Browse Source

Revert "Mk3 bed fast pwm"

PavelSindler 5 years ago
parent
commit
41f103c28f
3 changed files with 9 additions and 135 deletions
  1. 7 30
      Firmware/temperature.cpp
  2. 2 2
      Firmware/temperature.h
  3. 0 103
      Firmware/timer02.c

+ 7 - 30
Firmware/temperature.cpp

@@ -45,12 +45,6 @@
 #include "Configuration_prusa.h"
 
 
-extern "C" {
-extern void timer02_init(void);
-extern void timer02_set_pwm0(uint8_t pwm0);
-}
-
-
 //===========================================================================
 //=============================public variables============================
 //===========================================================================
@@ -263,7 +257,6 @@ static void temp_runaway_stop(bool isPreheat, bool isBed);
   if (extruder<0)
   {
      soft_pwm_bed = (MAX_BED_POWER)/2;
-	 timer02_set_pwm0(soft_pwm_bed << 1);
      bias = d = (MAX_BED_POWER)/2;
    }
    else
@@ -300,10 +293,7 @@ static void temp_runaway_stop(bool isPreheat, bool isBed);
         if(millis() - t2 > 5000) { 
           heating=false;
           if (extruder<0)
-		  {
             soft_pwm_bed = (bias - d) >> 1;
-			timer02_set_pwm0(soft_pwm_bed << 1);
-		  }
           else
             soft_pwm[extruder] = (bias - d) >> 1;
           t1=millis();
@@ -357,10 +347,7 @@ static void temp_runaway_stop(bool isPreheat, bool isBed);
             }
           }
           if (extruder<0)
-		  {
             soft_pwm_bed = (bias + d) >> 1;
-			timer02_set_pwm0(soft_pwm_bed << 1);
-		  }
           else
             soft_pwm[extruder] = (bias + d) >> 1;
           pid_cycle++;
@@ -794,11 +781,9 @@ void manage_heater()
 	  if(current_temperature_bed < BED_MAXTEMP)
 	  {
 	    soft_pwm_bed = (int)pid_output >> 1;
-		timer02_set_pwm0(soft_pwm_bed << 1);
 	  }
 	  else {
 	    soft_pwm_bed = 0;
-		timer02_set_pwm0(soft_pwm_bed << 1);
 	  }
 
     #elif !defined(BED_LIMIT_SWITCHING)
@@ -808,18 +793,15 @@ void manage_heater()
         if(current_temperature_bed >= target_temperature_bed)
         {
           soft_pwm_bed = 0;
-		  timer02_set_pwm0(soft_pwm_bed << 1);
         }
         else 
         {
           soft_pwm_bed = MAX_BED_POWER>>1;
-		  timer02_set_pwm0(soft_pwm_bed << 1);
         }
       }
       else
       {
         soft_pwm_bed = 0;
-		timer02_set_pwm0(soft_pwm_bed << 1);
         WRITE(HEATER_BED_PIN,LOW);
       }
     #else //#ifdef BED_LIMIT_SWITCHING
@@ -829,18 +811,15 @@ void manage_heater()
         if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
         {
           soft_pwm_bed = 0;
-		  timer02_set_pwm0(soft_pwm_bed << 1);
         }
         else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
         {
           soft_pwm_bed = MAX_BED_POWER>>1;
-          timer02_set_pwm0(soft_pwm_bed << 1);
         }
       }
       else
       {
         soft_pwm_bed = 0;
-		timer02_set_pwm0(soft_pwm_bed << 1);
         WRITE(HEATER_BED_PIN,LOW);
       }
     #endif
@@ -1017,6 +996,7 @@ static void updateTemperaturesFromRawValues()
     CRITICAL_SECTION_END;
 }
 
+
 void tp_init()
 {
 #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
@@ -1083,12 +1063,10 @@ void tp_init()
 
   adc_init();
 
-  timer02_init();
-
   // Use timer0 for temperature measurement
   // Interleave temperature interrupt with millies interrupt
-  OCR2B = 128;
-  TIMSK2 |= (1<<OCIE2B);  
+  OCR0B = 128;
+  TIMSK0 |= (1<<OCIE0B);  
   
   // Wait for temperature measurement to settle
   delay(250);
@@ -1396,7 +1374,6 @@ void disable_heater()
   #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
     target_temperature_bed=0;
     soft_pwm_bed=0;
-	timer02_set_pwm0(soft_pwm_bed << 1);
     #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1  
       WRITE(HEATER_BED_PIN,LOW);
     #endif
@@ -1561,8 +1538,8 @@ void adc_ready(void) //callback from adc when sampling finished
 } // extern "C"
 
