|
@@ -62,11 +62,12 @@ bool z_max_endstop = false;
|
|
|
|
|
|
// Variables used by The Stepper Driver Interrupt
|
|
|
static unsigned char out_bits; // The next stepping-bits to be output
|
|
|
-static int32_t counter_x, // Counter variables for the bresenham line tracer
|
|
|
+static dda_isteps_t
|
|
|
+ counter_x, // Counter variables for the bresenham line tracer
|
|
|
counter_y,
|
|
|
counter_z,
|
|
|
counter_e;
|
|
|
-volatile uint32_t step_events_completed; // The number of step events executed in the current block
|
|
|
+volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
|
|
|
static int32_t acceleration_time, deceleration_time;
|
|
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
|
|
static uint16_t acc_step_rate; // needed for deccelaration start point
|
|
@@ -108,34 +109,35 @@ uint8_t LastStepMask = 0;
|
|
|
|
|
|
#ifdef LIN_ADVANCE
|
|
|
|
|
|
- uint16_t ADV_NEVER = 65535;
|
|
|
-
|
|
|
static uint16_t nextMainISR = 0;
|
|
|
- static uint16_t nextAdvanceISR = ADV_NEVER;
|
|
|
- static uint16_t eISR_Rate = ADV_NEVER;
|
|
|
-
|
|
|
- static volatile int e_steps; //Extrusion steps to be executed by the stepper
|
|
|
- static int final_estep_rate; //Speed of extruder at cruising speed
|
|
|
- static int current_estep_rate; //The current speed of the extruder
|
|
|
- static int current_adv_steps; //The current pretension of filament expressed in steps
|
|
|
-
|
|
|
- #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
|
|
|
- #define _NEXT_ISR(T) nextMainISR = T
|
|
|
-
|
|
|
+ static uint16_t eISR_Rate;
|
|
|
+
|
|
|
+ // Extrusion steps to be executed by the stepper.
|
|
|
+ // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
|
|
|
+ // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
|
|
|
+ static volatile int16_t e_steps = 0;
|
|
|
+ // How many extruder steps shall be ticked at a single ISR invocation?
|
|
|
+ static uint8_t estep_loops;
|
|
|
+ // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
|
|
|
+ // as current_adv_steps.
|
|
|
+ static int current_estep_rate;
|
|
|
+ // The current pretension of filament expressed in extruder micro steps.
|
|
|
+ static int current_adv_steps;
|
|
|
+
|
|
|
+ #define _NEXT_ISR(T) nextMainISR = T
|
|
|
#else
|
|
|
- #define _NEXT_ISR(T) OCR1A = T
|
|
|
+ #define _NEXT_ISR(T) OCR1A = T
|
|
|
#endif
|
|
|
|
|
|
#ifdef DEBUG_STEPPER_TIMER_MISSED
|
|
|
extern bool stepper_timer_overflow_state;
|
|
|
+extern uint16_t stepper_timer_overflow_last;
|
|
|
#endif /* DEBUG_STEPPER_TIMER_MISSED */
|
|
|
|
|
|
//===========================================================================
|
|
|
//=============================functions ============================
|
|
|
//===========================================================================
|
|
|
|
|
|
-#define CHECK_ENDSTOPS if(check_endstops)
|
|
|
-
|
|
|
#ifndef _NO_ASM
|
|
|
|
|
|
// intRes = intIn1 * intIn2 >> 16
|
|
@@ -304,7 +306,7 @@ bool enable_z_endstop(bool check)
|
|
|
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
|
|
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
|
|
|
|
|
-FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
|
|
+FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
|
|
|
unsigned short timer;
|
|
|
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
|
|
|
|
@@ -340,27 +342,6 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
|
|
return timer;
|
|
|
}
|
|
|
|
|
|
-// Initializes the trapezoid generator from the current block. Called whenever a new
|
|
|
-// block begins.
|
|
|
-FORCE_INLINE void trapezoid_generator_reset() {
|
|
|
- deceleration_time = 0;
|
|
|
- // step_rate to timer interval
|
|
|
- OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
|
|
- // make a note of the number of step loops required at nominal speed
|
|
|
- step_loops_nominal = step_loops;
|
|
|
- acc_step_rate = current_block->initial_rate;
|
|
|
- acceleration_time = calc_timer(acc_step_rate);
|
|
|
- _NEXT_ISR(acceleration_time);
|
|
|
-
|
|
|
- #ifdef LIN_ADVANCE
|
|
|
- if (current_block->use_advance_lead) {
|
|
|
- current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
- final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
|
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
|
|
ISR(TIMER1_COMPA_vect) {
|
|
@@ -368,164 +349,214 @@ ISR(TIMER1_COMPA_vect) {
|
|
|
uint16_t sp = SPL + 256 * SPH;
|
|
|
if (sp < SP_min) SP_min = sp;
|
|
|
#endif //DEBUG_STACK_MONITOR
|
|
|
- #ifdef LIN_ADVANCE
|
|
|
- advance_isr_scheduler();
|
|
|
- #else
|
|
|
- isr();
|
|
|
- #endif
|
|
|
-}
|
|
|
|
|
|
-void isr() {
|
|
|
- //if (UVLO) uvlo();
|
|
|
- // If there is no current block, attempt to pop one from the buffer
|
|
|
- if (current_block == NULL) {
|
|
|
- // Anything in the buffer?
|
|
|
- current_block = plan_get_current_block();
|
|
|
- if (current_block != NULL) {
|
|
|
-#ifdef PAT9125
|
|
|
- fsensor_counter = 0;
|
|
|
- fsensor_st_block_begin(current_block);
|
|
|
-#endif //PAT9125
|
|
|
- // The busy flag is set by the plan_get_current_block() call.
