|
@@ -1,7411 +1,7411 @@
|
|
-/* -*- c++ -*- */
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- Reprap firmware based on Sprinter and grbl.
|
|
|
|
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
-
|
|
|
|
- This program is free software: you can redistribute it and/or modify
|
|
|
|
- it under the terms of the GNU General Public License as published by
|
|
|
|
- the Free Software Foundation, either version 3 of the License, or
|
|
|
|
- (at your option) any later version.
|
|
|
|
-
|
|
|
|
- This program is distributed in the hope that it will be useful,
|
|
|
|
- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
- GNU General Public License for more details.
|
|
|
|
-
|
|
|
|
- You should have received a copy of the GNU General Public License
|
|
|
|
- along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- This firmware is a mashup between Sprinter and grbl.
|
|
|
|
- (https://github.com/kliment/Sprinter)
|
|
|
|
- (https://github.com/simen/grbl/tree)
|
|
|
|
-
|
|
|
|
- It has preliminary support for Matthew Roberts advance algorithm
|
|
|
|
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-#include "Marlin.h"
|
|
|
|
-
|
|
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
-#include "vector_3.h"
|
|
|
|
- #ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
- #include "qr_solve.h"
|
|
|
|
- #endif
|
|
|
|
-#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
-
|
|
|
|
-#ifdef MESH_BED_LEVELING
|
|
|
|
- #include "mesh_bed_leveling.h"
|
|
|
|
- #include "mesh_bed_calibration.h"
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#include "ultralcd.h"
|
|
|
|
-#include "Configuration_prusa.h"
|
|
|
|
-#include "planner.h"
|
|
|
|
-#include "stepper.h"
|
|
|
|
-#include "temperature.h"
|
|
|
|
-#include "motion_control.h"
|
|
|
|
-#include "cardreader.h"
|
|
|
|
-#include "watchdog.h"
|
|
|
|
-#include "ConfigurationStore.h"
|
|
|
|
-#include "language.h"
|
|
|
|
-#include "pins_arduino.h"
|
|
|
|
-#include "math.h"
|
|
|
|
-#include "util.h"
|
|
|
|
-
|
|
|
|
-#include <avr/wdt.h>
|
|
|
|
-
|
|
|
|
-#include "Dcodes.h"
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#ifdef SWSPI
|
|
|
|
-#include "swspi.h"
|
|
|
|
-#endif //SWSPI
|
|
|
|
-
|
|
|
|
-#ifdef SWI2C
|
|
|
|
-#include "swi2c.h"
|
|
|
|
-#endif //SWI2C
|
|
|
|
-
|
|
|
|
-#ifdef PAT9125
|
|
|
|
-#include "pat9125.h"
|
|
|
|
-#include "fsensor.h"
|
|
|
|
-#endif //PAT9125
|
|
|
|
-
|
|
|
|
-#ifdef TMC2130
|
|
|
|
-#include "tmc2130.h"
|
|
|
|
-#endif //TMC2130
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#ifdef BLINKM
|
|
|
|
-#include "BlinkM.h"
|
|
|
|
-#include "Wire.h"
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#ifdef ULTRALCD
|
|
|
|
-#include "ultralcd.h"
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#if NUM_SERVOS > 0
|
|
|
|
-#include "Servo.h"
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
-#include <SPI.h>
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#define VERSION_STRING "1.0.2"
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#include "ultralcd.h"
|
|
|
|
-
|
|
|
|
-#include "cmdqueue.h"
|
|
|
|
-
|
|
|
|
-// Macros for bit masks
|
|
|
|
-#define BIT(b) (1<<(b))
|
|
|
|
-#define TEST(n,b) (((n)&BIT(b))!=0)
|
|
|
|
-#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
|
|
|
|
-
|
|
|
|
-//Macro for print fan speed
|
|
|
|
-#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
|
|
|
|
-
|
|
|
|
-// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
|
|
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
-
|
|
|
|
-//Implemented Codes
|
|
|
|
-//-------------------
|
|
|
|
-
|
|
|
|
-// PRUSA CODES
|
|
|
|
-// P F - Returns FW versions
|
|
|
|
-// P R - Returns revision of printer
|
|
|
|
-
|
|
|
|
-// G0 -> G1
|
|
|
|
-// G1 - Coordinated Movement X Y Z E
|
|
|
|
-// G2 - CW ARC
|
|
|
|
-// G3 - CCW ARC
|
|
|
|
-// G4 - Dwell S<seconds> or P<milliseconds>
|
|
|
|
-// G10 - retract filament according to settings of M207
|
|
|
|
-// G11 - retract recover filament according to settings of M208
|
|
|
|
-// G28 - Home all Axis
|
|
|
|
-// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
|
|
-// G30 - Single Z Probe, probes bed at current XY location.
