|
@@ -1327,29 +1327,12 @@ void setup()
|
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
setup_homepin();
|
|
|
|
|
|
-#ifdef TMC2130
|
|
|
-
|
|
|
- if (1) {
|
|
|
- // try to run to zero phase before powering the Z motor.
|
|
|
- // Move in negative direction
|
|
|
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
- // Round the current micro-micro steps to micro steps.
|
|
|
- for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
|
|
|
- // Until the phase counter is reset to zero.
|
|
|
- WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
- _delay(2);
|
|
|
- WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
- _delay(2);
|
|
|
- }
|
|
|
- }
|
|
|
-#endif //TMC2130
|
|
|
-
|
|
|
-#if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
|
|
|
- enable_z();
|
|
|
+#if defined(Z_AXIS_ALWAYS_ON)
|
|
|
+ enable_z();
|
|
|
#endif
|
|
|
+
|
|
|
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
|
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
@@ -3855,6 +3838,17 @@ void process_commands()
|
|
|
} else if(code_seen("FR")) { // PRUSA FR
|
|
|
// Factory full reset
|
|
|
factory_reset(0);
|
|
|
+ } else if(code_seen("MBL")) { // PRUSA MBL
|
|
|
+ // Change the MBL status without changing the logical Z position.
|
|
|
+ if(code_seen("V")) {
|
|
|
+ bool value = code_value_short();
|
|
|
+ st_synchronize();
|
|
|
+ if(value != mbl.active) {
|
|
|
+ mbl.active = value;
|
|
|
+ // Use plan_set_z_position to reset the physical values
|
|
|
+ plan_set_z_position(current_position[Z_AXIS]);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
//-//
|
|
|
/*
|
|
@@ -10509,16 +10503,11 @@ void uvlo_()
|
|
|
tmc2130_set_current_r(E_AXIS, 20);
|
|
|
#endif //TMC2130
|
|
|
|
|
|
-
|
|
|
- // Indicate that the interrupt has been triggered.
|
|
|
- // SERIAL_ECHOLNPGM("UVLO");
|
|
|
-
|
|
|
- // Read out the current Z motor microstep counter. This will be later used
|
|
|
- // for reaching the zero full step before powering off.
|
|
|
- uint16_t z_microsteps = 0;
|
|
|
-#ifdef TMC2130
|
|
|
- z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
|
|
-#endif //TMC2130
|
|
|
+ // Stop all heaters
|
|
|
+ uint8_t saved_target_temperature_bed = target_temperature_bed;
|
|
|
+ uint8_t saved_target_temperature_ext = target_temperature[active_extruder];
|
|
|
+ setAllTargetHotends(0);
|
|
|
+ setTargetBed(0);
|
|
|
|
|
|
// Calculate the file position, from which to resume this print.
|
|
|
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
|
|
@@ -10543,75 +10532,81 @@ void uvlo_()
|
|
|
feedrate_bckp = feedrate;
|
|
|
}
|
|
|
|
|
|
+ // From this point on and up to the print recovery, Z should not move during X/Y travels and
|
|
|
+ // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
|
|
|
+ // get the physical Z for further manipulation.
|
|
|
+ bool mbl_was_active = mbl.active;
|
|
|
+ mbl.active = false;
|
|
|
+
|
|
|
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
|
|
|
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
|
|
|
// are in action.
|
|
|
planner_abort_hard();
|
|
|
|
|
|
- // Store the current extruder position.
|
|
|
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
|
|
|
+ // Store the print logical Z position, which we need to recover (a slight error here would be
|
|
|
+ // recovered on the next Gcode instruction, while a physical location error would not)
|
|
|
+ float logical_z = current_position[Z_AXIS];
|
|
|
+ if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
|
|
+ eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
|
|
|
+
|
|
|
+ // Store the print E position before we lose track
|
|
|
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
|
|
|
- // Clean the input command queue.
|
|
|
+
|
|
|
+ // Clean the input command queue, inhibit serial processing using saved_printing
|
|
|
cmdqueue_reset();
|
|
|
card.sdprinting = false;
|
|
|
-// card.closefile();
|
|
|
- // Enable stepper driver interrupt to move Z axis.