|
|
|
- // current_block->busy = true;
|
|
|
- trapezoid_generator_reset();
|
|
|
- counter_x = -(current_block->step_event_count >> 1);
|
|
|
- counter_y = counter_x;
|
|
|
- counter_z = counter_x;
|
|
|
- counter_e = counter_x;
|
|
|
- step_events_completed = 0;
|
|
|
-
|
|
|
- #ifdef Z_LATE_ENABLE
|
|
|
- if(current_block->steps_z > 0) {
|
|
|
- enable_z();
|
|
|
- _NEXT_ISR(2000); //1ms wait
|
|
|
- return;
|
|
|
- }
|
|
|
- #endif
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
+ // If there are any e_steps planned, tick them.
|
|
|
+ bool run_main_isr = false;
|
|
|
+ if (e_steps) {
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH7, true);
|
|
|
+ for (uint8_t i = estep_loops; e_steps && i --;) {
|
|
|
+ WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
|
|
+ -- e_steps;
|
|
|
+ WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
|
|
}
|
|
|
- else {
|
|
|
- _NEXT_ISR(2000); // 1kHz.
|
|
|
+ if (e_steps) {
|
|
|
+ // Plan another Linear Advance tick.
|
|
|
+ OCR1A = eISR_Rate;
|
|
|
+ nextMainISR -= eISR_Rate;
|
|
|
+ } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
|
|
|
+ // The timer did not overflow and it is big enough, so it makes sense to plan it.
|
|
|
+ OCR1A = nextMainISR;
|
|
|
+ } else {
|
|
|
+ // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
|
|
|
+ // in the current interrupt tick.
|
|
|
+ run_main_isr = true;
|
|
|
+ //FIXME pick the serial line.
|
|
|
}
|
|
|
- }
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH7, false);
|
|
|
+ } else
|
|
|
+ run_main_isr = true;
|
|
|
|
|
|
- LastStepMask = 0;
|
|
|
+ if (run_main_isr)
|
|
|
+#endif
|
|
|
+ isr();
|
|
|
|
|
|
+ // Don't run the ISR faster than possible
|
|
|
+ // Is there a 8us time left before the next interrupt triggers?
|
|
|
+ if (OCR1A < TCNT1 + 16) {
|
|
|
+#ifdef DEBUG_STEPPER_TIMER_MISSED
|
|
|
+ // Verify whether the next planned timer interrupt has not been missed already.
|
|
|
+ // This debugging test takes < 1.125us
|
|
|
+ // This skews the profiling slightly as the fastest stepper timer
|
|
|
+ // interrupt repeats at a 100us rate (10kHz).
|
|
|
+ if (OCR1A + 40 < TCNT1) {
|
|
|
+ // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
|
|
|
+ // Give a warning.
|
|
|
+ stepper_timer_overflow_state = true;
|
|
|
+ stepper_timer_overflow_last = TCNT1 - OCR1A;
|
|
|
+ // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ // Fix the next interrupt to be executed after 8us from now.
|
|
|
+ OCR1A = TCNT1 + 16;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+FORCE_INLINE void stepper_next_block()
|
|
|
+{
|
|
|
+ // Anything in the buffer?
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH2, true);
|
|
|
+ current_block = plan_get_current_block();
|
|
|
if (current_block != NULL) {
|
|
|
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
|
|
+#ifdef PAT9125
|
|
|
+ fsensor_counter = 0;
|
|
|
+ fsensor_st_block_begin(current_block);
|
|
|
+#endif //PAT9125
|
|
|
+ // The busy flag is set by the plan_get_current_block() call.
|
|
|
+ // current_block->busy = true;
|
|
|
+ // Initializes the trapezoid generator from the current block. Called whenever a new
|
|
|
+ // block begins.
|
|
|
+ deceleration_time = 0;
|
|
|
+ // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
|
|
|
+ // That means, delay the initialization of nominal step rate and step loops until the steady
|
|
|
+ // state is reached.
|
|
|
+ step_loops_nominal = 0;
|
|
|
+ acc_step_rate = uint16_t(current_block->initial_rate);
|
|
|
+ acceleration_time = calc_timer(acc_step_rate);
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
+ current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
+#endif /* LIN_ADVANCE */
|
|
|
+
|
|
|
+ if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
|
|
|
+ counter_x.lo = -(current_block->step_event_count.lo >> 1);
|
|
|
+ counter_y.lo = counter_x.lo;
|
|
|
+ counter_z.lo = counter_x.lo;
|
|
|
+ counter_e.lo = counter_x.lo;
|
|
|
+ } else {
|
|
|
+ counter_x.wide = -(current_block->step_event_count.wide >> 1);
|
|
|
+ counter_y.wide = counter_x.wide;
|
|
|
+ counter_z.wide = counter_x.wide;
|
|
|
+ counter_e.wide = counter_x.wide;
|
|
|
+ }
|
|
|
+ step_events_completed.wide = 0;
|
|
|
+ // Set directions.
