|
@@ -383,6 +383,10 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
|
|
|
MYSERIAL.print(pgm_read_float(true_pts + i * 2 + 1), 5);
|
|
|
SERIAL_ECHOPGM("), error: ");
|
|
|
MYSERIAL.print(err);
|
|
|
+ SERIAL_ECHOPGM(", error X: ");
|
|
|
+ MYSERIAL.print(errX);
|
|
|
+ SERIAL_ECHOPGM(", error Y: ");
|
|
|
+ MYSERIAL.print(errY);
|
|
|
SERIAL_ECHOLNPGM("");
|
|
|
}
|
|
|
}
|
|
@@ -1586,11 +1590,51 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
|
|
float *vec_y = vec_x + 2;
|
|
|
float *cntr = vec_y + 2;
|
|
|
memset(pts, 0, sizeof(float) * 7 * 7);
|
|
|
+ uint8_t iteration = 0;
|
|
|
+ BedSkewOffsetDetectionResultType result;
|
|
|
|
|
|
// SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
|
|
|
// SERIAL_ECHO(int(verbosity_level));
|
|
|
// SERIAL_ECHOPGM("");
|
|
|
|
|
|
+ while (iteration < 3) {
|
|
|
+
|
|
|
+ SERIAL_ECHOPGM("Iteration: ");
|
|
|
+ MYSERIAL.println(int(iteration + 1));
|
|
|
+
|
|
|
+ if (iteration > 0) {
|
|
|
+ // Cache the current correction matrix.
|
|
|
+ world2machine_initialize();
|
|
|
+ vec_x[0] = world2machine_rotation_and_skew[0][0];
|
|
|
+ vec_x[1] = world2machine_rotation_and_skew[1][0];
|
|
|
+ vec_y[0] = world2machine_rotation_and_skew[0][1];
|
|
|
+ vec_y[1] = world2machine_rotation_and_skew[1][1];
|
|
|
+ cntr[0] = world2machine_shift[0];
|
|
|
+ cntr[1] = world2machine_shift[1];
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
+ SERIAL_ECHOPGM("vec_x[0]:");
|
|
|
+ MYSERIAL.print(vec_x[0], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ SERIAL_ECHOPGM("vec_x[1]:");
|
|
|
+ MYSERIAL.print(vec_x[1], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ SERIAL_ECHOPGM("vec_y[0]:");
|
|
|
+ MYSERIAL.print(vec_y[0], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ SERIAL_ECHOPGM("vec_y[1]:");
|
|
|
+ MYSERIAL.print(vec_y[1], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ SERIAL_ECHOPGM("cntr[0]:");
|
|
|
+ MYSERIAL.print(cntr[0], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ SERIAL_ECHOPGM("cntr[1]:");
|
|
|
+ MYSERIAL.print(cntr[1], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ }
|
|
|
+ // and reset the correction matrix, so the planner will not do anything.
|
|
|
+ world2machine_reset();
|
|
|
+ }
|
|
|
+
|
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
|
uint8_t next_line;
|
|
|
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1, next_line);
|
|
@@ -1600,144 +1644,192 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
|
|
|
|
|
|
// Collect the rear 2x3 points.
|
|
|
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
- for (int k = 0; k < 4; ++ k) {
|
|
|
- // Don't let the manage_inactivity() function remove power from the motors.
|
|
|
- refresh_cmd_timeout();
|
|
|
+ for (int k = 0; k < 4; ++k) {
|
|
|
+ // Don't let the manage_inactivity() function remove power from the motors.
|
|
|
+ refresh_cmd_timeout();
|
|
|
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
|
|
|
- lcd_implementation_print_at(0, next_line, k+1);
|
|
|
- lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
|
|
|
+ lcd_implementation_print_at(0, next_line, k + 1);
|
|
|
+ lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
|
|
|
+
|
|
|
+ if (iteration > 0) {
|
|
|
+ lcd_print_at_PGM(0, next_line + 1, MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION);
|
|
|
+ lcd_implementation_print(int(iteration + 1));
|
|
|
+ }
|
|
|
#endif /* MESH_BED_CALIBRATION_SHOW_LCD */
|
|
|
- float *pt = pts + k * 2;
|
|
|
- // Go up to z_initial.
|
|
|
- go_to_current(homing_feedrate[Z_AXIS] / 60.f);
|
|
|
- if (verbosity_level >= 20) {
|
|
|
- // Go to Y0, wait, then go to Y-4.
|
|
|
- current_position[Y_AXIS] = 0.f;
|
|
|
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
- SERIAL_ECHOLNPGM("At Y0");
|
|
|
- delay_keep_alive(5000);
|
|
|
- current_position[Y_AXIS] = Y_MIN_POS;
|
|
|
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
- SERIAL_ECHOLNPGM("At Y-4");
|
|
|
- delay_keep_alive(5000);
|
|
|
- }
|
|
|
- // Go to the measurement point position.
