|  | @@ -109,22 +109,24 @@ uint8_t LastStepMask = 0;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  uint16_t ADV_NEVER = 65535;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |    static uint16_t nextMainISR = 0;
 | 
	
		
			
				|  |  | -  static uint16_t nextAdvanceISR = ADV_NEVER;
 | 
	
		
			
				|  |  | -  static uint16_t eISR_Rate = ADV_NEVER;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  static volatile int e_steps; //Extrusion steps to be executed by the stepper
 | 
	
		
			
				|  |  | -  static int final_estep_rate; //Speed of extruder at cruising speed
 | 
	
		
			
				|  |  | -  static int current_estep_rate; //The current speed of the extruder
 | 
	
		
			
				|  |  | -  static int current_adv_steps; //The current pretension of filament expressed in steps
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
 | 
	
		
			
				|  |  | -  #define _NEXT_ISR(T) nextMainISR = T
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +  static uint16_t eISR_Rate;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Extrusion steps to be executed by the stepper.
 | 
	
		
			
				|  |  | +  // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
 | 
	
		
			
				|  |  | +  // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
 | 
	
		
			
				|  |  | +  static volatile int16_t e_steps = 0;
 | 
	
		
			
				|  |  | +  // How many extruder steps shall be ticked at a single ISR invocation?
 | 
	
		
			
				|  |  | +  static uint8_t          estep_loops;
 | 
	
		
			
				|  |  | +  // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
 | 
	
		
			
				|  |  | +  // as current_adv_steps.
 | 
	
		
			
				|  |  | +  static int              current_estep_rate;
 | 
	
		
			
				|  |  | +  // The current pretension of filament expressed in extruder micro steps.
 | 
	
		
			
				|  |  | +  static int              current_adv_steps;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  #define _NEXT_ISR(T)    nextMainISR = T
 | 
	
		
			
				|  |  |  #else
 | 
	
		
			
				|  |  | -  #define _NEXT_ISR(T) OCR1A = T
 | 
	
		
			
				|  |  | +  #define _NEXT_ISR(T)    OCR1A = T
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  #ifdef DEBUG_STEPPER_TIMER_MISSED
 | 
	
	
		
			
				|  | @@ -339,26 +341,6 @@ FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
 | 
	
		
			
				|  |  |    return timer;
 | 
	
		
			
				|  |  |  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -// Initializes the trapezoid generator from the current block. Called whenever a new
 | 
	
		
			
				|  |  | -// block begins.
 | 
	
		
			
				|  |  | -FORCE_INLINE void trapezoid_generator_reset() {
 | 
	
		
			
				|  |  | -  deceleration_time = 0;
 | 
	
		
			
				|  |  | -  // step_rate to timer interval
 | 
	
		
			
				|  |  | -  OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
 | 
	
		
			
				|  |  | -  // make a note of the number of step loops required at nominal speed
 | 
	
		
			
				|  |  | -  step_loops_nominal = step_loops;
 | 
	
		
			
				|  |  | -  acc_step_rate = uint16_t(current_block->initial_rate);
 | 
	
		
			
				|  |  | -  acceleration_time = calc_timer(acc_step_rate);
 | 
	
		
			
				|  |  | -  _NEXT_ISR(acceleration_time);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -    if (current_block->use_advance_lead) {
 | 
	
		
			
				|  |  | -        current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | -        final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | -        }
 | 
	
		
			
				|  |  | -   #endif
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |  // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 | 
	
		
			
				|  |  |  // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 | 
	
		
			
				|  |  |  ISR(TIMER1_COMPA_vect) {
 | 
	
	
		
			
				|  | @@ -366,16 +348,61 @@ ISR(TIMER1_COMPA_vect) {
 | 
	
		
			
				|  |  |  	uint16_t sp = SPL + 256 * SPH;
 | 
	
		
			
				|  |  |  	if (sp < SP_min) SP_min = sp;
 | 
	
		
			
				|  |  |  #endif //DEBUG_STACK_MONITOR
 | 
	
		
			
				|  |  | -  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -    advance_isr_scheduler();
 | 
	
		
			
				|  |  | -  #else
 | 
	
		
			
				|  |  | -      isr();
 | 
	
		
			
				|  |  | -  #endif
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +  // If there are any e_steps planned, tick them.
 | 
	
		
			
				|  |  | +  bool run_main_isr = false;
 | 
	
		
			
				|  |  | +  if (e_steps) {
 | 
	
		
			
				|  |  | +    //WRITE_NC(LOGIC_ANALYZER_CH7, true);
 | 
	
		
			
				|  |  | +    for (uint8_t i = estep_loops; e_steps && i --;) {
 | 
	
		
			
				|  |  | +        WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +        -- e_steps;
 | 
	
		
			
				|  |  | +        WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    if (e_steps) {
 | 
	
