;
+          }
+
+          
+
+          
+              // get response
+            uart2_rx_clr();
+              while (!uart2_rx_ok())
+              {
+                  //printf_P(PSTR("waiting..\n"));
+                  delay_keep_alive(100);
+              }
+			  snmm_extruder = tmp_extruder; //filament change is finished
+
+		  if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
+			  bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
+			  if (!saved_e_relative_mode) {
+				  enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
+			  }
+			  enquecommand_front_P((PSTR("G1 E7.2000 F562")));
+			  enquecommand_front_P((PSTR("G1 E14.4000 F871")));
+			  enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
+			  enquecommand_front_P((PSTR("G1 E14.4000 F871")));			  
+			  if (!saved_e_relative_mode) {
+				  enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
+			  }
+		  }
+#endif
+
+#ifdef SNMM
+          
+    #ifdef LIN_ADVANCE
+          if (snmm_extruder != tmp_extruder)
+            clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
+    #endif
+          
+		  snmm_extruder = tmp_extruder;
+
+		  
+		  delay(100);
+
+		  disable_e0();
+		  disable_e1();
+		  disable_e2();
+
+		  pinMode(E_MUX0_PIN, OUTPUT);
+		  pinMode(E_MUX1_PIN, OUTPUT);
+
+		  delay(100);
+		  SERIAL_ECHO_START;
+		  SERIAL_ECHO("T:");
+		  SERIAL_ECHOLN((int)tmp_extruder);
+		  switch (tmp_extruder) {
+		  case 1:
+			  WRITE(E_MUX0_PIN, HIGH);
+			  WRITE(E_MUX1_PIN, LOW);
+
+			  break;
+		  case 2:
+			  WRITE(E_MUX0_PIN, LOW);
+			  WRITE(E_MUX1_PIN, HIGH);
+
+			  break;
+		  case 3:
+			  WRITE(E_MUX0_PIN, HIGH);
+			  WRITE(E_MUX1_PIN, HIGH);
+
+			  break;
+		  default:
+			  WRITE(E_MUX0_PIN, LOW);
+			  WRITE(E_MUX1_PIN, LOW);
+
+			  break;
+		  }
+		  delay(100);
+
+#else
+		  if (tmp_extruder >= EXTRUDERS) {
+			  SERIAL_ECHO_START;
+			  SERIAL_ECHOPGM("T");
+			  SERIAL_PROTOCOLLN((int)tmp_extruder);
+			  SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
+		  }
+		  else {
+			  boolean make_move = false;
+			  if (code_seen('F')) {
+				  make_move = true;
+				  next_feedrate = code_value();
+				  if (next_feedrate > 0.0) {
+					  feedrate = next_feedrate;
+				  }
+			  }
+#if EXTRUDERS > 1
+			  if (tmp_extruder != active_extruder) {
+				  // Save current position to return to after applying extruder offset
+				  memcpy(destination, current_position, sizeof(destination));
+				  // Offset extruder (only by XY)
+				  int i;
+				  for (i = 0; i < 2; i++) {
+					  current_position[i] = current_position[i] -
+						  extruder_offset[i][active_extruder] +
+						  extruder_offset[i][tmp_extruder];
+				  }
+				  // Set the new active extruder and position
+				  active_extruder = tmp_extruder;
+				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+				  // Move to the old position if 'F' was in the parameters
+				  if (make_move && Stopped == false) {
+					  prepare_move();
+				  }
+			  }
+#endif
+			  SERIAL_ECHO_START;
+			  SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
+			  SERIAL_PROTOCOLLN((int)active_extruder);
+		  }
+
+#endif
+	  }
+  } // end if(code_seen('T')) (end of T codes)
+
+#ifdef DEBUG_DCODES
+  else if (code_seen('D')) // D codes (debug)
+  {
+    switch((int)code_value())
+    {
+	case -1: // D-1 - Endless loop
+		dcode__1(); break;
+	case 0: // D0 - Reset
+		dcode_0(); break;
+	case 1: // D1 - Clear EEPROM
+		dcode_1(); break;
+	case 2: // D2 - Read/Write RAM
+		dcode_2(); break;
+	case 3: // D3 - Read/Write EEPROM
+		dcode_3(); break;
+	case 4: // D4 - Read/Write PIN
+		dcode_4(); break;
+	case 5: // D5 - Read/Write FLASH
+//		dcode_5(); break;
+		break;
+	case 6: // D6 - Read/Write external FLASH
+		dcode_6(); break;
+	case 7: // D7 - Read/Write Bootloader
+		dcode_7(); break;
+	case 8: // D8 - Read/Write PINDA
+		dcode_8(); break;
+	case 9: // D9 - Read/Write ADC
+		dcode_9(); break;
+
+	case 10: // D10 - XYZ calibration = OK
+		dcode_10(); break;
+    
+
+#ifdef TMC2130
+	case 2130: // D9125 - TMC2130
+		dcode_2130(); break;
+#endif //TMC2130
+
+#ifdef PAT9125
+	case 9125: // D9125 - PAT9125
+		dcode_9125(); break;
+#endif //PAT9125
+
+	}
+  }
+#endif //DEBUG_DCODES
+
+  else
+  {
+    SERIAL_ECHO_START;
+    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+    SERIAL_ECHOLNPGM("\"(2)");
+  }
+  KEEPALIVE_STATE(NOT_BUSY);
+  ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+  //char cmdbuffer[bufindr][100]="Resend:";
+  MYSERIAL.flush();
+  printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
+}
+
+// Confirm the execution of a command, if sent from a serial line.
+// Execution of a command from a SD card will not be confirmed.
+void ClearToSend()
+{
+    previous_millis_cmd = millis();
+	if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)) 
+		SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
+}
+
+#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+void update_currents() {
+	float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+	float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
+	float tmp_motor[3];
+	
+	//SERIAL_ECHOLNPGM("Currents updated: ");
+
+	if (destination[Z_AXIS] < Z_SILENT) {
+		//SERIAL_ECHOLNPGM("LOW");
+		for (uint8_t i = 0; i < 3; i++) {
+			st_current_set(i, current_low[i]);		
+			/*MYSERIAL.print(int(i));
+			SERIAL_ECHOPGM(": ");
+			MYSERIAL.println(current_low[i]);*/
+		}		
+	}
+	else if (destination[Z_AXIS] > Z_HIGH_POWER) {
+		//SERIAL_ECHOLNPGM("HIGH");
+		for (uint8_t i = 0; i < 3; i++) {
+			st_current_set(i, current_high[i]);
+			/*MYSERIAL.print(int(i));
+			SERIAL_ECHOPGM(": ");
+			MYSERIAL.println(current_high[i]);*/
+		}		
+	}
+	else {
+		for (uint8_t i = 0; i < 3; i++) {
+			float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
+			tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
+			st_current_set(i, tmp_motor[i]);			
+			/*MYSERIAL.print(int(i));
+			SERIAL_ECHOPGM(": ");
+			MYSERIAL.println(tmp_motor[i]);*/
+		}
+	}
+}
+#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+
+void get_coordinates()
+{
+  bool seen[4]={false,false,false,false};
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    if(code_seen(axis_codes[i]))
+    {
+      bool relative = axis_relative_modes[i] || relative_mode;
+      destination[i] = (float)code_value();
+      if (i == E_AXIS) {
+        float emult = extruder_multiplier[active_extruder];
+        if (emult != 1.) {
+          if (! relative) {
+            destination[i] -= current_position[i];
+            relative = true;
+          }
+          destination[i] *= emult;
+        }
+      }
+      if (relative)
+        destination[i] += current_position[i];
+      seen[i]=true;
+#if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+	  if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
+#endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
+    }
+    else destination[i] = current_position[i]; //Are these else lines really needed?