|
|
|
out_bits = current_block->direction_bits;
|
|
|
-
|
|
|
-
|
|
|
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
|
|
if((out_bits & (1<<X_AXIS))!=0){
|
|
|
- WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
|
|
|
+ WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
|
|
|
count_direction[X_AXIS]=-1;
|
|
|
- }
|
|
|
- else{
|
|
|
- WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
|
|
|
+ } else {
|
|
|
+ WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
|
|
|
count_direction[X_AXIS]=1;
|
|
|
}
|
|
|
if((out_bits & (1<<Y_AXIS))!=0){
|
|
|
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
|
|
|
-
|
|
|
- #ifdef Y_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
|
|
- #endif
|
|
|
-
|
|
|
count_direction[Y_AXIS]=-1;
|
|
|
- }
|
|
|
- else{
|
|
|
+ } else {
|
|
|
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
|
|
|
-
|
|
|
- #ifdef Y_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
|
|
- #endif
|
|
|
-
|
|
|
count_direction[Y_AXIS]=1;
|
|
|
}
|
|
|
-
|
|
|
- // Set direction en check limit switches
|
|
|
- #ifndef COREXY
|
|
|
- if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
|
|
|
- #else
|
|
|
- if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
|
|
|
- #endif
|
|
|
- CHECK_ENDSTOPS
|
|
|
- {
|
|
|
- {
|
|
|
- #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
|
|
|
-
|
|
|
- #ifdef TMC2130_SG_HOMING
|
|
|
- // Stall guard homing turned on
|
|
|
- x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
|
|
|
- #else
|
|
|
- // Normal homing
|
|
|
- x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
|
|
- #endif
|
|
|
- if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
|
|
- endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
- endstop_x_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
- }
|
|
|
- old_x_min_endstop = x_min_endstop;
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
+ if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
|
|
+ WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
+ count_direction[Z_AXIS]=-1;
|
|
|
+ } else { // +direction
|
|
|
+ WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
|
|
|
+ count_direction[Z_AXIS]=1;
|
|
|
}
|
|
|
- else { // +direction
|
|
|
- CHECK_ENDSTOPS
|
|
|
- {
|
|
|
- {
|
|
|
- #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
|
|
|
-
|
|
|
- #ifdef TMC2130_SG_HOMING
|
|
|
- // Stall guard homing turned on
|
|
|
- x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
|
|
|
- #else
|
|
|
- // Normal homing
|
|
|
- x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
|
|
- #endif
|
|
|
- if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
|
|
- endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
- endstop_x_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
- }
|
|
|
- old_x_max_endstop = x_max_endstop;
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
+ if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
|
|
|
+#ifndef LIN_ADVANCE
|
|
|
+ WRITE(E0_DIR_PIN,
|
|
|
+ #ifdef SNMM
|
|
|
+ (snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
|
|
|
+ #endif // SNMM
|
|
|
+ INVERT_E0_DIR);
|
|
|
+#endif /* LIN_ADVANCE */
|
|
|
+ count_direction[E_AXIS] = -1;
|
|
|
+ } else { // +direction
|
|
|
+#ifndef LIN_ADVANCE
|
|
|
+ WRITE(E0_DIR_PIN,
|
|
|
+ #ifdef SNMM
|
|
|
+ (snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
|
|
|
+ #endif // SNMM
|
|
|
+ !INVERT_E0_DIR);
|
|
|
+#endif /* LIN_ADVANCE */
|
|
|
+ count_direction[E_AXIS] = 1;
|
|
|
}
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ OCR1A = 2000; // 1kHz.
|
|
|
+ }
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH2, false);
|
|
|
+}
|
|
|
|
|
|
+// Check limit switches.
|
|
|
+FORCE_INLINE void stepper_check_endstops()
|
|
|
+{
|
|
|
+ if(check_endstops)
|
|
|
+ {
|
|
|
#ifndef COREXY
|
|
|
- if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
|
|
+ if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
|
|
|
#else
|
|
|
- if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
|
|
|
+ if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
|
|
|
#endif
|
|
|
- CHECK_ENDSTOPS
|
|
|
- {
|
|
|
-
|
|
|
- #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
|
|
|
-
|
|
|
+ {
|
|
|
+ #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
|
|
|
+ #ifdef TMC2130_SG_HOMING
|
|
|
+ // Stall guard homing turned on
|
|
|
+ x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
|
|
|
+ #else
|
|
|
+ // Normal homing
|
|
|
+ x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
|
|
+ #endif
|
|
|
+ if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
|
|
|
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
+ endstop_x_hit=true;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
+ }
|
|
|
+ old_x_min_endstop = x_min_endstop;
|
|
|
+ #endif
|
|
|
+ } else { // +direction
|
|
|
+ #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
|
|
|
#ifdef TMC2130_SG_HOMING
|
|
|
// Stall guard homing turned on
|
|
|
- y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
|
|
|
+ x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
|
|
|
#else
|
|
|
// Normal homing
|
|
|
- y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
|
|
+ x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
|
|
#endif
|
|
|
- if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
|
|
- endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
- endstop_y_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
- }
|
|
|
- old_y_min_endstop = y_min_endstop;
|
|
|
- #endif
|
|
|
- }
|
|
|
+ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
|
|
|
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
+ endstop_x_hit=true;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
+ }
|
|
|
+ old_x_max_endstop = x_max_endstop;
|
|
|
+ #endif
|
|
|
}
|
|
|
- else { // +direction
|
|
|
- CHECK_ENDSTOPS
|
|
|
- {
|
|
|
- #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
|
|
|
-
|
|
|
+
|
|
|
+ #ifndef COREXY
|
|
|
+ if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
|
|
|
+ #else
|
|
|
+ if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
|
|
|
+ #endif
|
|
|
+ {
|
|
|
+ #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
|
|
|
+ #ifdef TMC2130_SG_HOMING
|
|
|
+ // Stall guard homing turned on
|
|
|
+ y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
|
|
|
+ #else
|
|
|
+ // Normal homing
|
|
|
+ y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
|
|
+ #endif
|
|
|
+ if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
|
|
|
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
+ endstop_y_hit=true;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
+ }
|
|
|
+ old_y_min_endstop = y_min_endstop;
|
|
|
+ #endif
|
|
|
+ } else { // +direction
|
|
|
+ #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
|
|
|
#ifdef TMC2130_SG_HOMING
|
|
|
// Stall guard homing turned on
|
|
|
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
|
|
@@ -533,381 +564,438 @@ void isr() {
|
|
|
// Normal homing
|
|
|
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
|
|
|
#endif
|
|
|
- if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
|
|
- endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
- endstop_y_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
- }
|
|
|
- old_y_max_endstop = y_max_endstop;
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
|
|
- WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
-
|
|
|
- #ifdef Z_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Z2_DIR_PIN,INVERT_Z_DIR);
|
|
|
- #endif
|
|
|
-
|
|
|
- count_direction[Z_AXIS]=-1;
|
|
|
- if(check_endstops && ! check_z_endstop)
|
|
|
- {
|
|
|
- #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
|
|
- #ifdef TMC2130_SG_HOMING
|
|
|
- // Stall guard homing turned on
|
|
|
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
|
|
- #else
|
|
|
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
|
- #endif //TMC2130_SG_HOMING
|
|
|
- if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
|
|
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
- endstop_z_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
- }
|
|
|
- old_z_min_endstop = z_min_endstop;
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
- else { // +direction
|
|
|
- WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
|
|
|
-
|
|
|
- #ifdef Z_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Z2_DIR_PIN,!INVERT_Z_DIR);
|
|
|
+ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
|
|
|
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
+ endstop_y_hit=true;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
+ }
|
|
|
+ old_y_max_endstop = y_max_endstop;
|
|
|
#endif
|
|
|
-
|
|
|
- count_direction[Z_AXIS]=1;
|
|
|
- CHECK_ENDSTOPS
|
|
|
- {
|
|
|
- #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
|
|
|
- #ifdef TMC2130_SG_HOMING
|
|
|
- // Stall guard homing turned on
|
|
|
- z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
|
|
|
- #else
|
|
|
- z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
|
|
- #endif //TMC2130_SG_HOMING
|
|
|
- if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
|
|
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
- endstop_z_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
- }
|
|
|
- old_z_max_endstop = z_max_endstop;
|
|
|
- #endif
|
|
|
- }
|
|
|
}
|
|
|
|
|
|
- // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
|
|
|
- #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
|
|
- if(check_z_endstop) {
|
|
|
- // Check the Z min end-stop no matter what.