		
			
				|  |  | +      // Plan another Linear Advance tick.
 | 
	
		
			
				|  |  | +      OCR1A = eISR_Rate;
 | 
	
		
			
				|  |  | +      nextMainISR -= eISR_Rate;
 | 
	
		
			
				|  |  | +    } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
 | 
	
		
			
				|  |  | +      // The timer did not overflow and it is big enough, so it makes sense to plan it.
 | 
	
		
			
				|  |  | +      OCR1A = nextMainISR;
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
 | 
	
		
			
				|  |  | +      // in the current interrupt tick.
 | 
	
		
			
				|  |  | +      run_main_isr = true;
 | 
	
		
			
				|  |  | +      //FIXME pick the serial line.
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    //WRITE_NC(LOGIC_ANALYZER_CH7, false);
 | 
	
		
			
				|  |  | +  } else
 | 
	
		
			
				|  |  | +    run_main_isr = true;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  if (run_main_isr)
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  | +    isr();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Don't run the ISR faster than possible
 | 
	
		
			
				|  |  | +//  if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
 | 
	
		
			
				|  |  | +#ifdef DEBUG_STEPPER_TIMER_MISSED
 | 
	
		
			
				|  |  | +  // Verify whether the next planned timer interrupt has not been missed already.  
 | 
	
		
			
				|  |  | +  // This debugging test takes < 1.125us
 | 
	
		
			
				|  |  | +  // This skews the profiling slightly as the fastest stepper timer
 | 
	
		
			
				|  |  | +  // interrupt repeats at a 100us rate (10kHz).
 | 
	
		
			
				|  |  | +  if (OCR1A < TCNT1) {
 | 
	
		
			
				|  |  | +    stepper_timer_overflow_state = true;
 | 
	
		
			
				|  |  | +    WRITE_NC(BEEPER, HIGH);
 | 
	
		
			
				|  |  | +    SERIAL_PROTOCOLPGM("Stepper timer overflow ");
 | 
	
		
			
				|  |  | +    SERIAL_PROTOCOL(OCR1A);
 | 
	
		
			
				|  |  | +    SERIAL_PROTOCOLPGM("<");
 | 
	
		
			
				|  |  | +    SERIAL_PROTOCOL(TCNT1);
 | 
	
		
			
				|  |  | +    SERIAL_PROTOCOLLN("!");
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +#endif
 | 
	
		
			
				|  |  |  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  FORCE_INLINE void stepper_next_block()
 | 
	
		
			
				|  |  |  {
 | 
	
		
			
				|  |  |    // Anything in the buffer?
 | 
	
		
			
				|  |  | +  //WRITE_NC(LOGIC_ANALYZER_CH2, true);
 | 
	
		
			
				|  |  |    current_block = plan_get_current_block();
 | 
	
		
			
				|  |  |    if (current_block != NULL) {
 | 
	
		
			
				|  |  |  #ifdef PAT9125
 | 
	
	
		
			
				|  | @@ -384,7 +411,19 @@ FORCE_INLINE void stepper_next_block()
 | 
	
		
			
				|  |  |  #endif //PAT9125
 | 
	
		
			
				|  |  |      // The busy flag is set by the plan_get_current_block() call.
 | 
	
		
			
				|  |  |      // current_block->busy = true;
 | 
	
		
			
				|  |  | -    trapezoid_generator_reset();
 | 
	
		
			
				|  |  | +    // Initializes the trapezoid generator from the current block. Called whenever a new
 | 
	
		
			
				|  |  | +    // block begins.
 | 
	
		
			
				|  |  | +    deceleration_time = 0;
 | 
	
		
			
				|  |  | +    // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
 | 
	
		
			
				|  |  | +    // That means, delay the initialization of nominal step rate and step loops until the steady
 | 
	
		
			
				|  |  | +    // state is reached.
 | 
	
		
			
				|  |  | +    step_loops_nominal = 0;
 | 
	
		
			
				|  |  | +    acc_step_rate = uint16_t(current_block->initial_rate);
 | 
	
		
			
				|  |  | +    acceleration_time = calc_timer(acc_step_rate);
 | 
	
		
			
				|  |  | +#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +    current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | +#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |      if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
 | 
	
		
			
				|  |  |        counter_x.lo = -(current_block->step_event_count.lo >> 1);
 | 
	
		
			
				|  |  |        counter_y.lo = counter_x.lo;
 | 
	
	
		
			
				|  | @@ -421,27 +460,30 @@ FORCE_INLINE void stepper_next_block()
 | 
	
		
			
				|  |  |        WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
 | 
	
		
			
				|  |  |        count_direction[Z_AXIS]=1;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |      if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
 | 
	
		
			
				|  |  | +#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |        WRITE(E0_DIR_PIN, 
 | 
	