+  }
+  if(code_seen('F')) {
+    next_feedrate = code_value();
+#ifdef MAX_SILENT_FEEDRATE
+	if (tmc2130_mode == TMC2130_MODE_SILENT)
+		if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
+#endif //MAX_SILENT_FEEDRATE
+    if(next_feedrate > 0.0) feedrate = next_feedrate;
+	if (!seen[0] && !seen[1] && !seen[2] && seen[3])
+	{
+//		float e_max_speed = 
+//		printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
+	}
+  }
+}
+
+void get_arc_coordinates()
+{
+#ifdef SF_ARC_FIX
+   bool relative_mode_backup = relative_mode;
+   relative_mode = true;
+#endif
+   get_coordinates();
+#ifdef SF_ARC_FIX
+   relative_mode=relative_mode_backup;
+#endif
+
+   if(code_seen('I')) {
+     offset[0] = code_value();
+   }
+   else {
+     offset[0] = 0.0;
+   }
+   if(code_seen('J')) {
+     offset[1] = code_value();
+   }
+   else {
+     offset[1] = 0.0;
+   }
+}
+
+void clamp_to_software_endstops(float target[3])
+{
+#ifdef DEBUG_DISABLE_SWLIMITS
+	return;
+#endif //DEBUG_DISABLE_SWLIMITS
+    world2machine_clamp(target[0], target[1]);
+
+    // Clamp the Z coordinate.
+    if (min_software_endstops) {
+        float negative_z_offset = 0;
+        #ifdef ENABLE_AUTO_BED_LEVELING
+            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
+            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
+        #endif
+        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
+    }
+    if (max_software_endstops) {
+        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
+    }
+}
+
+#ifdef MESH_BED_LEVELING
+    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
+        float dx = x - current_position[X_AXIS];
+        float dy = y - current_position[Y_AXIS];
+        float dz = z - current_position[Z_AXIS];
+        int n_segments = 0;
+		
+        if (mbl.active) {
+            float len = abs(dx) + abs(dy);
+            if (len > 0)
+                // Split to 3cm segments or shorter.
+                n_segments = int(ceil(len / 30.f));
+        }
+        
+        if (n_segments > 1) {
+            float de = e - current_position[E_AXIS];
+            for (int i = 1; i < n_segments; ++ i) {
+                float t = float(i) / float(n_segments);
+                if (saved_printing || (mbl.active == false)) return;
+                plan_buffer_line(
+                                 current_position[X_AXIS] + t * dx,
+                                 current_position[Y_AXIS] + t * dy,
+                                 current_position[Z_AXIS] + t * dz,
+                                 current_position[E_AXIS] + t * de,
+                                 feed_rate, extruder);
+            }
+        }
+        // The rest of the path.
+        plan_buffer_line(x, y, z, e, feed_rate, extruder);
+        current_position[X_AXIS] = x;
+        current_position[Y_AXIS] = y;
+        current_position[Z_AXIS] = z;
+        current_position[E_AXIS] = e;
+    }
+#endif  // MESH_BED_LEVELING
+    
+void prepare_move()
+{
+  clamp_to_software_endstops(destination);
+  previous_millis_cmd = millis();
+
+  // Do not use feedmultiply for E or Z only moves
+  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
+      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+  }
+  else {
+#ifdef MESH_BED_LEVELING
+    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#else
+     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#endif
+  }
+
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+}
+
+void prepare_arc_move(char isclockwise) {
+  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+  // Trace the arc
+  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
+
+  // As far as the parser is concerned, the position is now == target. In reality the
+  // motion control system might still be processing the action and the real tool position
+  // in any intermediate location.
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+  previous_millis_cmd = millis();
+}
+
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+
+#if defined(FAN_PIN)
+  #if CONTROLLERFAN_PIN == FAN_PIN
+    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
+  #endif
+#endif
+
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
+unsigned long lastMotorCheck = 0;
+
+void controllerFan()
+{
+  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
+  {
+    lastMotorCheck = millis();
+
+    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
+    #if EXTRUDERS > 2
+       || !READ(E2_ENABLE_PIN)
+    #endif
+    #if EXTRUDER > 1
+      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
+       || !READ(X2_ENABLE_PIN)
+      #endif
+       || !READ(E1_ENABLE_PIN)
+    #endif
+       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
+    {
+      lastMotor = millis(); //... set time to NOW so the fan will turn on
+    }
+
+    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
+    {
+        digitalWrite(CONTROLLERFAN_PIN, 0);
+        analogWrite(CONTROLLERFAN_PIN, 0);
+    }
+    else
+    {
+        // allows digital or PWM fan output to be used (see M42 handling)
+        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+    }
+  }
+}
+#endif
+
+#ifdef TEMP_STAT_LEDS
+static bool blue_led = false;
+static bool red_led = false;
+static uint32_t stat_update = 0;
+
+void handle_status_leds(void) {
+  float max_temp = 0.0;
+  if(millis() > stat_update) {
+    stat_update += 500; // Update every 0.5s
+    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+       max_temp = max(max_temp, degHotend(cur_extruder));
+       max_temp = max(max_temp, degTargetHotend(cur_extruder));
+    }
+    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+      max_temp = max(max_temp, degTargetBed());
+      max_temp = max(max_temp, degBed());
+    #endif
+    if((max_temp > 55.0) && (red_led == false)) {
+      digitalWrite(STAT_LED_RED, 1);
+      digitalWrite(STAT_LED_BLUE, 0);
+      red_led = true;
+      blue_led = false;
+    }
+    if((max_temp < 54.0) && (blue_led == false)) {
+      digitalWrite(STAT_LED_RED, 0);
+      digitalWrite(STAT_LED_BLUE, 1);
+      red_led = false;
+      blue_led = true;
+    }
+  }
+}
+#endif
+
+#ifdef SAFETYTIMER
+/**
+ * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
+ *
+ * Full screen blocking notification message is shown after heater turning off.
+ * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
+ * damage print.
+ *
+ * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
+ */
+static void handleSafetyTimer()
+{
+#if (EXTRUDERS > 1)
+#error Implemented only for one extruder.