|
|
|
|
-// G31 - Dock sled (Z_PROBE_SLED only)
|
|
|
|
-// G32 - Undock sled (Z_PROBE_SLED only)
|
|
|
|
-// G80 - Automatic mesh bed leveling
|
|
|
|
-// G81 - Print bed profile
|
|
|
|
-// G90 - Use Absolute Coordinates
|
|
|
|
-// G91 - Use Relative Coordinates
|
|
|
|
-// G92 - Set current position to coordinates given
|
|
|
|
-
|
|
|
|
-// M Codes
|
|
|
|
-// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
|
|
-// M1 - Same as M0
|
|
|
|
-// M17 - Enable/Power all stepper motors
|
|
|
|
-// M18 - Disable all stepper motors; same as M84
|
|
|
|
-// M20 - List SD card
|
|
|
|
-// M21 - Init SD card
|
|
|
|
-// M22 - Release SD card
|
|
|
|
-// M23 - Select SD file (M23 filename.g)
|
|
|
|
-// M24 - Start/resume SD print
|
|
|
|
-// M25 - Pause SD print
|
|
|
|
-// M26 - Set SD position in bytes (M26 S12345)
|
|
|
|
-// M27 - Report SD print status
|
|
|
|
-// M28 - Start SD write (M28 filename.g)
|
|
|
|
-// M29 - Stop SD write
|
|
|
|
-// M30 - Delete file from SD (M30 filename.g)
|
|
|
|
-// M31 - Output time since last M109 or SD card start to serial
|
|
|
|
-// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
|
|
-// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
|
|
-// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
|
|
-// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
|
|
-// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
|
|
-// M80 - Turn on Power Supply
|
|
|
|
-// M81 - Turn off Power Supply
|
|
|
|
-// M82 - Set E codes absolute (default)
|
|
|
|
-// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
|
|
-// M84 - Disable steppers until next move,
|
|
|
|
-// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
|
|
-// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
|
|
-// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
|
|
-// M104 - Set extruder target temp
|
|
|
|
-// M105 - Read current temp
|
|
|
|
-// M106 - Fan on
|
|
|
|
-// M107 - Fan off
|
|
|
|
-// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
|
|
-// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
|
|
-// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
|
|
-// M112 - Emergency stop
|
|
|
|
-// M114 - Output current position to serial port
|
|
|
|
-// M115 - Capabilities string
|
|
|
|
-// M117 - display message
|
|
|
|
-// M119 - Output Endstop status to serial port
|
|
|
|
-// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
|
|
-// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
|
|
-// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
|
|
-// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
|
|
-// M140 - Set bed target temp
|
|
|
|
-// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
|
|
-// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
|
|
-// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
|
|
-// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
|
|
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
|
|
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
|
|
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
|
|
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
|
|
-// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
|
|
-// M206 - set additional homing offset
|
|
|
|
-// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
|
|
-// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
|
|
|
-// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
|
|
-// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
|
|
-// M220 S<factor in percent>- set speed factor override percentage
|
|
|
|
-// M221 S<factor in percent>- set extrude factor override percentage
|
|
|
|
-// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
|
|
-// M240 - Trigger a camera to take a photograph
|
|
|
|
-// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
|
|
-// M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
|
|
-// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
|
|
-// M301 - Set PID parameters P I and D
|
|
|
|
-// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
|
|
-// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
|
|
-// M304 - Set bed PID parameters P I and D
|
|
|
|
-// M400 - Finish all moves
|
|
|
|
-// M401 - Lower z-probe if present
|
|
|
|
-// M402 - Raise z-probe if present
|
|
|
|
-// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
|
|
-// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
|
|
-// M406 - Turn off Filament Sensor extrusion control
|
|
|
|
-// M407 - Displays measured filament diameter
|
|
|
|
-// M500 - stores parameters in EEPROM
|
|
|
|
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
|
|
-// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
|
|
-// M503 - print the current settings (from memory not from EEPROM)
|
|
|
|
-// M509 - force language selection on next restart
|
|
|
|
-// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
-// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
|
|
-// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
|
|
-// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
|
|
|
|
-// M907 - Set digital trimpot motor current using axis codes.
|
|
|
|
-// M908 - Control digital trimpot directly.
|
|
|
|
-// M350 - Set microstepping mode.
|
|
|
|
-// M351 - Toggle MS1 MS2 pins directly.
|
|
|
|
-
|
|
|
|
-// M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
|
|
-// M999 - Restart after being stopped by error
|
|
|
|
-
|
|
|
|
-//Stepper Movement Variables
|
|
|
|
-
|
|
|
|
-//===========================================================================
|
|
|
|
-//=============================imported variables============================
|
|
|
|
-//===========================================================================
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-//===========================================================================
|
|
|
|
-//=============================public variables=============================
|
|
|
|
-//===========================================================================
|
|
|
|
-#ifdef SDSUPPORT
|
|
|
|
-CardReader card;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-unsigned long PingTime = millis();
|
|
|
|
-union Data
|
|
|
|
-{
|
|
|
|
-byte b[2];
|
|
|
|
-int value;
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-float homing_feedrate[] = HOMING_FEEDRATE;
|
|
|
|
-// Currently only the extruder axis may be switched to a relative mode.
|
|
|
|
-// Other axes are always absolute or relative based on the common relative_mode flag.