		
			
				|  |  |    #ifdef SNMM
 | 
	
		
			
				|  |  |          (snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :
 | 
	
		
			
				|  |  |    #endif // SNMM
 | 
	
		
			
				|  |  |          INVERT_E0_DIR);
 | 
	
		
			
				|  |  | +#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  |        count_direction[E_AXIS] = -1;
 | 
	
		
			
				|  |  |      } else { // +direction
 | 
	
		
			
				|  |  | +#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |        WRITE(E0_DIR_PIN,
 | 
	
		
			
				|  |  |    #ifdef SNMM
 | 
	
		
			
				|  |  |          (snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :
 | 
	
		
			
				|  |  |    #endif // SNMM
 | 
	
		
			
				|  |  |          !INVERT_E0_DIR);
 | 
	
		
			
				|  |  | +#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  |        count_direction[E_AXIS] = 1;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |    else {
 | 
	
		
			
				|  |  | -      _NEXT_ISR(2000); // 1kHz.
 | 
	
		
			
				|  |  | +    OCR1A = 2000; // 1kHz.
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | +  //WRITE_NC(LOGIC_ANALYZER_CH2, false);
 | 
	
		
			
				|  |  |  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  // Check limit switches.
 | 
	
	
		
			
				|  | @@ -588,14 +630,6 @@ FORCE_INLINE void stepper_tick_lowres()
 | 
	
		
			
				|  |  |  {
 | 
	
		
			
				|  |  |    for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
 | 
	
		
			
				|  |  |      MSerial.checkRx(); // Check for serial chars.
 | 
	
		
			
				|  |  | -#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -    counter_e.lo += current_block->steps_e.lo;
 | 
	
		
			
				|  |  | -    if (counter_e.lo > 0) {
 | 
	
		
			
				|  |  | -      counter_e.lo -= current_block->step_event_count.lo;
 | 
	
		
			
				|  |  | -      count_position[E_AXIS] += count_direction[E_AXIS];
 | 
	
		
			
				|  |  | -      ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -#endif
 | 
	
		
			
				|  |  |      // Step in X axis
 | 
	
		
			
				|  |  |      counter_x.lo += current_block->steps_x.lo;
 | 
	
		
			
				|  |  |      if (counter_x.lo > 0) {
 | 
	
	
		
			
				|  | @@ -635,19 +669,23 @@ FORCE_INLINE void stepper_tick_lowres()
 | 
	
		
			
				|  |  |        count_position[Z_AXIS]+=count_direction[Z_AXIS];
 | 
	
		
			
				|  |  |        WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |      // Step in E axis
 | 
	
		
			
				|  |  |      counter_e.lo += current_block->steps_e.lo;
 | 
	
		
			
				|  |  |      if (counter_e.lo > 0) {
 | 
	
		
			
				|  |  | +#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |        WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  |        counter_e.lo -= current_block->step_event_count.lo;
 | 
	
		
			
				|  |  | -      count_position[E_AXIS]+=count_direction[E_AXIS];
 | 
	
		
			
				|  |  | -      WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | -#ifdef PAT9125
 | 
	
		
			
				|  |  | +      count_position[E_AXIS] += count_direction[E_AXIS];
 | 
	
		
			
				|  |  | +#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +      ++ e_steps;
 | 
	
		
			
				|  |  | +#else
 | 
	
		
			
				|  |  | +  #ifdef PAT9125
 | 
	
		
			
				|  |  |        ++ fsensor_counter;
 | 
	
		
			
				|  |  | -#endif //PAT9125
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  #endif //PAT9125
 | 
	
		
			
				|  |  | +      WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |      if(++ step_events_completed.lo >= current_block->step_event_count.lo)
 | 
	
		
			
				|  |  |        break;
 | 
	
		
			
				|  |  |    }
 | 
	
	
		
			
				|  | @@ -657,14 +695,6 @@ FORCE_INLINE void stepper_tick_highres()
 | 
	
		
			
				|  |  |  {
 | 
	
		
			
				|  |  |    for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
 | 
	
		
			
				|  |  |      MSerial.checkRx(); // Check for serial chars.
 | 
	
		
			
				|  |  | -#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -    counter_e.wide += current_block->steps_e.wide;
 | 
	
		
			
				|  |  | -    if (counter_e.wide > 0) {
 | 
	
		
			
				|  |  | -      counter_e.wide -= current_block->step_event_count.wide;
 | 
	
		
			
				|  |  | -      count_position[E_AXIS] += count_direction[E_AXIS];
 | 
	
		
			
				|  |  | -      ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -#endif
 | 
	
		
			
				|  |  |      // Step in X axis
 | 
	
		
			
				|  |  |      counter_x.wide += current_block->steps_x.wide;
 | 
	
		
			
				|  |  |      if (counter_x.wide > 0) {
 | 
	
	
		
			
				|  | @@ -704,25 +734,34 @@ FORCE_INLINE void stepper_tick_highres()
 | 
	
		
			
				|  |  |        count_position[Z_AXIS]+=count_direction[Z_AXIS];
 | 
	
		
			
				|  |  |        WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |      // Step in E axis
 | 
	