+#endif //(EXTRUDERS > 1)
+    if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
+    {
+        safetyTimer.stop();
+    }
+    else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
+    {
+        safetyTimer.start();
+    }
+    else if (safetyTimer.expired(safetytimer_inactive_time))
+    {
+        setTargetBed(0);
+        setTargetHotend(0, 0);
+        lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
+    }
+}
+#endif //SAFETYTIMER
+
+void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
+{
+#ifdef PAT9125
+	if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
+	{
+		if (fsensor_autoload_enabled)
+		{
+			if (fsensor_check_autoload())
+			{
+                
+                if (degHotend0() > EXTRUDE_MINTEMP)
+                {
+                    fsensor_autoload_check_stop();
+                    tone(BEEPER, 1000);
+                    delay_keep_alive(50);
+                    noTone(BEEPER);
+                    loading_flag = true;
+                    enquecommand_front_P((PSTR("M701")));
+                }
+                else
+                {
+                    lcd_update_enable(false);
+                    lcd_clear();
+                    lcd_set_cursor(0, 0);
+                    lcd_puts_P(_T(MSG_ERROR));
+                    lcd_set_cursor(0, 2);
+                    lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
+                    delay(2000);
+                    lcd_clear();
+                    lcd_update_enable(true);
+                }
+                
+			}
+		}
+		else
+			fsensor_autoload_check_start();
+	}
+	else
+		if (fsensor_autoload_enabled)
+			fsensor_autoload_check_stop();
+#endif //PAT9125
+
+#ifdef SAFETYTIMER
+	handleSafetyTimer();
+#endif //SAFETYTIMER
+
+#if defined(KILL_PIN) && KILL_PIN > -1
+	static int killCount = 0;   // make the inactivity button a bit less responsive
+   const int KILL_DELAY = 10000;
+#endif
+	
+    if(buflen < (BUFSIZE-1)){
+        get_command();
+    }
+
+  if( (millis() - previous_millis_cmd) >  max_inactive_time )
+    if(max_inactive_time)
+      kill(_n(""), 4);
+  if(stepper_inactive_time)  {
+    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
+    {
+      if(blocks_queued() == false && ignore_stepper_queue == false) {
+        disable_x();
+//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
+        disable_y();
+        disable_z();
+        disable_e0();
+        disable_e1();
+        disable_e2();
+      }
+    }
+  }
+  
+  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
+    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
+    {
+      chdkActive = false;
+      WRITE(CHDK, LOW);
+    }
+  #endif
+  
+  #if defined(KILL_PIN) && KILL_PIN > -1
+    
+    // Check if the kill button was pressed and wait just in case it was an accidental
+    // key kill key press
+    // -------------------------------------------------------------------------------
+    if( 0 == READ(KILL_PIN) )
+    {
+       killCount++;
+    }
+    else if (killCount > 0)
+    {
+       killCount--;
+    }
+    // Exceeded threshold and we can confirm that it was not accidental
+    // KILL the machine
+    // ----------------------------------------------------------------
+    if ( killCount >= KILL_DELAY)
+    {
+       kill("", 5);
+    }
+  #endif
+    
+  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
+  #endif
+  #ifdef EXTRUDER_RUNOUT_PREVENT
+    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
+    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
+    {
+     bool oldstatus=READ(E0_ENABLE_PIN);
+     enable_e0();
+     float oldepos=current_position[E_AXIS];
+     float oldedes=destination[E_AXIS];
+     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
+                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
+                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
+     current_position[E_AXIS]=oldepos;
+     destination[E_AXIS]=oldedes;
+     plan_set_e_position(oldepos);
+     previous_millis_cmd=millis();
+     st_synchronize();
+     WRITE(E0_ENABLE_PIN,oldstatus);
+    }
+  #endif
+  #ifdef TEMP_STAT_LEDS
+      handle_status_leds();
+  #endif
+  check_axes_activity();
+}
+
+void kill(const char *full_screen_message, unsigned char id)
+{
+	printf_P(_N("KILL: %d\n"), id);
+	//return;
+  cli(); // Stop interrupts
+  disable_heater();
+
+  disable_x();
+//  SERIAL_ECHOLNPGM("kill - disable Y");
+  disable_y();
+  disable_z();
+  disable_e0();
+  disable_e1();
+  disable_e2();
+
+#if defined(PS_ON_PIN) && PS_ON_PIN > -1
+  pinMode(PS_ON_PIN,INPUT);
+#endif
+  SERIAL_ERROR_START;
+  SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
+  if (full_screen_message != NULL) {
+      SERIAL_ERRORLNRPGM(full_screen_message);
+      lcd_display_message_fullscreen_P(full_screen_message);
+  } else {
+      LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
+  }
+
+  // FMC small patch to update the LCD before ending
+  sei();   // enable interrupts
+  for ( int i=5; i--; lcd_update(0))
+  {
+     delay(200);	
+  }
+  cli();   // disable interrupts
+  suicide();
+  while(1)
+  {
+#ifdef WATCHDOG
+    wdt_reset();
+#endif //WATCHDOG
+	  /* Intentionally left empty */
+	
+  } // Wait for reset
+}
+
+void Stop()
+{
+  disable_heater();
+  if(Stopped == false) {
+    Stopped = true;
+    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
+    SERIAL_ERROR_START;
+    SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
+    LCD_MESSAGERPGM(_T(MSG_STOPPED));
+  }
+}
+
+bool IsStopped() { return Stopped; };
+
+#ifdef FAST_PWM_FAN
+void setPwmFrequency(uint8_t pin, int val)
+{
+  val &= 0x07;
+  switch(digitalPinToTimer(pin))
+  {
+
+    #if defined(TCCR0A)
+    case TIMER0A:
+    case TIMER0B:
+//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
+//         TCCR0B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR1A)
+    case TIMER1A:
+    case TIMER1B:
+//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+//         TCCR1B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR2)
+    case TIMER2:
+    case TIMER2:
+         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+         TCCR2 |= val;
+         break;
+    #endif
+
+    #if defined(TCCR2A)
+    case TIMER2A:
+    case TIMER2B:
+         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
+         TCCR2B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR3A)
+    case TIMER3A:
+    case TIMER3B:
+    case TIMER3C:
+         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
+         TCCR3B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR4A)
+    case TIMER4A:
+    case TIMER4B:
+    case TIMER4C:
+         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
+         TCCR4B |= val;
+         break;
+   #endif
+
+    #if defined(TCCR5A)
+    case TIMER5A:
+    case TIMER5B:
+    case TIMER5C:
+         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
+         TCCR5B |= val;
+         break;
+   #endif
+
+  }
+}
+#endif //FAST_PWM_FAN
+
+bool setTargetedHotend(int code){
+  tmp_extruder = active_extruder;
+  if(code_seen('T')) {
+    tmp_extruder = code_value();
+    if(tmp_extruder >= EXTRUDERS) {
+      SERIAL_ECHO_START;
+      switch(code){
+        case 104:
+          SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
+          break;
+        case 105:
+          SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
+          break;
+        case 109:
+          SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
+          break;
+        case 218:
+          SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
+          break;
+        case 221:
+          SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
+          break;
+      }
+      SERIAL_PROTOCOLLN((int)tmp_extruder);
+      return true;
+    }
+  }
+  return false;
+}
+
+void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
+{
+	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
+	{
+		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+	}
+
+	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
+	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
+
+	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
+	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
+
+	total_filament_used = 0;
+
+}
+
+float calculate_extruder_multiplier(float diameter) {
+  float out = 1.f;
+  if (volumetric_enabled && diameter > 0.f) {
+    float area = M_PI * diameter * diameter * 0.25;
+    out = 1.f / area;
+  }
+  if (extrudemultiply != 100)
+    out *= float(extrudemultiply) * 0.01f;
+  return out;
+}
+
+void calculate_extruder_multipliers() {
+	extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
+#if EXTRUDERS > 1
+	extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
+#if EXTRUDERS > 2
+	extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
+#endif
+#endif
+}
+
+void delay_keep_alive(unsigned int ms)
+{
+    for (;;) {
+        manage_heater();
+        // Manage inactivity, but don't disable steppers on timeout.