|
|
|
|
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
|
|
-int feedmultiply=100; //100->1 200->2
|
|
|
|
-int saved_feedmultiply;
|
|
|
|
-int extrudemultiply=100; //100->1 200->2
|
|
|
|
-int extruder_multiply[EXTRUDERS] = {100
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- , 100
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- , 100
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-int bowden_length[4];
|
|
|
|
-
|
|
|
|
-bool is_usb_printing = false;
|
|
|
|
-bool homing_flag = false;
|
|
|
|
-
|
|
|
|
-bool temp_cal_active = false;
|
|
|
|
-
|
|
|
|
-unsigned long kicktime = millis()+100000;
|
|
|
|
-
|
|
|
|
-unsigned int usb_printing_counter;
|
|
|
|
-
|
|
|
|
-int lcd_change_fil_state = 0;
|
|
|
|
-
|
|
|
|
-int feedmultiplyBckp = 100;
|
|
|
|
-float HotendTempBckp = 0;
|
|
|
|
-int fanSpeedBckp = 0;
|
|
|
|
-float pause_lastpos[4];
|
|
|
|
-unsigned long pause_time = 0;
|
|
|
|
-unsigned long start_pause_print = millis();
|
|
|
|
-unsigned long t_fan_rising_edge = millis();
|
|
|
|
-
|
|
|
|
-unsigned long load_filament_time;
|
|
|
|
-
|
|
|
|
-bool mesh_bed_leveling_flag = false;
|
|
|
|
-bool mesh_bed_run_from_menu = false;
|
|
|
|
-
|
|
|
|
-unsigned char lang_selected = 0;
|
|
|
|
-int8_t FarmMode = 0;
|
|
|
|
-
|
|
|
|
-bool prusa_sd_card_upload = false;
|
|
|
|
-
|
|
|
|
-unsigned int status_number = 0;
|
|
|
|
-
|
|
|
|
-unsigned long total_filament_used;
|
|
|
|
-unsigned int heating_status;
|
|
|
|
-unsigned int heating_status_counter;
|
|
|
|
-bool custom_message;
|
|
|
|
-bool loading_flag = false;
|
|
|
|
-unsigned int custom_message_type;
|
|
|
|
-unsigned int custom_message_state;
|
|
|
|
-char snmm_filaments_used = 0;
|
|
|
|
-
|
|
|
|
-float distance_from_min[3];
|
|
|
|
-float angleDiff;
|
|
|
|
-
|
|
|
|
-bool fan_state[2];
|
|
|
|
-int fan_edge_counter[2];
|
|
|
|
-int fan_speed[2];
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-bool volumetric_enabled = false;
|
|
|
|
-float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- , DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- , DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
-};
|
|
|
|
-float volumetric_multiplier[EXTRUDERS] = {1.0
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- , 1.0
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- , 1.0
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
-};
|
|
|
|
-float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
|
|
|
|
-float add_homing[3]={0,0,0};
|
|
|
|
-
|
|
|
|
-float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
|
|
-float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
|
|
-bool axis_known_position[3] = {false, false, false};
|
|
|
|
-float zprobe_zoffset;
|
|
|
|
-
|
|
|
|
-// Extruder offset
|
|
|
|
-#if EXTRUDERS > 1
|
|
|
|
- #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
|
|
|
|
-float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
|
|
|
|
-#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
|
|
|
|
- EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
|
|
|
|
-#endif
|
|
|
|
-};
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-uint8_t active_extruder = 0;
|
|
|
|
-int fanSpeed=0;
|
|
|
|
-
|
|
|
|
-#ifdef FWRETRACT
|
|
|
|
- bool autoretract_enabled=false;
|
|
|
|
- bool retracted[EXTRUDERS]={false
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- , false
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- , false
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
- };
|
|
|
|
- bool retracted_swap[EXTRUDERS]={false
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- , false
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- , false
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
- float retract_length = RETRACT_LENGTH;
|
|
|
|
- float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
|
|
- float retract_feedrate = RETRACT_FEEDRATE;
|
|
|
|
- float retract_zlift = RETRACT_ZLIFT;
|
|
|
|
- float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
|
|
- float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
|
|
- float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#ifdef ULTIPANEL
|
|
|
|
- #ifdef PS_DEFAULT_OFF
|
|
|
|
- bool powersupply = false;
|
|
|
|
- #else
|
|
|
|
- bool powersupply = true;
|
|
|
|
- #endif
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-bool cancel_heatup = false ;
|
|
|
|
-
|
|
|
|
-#ifdef FILAMENT_SENSOR
|
|
|
|
- //Variables for Filament Sensor input
|
|
|
|
- float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
|
|
|
- bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
|
|
|
|
- float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
|
|
|
- signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
|
|
|
- int delay_index1=0; //index into ring buffer
|
|
|
|
- int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
|
|
|
- float delay_dist=0; //delay distance counter
|
|
|
|
- int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-const char errormagic[] PROGMEM = "Error:";
|
|
|
|
-const char echomagic[] PROGMEM = "echo:";
|
|
|
|
-
|
|
|
|
-//===========================================================================
|
|
|
|
-//=============================Private Variables=============================
|
|
|
|
-//===========================================================================
|
|
|
|
-const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
|
|
-float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
|
|
|
-
|
|
|
|
-static float delta[3] = {0.0, 0.0, 0.0};
|
|
|
|
-
|
|
|
|
-// For tracing an arc
|
|
|
|
-static float offset[3] = {0.0, 0.0, 0.0};
|
|
|
|
-static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
|
|
-
|
|
|
|
-// Determines Absolute or Relative Coordinates.
|
|
|
|
-// Also there is bool axis_relative_modes[] per axis flag.
|
|
|
|
-static bool relative_mode = false;
|
|
|
|
-
|
|
|
|
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
|
|
|
-
|
|
|
|
-//static float tt = 0;
|
|
|
|
-//static float bt = 0;
|
|
|
|
-
|
|
|
|
-//Inactivity shutdown variables
|
|
|
|
-static unsigned long previous_millis_cmd = 0;
|
|
|
|
-unsigned long max_inactive_time = 0;
|
|
|
|
-static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
|
|
|
-
|
|
|
|
-unsigned long starttime=0;
|
|
|
|
-unsigned long stoptime=0;
|
|
|
|
-unsigned long _usb_timer = 0;
|
|
|
|
-
|
|
|
|
-static uint8_t tmp_extruder;
|
|
|
|
-
|
|
|
|
-bool extruder_under_pressure = true;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-bool Stopped=false;
|
|
|
|
-
|
|
|
|
-#if NUM_SERVOS > 0
|
|
|
|
- Servo servos[NUM_SERVOS];