		
			
				|  |  |      counter_e.wide += current_block->steps_e.wide;
 | 
	
		
			
				|  |  |      if (counter_e.wide > 0) {
 | 
	
		
			
				|  |  | +#ifndef LIN_ADVANCE
 | 
	
		
			
				|  |  |        WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  |        counter_e.wide -= current_block->step_event_count.wide;
 | 
	
		
			
				|  |  |        count_position[E_AXIS]+=count_direction[E_AXIS];
 | 
	
		
			
				|  |  | -      WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | -#ifdef PAT9125
 | 
	
		
			
				|  |  | +#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +      ++ e_steps;
 | 
	
		
			
				|  |  | +#else
 | 
	
		
			
				|  |  | +  #ifdef PAT9125
 | 
	
		
			
				|  |  |        ++ fsensor_counter;
 | 
	
		
			
				|  |  | -#endif //PAT9125
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  #endif //PAT9125
 | 
	
		
			
				|  |  | +      WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |      if(++ step_events_completed.wide >= current_block->step_event_count.wide)
 | 
	
		
			
				|  |  |        break;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -void isr() {
 | 
	
		
			
				|  |  | +// 50us delay
 | 
	
		
			
				|  |  | +#define LIN_ADV_FIRST_TICK_DELAY 100
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +FORCE_INLINE void isr() {
 | 
	
		
			
				|  |  | +  //WRITE_NC(LOGIC_ANALYZER_CH0, true);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  	//if (UVLO) uvlo();
 | 
	
		
			
				|  |  |    // If there is no current block, attempt to pop one from the buffer
 | 
	
		
			
				|  |  |    if (current_block == NULL)
 | 
	
	
		
			
				|  | @@ -733,101 +772,215 @@ void isr() {
 | 
	
		
			
				|  |  |    if (current_block != NULL) 
 | 
	
		
			
				|  |  |    {
 | 
	
		
			
				|  |  |      stepper_check_endstops();
 | 
	
		
			
				|  |  | +#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +      e_steps = 0;
 | 
	
		
			
				|  |  | +#endif /* LIN_ADVANCE */
 | 
	
		
			
				|  |  |      if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
 | 
	
		
			
				|  |  |        stepper_tick_lowres();
 | 
	
		
			
				|  |  |      else
 | 
	
		
			
				|  |  |        stepper_tick_highres();
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +      if (out_bits&(1<<E_AXIS))
 | 
	
		
			
				|  |  | +        // Move in negative direction.
 | 
	
		
			
				|  |  | +        e_steps = - e_steps;
 | 
	
		
			
				|  |  |        if (current_block->use_advance_lead) {
 | 
	
		
			
				|  |  | -        const int delta_adv_steps = current_estep_rate - current_adv_steps;
 | 
	
		
			
				|  |  | -        current_adv_steps += delta_adv_steps;
 | 
	
		
			
				|  |  | -        e_steps += delta_adv_steps;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -      // If we have esteps to execute, fire the next advance_isr "now"
 | 
	
		
			
				|  |  | -      if (e_steps) nextAdvanceISR = 0;
 | 
	
		
			
				|  |  | +        //int esteps_inc = 0;
 | 
	
		
			
				|  |  | +        //esteps_inc = current_estep_rate - current_adv_steps;
 | 
	
		
			
				|  |  | +        //e_steps += esteps_inc;
 | 
	
		
			
				|  |  | +        e_steps += current_estep_rate - current_adv_steps;
 | 
	
		
			
				|  |  | +#if 0
 | 
	
		
			
				|  |  | +        if (abs(esteps_inc) > 4) {
 | 
	
		
			
				|  |  | +          LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
 | 
	
		
			
				|  |  | +          if (esteps_inc < -511 || esteps_inc > 511)
 | 
	
		
			
				|  |  | +            LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  | -        
 | 
	
		
			
				|  |  | -    // Calculare new timer value
 | 
	
		
			
				|  |  | -    unsigned short timer;
 | 
	
		
			
				|  |  | -    uint16_t step_rate;
 | 
	
		
			
				|  |  | -    if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
 | 
	
		
			
				|  |  | -      // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate
 | 
	
		
			
				|  |  | -      MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | 
	
		
			
				|  |  | -      acc_step_rate += uint16_t(current_block->initial_rate);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      // upper limit
 | 
	
		
			
				|  |  | -      if(acc_step_rate > uint16_t(current_block->nominal_rate))
 | 
	
		
			
				|  |  | -        acc_step_rate = current_block->nominal_rate;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      // step_rate to timer interval
 | 
	