|
|
|
- // Good for searching for the center of an induction target.
|
|
|
- #ifdef TMC2130_SG_HOMING
|
|
|
- // Stall guard homing turned on
|
|
|
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
|
|
- #else
|
|
|
- z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
|
- #endif //TMC2130_SG_HOMING
|
|
|
- if(z_min_endstop && old_z_min_endstop) {
|
|
|
+ if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
|
|
|
+ {
|
|
|
+ #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
|
|
+ if (! check_z_endstop) {
|
|
|
+ #ifdef TMC2130_SG_HOMING
|
|
|
+ // Stall guard homing turned on
|
|
|
+ z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
|
|
+ #else
|
|
|
+ z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
|
+ #endif //TMC2130_SG_HOMING
|
|
|
+ if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
endstop_z_hit=true;
|
|
|
- step_events_completed = current_block->step_event_count;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
}
|
|
|
old_z_min_endstop = z_min_endstop;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ } else { // +direction
|
|
|
+ #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
|
|
|
+ #ifdef TMC2130_SG_HOMING
|
|
|
+ // Stall guard homing turned on
|
|
|
+ z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
|
|
|
+ #else
|
|
|
+ z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
|
|
+ #endif //TMC2130_SG_HOMING
|
|
|
+ if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
|
|
|
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
+ endstop_z_hit=true;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
+ }
|
|
|
+ old_z_max_endstop = z_max_endstop;
|
|
|
+ #endif
|
|
|
}
|
|
|
- #endif
|
|
|
-
|
|
|
- if ((out_bits & (1 << E_AXIS)) != 0)
|
|
|
- { // -direction
|
|
|
- //AKU
|
|
|
-#ifdef SNMM
|
|
|
- if (snmm_extruder == 0 || snmm_extruder == 2)
|
|
|
- {
|
|
|
- NORM_E_DIR();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- REV_E_DIR();
|
|
|
- }
|
|
|
-#else
|
|
|
- REV_E_DIR();
|
|
|
-#endif // SNMM
|
|
|
- count_direction[E_AXIS] = -1;
|
|
|
- }
|
|
|
- else
|
|
|
- { // +direction
|
|
|
-#ifdef SNMM
|
|
|
- if (snmm_extruder == 0 || snmm_extruder == 2)
|
|
|
- {
|
|
|
- REV_E_DIR();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- NORM_E_DIR();
|
|
|
- }
|
|
|
-#else
|
|
|
- NORM_E_DIR();
|
|
|
-#endif // SNMM
|
|
|
- count_direction[E_AXIS] = 1;
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
|
|
- #ifndef AT90USB
|
|
|
- MSerial.checkRx(); // Check for serial chars.
|
|
|
- #endif //RP - returned, because missing characters
|
|
|
+ // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
|
|
|
+ #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
|
|
|
+ if (check_z_endstop) {
|
|
|
+ // Check the Z min end-stop no matter what.
|
|
|
+ // Good for searching for the center of an induction target.
|
|
|
+ #ifdef TMC2130_SG_HOMING
|
|
|
+ // Stall guard homing turned on
|
|
|
+ z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
|
|
|
+ #else
|
|
|
+ z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
|
+ #endif //TMC2130_SG_HOMING
|
|
|
+ if(z_min_endstop && old_z_min_endstop) {
|
|
|
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
+ endstop_z_hit=true;
|
|
|
+ step_events_completed.wide = current_block->step_event_count.wide;
|
|
|
+ }
|
|
|
+ old_z_min_endstop = z_min_endstop;
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+}
|
|
|
|
|
|
+FORCE_INLINE void stepper_tick_lowres()
|
|
|
+{
|
|
|
+ for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
|
|
|
+ MSerial.checkRx(); // Check for serial chars.