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-bool CooldownNoWait = true;
|
|
|
|
-bool target_direction;
|
|
|
|
-
|
|
|
|
-//Insert variables if CHDK is defined
|
|
|
|
-#ifdef CHDK
|
|
|
|
-unsigned long chdkHigh = 0;
|
|
|
|
-boolean chdkActive = false;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-//===========================================================================
|
|
|
|
-//=============================Routines======================================
|
|
|
|
-//===========================================================================
|
|
|
|
-
|
|
|
|
-void get_arc_coordinates();
|
|
|
|
-bool setTargetedHotend(int code);
|
|
|
|
-
|
|
|
|
-void serial_echopair_P(const char *s_P, float v)
|
|
|
|
- { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
-void serial_echopair_P(const char *s_P, double v)
|
|
|
|
- { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
-void serial_echopair_P(const char *s_P, unsigned long v)
|
|
|
|
- { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
-
|
|
|
|
-#ifdef SDSUPPORT
|
|
|
|
- #include "SdFatUtil.h"
|
|
|
|
- int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
|
|
-#else
|
|
|
|
- extern "C" {
|
|
|
|
- extern unsigned int __bss_end;
|
|
|
|
- extern unsigned int __heap_start;
|
|
|
|
- extern void *__brkval;
|
|
|
|
-
|
|
|
|
- int freeMemory() {
|
|
|
|
- int free_memory;
|
|
|
|
-
|
|
|
|
- if ((int)__brkval == 0)
|
|
|
|
- free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
|
|
- else
|
|
|
|
- free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
|
|
-
|
|
|
|
- return free_memory;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#endif //!SDSUPPORT
|
|
|
|
-
|
|
|
|
-void setup_killpin()
|
|
|
|
-{
|
|
|
|
- #if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
- SET_INPUT(KILL_PIN);
|
|
|
|
- WRITE(KILL_PIN,HIGH);
|
|
|
|
- #endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-// Set home pin
|
|
|
|
-void setup_homepin(void)
|
|
|
|
-{
|
|
|
|
-#if defined(HOME_PIN) && HOME_PIN > -1
|
|
|
|
- SET_INPUT(HOME_PIN);
|
|
|
|
- WRITE(HOME_PIN,HIGH);
|
|
|
|
-#endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void setup_photpin()
|
|
|
|
-{
|
|
|
|
- #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
|
|
- SET_OUTPUT(PHOTOGRAPH_PIN);
|
|
|
|
- WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
- #endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void setup_powerhold()
|
|
|
|
-{
|
|
|
|
- #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
|
|
- SET_OUTPUT(SUICIDE_PIN);
|
|
|
|
- WRITE(SUICIDE_PIN, HIGH);
|
|
|
|
- #endif
|
|
|
|
- #if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
- SET_OUTPUT(PS_ON_PIN);
|
|
|
|
- #if defined(PS_DEFAULT_OFF)
|
|
|
|
- WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
|
|
- #else
|
|
|
|
- WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void suicide()
|
|
|
|
-{
|
|
|
|
- #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
|
|
- SET_OUTPUT(SUICIDE_PIN);
|
|
|
|
- WRITE(SUICIDE_PIN, LOW);
|
|
|
|
- #endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void servo_init()
|
|
|
|
-{
|
|
|
|
- #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
|
|
|
|
- servos[0].attach(SERVO0_PIN);
|
|
|
|
- #endif
|
|
|
|
- #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
|
|
|
|
- servos[1].attach(SERVO1_PIN);
|
|
|
|
- #endif
|
|
|
|
- #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
|
|
|
|
- servos[2].attach(SERVO2_PIN);
|
|
|
|
- #endif
|
|
|
|
- #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
|
|
|
|
- servos[3].attach(SERVO3_PIN);
|
|
|
|
- #endif
|
|
|
|
- #if (NUM_SERVOS >= 5)
|
|
|
|
- #error "TODO: enter initalisation code for more servos"
|
|
|
|
- #endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void lcd_language_menu();
|
|
|
|
-
|
|
|
|
-void stop_and_save_print_to_ram(float z_move, float e_move);
|
|
|
|
-void restore_print_from_ram_and_continue(float e_move);
|
|
|
|
-
|
|
|
|
-extern int8_t CrashDetectMenu;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void crashdet_enable()
|
|
|
|
-{
|
|
|
|
- MYSERIAL.println("crashdet_enable");
|
|
|
|
- tmc2130_sg_stop_on_crash = true;
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
|
|
|
|
- CrashDetectMenu = 1;
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void crashdet_disable()
|
|
|
|
-{
|
|
|
|
- MYSERIAL.println("crashdet_disable");
|
|
|
|
- tmc2130_sg_stop_on_crash = false;
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
|
|
|
|
- CrashDetectMenu = 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void crashdet_stop_and_save_print()
|
|
|
|
-{
|
|
|
|
- stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void crashdet_restore_print_and_continue()
|
|
|
|
-{
|
|
|
|
- restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
|
|
|
|
-// babystep_apply();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void crashdet_stop_and_save_print2()
|
|
|
|
-{
|
|
|
|
- cli();
|
|
|
|
- planner_abort_hard(); //abort printing
|
|
|
|
- cmdqueue_reset(); //empty cmdqueue
|
|
|
|
- card.sdprinting = false;
|
|
|
|
- card.closefile();
|
|
|
|
- sei();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#ifdef MESH_BED_LEVELING
|
|
|
|
- enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-// Factory reset function
|
|
|
|
-// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
|
|
|
|
-// Level input parameter sets depth of reset
|
|
|
|
-// Quiet parameter masks all waitings for user interact.
|
|
|
|
-int er_progress = 0;
|
|
|
|
-void factory_reset(char level, bool quiet)
|
|
|
|
-{
|
|
|
|
- lcd_implementation_clear();
|
|
|
|
- int cursor_pos = 0;
|
|
|
|
- switch (level) {
|
|
|
|
-
|
|
|
|
- // Level 0: Language reset
|
|
|
|
- case 0:
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
-
|
|
|
|
- lcd_force_language_selection();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- //Level 1: Reset statistics
|
|
|
|
- case 1:
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
- eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
|
|
- eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
|
|
- lcd_menu_statistics();
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- // Level 2: Prepare for shipping
|
|
|
|
- case 2:
|
|
|
|
- //lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
- //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
|
|
|
|
-
|
|
|
|
- // Force language selection at the next boot up.
|
|
|
|
- lcd_force_language_selection();
|
|
|
|
- // Force the "Follow calibration flow" message at the next boot up.