		
			
				|  |  | -      timer = calc_timer(acc_step_rate);
 | 
	
		
			
				|  |  | -      _NEXT_ISR(timer);
 | 
	
		
			
				|  |  | -      acceleration_time += timer;
 | 
	
		
			
				|  |  | -        
 | 
	
		
			
				|  |  | -#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -        if (current_block->use_advance_lead) {
 | 
	
		
			
				|  |  | -         current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | +        current_adv_steps = current_estep_rate;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      // If we have esteps to execute, step some of them now.
 | 
	
		
			
				|  |  | +      if (e_steps) {
 | 
	
		
			
				|  |  | +        //WRITE_NC(LOGIC_ANALYZER_CH7, true);
 | 
	
		
			
				|  |  | +        // Set the step direction.
 | 
	
		
			
				|  |  | +        {
 | 
	
		
			
				|  |  | +          bool neg = e_steps < 0;
 | 
	
		
			
				|  |  | +          bool dir =
 | 
	
		
			
				|  |  | +        #ifdef SNMM
 | 
	
		
			
				|  |  | +            (neg == (snmm_extruder & 1))
 | 
	
		
			
				|  |  | +        #else
 | 
	
		
			
				|  |  | +            neg
 | 
	
		
			
				|  |  | +        #endif
 | 
	
		
			
				|  |  | +            ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
 | 
	
		
			
				|  |  | +          WRITE_NC(E0_DIR_PIN, dir);
 | 
	
		
			
				|  |  | +          if (neg)
 | 
	
		
			
				|  |  | +            // Flip the e_steps counter to be always positive.
 | 
	
		
			
				|  |  | +            e_steps = - e_steps;
 | 
	
		
			
				|  |  |          }
 | 
	
		
			
				|  |  | -        eISR_Rate = ADV_RATE(timer, step_loops);
 | 
	
		
			
				|  |  | +        // Tick min(step_loops, abs(e_steps)).
 | 
	
		
			
				|  |  | +        estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
 | 
	
		
			
				|  |  | +        if (step_loops < estep_loops)
 | 
	
		
			
				|  |  | +          estep_loops = step_loops;
 | 
	
		
			
				|  |  | +    #ifdef PAT9125
 | 
	
		
			
				|  |  | +        fsensor_counter += estep_loops;
 | 
	
		
			
				|  |  | +    #endif //PAT9125
 | 
	
		
			
				|  |  | +        do {
 | 
	
		
			
				|  |  | +          WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +          -- e_steps;
 | 
	
		
			
				|  |  | +          WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +        } while (-- estep_loops != 0);
 | 
	
		
			
				|  |  | +        //WRITE_NC(LOGIC_ANALYZER_CH7, false);
 | 
	
		
			
				|  |  | +        MSerial.checkRx(); // Check for serial chars.
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
 | 
	
		
			
				|  |  | -      MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      if(step_rate > acc_step_rate) { // Check step_rate stays positive
 | 
	
		
			
				|  |  | -        step_rate = uint16_t(current_block->final_rate);
 | 
	
		
			
				|  |  | +    // Calculare new timer value
 | 
	
		
			
				|  |  | +    // 13.38-14.63us for steady state,
 | 
	
		
			
				|  |  | +    // 25.12us for acceleration / deceleration.
 | 
	
		
			
				|  |  | +    {
 | 
	
		
			
				|  |  | +      //WRITE_NC(LOGIC_ANALYZER_CH1, true);
 | 
	
		
			
				|  |  | +      if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
 | 
	
		
			
				|  |  | +        // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate
 | 
	
		
			
				|  |  | +        MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | 
	
		
			
				|  |  | +        acc_step_rate += uint16_t(current_block->initial_rate);
 | 
	
		
			
				|  |  | +        // upper limit
 | 
	
		
			
				|  |  | +        if(acc_step_rate > uint16_t(current_block->nominal_rate))
 | 
	
		
			
				|  |  | +          acc_step_rate = current_block->nominal_rate;
 | 
	
		
			
				|  |  | +        // step_rate to timer interval
 | 
	
		
			
				|  |  | +        uint16_t timer = calc_timer(acc_step_rate);
 | 
	
		
			
				|  |  | +        _NEXT_ISR(timer);
 | 
	
		
			
				|  |  | +        acceleration_time += timer;
 | 
	
		
			
				|  |  | +  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +        if (current_block->use_advance_lead)
 | 
	
		
			
				|  |  | +          // int32_t = (uint16_t * uint32_t) >> 17
 | 
	
		
			
				|  |  | +          current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | +  #endif
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | -      else {
 | 
	
		
			
				|  |  | +      else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
 | 
	
		
			
				|  |  | +        uint16_t step_rate;
 | 
	
		
			
				|  |  | +        MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | 
	
		
			
				|  |  |          step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      // lower limit
 | 
	