+        manage_inactivity(true);
+        lcd_update(0);
+        if (ms == 0)
+            break;
+        else if (ms >= 50) {
+            delay(50);
+            ms -= 50;
+        } else {
+            delay(ms);
+            ms = 0;
+        }
+    }
+}
+
+void wait_for_heater(long codenum) {
+
+#ifdef TEMP_RESIDENCY_TIME
+	long residencyStart;
+	residencyStart = -1;
+	/* continue to loop until we have reached the target temp
+	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+	while ((!cancel_heatup) && ((residencyStart == -1) ||
+		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
+#else
+	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
+#endif //TEMP_RESIDENCY_TIME
+		if ((millis() - codenum) > 1000UL)
+		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
+			if (!farm_mode) {
+				SERIAL_PROTOCOLPGM("T:");
+				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
+				SERIAL_PROTOCOLPGM(" E:");
+				SERIAL_PROTOCOL((int)tmp_extruder);
+
+#ifdef TEMP_RESIDENCY_TIME
+				SERIAL_PROTOCOLPGM(" W:");
+				if (residencyStart > -1)
+				{
+					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
+					SERIAL_PROTOCOLLN(codenum);
+				}
+				else
+				{
+					SERIAL_PROTOCOLLN("?");
+				}
+			}
+#else
+				SERIAL_PROTOCOLLN("");
+#endif
+				codenum = millis();
+		}
+			manage_heater();
+			manage_inactivity();
+			lcd_update(0);
+#ifdef TEMP_RESIDENCY_TIME
+			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+			or when current temp falls outside the hysteresis after target temp was reached */
+			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
+				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
+				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
+			{
+				residencyStart = millis();
+			}
+#endif //TEMP_RESIDENCY_TIME
+	}
+}
+
+void check_babystep() {
+	int babystep_z;
+	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
+	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
+		babystep_z = 0; //if babystep value is out of min max range, set it to 0
+		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
+		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
+		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
+		lcd_update_enable(true);		
+	}	
+}
+#ifdef DIS
+void d_setup()
+{	
+	pinMode(D_DATACLOCK, INPUT_PULLUP);
+	pinMode(D_DATA, INPUT_PULLUP);
+	pinMode(D_REQUIRE, OUTPUT);
+	digitalWrite(D_REQUIRE, HIGH);
+}
+
+
+float d_ReadData()
+{
+	int digit[13];
+	String mergeOutput;
+	float output;
+
+	digitalWrite(D_REQUIRE, HIGH);
+	for (int i = 0; i<13; i++)
+	{
+		for (int j = 0; j < 4; j++)
+		{
+			while (digitalRead(D_DATACLOCK) == LOW) {}
+			while (digitalRead(D_DATACLOCK) == HIGH) {}
+			bitWrite(digit[i], j, digitalRead(D_DATA));
+		}
+	}
+
+	digitalWrite(D_REQUIRE, LOW);
+	mergeOutput = "";
+	output = 0;
+	for (int r = 5; r <= 10; r++) //Merge digits
+	{
+		mergeOutput += digit[r];
+	}
+	output = mergeOutput.toFloat();
+
+	if (digit[4] == 8) //Handle sign
+	{
+		output *= -1;
+	}
+
+	for (int i = digit[11]; i > 0; i--) //Handle floating point
+	{
+		output /= 10;
+	}
+
+	return output;
+
+}
+
+void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
+	int t1 = 0;
+	int t_delay = 0;
+	int digit[13];
+	int m;
+	char str[3];
+	//String mergeOutput;
+	char mergeOutput[15];
+	float output;
+
+	int mesh_point = 0; //index number of calibration point
+	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
+	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
+
+	float mesh_home_z_search = 4;
+	float row[x_points_num];
+	int ix = 0;
+	int iy = 0;
+
+	char* filename_wldsd = "wldsd.txt";
+	char data_wldsd[70];
+	char numb_wldsd[10];
+
+	d_setup();
+
+	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+		// We don't know where we are! HOME!
+		// Push the commands to the front of the message queue in the reverse order!
+		// There shall be always enough space reserved for these commands.