|
|
|
+ // Step in X axis
|
|
|
+ counter_x.lo += current_block->steps_x.lo;
|
|
|
+ if (counter_x.lo > 0) {
|
|
|
+ WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
|
+ LastStepMask |= X_AXIS_MASK;
|
|
|
+#ifdef DEBUG_XSTEP_DUP_PIN
|
|
|
+ WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
|
|
+#endif //DEBUG_XSTEP_DUP_PIN
|
|
|
+ counter_x.lo -= current_block->step_event_count.lo;
|
|
|
+ count_position[X_AXIS]+=count_direction[X_AXIS];
|
|
|
+ WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
|
|
+#ifdef DEBUG_XSTEP_DUP_PIN
|
|
|
+ WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
|
|
|
+#endif //DEBUG_XSTEP_DUP_PIN
|
|
|
+ }
|
|
|
+ // Step in Y axis
|
|
|
+ counter_y.lo += current_block->steps_y.lo;
|
|
|
+ if (counter_y.lo > 0) {
|
|
|
+ WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
|
|
+ LastStepMask |= Y_AXIS_MASK;
|
|
|
+#ifdef DEBUG_YSTEP_DUP_PIN
|
|
|
+ WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
|
|
|
+#endif //DEBUG_YSTEP_DUP_PIN
|
|
|
+ counter_y.lo -= current_block->step_event_count.lo;
|
|
|
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
|
|
+ WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
|
|
+#ifdef DEBUG_YSTEP_DUP_PIN
|
|
|
+ WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
|
|
|
+#endif //DEBUG_YSTEP_DUP_PIN
|
|
|
+ }
|
|
|
+ // Step in Z axis
|
|
|
+ counter_z.lo += current_block->steps_z.lo;
|
|
|
+ if (counter_z.lo > 0) {
|
|
|
+ WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
+ LastStepMask |= Z_AXIS_MASK;
|
|
|
+ counter_z.lo -= current_block->step_event_count.lo;
|
|
|
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
|
|
+ WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
+ }
|
|
|
+ // Step in E axis
|
|
|
+ counter_e.lo += current_block->steps_e.lo;
|
|
|
+ if (counter_e.lo > 0) {
|
|
|
+#ifndef LIN_ADVANCE
|
|
|
+ WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
|
|
+#endif /* LIN_ADVANCE */
|
|
|
+ counter_e.lo -= current_block->step_event_count.lo;
|
|
|
+ count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
#ifdef LIN_ADVANCE
|
|
|
- counter_e += current_block->steps_e;
|
|
|
- if (counter_e > 0) {
|
|
|
- counter_e -= current_block->step_event_count;
|
|
|
- count_position[E_AXIS] += count_direction[E_AXIS];
|
|
|
- ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
|
|
|
- }
|
|
|
+ ++ e_steps;
|
|
|
+#else
|
|
|
+ #ifdef PAT9125
|
|
|
+ ++ fsensor_counter;
|
|
|
+ #endif //PAT9125
|
|
|
+ WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
|
|
#endif
|
|
|
-
|
|
|
- counter_x += current_block->steps_x;
|
|
|
- if (counter_x > 0) {
|
|
|
- WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
|
- LastStepMask |= X_AXIS_MASK;
|
|
|
+ }
|
|
|
+ if(++ step_events_completed.lo >= current_block->step_event_count.lo)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+FORCE_INLINE void stepper_tick_highres()
|
|
|
+{
|
|
|
+ for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
|
|
|
+ MSerial.checkRx(); // Check for serial chars.
|
|
|
+ // Step in X axis
|
|
|
+ counter_x.wide += current_block->steps_x.wide;
|
|
|
+ if (counter_x.wide > 0) {
|
|
|
+ WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
|
|
+ LastStepMask |= X_AXIS_MASK;
|
|
|
#ifdef DEBUG_XSTEP_DUP_PIN
|
|
|
- WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
|
|
+ WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
|
|
|
#endif //DEBUG_XSTEP_DUP_PIN
|
|
|
- counter_x -= current_block->step_event_count;
|
|
|
- count_position[X_AXIS]+=count_direction[X_AXIS];
|
|
|
- WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
|
|
+ counter_x.wide -= current_block->step_event_count.wide;
|
|
|
+ count_position[X_AXIS]+=count_direction[X_AXIS];
|
|
|
+ WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
|
|
|
#ifdef DEBUG_XSTEP_DUP_PIN
|
|
|
- WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
|
|
|
+ WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
|
|
|
#endif //DEBUG_XSTEP_DUP_PIN
|
|
|
- }
|
|
|
-
|
|
|
- counter_y += current_block->steps_y;
|
|
|
- if (counter_y > 0) {
|
|
|
- WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
|
|
- LastStepMask |= Y_AXIS_MASK;
|
|
|
+ }
|
|
|
+ // Step in Y axis
|
|
|
+ counter_y.wide += current_block->steps_y.wide;
|
|
|
+ if (counter_y.wide > 0) {
|
|
|
+ WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
|
|
+ LastStepMask |= Y_AXIS_MASK;
|
|
|
#ifdef DEBUG_YSTEP_DUP_PIN
|
|
|
- WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
|
|
|
+ WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
|
|
|
#endif //DEBUG_YSTEP_DUP_PIN
|
|
|
-
|
|
|
- #ifdef Y_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
|
|
|
- #endif
|
|
|
-
|
|
|
- counter_y -= current_block->step_event_count;
|
|
|
- count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
|
|
- WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
|
|
+ counter_y.wide -= current_block->step_event_count.wide;
|
|
|
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
|
|
+ WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
|
|
#ifdef DEBUG_YSTEP_DUP_PIN
|
|
|
- WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
|
|
|
-#endif //DEBUG_YSTEP_DUP_PIN
|
|
|
-
|
|
|
- #ifdef Y_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- counter_z += current_block->steps_z;
|
|
|
- if (counter_z > 0) {
|
|
|
- WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
- LastStepMask |= Z_AXIS_MASK;
|
|
|
- #ifdef Z_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
- #endif
|
|
|
-
|
|
|
- counter_z -= current_block->step_event_count;
|
|
|
- count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
|
|
- WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
-
|
|
|
- #ifdef Z_DUAL_STEPPER_DRIVERS
|
|
|
- WRITE_NC(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
+ WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
|
|
|
+#endif //DEBUG_YSTEP_DUP_PIN
|
|
|
+ }
|
|
|
+ // Step in Z axis
|
|
|
+ counter_z.wide += current_block->steps_z.wide;
|
|
|
+ if (counter_z.wide > 0) {
|
|
|
+ WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
+ LastStepMask |= Z_AXIS_MASK;
|
|
|
+ counter_z.wide -= current_block->step_event_count.wide;
|
|
|
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
|
|
+ WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
+ }
|
|
|
+ // Step in E axis
|
|
|
+ counter_e.wide += current_block->steps_e.wide;
|
|
|
+ if (counter_e.wide > 0) {
|
|
|
#ifndef LIN_ADVANCE
|
|
|
- counter_e += current_block->steps_e;
|
|
|
- if (counter_e > 0) {
|
|
|
- WRITE_E_STEP(!INVERT_E_STEP_PIN);
|
|
|
- counter_e -= current_block->step_event_count;
|
|
|
- count_position[E_AXIS]+=count_direction[E_AXIS];
|
|
|
- WRITE_E_STEP(INVERT_E_STEP_PIN);
|
|
|
-#ifdef PAT9125
|
|
|
- fsensor_counter++;
|
|
|
-#endif //PAT9125
|
|
|
- }
|
|
|
+ WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
|
|
+#endif /* LIN_ADVANCE */
|
|
|
+ counter_e.wide -= current_block->step_event_count.wide;
|
|
|
+ count_position[E_AXIS]+=count_direction[E_AXIS];
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
+ ++ e_steps;
|
|
|
+#else
|
|
|
+ #ifdef PAT9125
|
|
|
+ ++ fsensor_counter;
|
|
|
+ #endif //PAT9125
|
|
|
+ WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
|
|
#endif
|
|
|
-
|
|
|
- step_events_completed += 1;
|
|
|
- if(step_events_completed >= current_block->step_event_count) break;
|
|
|
}
|
|
|
+ if(++ step_events_completed.wide >= current_block->step_event_count.wide)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// 50us delay
|
|
|
+#define LIN_ADV_FIRST_TICK_DELAY 100
|
|
|
+
|
|
|
+FORCE_INLINE void isr() {
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH0, true);
|
|
|
+
|
|
|
+ //if (UVLO) uvlo();
|
|
|
+ // If there is no current block, attempt to pop one from the buffer
|
|
|
+ if (current_block == NULL)
|
|
|
+ stepper_next_block();
|
|
|
+
|
|
|
+ LastStepMask = 0;
|
|
|
+
|
|
|
+ if (current_block != NULL)
|
|
|
+ {
|
|
|
+ stepper_check_endstops();
|
|
|
#ifdef LIN_ADVANCE
|
|
|
+ e_steps = 0;
|
|
|
+#endif /* LIN_ADVANCE */
|
|
|
+ if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
|
|
|
+ stepper_tick_lowres();
|
|
|
+ else
|
|
|
+ stepper_tick_highres();
|
|
|
+
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
+ if (out_bits&(1<<E_AXIS))
|
|
|
+ // Move in negative direction.
|
|
|
+ e_steps = - e_steps;
|
|
|
if (current_block->use_advance_lead) {
|
|
|
- const int delta_adv_steps = current_estep_rate - current_adv_steps;
|
|
|
- current_adv_steps += delta_adv_steps;
|
|
|
- e_steps += delta_adv_steps;
|
|
|
- }
|
|
|
- // If we have esteps to execute, fire the next advance_isr "now"
|
|
|
- if (e_steps) nextAdvanceISR = 0;
|
|
|
+ //int esteps_inc = 0;
|
|
|
+ //esteps_inc = current_estep_rate - current_adv_steps;
|
|
|
+ //e_steps += esteps_inc;
|
|
|
+ e_steps += current_estep_rate - current_adv_steps;
|
|
|
+#if 0
|
|
|
+ if (abs(esteps_inc) > 4) {
|
|
|
+ LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
|
|
|
+ if (esteps_inc < -511 || esteps_inc > 511)
|
|
|
+ LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
|
|
|
+ }
|
|
|
#endif
|
|
|
-
|
|
|
- // Calculare new timer value
|
|
|
- unsigned short timer;
|
|
|
- uint16_t step_rate;
|
|
|
- if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
|
|
|
- // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
|
|
|
- MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
|
|
- acc_step_rate += current_block->initial_rate;
|
|
|
-
|
|
|
- // upper limit
|
|
|
- if(acc_step_rate > current_block->nominal_rate)
|
|
|
- acc_step_rate = current_block->nominal_rate;
|
|
|
-
|
|
|
- // step_rate to timer interval
|
|
|
- timer = calc_timer(acc_step_rate);
|
|
|
- _NEXT_ISR(timer);
|
|
|
- acceleration_time += timer;
|
|
|
-
|
|
|
-#ifdef LIN_ADVANCE
|
|
|
- if (current_block->use_advance_lead) {
|
|
|
- current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
+ current_adv_steps = current_estep_rate;
|
|
|
+ }
|
|
|
+ // If we have esteps to execute, step some of them now.
|
|
|
+ if (e_steps) {
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH7, true);
|
|
|
+ // Set the step direction.
|
|
|
+ {
|
|
|
+ bool neg = e_steps < 0;
|
|
|
+ bool dir =
|
|
|
+ #ifdef SNMM
|
|
|
+ (neg == (snmm_extruder & 1))
|
|
|
+ #else
|
|
|
+ neg
|
|
|
+ #endif
|
|
|
+ ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
|
|
|
+ WRITE_NC(E0_DIR_PIN, dir);
|
|
|
+ if (neg)
|
|
|
+ // Flip the e_steps counter to be always positive.
|
|
|
+ e_steps = - e_steps;
|
|
|
}
|
|
|
- eISR_Rate = ADV_RATE(timer, step_loops);
|
|
|
+ // Tick min(step_loops, abs(e_steps)).
|
|
|
+ estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
|
|
|
+ if (step_loops < estep_loops)
|
|
|
+ estep_loops = step_loops;
|
|
|
+ #ifdef PAT9125
|
|
|
+ fsensor_counter += estep_loops;
|
|
|
+ #endif //PAT9125
|
|
|
+ do {
|
|
|
+ WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
|
|
+ -- e_steps;
|
|
|
+ WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
|
|
+ } while (-- estep_loops != 0);
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH7, false);
|
|
|
+ MSerial.checkRx(); // Check for serial chars.
|
|
|
+ }
|
|
|
#endif
|
|
|
- }
|
|
|
- else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
|
|
- MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
|
|
|
|
- if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
|
|
- step_rate = current_block->final_rate;
|
|
|
+ // Calculare new timer value
|
|
|
+ // 13.38-14.63us for steady state,
|
|
|
+ // 25.12us for acceleration / deceleration.