		
			
				|  |  | -      if(step_rate < uint16_t(current_block->final_rate))
 | 
	
		
			
				|  |  | -        step_rate = uint16_t(current_block->final_rate);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      // step_rate to timer interval
 | 
	
		
			
				|  |  | -      timer = calc_timer(step_rate);
 | 
	
		
			
				|  |  | -      _NEXT_ISR(timer);
 | 
	
		
			
				|  |  | -      deceleration_time += timer;
 | 
	
		
			
				|  |  | -        
 | 
	
		
			
				|  |  | -#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -        if (current_block->use_advance_lead) {
 | 
	
		
			
				|  |  | +        if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
 | 
	
		
			
				|  |  | +          // Result is negative or too small.
 | 
	
		
			
				|  |  | +          step_rate = uint16_t(current_block->final_rate);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        // Step_rate to timer interval.
 | 
	
		
			
				|  |  | +        uint16_t timer = calc_timer(step_rate);
 | 
	
		
			
				|  |  | +        _NEXT_ISR(timer);
 | 
	
		
			
				|  |  | +        deceleration_time += timer;
 | 
	
		
			
				|  |  | +  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +        if (current_block->use_advance_lead)
 | 
	
		
			
				|  |  |            current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | +  #endif
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      else {
 | 
	
		
			
				|  |  | +        if (! step_loops_nominal) {
 | 
	
		
			
				|  |  | +          // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
 | 
	
		
			
				|  |  | +          // the initial interrupt blocking.
 | 
	
		
			
				|  |  | +          OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
 | 
	
		
			
				|  |  | +          step_loops_nominal = step_loops;
 | 
	
		
			
				|  |  | +  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +          if (current_block->use_advance_lead)
 | 
	
		
			
				|  |  | +            current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | 
	
		
			
				|  |  | +  #endif
 | 
	
		
			
				|  |  |          }
 | 
	
		
			
				|  |  | -        eISR_Rate = ADV_RATE(timer, step_loops);
 | 
	
		
			
				|  |  | -#endif
 | 
	
		
			
				|  |  | +        _NEXT_ISR(OCR1A_nominal);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      //WRITE_NC(LOGIC_ANALYZER_CH1, false);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    else {
 | 
	
		
			
				|  |  | -#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -        if (current_block->use_advance_lead)
 | 
	
		
			
				|  |  | -          current_estep_rate = final_estep_rate;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
 | 
	
		
			
				|  |  | +#ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | +    if (e_steps && current_block->use_advance_lead) {
 | 
	
		
			
				|  |  | +      //WRITE_NC(LOGIC_ANALYZER_CH7, true);
 | 
	
		
			
				|  |  | +      MSerial.checkRx(); // Check for serial chars.
 | 
	
		
			
				|  |  | +      // Some of the E steps were not ticked yet. Plan additional interrupts.
 | 
	
		
			
				|  |  | +      uint16_t now = TCNT1;
 | 
	
		
			
				|  |  | +      // Plan the first linear advance interrupt after 50us from now.
 | 
	
		
			
				|  |  | +      uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
 | 
	
		
			
				|  |  | +      eISR_Rate = 0;
 | 
	
		
			
				|  |  | +      if ((to_go & 0x8000) == 0) {
 | 
	
		
			
				|  |  | +        // The to_go number is not negative.
 | 
	
		
			
				|  |  | +        // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
 | 
	
		
			
				|  |  | +        uint8_t ticks = to_go >> 8;
 | 
	
		
			
				|  |  | +        if (ticks == 1) {
 | 
	
		
			
				|  |  | +          // Avoid running the following loop for a very short interval.
 | 
	
		
			
				|  |  | +          estep_loops = 255;
 | 
	
		
			
				|  |  | +          eISR_Rate = 1;
 | 
	
		
			
				|  |  | +        } else if ((e_steps & 0x0ff00) == 0) {
 | 
	
		
			
				|  |  | +          // e_steps <= 0x0ff
 | 
	
		
			
				|  |  | +          if (uint8_t(e_steps) <= ticks) {
 | 
	
		
			
				|  |  | +            // Spread the e_steps along the whole go_to interval.
 | 
	
		
			
				|  |  | +            eISR_Rate = to_go / uint8_t(e_steps);
 | 
	
		
			
				|  |  | +            estep_loops = 1;
 | 
	
		
			
				|  |  | +          } else if (ticks != 0) {
 | 
	
		
			
				|  |  | +            // At least one tick fits into the to_go interval. Calculate the e-step grouping.
 | 
	
		
			
				|  |  | +            uint8_t e = uint8_t(e_steps) >> 1;
 | 
	
		
			
				|  |  | +            estep_loops = 2;
 | 
	
		
			
				|  |  | +            while (e > ticks) {
 | 
	
		
			
				|  |  | +              e >>= 1;
 | 
	
		
			
				|  |  | +              estep_loops <<= 1;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
 | 
	