+		repeatcommand_front(); // repeat G80 with all its parameters
+		
+		enquecommand_front_P((PSTR("G28 W0")));
+		enquecommand_front_P((PSTR("G1 Z5")));
+		return;
+	}
+	bool custom_message_old = custom_message;
+	unsigned int custom_message_type_old = custom_message_type;
+	unsigned int custom_message_state_old = custom_message_state;
+	custom_message = true;
+	custom_message_type = 1;
+	custom_message_state = (x_points_num * y_points_num) + 10;
+	lcd_update(1);
+
+	mbl.reset();
+	babystep_undo();
+
+	card.openFile(filename_wldsd, false);
+
+	current_position[Z_AXIS] = mesh_home_z_search;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+
+	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+
+	setup_for_endstop_move(false);
+
+	SERIAL_PROTOCOLPGM("Num X,Y: ");
+	SERIAL_PROTOCOL(x_points_num);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_points_num);
+	SERIAL_PROTOCOLPGM("\nZ search height: ");
+	SERIAL_PROTOCOL(mesh_home_z_search);
+	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
+	SERIAL_PROTOCOL(x_dimension);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_dimension);
+	SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+
+	while (mesh_point != x_points_num * y_points_num) {
+		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
+		iy = mesh_point / x_points_num;
+		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
+		float z0 = 0.f;
+		current_position[Z_AXIS] = mesh_home_z_search;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		st_synchronize();
+
+
+		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
+		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
+
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+		st_synchronize();
+
+		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+			break;
+			card.closefile();
+		}
+
+
+		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
+		//strcat(data_wldsd, numb_wldsd);
+
+
+		
+		//MYSERIAL.println(data_wldsd);
+		//delay(1000);
+		//delay(3000);
+		//t1 = millis();
+		
+		//while (digitalRead(D_DATACLOCK) == LOW) {}
+		//while (digitalRead(D_DATACLOCK) == HIGH) {}
+		memset(digit, 0, sizeof(digit));
+		//cli();
+		digitalWrite(D_REQUIRE, LOW);	
+		
+		for (int i = 0; i<13; i++)
+		{
+			//t1 = millis();
+			for (int j = 0; j < 4; j++)
+			{
+				while (digitalRead(D_DATACLOCK) == LOW) {}				
+				while (digitalRead(D_DATACLOCK) == HIGH) {}
+				bitWrite(digit[i], j, digitalRead(D_DATA));
+			}
+			//t_delay = (millis() - t1);
+			//SERIAL_PROTOCOLPGM(" ");
+			//SERIAL_PROTOCOL_F(t_delay, 5);
+			//SERIAL_PROTOCOLPGM(" ");
+		}
+		//sei();
+		digitalWrite(D_REQUIRE, HIGH);
+		mergeOutput[0] = '\0';
+		output = 0;
+		for (int r = 5; r <= 10; r++) //Merge digits
+		{			
+			sprintf(str, "%d", digit[r]);
+			strcat(mergeOutput, str);
+		}
+		
+		output = atof(mergeOutput);
+
+		if (digit[4] == 8) //Handle sign
+		{
+			output *= -1;
+		}
+
+		for (int i = digit[11]; i > 0; i--) //Handle floating point
+		{
+			output *= 0.1;
+		}
+		
+
+		//output = d_ReadData();
+
+		//row[ix] = current_position[Z_AXIS];
+
+		memset(data_wldsd, 0, sizeof(data_wldsd));
+
+		for (int i = 0; i <3; i++) {
+			memset(numb_wldsd, 0, sizeof(numb_wldsd));
+			dtostrf(current_position[i], 8, 5, numb_wldsd);
+			strcat(data_wldsd, numb_wldsd);
+			strcat(data_wldsd, ";");
+
+		}
+		memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		dtostrf(output, 8, 5, numb_wldsd);
+		strcat(data_wldsd, numb_wldsd);
+		//strcat(data_wldsd, ";");
+		card.write_command(data_wldsd);
+
+		
+		//row[ix] = d_ReadData();
+		
+		row[ix] = output; // current_position[Z_AXIS];
+
+		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
+			for (int i = 0; i < x_points_num; i++) {
+				SERIAL_PROTOCOLPGM(" ");
+				SERIAL_PROTOCOL_F(row[i], 5);
+
+
+			}
+			SERIAL_PROTOCOLPGM("\n");
+		}
+		custom_message_state--;
+		mesh_point++;
+		lcd_update(1);
+
+	}
+	card.closefile();
+
+}
+#endif
+
+void temp_compensation_start() {
+	
+	custom_message = true;
+	custom_message_type = 5;
+	custom_message_state = PINDA_HEAT_T + 1;
+	lcd_update(2);
+	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
+		current_position[E_AXIS] -= DEFAULT_RETRACTION;
+	}
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+	
+	current_position[X_AXIS] = PINDA_PREHEAT_X;
+	current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+	current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+	st_synchronize();
+	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
+
+	for (int i = 0; i < PINDA_HEAT_T; i++) {
+		delay_keep_alive(1000);
+		custom_message_state = PINDA_HEAT_T - i;
+		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
+		else lcd_update(1);
+	}	
+	custom_message_type = 0;
+	custom_message_state = 0;
+	custom_message = false;
+}
+
+void temp_compensation_apply() {
+	int i_add;
+	int compensation_value;
+	int z_shift = 0;
+	float z_shift_mm;
+
+	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
+		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
+			i_add = (target_temperature_bed - 60) / 10;
+			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
+			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
+		}else {
+			//interpolation
+			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
+		}
+		printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+		st_synchronize();
+		plan_set_z_position(current_position[Z_AXIS]);
+	}
+	else {		
+		//we have no temp compensation data
+	}
+}
+
+float temp_comp_interpolation(float inp_temperature) {
+
+	//cubic spline interpolation
+
+	int n, i, j, k;
+	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
+	int shift[10];
+	int temp_C[10];
+
+	n = 6; //number of measured points
+
+	shift[0] = 0;
+	for (i = 0; i < n; i++) {
+		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
+		temp_C[i] = 50 + i * 10; //temperature in C
+#ifdef PINDA_THERMISTOR
+		temp_C[i] = 35 + i * 5; //temperature in C
+#else
+		temp_C[i] = 50 + i * 10; //temperature in C
+#endif
+		x[i] = (float)temp_C[i];
+		f[i] = (float)shift[i];
+	}
+	if (inp_temperature < x[0]) return 0;
+
+
+	for (i = n - 1; i>0; i--) {
+		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
+		h[i - 1] = x[i] - x[i - 1];
+	}
+	//*********** formation of h, s , f matrix **************
+	for (i = 1; i<n - 1; i++) {
+		m[i][i] = 2 * (h[i - 1] + h[i]);
+		if (i != 1) {
+			m[i][i - 1] = h[i - 1];
+			m[i - 1][i] = h[i - 1];
+		}
+		m[i][n - 1] = 6 * (F[i + 1] - F[i]);
+	}
+	//*********** forward elimination **************
+	for (i = 1; i<n - 2; i++) {
+		temp = (m[i + 1][i] / m[i][i]);
+		for (j = 1; j <= n - 1; j++)
+			m[i + 1][j] -= temp*m[i][j];
+	}
+	//*********** backward substitution *********
+	for (i = n - 2; i>0; i--) {
+		sum = 0;
+		for (j = i; j <= n - 2; j++)
+			sum += m[i][j] * s[j];
+		s[i] = (m[i][n - 1] - sum) / m[i][i];
+	}
+
+		for (i = 0; i<n - 1; i++)
+			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
+				a = (s[i + 1] - s[i]) / (6 * h[i]);
+				b = s[i] / 2;
+				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
+				d = f[i];
+				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
+			}
+
+		return sum;
+
+}
+
+#ifdef PINDA_THERMISTOR
+float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
+{
+	if (!temp_cal_active) return 0;
+	if (!calibration_status_pinda()) return 0;
+	return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
+}
+#endif //PINDA_THERMISTOR
+
+void long_pause() //long pause print
+{
+	st_synchronize();
+	
+	//save currently set parameters to global variables
+	saved_feedmultiply = feedmultiply; 
+	HotendTempBckp = degTargetHotend(active_extruder);
+	fanSpeedBckp = fanSpeed;
+	start_pause_print = millis();
+		
+
+	//save position
+	pause_lastpos[X_AXIS] = current_position[X_AXIS];
+	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
+	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
+	pause_lastpos[E_AXIS] = current_position[E_AXIS];
+
+	//retract
+	current_position[E_AXIS] -= DEFAULT_RETRACTION;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+	//lift z
+	current_position[Z_AXIS] += Z_PAUSE_LIFT;
+	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
+
+	//set nozzle target temperature to 0
+	setTargetHotend(0, 0);
+	setTargetHotend(0, 1);
+	setTargetHotend(0, 2);
+
+	//Move XY to side
+	current_position[X_AXIS] = X_PAUSE_POS;
+	current_position[Y_AXIS] = Y_PAUSE_POS;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
+
+	// Turn off the print fan
+	fanSpeed = 0;
+
+	st_synchronize();
+}
+
+void serialecho_temperatures() {
+	float tt = degHotend(active_extruder);
+	SERIAL_PROTOCOLPGM("T:");
+	SERIAL_PROTOCOL(tt);
+	SERIAL_PROTOCOLPGM(" E:");
+	SERIAL_PROTOCOL((int)active_extruder);
+	SERIAL_PROTOCOLPGM(" B:");
+	SERIAL_PROTOCOL_F(degBed(), 1);
+	SERIAL_PROTOCOLLN("");
+}
+
+extern uint32_t sdpos_atomic;
+
+#ifdef UVLO_SUPPORT
+
+void uvlo_() 
+{
+	unsigned long time_start = millis();
+	bool sd_print = card.sdprinting;
+    // Conserve power as soon as possible.