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
|
|
|
|
- farm_no = 0;
|
|
|
|
- farm_mode == false;
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
|
|
|
|
- EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
-
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
- //_delay_ms(2000);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- // Level 3: erase everything, whole EEPROM will be set to 0xFF
|
|
|
|
-
|
|
|
|
- case 3:
|
|
|
|
- lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
- lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
|
|
|
|
-
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
-
|
|
|
|
- er_progress = 0;
|
|
|
|
- lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
|
|
- lcd_implementation_print_at(3, 3, er_progress);
|
|
|
|
-
|
|
|
|
- // Erase EEPROM
|
|
|
|
- for (int i = 0; i < 4096; i++) {
|
|
|
|
- eeprom_write_byte((uint8_t*)i, 0xFF);
|
|
|
|
-
|
|
|
|
- if (i % 41 == 0) {
|
|
|
|
- er_progress++;
|
|
|
|
- lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
|
|
- lcd_implementation_print_at(3, 3, er_progress);
|
|
|
|
- lcd_printPGM(PSTR("%"));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- case 4:
|
|
|
|
- bowden_menu();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- default:
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-// "Setup" function is called by the Arduino framework on startup.
|
|
|
|
-// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
|
|
|
|
-// are initialized by the main() routine provided by the Arduino framework.
|
|
|
|
-void setup()
|
|
|
|
-{
|
|
|
|
- lcd_init();
|
|
|
|
- lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
|
|
|
|
- lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
|
|
|
|
- setup_killpin();
|
|
|
|
- setup_powerhold();
|
|
|
|
- farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
|
|
- EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
- if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
|
|
- if (farm_no == 0xFFFF) farm_no = 0;
|
|
|
|
- if (farm_mode)
|
|
|
|
- {
|
|
|
|
- prusa_statistics(8);
|
|
|
|
- selectedSerialPort = 1;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- selectedSerialPort = 0;
|
|
|
|
- MYSERIAL.begin(BAUDRATE);
|
|
|
|
- SERIAL_PROTOCOLLNPGM("start");
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
-
|
|
|
|
-#if 0
|
|
|
|
- SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
|
|
|
|
- for (int i = 0; i < 4096; ++i) {
|
|
|
|
- int b = eeprom_read_byte((unsigned char*)i);
|
|
|
|
- if (b != 255) {
|
|
|
|
- SERIAL_ECHO(i);
|
|
|
|
- SERIAL_ECHO(":");
|
|
|
|
- SERIAL_ECHO(b);
|
|
|
|
- SERIAL_ECHOLN("");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // Check startup - does nothing if bootloader sets MCUSR to 0
|
|
|
|
- byte mcu = MCUSR;
|
|
|
|
- if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
|
|
|
|
- if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
|
|
|
|
- if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
|
|
|
|
- if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
|
|
|
|
- if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
|
|
|
|
- MCUSR = 0;
|
|
|
|
-
|
|
|
|
- //SERIAL_ECHORPGM(MSG_MARLIN);
|
|
|
|
- //SERIAL_ECHOLNRPGM(VERSION_STRING);
|
|
|
|
-
|
|
|
|
-#ifdef STRING_VERSION_CONFIG_H
|
|
|
|
-#ifdef STRING_CONFIG_H_AUTHOR
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
|
|
|
|
- SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
|
|
|
|
- SERIAL_ECHORPGM(MSG_AUTHOR);
|
|
|
|
- SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
|
|
- SERIAL_ECHOPGM("Compiled: ");
|
|
|
|
- SERIAL_ECHOLNPGM(__DATE__);
|
|
|
|
-#endif
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_FREE_MEMORY);
|
|
|
|
- SERIAL_ECHO(freeMemory());
|
|
|
|
- SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
|
|
- SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
|
- //lcd_update_enable(false); // why do we need this?? - andre
|
|
|
|
- // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
|
|
- Config_RetrieveSettings(EEPROM_OFFSET);
|
|
|
|
- SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
|
|
|
|
- tp_init(); // Initialize temperature loop
|
|
|
|
- plan_init(); // Initialize planner;
|
|
|
|
- watchdog_init();
|
|
|
|
-
|
|
|
|
-#ifdef TMC2130
|
|
|
|
- uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
|
|
|
|
- tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
|
|
|
|
- uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
|
|
|
|
- if (crashdet)
|
|
|
|
- {
|
|
|
|
- crashdet_enable();
|
|
|
|
- MYSERIAL.println("CrashDetect ENABLED!");
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- crashdet_disable();
|
|
|
|
- MYSERIAL.println("CrashDetect DISABLED");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-#endif //TMC2130
|
|
|
|
-
|
|
|
|
-#ifdef PAT9125
|
|
|
|
- MYSERIAL.print("PAT9125_init:");
|
|
|
|
- int pat9125 = pat9125_init(200, 200);
|
|
|
|
- MYSERIAL.println(pat9125);
|
|
|
|
- uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
|
|
|
|
- if (!pat9125) fsensor = 0; //disable sensor
|
|
|
|
- if (fsensor)
|
|
|
|
- {
|
|
|
|
- fsensor_enable();
|
|
|
|
- MYSERIAL.println("Filament Sensor ENABLED!");
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- fsensor_disable();
|
|
|
|
- MYSERIAL.println("Filament Sensor DISABLED");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-#endif //PAT9125
|
|
|
|
-
|
|
|
|
- st_init(); // Initialize stepper, this enables interrupts!
|
|
|
|
-
|
|
|
|
- setup_photpin();
|
|
|
|
- lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
|
|
|
|
- lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
|
|
|
|
- servo_init();
|
|
|
|
- // Reset the machine correction matrix.
|
|
|
|
- // It does not make sense to load the correction matrix until the machine is homed.