|
|
|
+ {
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH1, true);
|
|
|
+ if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
|
|
|
+ // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
|
|
|
+ MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
|
|
+ acc_step_rate += uint16_t(current_block->initial_rate);
|
|
|
+ // upper limit
|
|
|
+ if(acc_step_rate > uint16_t(current_block->nominal_rate))
|
|
|
+ acc_step_rate = current_block->nominal_rate;
|
|
|
+ // step_rate to timer interval
|
|
|
+ uint16_t timer = calc_timer(acc_step_rate);
|
|
|
+ _NEXT_ISR(timer);
|
|
|
+ acceleration_time += timer;
|
|
|
+ #ifdef LIN_ADVANCE
|
|
|
+ if (current_block->use_advance_lead)
|
|
|
+ // int32_t = (uint16_t * uint32_t) >> 17
|
|
|
+ current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
+ #endif
|
|
|
}
|
|
|
- else {
|
|
|
+ else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
|
|
|
+ uint16_t step_rate;
|
|
|
+ MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
|
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
|
|
- }
|
|
|
-
|
|
|
- // lower limit
|
|
|
- if(step_rate < current_block->final_rate)
|
|
|
- step_rate = current_block->final_rate;
|
|
|
-
|
|
|
- // step_rate to timer interval
|
|
|
- timer = calc_timer(step_rate);
|
|
|
- _NEXT_ISR(timer);
|
|
|
- deceleration_time += timer;
|
|
|
-
|
|
|
-#ifdef LIN_ADVANCE
|
|
|
- if (current_block->use_advance_lead) {
|
|
|
+ if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
|
|
|
+ // Result is negative or too small.
|
|
|
+ step_rate = uint16_t(current_block->final_rate);
|
|
|
+ }
|
|
|
+ // Step_rate to timer interval.
|
|
|
+ uint16_t timer = calc_timer(step_rate);
|
|
|
+ _NEXT_ISR(timer);
|
|
|
+ deceleration_time += timer;
|
|
|
+ #ifdef LIN_ADVANCE
|
|
|
+ if (current_block->use_advance_lead)
|
|
|
current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (! step_loops_nominal) {
|
|
|
+ // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
|
|
|
+ // the initial interrupt blocking.
|
|
|
+ OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
|
|
|
+ step_loops_nominal = step_loops;
|
|
|
+ #ifdef LIN_ADVANCE
|
|
|
+ if (current_block->use_advance_lead)
|
|
|
+ current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
|
|
|
+ #endif
|
|
|
}
|
|
|
- eISR_Rate = ADV_RATE(timer, step_loops);
|
|
|
-#endif
|
|
|
+ _NEXT_ISR(OCR1A_nominal);
|
|
|
+ }
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH1, false);
|
|
|
}
|
|
|
- else {
|
|
|
-#ifdef LIN_ADVANCE
|
|
|
- if (current_block->use_advance_lead)
|
|
|
- current_estep_rate = final_estep_rate;
|
|
|
|
|
|
- eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
+ if (e_steps && current_block->use_advance_lead) {
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH7, true);
|
|
|
+ MSerial.checkRx(); // Check for serial chars.
|
|
|
+ // Some of the E steps were not ticked yet. Plan additional interrupts.
|
|
|
+ uint16_t now = TCNT1;
|
|
|
+ // Plan the first linear advance interrupt after 50us from now.
|
|
|
+ uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
|
|
|
+ eISR_Rate = 0;
|
|
|
+ if ((to_go & 0x8000) == 0) {
|
|
|
+ // The to_go number is not negative.
|
|
|
+ // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
|
|
|
+ uint8_t ticks = to_go >> 8;
|
|
|
+ if (ticks == 1) {
|
|
|
+ // Avoid running the following loop for a very short interval.
|
|
|
+ estep_loops = 255;
|
|
|
+ eISR_Rate = 1;
|
|
|
+ } else if ((e_steps & 0x0ff00) == 0) {
|
|
|
+ // e_steps <= 0x0ff
|
|
|
+ if (uint8_t(e_steps) <= ticks) {
|
|
|
+ // Spread the e_steps along the whole go_to interval.
|
|
|
+ eISR_Rate = to_go / uint8_t(e_steps);
|
|
|
+ estep_loops = 1;
|
|
|
+ } else if (ticks != 0) {
|
|
|
+ // At least one tick fits into the to_go interval. Calculate the e-step grouping.
|
|
|
+ uint8_t e = uint8_t(e_steps) >> 1;
|
|
|
+ estep_loops = 2;
|
|
|
+ while (e > ticks) {
|
|
|
+ e >>= 1;
|
|
|
+ estep_loops <<= 1;
|
|
|
+ }
|
|
|
+ // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
|
|
|
+ // to squeeze enough of Linear Advance ticks until nextMainISR.
|
|
|
+ // Calculate the tick rate.
|
|
|
+ eISR_Rate = to_go / ticks;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // This is an exterme case with too many e_steps inserted by the linear advance.
|
|
|
+ // At least one tick fits into the to_go interval. Calculate the e-step grouping.
|
|
|
+ estep_loops = 2;
|
|
|
+ uint16_t e = e_steps >> 1;
|
|
|
+ while (e & 0x0ff00) {
|
|
|
+ e >>= 1;
|
|
|
+ estep_loops <<= 1;
|
|
|
+ }
|
|
|
+ while (uint8_t(e) > ticks) {
|
|
|
+ e >>= 1;
|
|
|
+ estep_loops <<= 1;
|
|
|
+ }
|
|
|
+ // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
|
|
|
+ // to squeeze enough of Linear Advance ticks until nextMainISR.
|
|
|
+ // Calculate the tick rate.
|
|
|
+ eISR_Rate = to_go / ticks;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (eISR_Rate == 0) {
|
|
|
+ // There is not enough time to fit even a single additional tick.
|
|
|
+ // Tick all the extruder ticks now.