+    disable_x();
+    disable_y();
+    
+#ifdef TMC2130
+	tmc2130_set_current_h(Z_AXIS, 20);
+	tmc2130_set_current_r(Z_AXIS, 20);
+	tmc2130_set_current_h(E_AXIS, 20);
+	tmc2130_set_current_r(E_AXIS, 20);
+#endif //TMC2130
+
+
+    // Indicate that the interrupt has been triggered.
+	//	SERIAL_ECHOLNPGM("UVLO");
+
+    // Read out the current Z motor microstep counter. This will be later used
+    // for reaching the zero full step before powering off.
+    uint16_t z_microsteps = 0;
+#ifdef TMC2130
+	z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
+#endif //TMC2130
+
+    // Calculate the file position, from which to resume this print.
+    long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
+    {
+      uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+      sd_position -= sdlen_planner;
+      uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+      sd_position -= sdlen_cmdqueue;
+      if (sd_position < 0) sd_position = 0;
+    }
+
+    // Backup the feedrate in mm/min.
+    int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+
+    // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
+    // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
+    // are in action.
+    planner_abort_hard();
+
+    // Store the current extruder position.
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
+	eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
+
+    // Clean the input command queue.
+    cmdqueue_reset();
+    card.sdprinting = false;
+//    card.closefile();
+
+    // Enable stepper driver interrupt to move Z axis.
+    // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
+    //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
+    // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
+		sei();
+		plan_buffer_line(
+      current_position[X_AXIS], 
+      current_position[Y_AXIS], 
+      current_position[Z_AXIS], 
+      current_position[E_AXIS] - DEFAULT_RETRACTION,
+      95, active_extruder);
+    
+        st_synchronize();
+        disable_e0();
+    
+		plan_buffer_line(
+      current_position[X_AXIS], 
+      current_position[Y_AXIS], 
+      current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], 
+      current_position[E_AXIS] - DEFAULT_RETRACTION,
+      40, active_extruder);
+    
+    st_synchronize();
+    disable_e0();
+    
+    plan_buffer_line(
+                     current_position[X_AXIS],
+                     current_position[Y_AXIS],
+                     current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
+                     current_position[E_AXIS] - DEFAULT_RETRACTION,
+                     40, active_extruder);
+    st_synchronize();
+    disable_e0();
+    disable_z();
+    
+    // Move Z up to the next 0th full step.
+    // Write the file position.
+    eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
+    // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+      uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+      uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+      // Scale the z value to 1u resolution.
+      int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
+      eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
+    }
+    // Read out the current Z motor microstep counter. This will be later used
+    // for reaching the zero full step before powering off.
+    eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
+    // Store the current position.
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
+    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
+    // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
+    EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
+    eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
+	eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
+#if EXTRUDERS > 1
+	eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
+#if EXTRUDERS > 2
+	eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
+#endif
+#endif
+	eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
+
+    // Finaly store the "power outage" flag.
+	if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
+
+    st_synchronize();
+    printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
+
+    disable_z();
+    
+    // Increment power failure counter
+	eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
+	eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
+    
+		printf_P(_N("UVLO - end %d\n"), millis() - time_start);
+    
+#if 0
+    // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
+    current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
+    st_synchronize();
+#endif
+    
+
+		cli();
+    volatile unsigned int ppcount = 0;
+    SET_OUTPUT(BEEPER);
+    WRITE(BEEPER, HIGH);
+    for(ppcount = 0; ppcount < 2000; ppcount ++){
+        asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
+    }
+    WRITE(BEEPER, LOW);
+    while(1){
+#if 1
+        WRITE(BEEPER, LOW);
+        for(ppcount = 0; ppcount < 8000; ppcount ++){
+             asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
+        }
+#endif
+        
+    };
+}
+#endif //UVLO_SUPPORT
+
+#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
+
+void setup_fan_interrupt() {
+//INT7
+	DDRE &= ~(1 << 7); //input pin
+	PORTE &= ~(1 << 7); //no internal pull-up
+
+	//start with sensing rising edge
+	EICRB &= ~(1 << 6);
+	EICRB |= (1 << 7);
+
+	//enable INT7 interrupt
+	EIMSK |= (1 << 7);
+}
+
+// The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
+// and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
+ISR(INT7_vect) {
+	//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
+
+	if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
+	if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
+		t_fan_rising_edge = millis_nc();
+	}
+	else { //interrupt was triggered by falling edge
+		if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
+			fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
+		}
+	}	
+	EICRB ^= (1 << 6); //change edge
+}
+
+#endif
+
+#ifdef UVLO_SUPPORT
+void setup_uvlo_interrupt() {
+	DDRE &= ~(1 << 4); //input pin
+	PORTE &= ~(1 << 4); //no internal pull-up
+
+						//sensing falling edge
+	EICRB |= (1 << 0);
+	EICRB &= ~(1 << 1);
+
+	//enable INT4 interrupt
+	EIMSK |= (1 << 4);
+}
+
+ISR(INT4_vect) {
+	EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once 
+	SERIAL_ECHOLNPGM("INT4");
+	if (IS_SD_PRINTING) uvlo_();
+}
+
+void recover_print(uint8_t automatic) {
+	char cmd[30];
+	lcd_update_enable(true);
+	lcd_update(2);
+	lcd_setstatuspgm(_i("Recovering print    "));////MSG_RECOVERING_PRINT c=20 r=1
+
+  recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
+
+  // Lift the print head, so one may remove the excess priming material.
+  if (current_position[Z_AXIS] < 25)
+    enquecommand_P(PSTR("G1 Z25 F800"));
+  // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
+	enquecommand_P(PSTR("G28 X Y"));
+  // Set the target bed and nozzle temperatures and wait.