|
|
|
- // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
|
|
|
- //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
|
|
|
- // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
|
|
|
- sei();
|
|
|
- plan_buffer_line(
|
|
|
- current_position[X_AXIS],
|
|
|
- current_position[Y_AXIS],
|
|
|
- current_position[Z_AXIS],
|
|
|
- current_position[E_AXIS] - default_retraction,
|
|
|
- 95, active_extruder);
|
|
|
-
|
|
|
- st_synchronize();
|
|
|
- disable_e0();
|
|
|
-
|
|
|
- plan_buffer_line(
|
|
|
- current_position[X_AXIS],
|
|
|
- current_position[Y_AXIS],
|
|
|
- current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
|
|
|
- current_position[E_AXIS] - default_retraction,
|
|
|
- 40, active_extruder);
|
|
|
+ saved_printing = true;
|
|
|
+
|
|
|
+ // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
|
|
|
+ // command queues are empty, SD card printing is disabled, usb is inhibited.
|
|
|
+ sei();
|
|
|
+
|
|
|
+ // Retract
|
|
|
+ current_position[E_AXIS] -= default_retraction;
|
|
|
+ plan_buffer_line_curposXYZE(95, active_extruder);
|
|
|
st_synchronize();
|
|
|
disable_e0();
|
|
|
|
|
|
- plan_buffer_line(
|
|
|
- current_position[X_AXIS],
|
|
|
- current_position[Y_AXIS],
|
|
|
- current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
|
|
|
- current_position[E_AXIS] - default_retraction,
|
|
|
- 40, active_extruder);
|
|
|
+ // Read out the current Z motor microstep counter to move the axis up towards
|
|
|
+ // a full step before powering off. NOTE: we need to ensure to schedule more
|
|
|
+ // than "dropsegments" steps in order to move (this is always the case here
|
|
|
+ // due to UVLO_Z_AXIS_SHIFT being used)
|
|
|
+ uint16_t z_res = tmc2130_get_res(Z_AXIS);
|
|
|
+ uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
|
|
+ current_position[Z_AXIS] += float(1024 - z_microsteps)
|
|
|
+ / (z_res * cs.axis_steps_per_unit[Z_AXIS])
|
|
|
+ + UVLO_Z_AXIS_SHIFT;
|
|
|
+ plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
|
st_synchronize();
|
|
|
+ disable_z();
|
|
|
|
|
|
- disable_e0();
|
|
|
- // Move Z up to the next 0th full step.
|
|
|
// Write the file position.
|
|
|
eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
|
|
|
+
|
|
|
// Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
|
|
|
for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
|
|
|
uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
|
|
|
// Scale the z value to 1u resolution.
|
|
|
- int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
|
|
|
+ int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
|
|
|
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
|
|
|
}
|
|
|
- // Read out the current Z motor microstep counter. This will be later used
|
|
|
- // for reaching the zero full step before powering off.
|
|
|
+
|
|
|
+ // Write the _final_ Z position and motor microstep counter (unused).
|
|
|
+ eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
|
|
|
+ z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
|
|
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
|
|
- // Store the current position.
|
|
|
|
|
|
+ // Store the current position.
|
|
|
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
|
|
|
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
|
|
|
- eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
|
|
|
+
|
|
|
// Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
|
|
|
eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
|
|
|
- EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
|
|
|
+ eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
|
|
|
eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
|
|
|
#if EXTRUDERS > 1
|
|
@@ -10635,71 +10630,92 @@ void uvlo_()
|
|
|
// Finaly store the "power outage" flag.
|
|
|
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
|
|
|
|
|
|
- st_synchronize();
|
|
|
- printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
|
|
|
-
|
|
|
// Increment power failure counter
|
|
|
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
|
|
eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
|
|
- printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
|
|
|
|
|
|
-#if 0
|
|
|
- // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
|
|
|
+ printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
|
|
|
+ WRITE(BEEPER,HIGH);
|
|
|
+
|
|
|
+ // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
|
|
|
+ enable_z();
|
|
|
current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
|
|
|
plan_buffer_line_curposXYZE(500, active_extruder);
|
|
|
st_synchronize();
|
|
|
-#endif
|
|
|
-wdt_enable(WDTO_500MS);
|
|
|
-WRITE(BEEPER,HIGH);
|
|
|
-while(1)
|
|
|
- ;
|
|
|
+
|
|
|
+ wdt_enable(WDTO_1S);
|
|
|
+ while(1);
|
|
|
}
|
|
|
|
|
|
|
|
|
void uvlo_tiny()
|
|
|
{
|
|
|
-uint16_t z_microsteps=0;
|
|
|
+ unsigned long time_start = _millis();
|
|
|
|
|
|
-// Conserve power as soon as possible.