|
|
|
+ #ifdef PAT9125
|
|
|
+ fsensor_counter += e_steps;
|
|
|
+ #endif //PAT9125
|
|
|
+ MSerial.checkRx(); // Check for serial chars.
|
|
|
+ do {
|
|
|
+ WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
|
|
+ -- e_steps;
|
|
|
+ WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
|
|
+ } while (e_steps);
|
|
|
+ OCR1A = nextMainISR;
|
|
|
+ } else {
|
|
|
+ // Tick the 1st Linear Advance interrupt after 50us from now.
|
|
|
+ nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
|
|
|
+ OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
|
|
|
+ }
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH7, false);
|
|
|
+ } else
|
|
|
+ OCR1A = nextMainISR;
|
|
|
#endif
|
|
|
|
|
|
- _NEXT_ISR(OCR1A_nominal);
|
|
|
- // ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
|
- step_loops = step_loops_nominal;
|
|
|
- }
|
|
|
-
|
|
|
// If current block is finished, reset pointer
|
|
|
- if (step_events_completed >= current_block->step_event_count) {
|
|
|
-
|
|
|
+ if (step_events_completed.wide >= current_block->step_event_count.wide) {
|
|
|
#ifdef PAT9125
|
|
|
fsensor_st_block_chunk(current_block, fsensor_counter);
|
|
|
- fsensor_counter = 0;
|
|
|
+ fsensor_counter = 0;
|
|
|
#endif //PAT9125
|
|
|
-
|
|
|
current_block = NULL;
|
|
|
plan_discard_current_block();
|
|
|
}
|
|
|
#ifdef PAT9125
|
|
|
- else if (fsensor_counter >= fsensor_chunk_len)
|
|
|
- {
|
|
|
+ else if (fsensor_counter >= fsensor_chunk_len)
|
|
|
+ {
|
|
|
fsensor_st_block_chunk(current_block, fsensor_counter);
|
|
|
- fsensor_counter = 0;
|
|
|
- }
|
|
|
+ fsensor_counter = 0;
|
|
|
+ }
|
|
|
#endif //PAT9125
|
|
|
}
|
|
|
+
|
|
|
#ifdef TMC2130
|
|
|
tmc2130_st_isr(LastStepMask);
|
|
|
#endif //TMC2130
|
|
|
-#ifdef DEBUG_STEPPER_TIMER_MISSED
|
|
|
- // Verify whether the next planned timer interrupt has not been missed already.
|
|
|
- // This debugging test takes < 1.125us
|
|
|
- // This skews the profiling slightly as the fastest stepper timer
|
|
|
- // interrupt repeats at a 100us rate (10kHz).
|
|
|
- if (OCR1A < TCNT1) {
|
|
|
- stepper_timer_overflow_state = true;
|
|
|
- WRITE_NC(BEEPER, HIGH);
|
|
|
- SERIAL_PROTOCOLPGM("Stepper timer overflow ");
|
|
|
- SERIAL_PROTOCOL(OCR1A);
|
|
|
- SERIAL_PROTOCOLPGM("<");
|
|
|
- SERIAL_PROTOCOL(TCNT1);
|
|
|
- SERIAL_PROTOCOLLN("!");
|
|
|
- }
|
|
|
-#endif
|
|
|
-}
|
|
|
|
|
|
-#ifdef LIN_ADVANCE
|
|
|
-
|
|
|
- // Timer interrupt for E. e_steps is set in the main routine.
|
|
|
-
|
|
|
-void advance_isr() {
|
|
|
- if (e_steps) {
|
|
|
- bool dir =
|
|
|
-#ifdef SNMM
|
|
|
- ((e_steps < 0) == (snmm_extruder & 1))
|
|
|
-#else
|
|
|
- (e_steps < 0)
|
|
|
-#endif
|
|
|
- ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
|
|
|
- WRITE_NC(E0_DIR_PIN, dir);
|
|
|
-
|
|
|
- for (uint8_t i = step_loops; e_steps && i--;) {
|
|
|
- WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
|
|
|
- e_steps < 0 ? ++e_steps : --e_steps;
|
|
|
- WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
|
|
|
-#ifdef PAT9125
|
|
|
- fsensor_counter++;
|
|
|
-#endif //PAT9125
|
|
|
-
|
|
|
- }
|
|
|
- }
|
|
|
- else {
|
|
|
- eISR_Rate = ADV_NEVER;
|
|
|
- }
|
|
|
- nextAdvanceISR = eISR_Rate;
|
|
|
+ //WRITE_NC(LOGIC_ANALYZER_CH0, false);
|
|
|
}
|
|
|
|
|
|
-void advance_isr_scheduler() {
|
|
|
- // Run main stepping ISR if flagged
|
|
|
- if (!nextMainISR) isr();
|
|
|
-
|
|
|
- // Run Advance stepping ISR if flagged
|
|
|
- if (!nextAdvanceISR) advance_isr();
|
|
|
-
|
|
|
- // Is the next advance ISR scheduled before the next main ISR?
|
|
|
- if (nextAdvanceISR <= nextMainISR) {
|
|
|
- // Set up the next interrupt
|
|
|
- OCR1A = nextAdvanceISR;
|
|
|
- // New interval for the next main ISR
|
|
|
- if (nextMainISR) nextMainISR -= nextAdvanceISR;
|
|
|
- // Will call Stepper::advance_isr on the next interrupt
|
|
|
- nextAdvanceISR = 0;
|
|
|
- }
|
|
|
- else {
|
|
|
- // The next main ISR comes first
|
|
|
- OCR1A = nextMainISR;
|
|
|
- // New interval for the next advance ISR, if any
|
|
|
- if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
|
|
|
- nextAdvanceISR -= nextMainISR;
|
|
|
- // Will call Stepper::isr on the next interrupt
|
|
|
- nextMainISR = 0;
|
|
|
- }
|
|
|
-
|
|
|
- // Don't run the ISR faster than possible
|
|
|
- if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
|
|
|
-}
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
|
|
|
void clear_current_adv_vars() {
|
|
|
e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
|