+	sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
+	enquecommand(cmd);
+	sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
+	enquecommand(cmd);
+	enquecommand_P(PSTR("M83")); //E axis relative mode
+	//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
+    // If not automatically recoreverd (long power loss), extrude extra filament to stabilize 
+    if(automatic == 0){ 
+        enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure 
+    } 
+	enquecommand_P(PSTR("G1 E"  STRINGIFY(-DEFAULT_RETRACTION)" F480"));
+
+  // Mark the power panic status as inactive.
+	eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
+	/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
+		delay_keep_alive(1000);
+	}*/
+
+	printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
+
+  // Restart the print.
+	restore_print_from_eeprom();
+
+	printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+void recover_machine_state_after_power_panic()
+{
+  char cmd[30];
+  // 1) Recover the logical cordinates at the time of the power panic.
+  // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
+  current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
+  current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
+  // Recover the logical coordinate of the Z axis at the time of the power panic.
+  // The current position after power panic is moved to the next closest 0th full step.
+  current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + 
+    UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
+  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
+	  current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
+	  sprintf_P(cmd, PSTR("G92 E"));
+	  dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
+	  enquecommand(cmd);
+  }
+
+  memcpy(destination, current_position, sizeof(destination));
+
+  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+  print_world_coordinates();
+
+  // 2) Initialize the logical to physical coordinate system transformation.
+  world2machine_initialize();
+
+  // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
+  mbl.active = false;
+  for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
+    uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+    uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+    // Scale the z value to 10u resolution.
+    int16_t v;
+    eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
+    if (v != 0)
+      mbl.active = true;
+    mbl.z_values[iy][ix] = float(v) * 0.001f;
+  }
+  if (mbl.active)
+    mbl.upsample_3x3();
+//  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+//  print_mesh_bed_leveling_table();
+
+  // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
+  // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
+  babystep_load();
+
+  // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
+  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+  // 6) Power up the motors, mark their positions as known.
+  //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
+  axis_known_position[X_AXIS] = true; enable_x();
+  axis_known_position[Y_AXIS] = true; enable_y();
+  axis_known_position[Z_AXIS] = true; enable_z();
+
+  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
+  print_physical_coordinates();
+
+  // 7) Recover the target temperatures.
+  target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
+  target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
+
+  // 8) Recover extruder multipilers
+  extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
+#if EXTRUDERS > 1
+  extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
+#if EXTRUDERS > 2
+  extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
+#endif
+#endif
+  extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
+}
+
+void restore_print_from_eeprom() {
+	float x_rec, y_rec, z_pos;
+	int feedrate_rec;
+	uint8_t fan_speed_rec;
+	char cmd[30];
+	char* c;
+	char filename[13];
+	uint8_t depth = 0;
+	char dir_name[9];
+
+	fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
+	EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
+	SERIAL_ECHOPGM("Feedrate:");
+	MYSERIAL.println(feedrate_rec);
+
+	depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
+	
+	MYSERIAL.println(int(depth));
+	for (int i = 0; i < depth; i++) {
+		for (int j = 0; j < 8; j++) {
+			dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
+		}
+		dir_name[8] = '\0';
+		MYSERIAL.println(dir_name);
+		strcpy(dir_names[i], dir_name);
+		card.chdir(dir_name);
+	}
+
+	for (int i = 0; i < 8; i++) {
+		filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
+	}
+	filename[8] = '\0';
+
+	MYSERIAL.print(filename);
+	strcat_P(filename, PSTR(".gco"));
+	sprintf_P(cmd, PSTR("M23 %s"), filename);
+	enquecommand(cmd);
+	uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
+	SERIAL_ECHOPGM("Position read from eeprom:");
+	MYSERIAL.println(position);
+
+  // E axis relative mode.
+	enquecommand_P(PSTR("M83"));
+  // Move to the XY print position in logical coordinates, where the print has been killed.
+	strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
+	strcat_P(cmd, PSTR(" Y"));   strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
+	strcat_P(cmd, PSTR(" F2000"));
+	enquecommand(cmd);
+  // Move the Z axis down to the print, in logical coordinates.
+	strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
+	enquecommand(cmd);
+  // Unretract.
+	enquecommand_P(PSTR("G1 E"  STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
+  // Set the feedrate saved at the power panic.
+	sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
+	enquecommand(cmd);
+	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
+	{
+	  float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
+	  enquecommand_P(PSTR("M82")); //E axis abslute mode
+	}
+  // Set the fan speed saved at the power panic.
+	strcpy_P(cmd, PSTR("M106 S"));
+	strcat(cmd, itostr3(int(fan_speed_rec)));
+	enquecommand(cmd);
+
+  // Set a position in the file.
+  sprintf_P(cmd, PSTR("M26 S%lu"), position);
+  enquecommand(cmd);
+  // Start SD print.
+  enquecommand_P(PSTR("M24")); 
+}
+#endif //UVLO_SUPPORT
+
+
+////////////////////////////////////////////////////////////////////////////////
+// save/restore printing
+
+void stop_and_save_print_to_ram(float z_move, float e_move)
+{
+	if (saved_printing) return;
+	unsigned char nplanner_blocks;
+	unsigned char nlines;
+	uint16_t sdlen_planner;
+	uint16_t sdlen_cmdqueue;
+	
+
+	cli();
+	if (card.sdprinting) {
+		nplanner_blocks = number_of_blocks();
+		saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
+		sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
+		saved_sdpos -= sdlen_planner;
+		sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
+		saved_sdpos -= sdlen_cmdqueue;
+		saved_printing_type = PRINTING_TYPE_SD;
+
+	}
+	else if (is_usb_printing) { //reuse saved_sdpos for storing line number
+		 saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
+		 //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
+		 nlines = planner_calc_sd_length(); //number of lines of commands in planner 
+		 saved_sdpos -= nlines;
+		 saved_sdpos -= buflen; //number of blocks in cmd buffer
+		 saved_printing_type = PRINTING_TYPE_USB;
+	}
+	else {
+		//not sd printing nor usb printing
+	}
+
+#if 0
+  SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
+  SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
+  SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
+  SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
+  SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
+  SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
+  //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
+
+
+  {
+    card.setIndex(saved_sdpos);
+    SERIAL_ECHOLNPGM("Content of planner buffer: ");
+    for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
+      MYSERIAL.print(char(card.get()));
+    SERIAL_ECHOLNPGM("Content of command buffer: ");
+    for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
+      MYSERIAL.print(char(card.get()));
+    SERIAL_ECHOLNPGM("End of command buffer");
+  }
+  {
+    // Print the content of the planner buffer, line by line:
+    card.setIndex(saved_sdpos);
+    int8_t iline = 0;
+    for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
+      SERIAL_ECHOPGM("Planner line (from file): ");
+      MYSERIAL.print(int(iline), DEC);
+      SERIAL_ECHOPGM(", length: ");
+      MYSERIAL.print(block_buffer[idx].sdlen, DEC);
+      SERIAL_ECHOPGM(", steps: (");
+      MYSERIAL.print(block_buffer[idx].steps_x, DEC);
+      SERIAL_ECHOPGM(",");
+      MYSERIAL.print(block_buffer[idx].steps_y, DEC);
+      SERIAL_ECHOPGM(",");
+      MYSERIAL.print(block_buffer[idx].steps_z, DEC);
+      SERIAL_ECHOPGM(",");
+      MYSERIAL.print(block_buffer[idx].steps_e, DEC);
+      SERIAL_ECHOPGM("), events: ");
+      MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
+      for (int len = block_buffer[idx].sdlen; len > 0; -- len)
+        MYSERIAL.print(char(card.get()));
+    }
+  }
+  {
+    // Print the content of the command buffer, line by line:
+    int8_t iline = 0;
+    union {
+        struct {
+            char lo;
+            char hi;
+        } lohi;
+        uint16_t value;
+    } sdlen_single;
+    int _bufindr = bufindr;
+	for (int _buflen  = buflen; _buflen > 0; ++ iline) {
+        if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
+            sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
+            sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
+        }		 
+        SERIAL_ECHOPGM("Buffer line (from buffer): ");
+        MYSERIAL.print(int(iline), DEC);
+        SERIAL_ECHOPGM(", type: ");
+        MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
+        SERIAL_ECHOPGM(", len: ");
+        MYSERIAL.println(sdlen_single.value, DEC);
+        // Print the content of the buffer line.