|
|
|
-disable_x();
|
|
|
-disable_y();
|
|
|
-disable_e0();
|
|
|
-
|
|
|
-#ifdef TMC2130
|
|
|
-tmc2130_set_current_h(Z_AXIS, 20);
|
|
|
-tmc2130_set_current_r(Z_AXIS, 20);
|
|
|
-#endif //TMC2130
|
|
|
+ // Conserve power as soon as possible.
|
|
|
+ disable_x();
|
|
|
+ disable_y();
|
|
|
+ disable_e0();
|
|
|
|
|
|
-// Read out the current Z motor microstep counter
|
|
|
#ifdef TMC2130
|
|
|
-z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
|
|
+ tmc2130_set_current_h(Z_AXIS, 20);
|
|
|
+ tmc2130_set_current_r(Z_AXIS, 20);
|
|
|
#endif //TMC2130
|
|
|
-planner_abort_hard();
|
|
|
|
|
|
-//save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
|
|
|
-//EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
|
|
|
-if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
|
|
|
- eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
|
|
|
- eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
|
|
|
-}
|
|
|
+ // Stop all heaters
|
|
|
+ setAllTargetHotends(0);
|
|
|
+ setTargetBed(0);
|
|
|
|
|
|
-//after multiple power panics current Z axis is unknow
|
|
|
-//in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
|
|
|
-if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
|
|
|
- eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
|
|
|
- eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
|
|
|
-}
|
|
|
+ // When power is interrupted on the _first_ recovery an attempt can be made to raise the
|
|
|
+ // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
|
|
|
+ // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
|
|
|
+ // Disable MBL (if not already) to work with physical coordinates.
|
|
|
+ mbl.active = false;
|
|
|
+ planner_abort_hard();
|
|
|
+
|
|
|
+ // Allow for small roundoffs to be ignored
|
|
|
+ if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
|
|
|
+ {
|
|
|
+ // Clean the input command queue, inhibit serial processing using saved_printing
|
|
|
+ cmdqueue_reset();
|
|
|
+ card.sdprinting = false;
|
|
|
+ saved_printing = true;
|
|
|
+
|
|
|
+ // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
|
|
|
+ // command queues are empty, SD card printing is disabled, usb is inhibited.
|
|
|
+ sei();
|
|
|
+
|
|
|
+ // The axis was moved: adjust Z as done on a regular UVLO.
|
|
|
+ uint16_t z_res = tmc2130_get_res(Z_AXIS);
|
|
|
+ uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
|
|
+ current_position[Z_AXIS] += float(1024 - z_microsteps)
|
|
|
+ / (z_res * cs.axis_steps_per_unit[Z_AXIS])
|
|
|
+ + UVLO_TINY_Z_AXIS_SHIFT;
|
|
|
+ plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
|
+ st_synchronize();
|
|
|
+ disable_z();
|
|
|
+
|
|
|
+ // Update Z position
|
|
|
+ eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
|
|
|
|
|
|
-// Finaly store the "power outage" flag.
|
|
|
-eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
|
|
|
+ // Update the _final_ Z motor microstep counter (unused).
|
|
|
+ z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
|
|
|
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update the the "power outage" flag.
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
|
|
|
|
|
|
-// Increment power failure counter
|
|
|
-eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
|
|
-eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
|
|
-wdt_enable(WDTO_500MS);
|
|
|
-WRITE(BEEPER,HIGH);
|
|
|
-while(1)
|
|
|
- ;
|
|
|
+ // Increment power failure counter
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
|
|
|
+ eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
|
|
|
+
|
|
|
+ printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
|
|
|
+
|
|
|
+ // burn all that residual power
|
|
|
+ wdt_enable(WDTO_1S);
|
|
|
+ WRITE(BEEPER,HIGH);
|
|
|
+ while(1);
|
|
|
}
|
|
|
#endif //UVLO_SUPPORT
|
|
|
|
|
@@ -10768,44 +10784,52 @@ void recover_print(uint8_t automatic) {
|
|
|
lcd_update(2);
|
|
|
lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
|
|
|
|
|
|
- bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
|
|
|
- recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
|
|
|
- // Lift the print head, so one may remove the excess priming material.
|
|
|
- if(!bTiny&&(current_position[Z_AXIS]<25))
|
|
|
- enquecommand_P(PSTR("G1 Z25 F800"));
|
|
|
+ // Recover position, temperatures and extrude_multipliers
|
|
|
+ bool mbl_was_active = recover_machine_state_after_power_panic();
|
|
|
+
|
|
|
+ // Attempt to lift the print head on the first recovery, so one may remove the excess priming material.