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points_4+k*2);
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+k*2+1);
|
|
|
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
- if (verbosity_level >= 10)
|
|
|
- delay_keep_alive(3000);
|
|
|
- if (! find_bed_induction_sensor_point_xy())
|
|
|
- return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
|
-#if 1
|
|
|
- if (k == 0) {
|
|
|
- // Improve the position of the 1st row sensor points by a zig-zag movement.
|
|
|
- find_bed_induction_sensor_point_z();
|
|
|
- int8_t i = 4;
|
|
|
- for (;;) {
|
|
|
- if (improve_bed_induction_sensor_point3(verbosity_level))
|
|
|
- break;
|
|
|
- if (-- i == 0)
|
|
|
- return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
|
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
|
|
- current_position[Z_AXIS] -= 0.025f;
|
|
|
- enable_endstops(false);
|
|
|
- enable_z_endstop(false);
|
|
|
- go_to_current(homing_feedrate[Z_AXIS]);
|
|
|
- }
|
|
|
- if (i == 0)
|
|
|
- // not found
|
|
|
- return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
|
- }
|
|
|
-#endif
|
|
|
- if (verbosity_level >= 10)
|
|
|
- delay_keep_alive(3000);
|
|
|
- // Save the detected point position and then clamp the Y coordinate, which may have been estimated
|
|
|
- // to lie outside the machine working space.
|
|
|
- pt[0] = current_position[X_AXIS];
|
|
|
- pt[1] = current_position[Y_AXIS];
|
|
|
- if (current_position[Y_AXIS] < Y_MIN_POS)
|
|
|
- current_position[Y_AXIS] = Y_MIN_POS;
|
|
|
- // Start searching for the other points at 3mm above the last point.
|
|
|
- current_position[Z_AXIS] += 3.f;
|
|
|
- cntr[0] += pt[0];
|
|
|
- cntr[1] += pt[1];
|
|
|
- if (verbosity_level >= 10 && k == 0) {
|
|
|
- // Show the zero. Test, whether the Y motor skipped steps.
|
|
|
- current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
|
|
|
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
- delay_keep_alive(3000);
|
|
|
- }
|
|
|
- }
|
|
|
+ float *pt = pts + k * 2;
|
|
|
+ // Go up to z_initial.
|
|
|
|
|
|
- if (verbosity_level >= 20) {
|
|
|
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
|
- delay_keep_alive(3000);
|
|
|
- for (int8_t mesh_point = 0; mesh_point < 4; ++ mesh_point) {
|
|
|
- // Don't let the manage_inactivity() function remove power from the motors.
|
|
|
- refresh_cmd_timeout();
|
|
|
- // Go to the measurement point.
|
|
|
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
|
- current_position[X_AXIS] = pts[mesh_point*2];
|
|
|
- current_position[Y_AXIS] = pts[mesh_point*2+1];
|
|
|
- go_to_current(homing_feedrate[X_AXIS]/60);
|
|
|
- delay_keep_alive(3000);
|
|
|
- }
|
|
|
- }
|
|
|
+ go_to_current(homing_feedrate[Z_AXIS] / 60.f);
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
+ // Go to Y0, wait, then go to Y-4.
|
|
|
+ current_position[Y_AXIS] = 0.f;
|
|
|
+ go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
+ SERIAL_ECHOLNPGM("At Y0");
|
|
|
+ delay_keep_alive(5000);
|
|
|
+ current_position[Y_AXIS] = Y_MIN_POS;
|
|
|
+ go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
+ SERIAL_ECHOLNPGM("At Y-4");
|
|
|
+ delay_keep_alive(5000);
|
|
|
+ }
|
|
|
+ // Go to the measurement point position.