+        MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
+
+        SERIAL_ECHOPGM("Buffer line (from file): ");
+        MYSERIAL.println(int(iline), DEC);
+        for (; sdlen_single.value > 0; -- sdlen_single.value)
+          MYSERIAL.print(char(card.get()));
+
+        if (-- _buflen == 0)
+          break;
+        // First skip the current command ID and iterate up to the end of the string.
+        for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
+        // Second, skip the end of string null character and iterate until a nonzero command ID is found.
+        for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+        // If the end of the buffer was empty,
+        if (_bufindr == sizeof(cmdbuffer)) {
+            // skip to the start and find the nonzero command.
+            for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
+        }
+    }
+  }
+#endif
+
+#if 0
+  saved_feedrate2 = feedrate; //save feedrate
+#else
+  // Try to deduce the feedrate from the first block of the planner.
+  // Speed is in mm/min.
+  saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
+#endif
+
+	planner_abort_hard(); //abort printing
+	memcpy(saved_pos, current_position, sizeof(saved_pos));
+	saved_active_extruder = active_extruder; //save active_extruder
+
+	saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
+	saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
+	cmdqueue_reset(); //empty cmdqueue
+	card.sdprinting = false;
+//	card.closefile();
+	saved_printing = true;
+  // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
+  st_reset_timer();
+	sei();
+	if ((z_move != 0) || (e_move != 0)) { // extruder or z move
+#if 1
+    // Rather than calling plan_buffer_line directly, push the move into the command queue, 
+    char buf[48];
+
+	// First unretract (relative extrusion)
+	if(!saved_extruder_relative_mode){
+	  strcpy_P(buf, PSTR("M83"));
+	  enquecommand(buf, false);
+	}
+	
+	//retract 45mm/s
+	strcpy_P(buf, PSTR("G1 E"));
+	dtostrf(e_move, 6, 3, buf + strlen(buf));
+	strcat_P(buf, PSTR(" F"));
+	dtostrf(2700, 8, 3, buf + strlen(buf));
+	enquecommand(buf, false);
+
+	// Then lift Z axis
+    strcpy_P(buf, PSTR("G1 Z"));
+    dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
+    strcat_P(buf, PSTR(" F"));
+    dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
+    // At this point the command queue is empty.
+    enquecommand(buf, false);
+    // If this call is invoked from the main Arduino loop() function, let the caller know that the command
+    // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
+    repeatcommand_front();
+#else
+		plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
+    st_synchronize(); //wait moving
+    memcpy(current_position, saved_pos, sizeof(saved_pos));
+    memcpy(destination, current_position, sizeof(destination));
+#endif
+  }
+}
+
+void restore_print_from_ram_and_continue(float e_move)
+{
+	if (!saved_printing) return;
+//	for (int axis = X_AXIS; axis <= E_AXIS; axis++)
+//	    current_position[axis] = st_get_position_mm(axis);
+	active_extruder = saved_active_extruder; //restore active_extruder
+	feedrate = saved_feedrate2; //restore feedrate
+	axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
+	float e = saved_pos[E_AXIS] - e_move;
+	plan_set_e_position(e);
+	//first move print head in XY to the saved position:
+	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
+	st_synchronize();
+	//then move Z
+	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
+	st_synchronize();
+	//and finaly unretract (35mm/s)
+	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
+	st_synchronize();
+
+	memcpy(current_position, saved_pos, sizeof(saved_pos));
+	memcpy(destination, current_position, sizeof(destination));
+	if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
+		card.setIndex(saved_sdpos);
+		sdpos_atomic = saved_sdpos;
+		card.sdprinting = true;
+		printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
+	}
+	else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
+		gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
+		serial_count = 0; 
+		FlushSerialRequestResend();
+	}
+	else {
+		//not sd printing nor usb printing
+	}
+	lcd_setstatuspgm(_T(WELCOME_MSG));
+	saved_printing = false;
+}
+
+void print_world_coordinates()
+{
+	printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
+}
+
+void print_physical_coordinates()
+{
+	printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
+}
+
+void print_mesh_bed_leveling_table()
+{
+  SERIAL_ECHOPGM("mesh bed leveling: ");
+  for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
+    for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
+      MYSERIAL.print(mbl.z_values[y][x], 3);
+      SERIAL_ECHOPGM(" ");
+    }
+  SERIAL_ECHOLNPGM("");
+}
+
+uint16_t print_time_remaining() {
+	uint16_t print_t = PRINT_TIME_REMAINING_INIT;
+	if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
+	else print_t = print_time_remaining_silent;
+	if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
+	return print_t;
+}
+
+uint8_t print_percent_done() {
+	//in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
+	uint8_t percent_done = 0;
+	if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
+		percent_done = print_percent_done_normal;
+	}
+	else if (print_percent_done_silent <= 100) {
+		percent_done = print_percent_done_silent;
+	}
+	else {
+		percent_done = card.percentDone();
+	}
+	return percent_done;
+}
+
+static void print_time_remaining_init() {
+	print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
+	print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
+	print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
+	print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
+}
+
+#define FIL_LOAD_LENGTH 60

+ 1 - 1
Firmware/ultralcd.cpp

@@ -3070,7 +3070,7 @@ bool lcd_wait_for_pinda(float temp) {
 	}
 	lcd_set_custom_characters_arrows();
 	lcd_update_enable(true);
-	return(target_temp_reached);
+	return target_temp_reached;
 }
 
 void lcd_wait_for_heater() {