		
			
				|  |  | +            // to squeeze enough of Linear Advance ticks until nextMainISR.
 | 
	
		
			
				|  |  | +            // Calculate the tick rate.
 | 
	
		
			
				|  |  | +            eISR_Rate = to_go / ticks;          
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          // This is an exterme case with too many e_steps inserted by the linear advance.
 | 
	
		
			
				|  |  | +          // At least one tick fits into the to_go interval. Calculate the e-step grouping.
 | 
	
		
			
				|  |  | +          estep_loops = 2;
 | 
	
		
			
				|  |  | +          uint16_t e = e_steps >> 1;
 | 
	
		
			
				|  |  | +          while (e & 0x0ff00) {
 | 
	
		
			
				|  |  | +            e >>= 1;
 | 
	
		
			
				|  |  | +            estep_loops <<= 1;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          while (uint8_t(e) > ticks) {
 | 
	
		
			
				|  |  | +            e >>= 1;
 | 
	
		
			
				|  |  | +            estep_loops <<= 1;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
 | 
	
		
			
				|  |  | +          // to squeeze enough of Linear Advance ticks until nextMainISR.
 | 
	
		
			
				|  |  | +          // Calculate the tick rate.
 | 
	
		
			
				|  |  | +          eISR_Rate = to_go / ticks;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      if (eISR_Rate == 0) {
 | 
	
		
			
				|  |  | +        // There is not enough time to fit even a single additional tick.
 | 
	
		
			
				|  |  | +        // Tick all the extruder ticks now.
 | 
	
		
			
				|  |  | +    #ifdef PAT9125
 | 
	
		
			
				|  |  | +        fsensor_counter += e_steps;
 | 
	
		
			
				|  |  | +    #endif //PAT9125
 | 
	
		
			
				|  |  | +        MSerial.checkRx(); // Check for serial chars.
 | 
	
		
			
				|  |  | +        do {
 | 
	
		
			
				|  |  | +          WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +          -- e_steps;
 | 
	
		
			
				|  |  | +          WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | +        } while (e_steps);
 | 
	
		
			
				|  |  | +        OCR1A = nextMainISR;
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        // Tick the 1st Linear Advance interrupt after 50us from now.
 | 
	
		
			
				|  |  | +        nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
 | 
	
		
			
				|  |  | +        OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      //WRITE_NC(LOGIC_ANALYZER_CH7, false);
 | 
	
		
			
				|  |  | +    } else
 | 
	
		
			
				|  |  | +      OCR1A = nextMainISR;
 | 
	
		
			
				|  |  |  #endif
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      _NEXT_ISR(OCR1A_nominal);
 | 
	
		
			
				|  |  | -      // ensure we're running at the correct step rate, even if we just came off an acceleration
 | 
	
		
			
				|  |  | -      step_loops = step_loops_nominal;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |      // If current block is finished, reset pointer
 | 
	
		
			
				|  |  |      if (step_events_completed.wide >= current_block->step_event_count.wide) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |  #ifdef PAT9125
 | 
	
		
			
				|  |  |        fsensor_st_block_chunk(current_block, fsensor_counter);
 | 
	
		
			
				|  |  | -	  fsensor_counter = 0;
 | 
	
		
			
				|  |  | +	    fsensor_counter = 0;
 | 
	
		
			
				|  |  |  #endif //PAT9125
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |        current_block = NULL;
 | 
	
		
			
				|  |  |        plan_discard_current_block();
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  #ifdef PAT9125
 | 
	
		
			
				|  |  | -	else if (fsensor_counter >= fsensor_chunk_len)
 | 
	
		
			
				|  |  | -	{
 | 
	
		
			
				|  |  | +  	else if (fsensor_counter >= fsensor_chunk_len)
 | 
	
		
			
				|  |  | +  	{
 | 
	
		
			
				|  |  |        fsensor_st_block_chunk(current_block, fsensor_counter);
 | 
	
		
			
				|  |  | -	  fsensor_counter = 0;
 | 
	
		
			
				|  |  | -	}
 | 
	
		
			
				|  |  | +  	  fsensor_counter = 0;
 | 
	
		
			
				|  |  | +  	}
 | 
	
		
			
				|  |  |  #endif //PAT9125
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -835,83 +988,10 @@ void isr() {
 | 
	
		
			
				|  |  |  	tmc2130_st_isr(LastStepMask);
 | 
	
		
			
				|  |  |  #endif //TMC2130
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -#ifdef DEBUG_STEPPER_TIMER_MISSED
 | 
	
		
			
				|  |  | -  // Verify whether the next planned timer interrupt has not been missed already.  
 | 
	