|
|
|
|
- world2machine_reset();
|
|
|
|
-
|
|
|
|
- if (!READ(BTN_ENC))
|
|
|
|
- {
|
|
|
|
- _delay_ms(1000);
|
|
|
|
- if (!READ(BTN_ENC))
|
|
|
|
- {
|
|
|
|
- lcd_implementation_clear();
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- SET_OUTPUT(BEEPER);
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
-
|
|
|
|
- while (!READ(BTN_ENC));
|
|
|
|
-
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- _delay_ms(2000);
|
|
|
|
-
|
|
|
|
- char level = reset_menu();
|
|
|
|
- factory_reset(level, false);
|
|
|
|
-
|
|
|
|
- switch (level) {
|
|
|
|
- case 0: _delay_ms(0); break;
|
|
|
|
- case 1: _delay_ms(0); break;
|
|
|
|
- case 2: _delay_ms(0); break;
|
|
|
|
- case 3: _delay_ms(0); break;
|
|
|
|
- }
|
|
|
|
- // _delay_ms(100);
|
|
|
|
- /*
|
|
|
|
- #ifdef MESH_BED_LEVELING
|
|
|
|
- _delay_ms(2000);
|
|
|
|
-
|
|
|
|
- if (!READ(BTN_ENC))
|
|
|
|
- {
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
- _delay_ms(200);
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
-
|
|
|
|
- int _z = 0;
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
|
|
- EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
|
|
|
|
- EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
|
|
|
|
- EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
- WRITE(BEEPER, HIGH);
|
|
|
|
- _delay_ms(100);
|
|
|
|
- WRITE(BEEPER, LOW);
|
|
|
|
- }
|
|
|
|
- #endif // mesh */
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
|
|
|
|
- SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
|
|
|
|
- SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#ifdef DIGIPOT_I2C
|
|
|
|
- digipot_i2c_init();
|
|
|
|
-#endif
|
|
|
|
- setup_homepin();
|
|
|
|
-
|
|
|
|
- if (1) {
|
|
|
|
- SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
|
|
|
- // try to run to zero phase before powering the Z motor.
|
|
|
|
- // Move in negative direction
|
|
|
|
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
|
- // Round the current micro-micro steps to micro steps.
|
|
|
|
- for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
|
|
|
|
- // Until the phase counter is reset to zero.
|
|
|
|
- WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
|
- delay(2);
|
|
|
|
- WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
|
- delay(2);
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-#if defined(Z_AXIS_ALWAYS_ON)
|
|
|
|
- enable_z();
|
|
|
|
-#endif
|
|
|
|
- farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
|
|
- EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
- if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
|
|
- if (farm_no == 0xFFFF) farm_no = 0;
|
|
|
|
- if (farm_mode)
|
|
|
|
- {
|
|
|
|
- prusa_statistics(8);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Enable Toshiba FlashAir SD card / WiFi enahanced card.
|
|
|
|
- card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
|
|
|
|
- // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
|
|
|
|
- // but this times out if a blocking dialog is shown in setup().
|
|
|
|
- card.initsd();
|
|
|
|
-
|
|
|
|
- if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
|
|
|
|
- eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
|
|
|
|
- eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
|
|
|
|
- // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
|
|
|
|
- // where all the EEPROM entries are set to 0x0ff.
|
|
|
|
- // Once a firmware boots up, it forces at least a language selection, which changes
|
|
|
|
- // EEPROM_LANG to number lower than 0x0ff.
|
|
|
|
- // 1) Set a high power mode.
|
|
|
|
- eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
|
|
|
|
- }
|
|
|
|
-#ifdef SNMM
|
|
|
|
- if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
|
|
|
|
- int _z = BOWDEN_LENGTH;
|
|
|
|
- for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
|
|
|
|
- }
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
|
|
|
|
- // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
|
|
|
|
- // is being written into the EEPROM, so the update procedure will be triggered only once.
|
|
|
|
- lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
|
|
|
|
- if (lang_selected >= LANG_NUM){
|
|
|
|
- lcd_mylang();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
|
|
|
|
- eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
|
|
|
|
- temp_cal_active = false;
|
|
|
|
- } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
|
|
|
|
-
|
|
|
|
- if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
|
|
|
|
- eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
|
|
|
|
- }
|
|
|
|
- if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
|
|
|
|
- eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- check_babystep(); //checking if Z babystep is in allowed range
|
|
|
|
- setup_uvlo_interrupt();
|
|
|
|
- setup_fan_interrupt();
|
|
|
|
- fsensor_setup_interrupt();
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#ifndef DEBUG_DISABLE_STARTMSGS
|
|
|
|
-
|
|
|
|
- if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
|
|
|
|
- calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
|
|
|
|
- // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
|
|
|
|
- eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
- // Show the message.
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
|
|
- } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
|
|
|
|
- // Show the message.
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
|
|
|
|
- // Show the message.
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
|
|
- }
|
|
|
|
-#endif //DEBUG_DISABLE_STARTMSGS
|
|
|
|
- for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_implementation_clear();
|
|
|
|
- lcd_update(2);
|
|
|
|
- // Store the currently running firmware into an eeprom,
|
|
|
|
- // so the next time the firmware gets updated, it will know from which version it has been updated.