|
|
|
+ if (iteration == 0) {
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2 + 1);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ // if first iteration failed, count corrected point coordinates as initial
|
|
|
+ // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
|
+
|
|
|
+ current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[0] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[0];
|
|
|
+ current_position[Y_AXIS] = vec_x[1] * pgm_read_float(bed_ref_points_4 + k * 2) + vec_y[1] * pgm_read_float(bed_ref_points_4 + k * 2 + 1) + cntr[1];
|
|
|
|
|
|
- BedSkewOffsetDetectionResultType result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
|
|
|
- if (result >= 0) {
|
|
|
- world2machine_update(vec_x, vec_y, cntr);
|
|
|
- #if 1
|
|
|
- // Fearlessly store the calibration values into the eeprom.
|
|
|
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
|
|
|
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
|
|
|
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
|
|
|
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
|
|
|
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
|
|
|
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
|
|
|
- #endif
|
|
|
- if (verbosity_level >= 10) {
|
|
|
- // Length of the vec_x
|
|
|
- float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
|
|
|
- SERIAL_ECHOLNPGM("X vector length:");
|
|
|
- MYSERIAL.println(l);
|
|
|
+ // The calibration points are very close to the min Y.
|
|
|
+ if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION)
|
|
|
+ current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
|
|
|
+
|
|
|
+ }
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
+ SERIAL_ECHOPGM("corrected current_position[X_AXIS]:");
|
|
|
+ MYSERIAL.print(current_position[X_AXIS], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ SERIAL_ECHOPGM("corrected current_position[Y_AXIS]:");
|
|
|
+ MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
+ }
|
|
|
|
|
|
- // Length of the vec_y
|
|
|
- l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
|
|
|
- SERIAL_ECHOLNPGM("Y vector length:");
|
|
|
- MYSERIAL.println(l);
|
|
|
- // Zero point correction
|
|
|
- l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
|
|
|
- SERIAL_ECHOLNPGM("Zero point correction:");
|
|
|
- MYSERIAL.println(l);
|
|
|
|
|
|
- // vec_x and vec_y shall be nearly perpendicular.
|
|
|
- l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
|
|
|
- SERIAL_ECHOLNPGM("Perpendicularity");
|
|
|
- MYSERIAL.println(fabs(l));
|
|
|
- SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
|
|
|
+ go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
+ if (verbosity_level >= 10)
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ if (!find_bed_induction_sensor_point_xy())
|
|
|
+ return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
|
+#if 1
|
|
|
+
|
|
|
+ if (k == 0) {
|
|
|
+ // Improve the position of the 1st row sensor points by a zig-zag movement.
|
|
|
+ find_bed_induction_sensor_point_z();
|
|
|
+ int8_t i = 4;
|
|
|
+ for (;;) {
|
|
|
+ if (improve_bed_induction_sensor_point3(verbosity_level))
|
|
|
+ break;
|
|
|
+ if (--i == 0)
|
|
|
+ return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
|
+ // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
|
|
|
+ current_position[Z_AXIS] -= 0.025f;
|
|
|
+ enable_endstops(false);
|
|
|
+ enable_z_endstop(false);
|
|
|
+ go_to_current(homing_feedrate[Z_AXIS]);
|
|
|
+ }
|
|
|
+ if (i == 0)
|
|
|
+ // not found
|
|
|
+ return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ if (verbosity_level >= 10)
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ // Save the detected point position and then clamp the Y coordinate, which may have been estimated
|
|
|
+ // to lie outside the machine working space.
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
+ SERIAL_ECHOLNPGM("Measured:");
|
|
|
+ MYSERIAL.println(current_position[X_AXIS]);
|
|
|
+ MYSERIAL.println(current_position[Y_AXIS]);
|
|
|
+ }
|
|
|
+ //pt[0] = (pt[0] * iteration) / (iteration + 1);
|
|
|
+ //pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
|
|
|
+ //pt[1] = (pt[1] * iteration) / (iteration + 1);
|
|
|
+ //pt[1] += (current_position[Y_AXIS] / (iteration + 1));
|
|
|
+
|
|
|
+
|
|
|
+ pt[0] += current_position[X_AXIS];
|
|
|
+ if(iteration > 0) pt[0] = pt[0] / 2;
|
|
|
+
|
|
|
+ pt[1] += current_position[Y_AXIS];
|
|
|
+ if (iteration > 0) pt[1] = pt[1] / 2;
|
|
|
+
|
|
|
+ if (current_position[Y_AXIS] < Y_MIN_POS)
|
|
|
+ current_position[Y_AXIS] = Y_MIN_POS;
|
|
|
+ // Start searching for the other points at 3mm above the last point.