		
			
				|  |  | -  // This debugging test takes < 1.125us
 | 
	
		
			
				|  |  | -  // This skews the profiling slightly as the fastest stepper timer
 | 
	
		
			
				|  |  | -  // interrupt repeats at a 100us rate (10kHz).
 | 
	
		
			
				|  |  | -  if (OCR1A < TCNT1) {
 | 
	
		
			
				|  |  | -    stepper_timer_overflow_state = true;
 | 
	
		
			
				|  |  | -    WRITE_NC(BEEPER, HIGH);
 | 
	
		
			
				|  |  | -    SERIAL_PROTOCOLPGM("Stepper timer overflow ");
 | 
	
		
			
				|  |  | -    SERIAL_PROTOCOL(OCR1A);
 | 
	
		
			
				|  |  | -    SERIAL_PROTOCOLPGM("<");
 | 
	
		
			
				|  |  | -    SERIAL_PROTOCOL(TCNT1);
 | 
	
		
			
				|  |  | -    SERIAL_PROTOCOLLN("!");
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -#endif
 | 
	
		
			
				|  |  | +  //WRITE_NC(LOGIC_ANALYZER_CH0, false);
 | 
	
		
			
				|  |  |  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  #ifdef LIN_ADVANCE
 | 
	
		
			
				|  |  | -      
 | 
	
		
			
				|  |  | -      // Timer interrupt for E. e_steps is set in the main routine.
 | 
	
		
			
				|  |  | -      
 | 
	
		
			
				|  |  | -void advance_isr() {
 | 
	
		
			
				|  |  | -  if (e_steps) {
 | 
	
		
			
				|  |  | -      bool dir =
 | 
	
		
			
				|  |  | -#ifdef SNMM
 | 
	
		
			
				|  |  | -      ((e_steps < 0) == (snmm_extruder & 1))
 | 
	
		
			
				|  |  | -#else
 | 
	
		
			
				|  |  | -      (e_steps < 0)
 | 
	
		
			
				|  |  | -#endif
 | 
	
		
			
				|  |  | -      ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
 | 
	
		
			
				|  |  | -      WRITE_NC(E0_DIR_PIN, dir);
 | 
	
		
			
				|  |  | -      
 | 
	
		
			
				|  |  | -      for (uint8_t i = step_loops; e_steps && i--;) {
 | 
	
		
			
				|  |  | -          WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | -          e_steps < 0 ? ++e_steps : --e_steps;
 | 
	
		
			
				|  |  | -          WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
	
		
			
				|  |  | -#ifdef PAT9125
 | 
	
		
			
				|  |  | -		  fsensor_counter++;
 | 
	
		
			
				|  |  | -#endif //PAT9125
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  else {
 | 
	
		
			
				|  |  | -    eISR_Rate = ADV_NEVER;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  nextAdvanceISR = eISR_Rate;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -void advance_isr_scheduler() {
 | 
	
		
			
				|  |  | -  // Run main stepping ISR if flagged
 | 
	
		
			
				|  |  | -  if (!nextMainISR) isr();
 | 
	
		
			
				|  |  | -  
 | 
	
		
			
				|  |  | -  // Run Advance stepping ISR if flagged
 | 
	
		
			
				|  |  | -  if (!nextAdvanceISR) advance_isr();
 | 
	
		
			
				|  |  | -  
 | 
	
		
			
				|  |  | -  // Is the next advance ISR scheduled before the next main ISR?
 | 
	
		
			
				|  |  | -  if (nextAdvanceISR <= nextMainISR) {
 | 
	
		
			
				|  |  | -      // Set up the next interrupt
 | 
	
		
			
				|  |  | -      OCR1A = nextAdvanceISR;
 | 
	
		
			
				|  |  | -      // New interval for the next main ISR
 | 
	
		
			
				|  |  | -      if (nextMainISR) nextMainISR -= nextAdvanceISR;
 | 
	
		
			
				|  |  | -      // Will call Stepper::advance_isr on the next interrupt
 | 
	
		
			
				|  |  | -      nextAdvanceISR = 0;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  else {
 | 
	
		
			
				|  |  | -      // The next main ISR comes first
 | 
	
		
			
				|  |  | -      OCR1A = nextMainISR;
 | 
	
		
			
				|  |  | -      // New interval for the next advance ISR, if any
 | 
	
		
			
				|  |  | -      if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
 | 
	
		
			
				|  |  | -          nextAdvanceISR -= nextMainISR;
 | 
	
		
			
				|  |  | -      // Will call Stepper::isr on the next interrupt
 | 
	
		
			
				|  |  | -      nextMainISR = 0;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  
 | 
	
		
			
				|  |  | -  // Don't run the ISR faster than possible
 | 
	
		
			
				|  |  | -  if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
 | 
	
		
			
				|  |  | -}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  void clear_current_adv_vars() {
 | 
	
		
			
				|  |  |    e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
 |