|
|
|
|
- update_current_firmware_version_to_eeprom();
|
|
|
|
- if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
|
|
|
|
-/*
|
|
|
|
- if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
|
|
|
|
- else {
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
- lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
- }
|
|
|
|
-*/
|
|
|
|
- manage_heater(); // Update temperatures
|
|
|
|
-#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
|
|
- MYSERIAL.println("Power panic detected!");
|
|
|
|
- MYSERIAL.print("Current bed temp:");
|
|
|
|
- MYSERIAL.println(degBed());
|
|
|
|
- MYSERIAL.print("Saved bed temp:");
|
|
|
|
- MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
|
|
|
|
-#endif
|
|
|
|
- if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
|
|
|
|
- #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
|
|
- MYSERIAL.println("Automatic recovery!");
|
|
|
|
- #endif
|
|
|
|
- recover_print(1);
|
|
|
|
- }
|
|
|
|
- else{
|
|
|
|
- #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
|
|
- MYSERIAL.println("Normal recovery!");
|
|
|
|
- #endif
|
|
|
|
- if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
|
|
|
|
- else {
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
- lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void trace();
|
|
|
|
-
|
|
|
|
-#define CHUNK_SIZE 64 // bytes
|
|
|
|
-#define SAFETY_MARGIN 1
|
|
|
|
-char chunk[CHUNK_SIZE+SAFETY_MARGIN];
|
|
|
|
-int chunkHead = 0;
|
|
|
|
-
|
|
|
|
-int serial_read_stream() {
|
|
|
|
-
|
|
|
|
- setTargetHotend(0, 0);
|
|
|
|
- setTargetBed(0);
|
|
|
|
-
|
|
|
|
- lcd_implementation_clear();
|
|
|
|
- lcd_printPGM(PSTR(" Upload in progress"));
|
|
|
|
-
|
|
|
|
- // first wait for how many bytes we will receive
|
|
|
|
- uint32_t bytesToReceive;
|
|
|
|
-
|
|
|
|
- // receive the four bytes
|
|
|
|
- char bytesToReceiveBuffer[4];
|
|
|
|
- for (int i=0; i<4; i++) {
|
|
|
|
- int data;
|
|
|
|
- while ((data = MYSERIAL.read()) == -1) {};
|
|
|
|
- bytesToReceiveBuffer[i] = data;
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // make it a uint32
|
|
|
|
- memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
|
|
|
|
-
|
|
|
|
- // we're ready, notify the sender
|
|
|
|
- MYSERIAL.write('+');
|
|
|
|
-
|
|
|
|
- // lock in the routine
|
|
|
|
- uint32_t receivedBytes = 0;
|
|
|
|
- while (prusa_sd_card_upload) {
|
|
|
|
- int i;
|
|
|
|
- for (i=0; i<CHUNK_SIZE; i++) {
|
|
|
|
- int data;
|
|
|
|
-
|
|
|
|
- // check if we're not done
|
|
|
|
- if (receivedBytes == bytesToReceive) {
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // read the next byte
|
|
|
|
- while ((data = MYSERIAL.read()) == -1) {};
|
|
|
|
- receivedBytes++;
|
|
|
|
-
|
|
|
|
- // save it to the chunk
|
|
|
|
- chunk[i] = data;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // write the chunk to SD
|
|
|
|
- card.write_command_no_newline(&chunk[0]);
|
|
|
|
-
|
|
|
|
- // notify the sender we're ready for more data
|
|
|
|
- MYSERIAL.write('+');
|
|
|
|
-
|
|
|
|
- // for safety
|
|
|
|
- manage_heater();
|
|
|
|
-
|
|
|
|
- // check if we're done
|
|
|
|
- if(receivedBytes == bytesToReceive) {
|
|
|
|
- trace(); // beep
|
|
|
|
- card.closefile();
|
|
|
|
- prusa_sd_card_upload = false;
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
|
|
|
|
-// Before loop(), the setup() function is called by the main() routine.
|
|
|
|
-void loop()
|
|
|
|
-{
|
|
|
|
- bool stack_integrity = true;
|
|
|
|
-
|
|
|
|
- if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
|
|
|
|
- {
|
|
|
|
- is_usb_printing = true;
|
|
|
|
- usb_printing_counter--;
|
|
|
|
- _usb_timer = millis();
|
|
|
|
- }
|
|
|
|
- if (usb_printing_counter == 0)
|
|
|
|
- {
|
|
|
|
- is_usb_printing = false;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (prusa_sd_card_upload)
|
|
|
|
- {
|
|
|
|
- //we read byte-by byte
|
|
|
|
- serial_read_stream();
|
|
|
|
- } else
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
- get_command();
|
|
|
|
-
|
|
|
|
- #ifdef SDSUPPORT
|
|
|
|
- card.checkautostart(false);
|
|
|
|
- #endif
|
|
|
|
- if(buflen)
|
|
|
|
- {
|
|
|
|
- cmdbuffer_front_already_processed = false;
|
|
|
|
- #ifdef SDSUPPORT
|
|
|
|
- if(card.saving)
|
|
|
|
- {
|
|
|
|
- // Saving a G-code file onto an SD-card is in progress.
|
|
|
|
- // Saving starts with M28, saving until M29 is seen.