 
-// Timer2 (originaly timer0) is shared with millies
-ISR(TIMER2_COMPB_vect)
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPB_vect)                            // @ 1kHz ~ 1ms
 {
 	static bool _lock = false;
 	if (_lock) return;
@@ -1629,7 +1606,7 @@ ISR(TIMER2_COMPB_vect)
 #endif
 #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
     soft_pwm_b = soft_pwm_bed;
-    //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
+    if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
 #endif
 #ifdef FAN_SOFT_PWM
     soft_pwm_fan = fanSpeedSoftPwm / 2;
@@ -1763,7 +1740,7 @@ ISR(TIMER2_COMPB_vect)
 	  state_timer_heater_b = MIN_STATE_TIME;
 	}
 	state_heater_b = 1;
-	//WRITE(HEATER_BED_PIN, 1);
+	WRITE(HEATER_BED_PIN, 1);
       }
     } else {
       // turn OFF heather only if the minimum time is up 

+ 2 - 2
Firmware/temperature.h

@@ -27,8 +27,8 @@
   #include "stepper.h"
 #endif
 
-#define ENABLE_TEMPERATURE_INTERRUPT()  TIMSK2 |= (1<<OCIE2B)
-#define DISABLE_TEMPERATURE_INTERRUPT() TIMSK2 &= ~(1<<OCIE2B)
+#define ENABLE_TEMPERATURE_INTERRUPT()  TIMSK0 |= (1<<OCIE0B)
+#define DISABLE_TEMPERATURE_INTERRUPT() TIMSK0 &= ~(1<<OCIE0B)
 
 // public functions
 void tp_init();  //initialize the heating

+ 0 - 103
Firmware/timer02.c

@@ -1,103 +0,0 @@
-//timer02.c
-// use atmega timer2 as main system timer instead of timer0
-// timer0 is used for fast pwm (OC0B output)
-// original OVF handler is disabled
-#include <avr/io.h>
-#include <avr/interrupt.h>
-#include <Arduino.h>
-
-
-uint8_t timer02_pwm0 = 0;
-
-void timer02_set_pwm0(uint8_t pwm0)
-{
-	if (timer02_pwm0 == pwm0) return;
-	if (pwm0)
-	{
-		TCCR0A |= (2 << COM0B0);
-		OCR0B = pwm0 - 1;
-	}
-	else
-	{
-		TCCR0A &= ~(2 << COM0B0);
-		OCR0B = 0;
-	}
-}
-
-void timer02_init(void)
-{
-	//save sreg
-	uint8_t _sreg = SREG;
-	//disable interrupts for sure
-	cli();
-	//mask timer0 interrupts - disable all
-	TIMSK0 &= ~(1<<TOIE0);
-	TIMSK0 &= ~(1<<OCIE0A);
-	TIMSK0 &= ~(1<<OCIE0B);
-	//setup timer0
-	TCCR0A = 0x00; //COM_A-B=00, WGM_0-1=00
-	TCCR0B = (1 << CS00); //WGM_2=0, CS_0-2=011
-	//switch timer0 to fast pwm mode
-	TCCR0A |= (3 << WGM00); //WGM_0-1=11
-	//set OCR0B register to zero
-	OCR0B = 0;
-	//disable OCR0B output (will be enabled in timer02_set_pwm0)
-	TCCR0A &= ~(2 << COM0B0);
-	//setup timer2
-	TCCR2A = 0x00; //COM_A-B=00, WGM_0-1=00
-	TCCR2B = (3 << CS20); //WGM_2=0, CS_0-2=011
-	//mask timer2 interrupts - enable OVF, disable others
-	TIMSK2 |= (1<<TOIE2);
-	TIMSK2 &= ~(1<<OCIE2A);
-	TIMSK2 &= ~(1<<OCIE2B);
-	//set timer2 OCR registers (OCRB interrupt generated 0.5ms after OVF interrupt)
-	OCR2A = 0;
-	OCR2B = 128;
-	//restore sreg (enable interrupts)
-	SREG = _sreg;
-}
-
-
-//following code is OVF handler for timer 2
-//it is copy-paste from wiring.c and modified for timer2
-//variables timer0_overflow_count and timer0_millis are declared in wiring.c
-
-
-
-// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
-// the overflow handler is called every 256 ticks.
-#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
-
-// the whole number of milliseconds per timer0 overflow
-#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
-
-// the fractional number of milliseconds per timer0 overflow. we shift right
-// by three to fit these numbers into a byte. (for the clock speeds we care
-// about - 8 and 16 MHz - this doesn't lose precision.)
-#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
-#define FRACT_MAX (1000 >> 3)
-
-extern volatile unsigned long timer0_overflow_count;
-extern volatile unsigned long timer0_millis;
-unsigned char timer0_fract = 0;
-
-ISR(TIMER2_OVF_vect)
-{
-	// copy these to local variables so they can be stored in registers
-	// (volatile variables must be read from memory on every access)
-	unsigned long m = timer0_millis;
-	unsigned char f = timer0_fract;
-
-	m += MILLIS_INC;
-	f += FRACT_INC;
-	if (f >= FRACT_MAX)
-	{
-		f -= FRACT_MAX;
-		m += 1;
-	}
-
-	timer0_fract = f;
-	timer0_millis = m;
-	timer0_overflow_count++;
-}
-