|
|
|
+ current_position[Z_AXIS] += 3.f;
|
|
|
+ //cntr[0] += pt[0];
|
|
|
+ //cntr[1] += pt[1];
|
|
|
+ if (verbosity_level >= 10 && k == 0) {
|
|
|
+ // Show the zero. Test, whether the Y motor skipped steps.
|
|
|
+ current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
|
|
|
+ go_to_current(homing_feedrate[X_AXIS] / 60.f);
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ }
|
|
|
}
|
|
|
- // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
|
|
|
- world2machine_update_current();
|
|
|
|
|
|
- if (verbosity_level >= 20) {
|
|
|
- // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
|
- delay_keep_alive(3000);
|
|
|
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
|
- // Don't let the manage_inactivity() function remove power from the motors.
|
|
|
- refresh_cmd_timeout();
|
|
|
- // Go to the measurement point.
|
|
|
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2);
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points+mesh_point*2+1);
|
|
|
- go_to_current(homing_feedrate[X_AXIS]/60);
|
|
|
- delay_keep_alive(3000);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
+ // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ for (int8_t mesh_point = 0; mesh_point < 4; ++mesh_point) {
|
|
|
+ // Don't let the manage_inactivity() function remove power from the motors.
|
|
|
+ refresh_cmd_timeout();
|
|
|
+ // Go to the measurement point.
|
|
|
+ // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
|
+ current_position[X_AXIS] = pts[mesh_point * 2];
|
|
|
+ current_position[Y_AXIS] = pts[mesh_point * 2 + 1];
|
|
|
+ go_to_current(homing_feedrate[X_AXIS] / 60);
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- return result;
|
|
|
+ result = calculate_machine_skew_and_offset_LS(pts, 4, bed_ref_points_4, vec_x, vec_y, cntr, verbosity_level);
|
|
|
+ if (result >= 0) {
|
|
|
+ world2machine_update(vec_x, vec_y, cntr);
|
|
|
+#if 1
|
|
|
+ // Fearlessly store the calibration values into the eeprom.
|
|
|
+ eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 0), cntr[0]);
|
|
|
+ eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER + 4), cntr[1]);
|
|
|
+ eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 0), vec_x[0]);
|
|
|
+ eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X + 4), vec_x[1]);
|
|
|
+ eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
|
|
|
+ eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
|
|
|
+#endif
|
|
|
+ if (verbosity_level >= 10) {
|
|
|
+ // Length of the vec_x
|
|
|
+ float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
|
|
|
+ SERIAL_ECHOLNPGM("X vector length:");
|
|
|
+ MYSERIAL.println(l);
|
|
|
+
|
|
|
+ // Length of the vec_y
|
|
|
+ l = sqrt(vec_y[0] * vec_y[0] + vec_y[1] * vec_y[1]);
|
|
|
+ SERIAL_ECHOLNPGM("Y vector length:");
|
|
|
+ MYSERIAL.println(l);
|
|
|
+ // Zero point correction
|
|
|
+ l = sqrt(cntr[0] * cntr[0] + cntr[1] * cntr[1]);
|
|
|
+ SERIAL_ECHOLNPGM("Zero point correction:");
|
|
|
+ MYSERIAL.println(l);
|
|
|
+
|
|
|
+ // vec_x and vec_y shall be nearly perpendicular.
|
|
|
+ l = vec_x[0] * vec_y[0] + vec_x[1] * vec_y[1];
|
|
|
+ SERIAL_ECHOLNPGM("Perpendicularity");
|
|
|
+ MYSERIAL.println(fabs(l));
|
|
|
+ SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
|
|
|
+ }
|
|
|
+ // Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
|
|
|
+ world2machine_update_current();
|
|
|
+
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
+ // Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ for (int8_t mesh_point = 0; mesh_point < 9; ++mesh_point) {
|
|
|
+ // Don't let the manage_inactivity() function remove power from the motors.
|
|
|
+ refresh_cmd_timeout();
|
|
|
+ // Go to the measurement point.
|
|
|
+ // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2);
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + mesh_point * 2 + 1);
|
|
|
+ go_to_current(homing_feedrate[X_AXIS] / 60);
|
|
|
+ delay_keep_alive(3000);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ iteration++;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
}
|
|
|
|
|
|
BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level, uint8_t &too_far_mask)
|