|
|
|
+ bool raise_z = (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1);
|
|
|
+ if(raise_z && (current_position[Z_AXIS]<25))
|
|
|
+ enquecommand_P(PSTR("G1 Z25 F800"));
|
|
|
|
|
|
- // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
|
|
|
+ // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
|
|
|
+ // transformation status. G28 will not touch Z when MBL is off.
|
|
|
enquecommand_P(PSTR("G28 X Y"));
|
|
|
// Set the target bed and nozzle temperatures and wait.
|
|
|
- sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
|
|
|
+ sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
|
|
|
enquecommand(cmd);
|
|
|
sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
|
|
|
enquecommand(cmd);
|
|
|
+ sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
|
|
|
+ enquecommand(cmd);
|
|
|
+
|
|
|
enquecommand_P(PSTR("M83")); //E axis relative mode
|
|
|
- //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
|
- // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
|
|
|
- if(automatic == 0){
|
|
|
- enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
|
- }
|
|
|
- enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
|
|
|
+
|
|
|
+ // If not automatically recoreverd (long power loss)
|
|
|
+ if(automatic == 0){
|
|
|
+ //Extrude some filament to stabilize the pressure
|
|
|
+ enquecommand_P(PSTR("G1 E5 F120"));
|
|
|
+ // Retract to be consistent with a short pause
|
|
|
+ sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
|
|
|
+ enquecommand(cmd);
|
|
|
+ }
|
|
|
|
|
|
printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
|
|
// Restart the print.
|
|
|
- restore_print_from_eeprom();
|
|
|
+ restore_print_from_eeprom(mbl_was_active);
|
|
|
printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
}
|
|
|
|
|
|
-void recover_machine_state_after_power_panic(bool bTiny)
|
|
|
+bool recover_machine_state_after_power_panic()
|
|
|
{
|
|
|
- char cmd[30];
|
|
|
- // 1) Recover the logical cordinates at the time of the power panic.
|
|
|
- // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
|
|
|
- current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
|
|
|
- current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
|
|
|
-
|
|
|
- // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
|
|
|
- mbl.active = false;
|
|
|
+ // 1) Preset some dummy values for the XY axes
|
|
|
+ current_position[X_AXIS] = 0;
|
|
|
+ current_position[Y_AXIS] = 0;
|
|
|
+
|
|
|
+ // 2) Restore the mesh bed leveling offsets, but not the MBL status.
|
|
|
+ // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
|
|
|
+ bool mbl_was_active = false;
|
|
|
for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
|
|
|
uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
|
|
@@ -10813,32 +10837,16 @@ void recover_machine_state_after_power_panic(bool bTiny)
|
|
|
int16_t v;
|
|
|
eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
|
|
|
if (v != 0)
|
|
|
- mbl.active = true;
|
|
|
+ mbl_was_active = true;
|
|
|
mbl.z_values[iy][ix] = float(v) * 0.001f;
|
|
|
}
|
|
|
|
|
|
- // Recover the logical coordinate of the Z axis at the time of the power panic.
|
|
|
+ // Recover the physical coordinate of the Z axis at the time of the power panic.
|
|
|
// The current position after power panic is moved to the next closest 0th full step.
|
|
|
- if(bTiny){
|
|
|
- current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
|
|
|
- + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
|
|
|
- + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
|
|
|
-
|
|
|
- //after multiple power panics the print is slightly in the air so get it little bit down.
|
|
|
- //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
|
|
|
- current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
- }
|
|
|
- else{
|
|
|
- current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
|
|
|
- UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
|
|
|
- + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
|
|
|
- }
|
|
|
- if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
|
|
|
- current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
|
|
|
- sprintf_P(cmd, PSTR("G92 E"));
|
|
|
- dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
|
|
|
- enquecommand(cmd);
|
|
|
- }
|
|
|
+ current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
|
|
|
+
|
|
|
+ // Recover last E axis position
|
|
|
+ current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
|
|
|
|
|
|
memcpy(destination, current_position, sizeof(destination));
|
|
|
|
|
@@ -10854,17 +10862,13 @@ void recover_machine_state_after_power_panic(bool bTiny)
|
|
|
// The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
|
|
|
babystep_load();
|
|
|
|
|
|
- // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
|
|
|
+ // 5) Set the physical positions from the logical positions using the world2machine transformation
|
|
|
+ // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
- // 6) Power up the motors, mark their positions as known.
|
|
|
- //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
|
|
|
- axis_known_position[X_AXIS] = true; enable_x();
|
|
|
- axis_known_position[Y_AXIS] = true; enable_y();
|
|
|
- axis_known_position[Z_AXIS] = true; enable_z();
|
|
|
-
|
|
|
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
- print_physical_coordinates();
|
|
|
+ // 6) Power up the Z motors, mark their positions as known.
|
|
|
+ axis_known_position[Z_AXIS] = true;
|
|
|
+ enable_z();
|
|
|
|
|
|
// 7) Recover the target temperatures.
|
|
|
target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
|
|
@@ -10889,9 +10893,11 @@ void recover_machine_state_after_power_panic(bool bTiny)
|
|
|
#ifdef LIN_ADVANCE
|
|
|
extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
|
|
|
#endif
|
|
|
+
|
|
|
+ return mbl_was_active;
|
|
|
}
|
|
|
|
|
|
-void restore_print_from_eeprom() {
|
|
|
+void restore_print_from_eeprom(bool mbl_was_active) {
|
|
|
int feedrate_rec;
|
|
|
int feedmultiply_rec;
|
|
|
uint8_t fan_speed_rec;
|
|
@@ -10902,7 +10908,7 @@ void restore_print_from_eeprom() {
|
|
|
|
|
|
fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
|
|
|
feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
|
|
|
- EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
|
|
|
+ feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
|
|
|
SERIAL_ECHOPGM("Feedrate:");
|
|
|
MYSERIAL.print(feedrate_rec);
|
|
|
SERIAL_ECHOPGM(", feedmultiply:");
|
|
@@ -10932,30 +10938,38 @@ void restore_print_from_eeprom() {
|
|
|
enquecommand(cmd);
|
|
|
uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
|
|
|
SERIAL_ECHOPGM("Position read from eeprom:");
|
|
|
- MYSERIAL.println(position);
|
|
|
- // E axis relative mode.
|
|
|
- enquecommand_P(PSTR("M83"));
|
|
|
- // Move to the XY print position in logical coordinates, where the print has been killed.
|
|
|
- strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
|
|
|
- strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
|
|
|
- strcat_P(cmd, PSTR(" F2000"));
|
|
|
+ MYSERIAL.println(position);
|
|
|
+
|
|
|
+ // Move to the XY print position in logical coordinates, where the print has been killed, but
|
|
|
+ // without shifting Z along the way. This requires performing the move without mbl.
|
|
|
+ sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
|
|
|
+ eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
|
|
|
+ eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
|
|
|
enquecommand(cmd);
|
|
|
- //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
|
|
|
- // Move the Z axis down to the print, in logical coordinates.
|
|
|
- strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
|
|
|
+
|
|
|
+ // Enable MBL and switch to logical positioning
|
|
|
+ if (mbl_was_active)
|
|
|
+ enquecommand_P(PSTR("PRUSA MBL V1"));
|
|
|
+
|
|
|
+ // Move the Z axis down to the print, in logical coordinates.
|
|
|
+ sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
|
|
|
enquecommand(cmd);
|
|
|
+
|
|
|
// Unretract.
|
|
|
- enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
|
|
|
+ sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
|
|
|
+ enquecommand(cmd);
|
|
|
+ // Recover final E axis position and mode
|
|
|
+ float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
|
|
|
+ sprintf_P(cmd, PSTR("G92 E"));
|
|
|
+ dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
|
|
|
+ enquecommand(cmd);
|
|
|
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
|
|
|
+ enquecommand_P(PSTR("M82")); //E axis abslute mode
|
|
|
// Set the feedrates saved at the power panic.
|
|
|
sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
|
|
|
enquecommand(cmd);
|
|
|
sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
|
|
|
enquecommand(cmd);
|
|
|
- if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
|
|
|
- {
|
|
|
- enquecommand_P(PSTR("M82")); //E axis abslute mode
|
|
|
- }
|
|
|
// Set the fan speed saved at the power panic.
|
|
|
strcpy_P(cmd, PSTR("M106 S"));
|
|
|
strcat(cmd, itostr3(int(fan_speed_rec)));
|
|
@@ -11252,6 +11266,7 @@ void restore_print_from_ram_and_continue(float e_move)
|
|
|
// Cancel the state related to a currently saved print
|
|
|
void cancel_saved_printing()
|
|
|
{
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
saved_target[0] = SAVED_TARGET_UNSET;
|
|
|
saved_printing_type = PRINTING_TYPE_NONE;
|
|
|
saved_printing = false;
|