|
|
|
|
- if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
|
|
|
|
- card.write_command(CMDBUFFER_CURRENT_STRING);
|
|
|
|
- if(card.logging)
|
|
|
|
- process_commands();
|
|
|
|
- else
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
|
|
- } else {
|
|
|
|
- card.closefile();
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- process_commands();
|
|
|
|
- }
|
|
|
|
- #else
|
|
|
|
- process_commands();
|
|
|
|
- #endif //SDSUPPORT
|
|
|
|
-
|
|
|
|
- if (! cmdbuffer_front_already_processed && buflen)
|
|
|
|
- {
|
|
|
|
- cli();
|
|
|
|
- union {
|
|
|
|
- struct {
|
|
|
|
- char lo;
|
|
|
|
- char hi;
|
|
|
|
- } lohi;
|
|
|
|
- uint16_t value;
|
|
|
|
- } sdlen;
|
|
|
|
- sdlen.value = 0;
|
|
|
|
- if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
|
|
|
|
- sdlen.lohi.lo = cmdbuffer[bufindr + 1];
|
|
|
|
- sdlen.lohi.hi = cmdbuffer[bufindr + 2];
|
|
|
|
- }
|
|
|
|
- cmdqueue_pop_front();
|
|
|
|
- planner_add_sd_length(sdlen.value);
|
|
|
|
- sei();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
- //check heater every n milliseconds
|
|
|
|
- manage_heater();
|
|
|
|
- isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
|
|
|
|
- checkHitEndstops();
|
|
|
|
- lcd_update();
|
|
|
|
-#ifdef PAT9125
|
|
|
|
- fsensor_update();
|
|
|
|
-#endif //PAT9125
|
|
|
|
-#ifdef TMC2130
|
|
|
|
- tmc2130_check_overtemp();
|
|
|
|
- if (tmc2130_sg_crash)
|
|
|
|
- {
|
|
|
|
- tmc2130_sg_crash = false;
|
|
|
|
-// crashdet_stop_and_save_print();
|
|
|
|
- enquecommand_P((PSTR("D999")));
|
|
|
|
- }
|
|
|
|
-#endif //TMC2130
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
|
|
- static inline type pgm_read_any(const type *p) \
|
|
|
|
- { return pgm_read_##reader##_near(p); }
|
|
|
|
-
|
|
|
|
-DEFINE_PGM_READ_ANY(float, float);
|
|
|
|
-DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
-
|
|
|
|
-#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
|
|
-static const PROGMEM type array##_P[3] = \
|
|
|
|
- { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
|
|
-static inline type array(int axis) \
|
|
|
|
- { return pgm_read_any(&array##_P[axis]); } \
|
|
|
|
-type array##_ext(int axis) \
|
|
|
|
- { return pgm_read_any(&array##_P[axis]); }
|
|
|
|
-
|
|
|
|
-XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
|
|
-XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
|
|
-XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
|
|
-XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
|
|
-XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
|
|
|
-XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
-
|
|
|
|
-static void axis_is_at_home(int axis) {
|
|
|
|
- current_position[axis] = base_home_pos(axis) + add_homing[axis];
|
|
|
|
- min_pos[axis] = base_min_pos(axis) + add_homing[axis];
|
|
|
|
- max_pos[axis] = base_max_pos(axis) + add_homing[axis];
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
|
|
-inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-static void setup_for_endstop_move(bool enable_endstops_now = true) {
|
|
|
|
- saved_feedrate = feedrate;
|
|
|
|
- saved_feedmultiply = feedmultiply;
|
|
|
|
- feedmultiply = 100;
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
-
|
|
|
|
- enable_endstops(enable_endstops_now);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void clean_up_after_endstop_move() {
|
|
|
|
-#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
- enable_endstops(false);
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- feedrate = saved_feedrate;
|
|
|
|
- feedmultiply = saved_feedmultiply;
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
-#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
-static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
|
|
-{
|
|
|
|
- vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
|
|
- planeNormal.debug("planeNormal");
|
|
|
|
- plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
- //bedLevel.debug("bedLevel");
|
|
|
|
-
|
|
|
|
- //plan_bed_level_matrix.debug("bed level before");
|
|
|
|
- //vector_3 uncorrected_position = plan_get_position_mm();
|
|
|
|
- //uncorrected_position.debug("position before");
|
|
|
|
-
|
|
|
|
- vector_3 corrected_position = plan_get_position();
|
|
|
|
-// corrected_position.debug("position after");
|
|
|
|
- current_position[X_AXIS] = corrected_position.x;
|
|
|
|
- current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
- current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
-
|
|
|
|
- // put the bed at 0 so we don't go below it.
|
|
|
|
- current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
|
|
-
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
-
|
|
|
|
-static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
-
|
|
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
|
|
-
|
|
|
|
- vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
|
|
- vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
|
|
- vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
-
|
|
|
|
- vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
|
|
|
- vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
|
|
|
- vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
|
|
|
- planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
|
|
|
-
|
|
|
|
- plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
-
|
|
|
|
- vector_3 corrected_position = plan_get_position();
|
|
|
|
- current_position[X_AXIS] = corrected_position.x;
|
|
|
|
- current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
- current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
-
|
|
|
|
- // put the bed at 0 so we don't go below it.
|
|
|
|
- current_position[Z_AXIS] = zprobe_zoffset;
|
|
|
|
-
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
-
|
|
|
|
-static void run_z_probe() {
|
|
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
-
|
|
|
|
- // move down until you find the bed
|
|
|
|
- float zPosition = -10;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- // we have to let the planner know where we are right now as it is not where we said to go.
|
|
|
|
- zPosition = st_get_position_mm(Z_AXIS);
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
-
|
|
|
|
- // move up the retract distance
|
|
|
|
- zPosition += home_retract_mm(Z_AXIS);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- // move back down slowly to find bed
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS]/4;
|
|
|
|
- zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
- // make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void do_blocking_move_to(float x, float y, float z) {
|
|
|
|
- float oldFeedRate = feedrate;
|
|
|
|
-
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = z;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- feedrate = XY_TRAVEL_SPEED;
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = x;
|
|
|
|
- current_position[Y_AXIS] = y;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- feedrate = oldFeedRate;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
|
|
|
|
- do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-/// Probe bed height at position (x,y), returns the measured z value
|
|
|
|
-static float probe_pt(float x, float y, float z_before) {
|
|
|
|
- // move to right place
|
|
|
|
- do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
|
|
- do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
-
|
|
|
|
- run_z_probe();
|
|
|
|
- float measured_z = current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
|
|
- SERIAL_PROTOCOLPGM(" x: ");
|
|
|
|
- SERIAL_PROTOCOL(x);
|
|
|
|
- SERIAL_PROTOCOLPGM(" y: ");
|
|
|
|
- SERIAL_PROTOCOL(y);
|
|
|
|
- SERIAL_PROTOCOLPGM(" z: ");
|
|
|
|
- SERIAL_PROTOCOL(measured_z);
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- return measured_z;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#ifdef LIN_ADVANCE
|
|
|
|
- /**
|
|
|
|
- * M900: Set and/or Get advance K factor and WH/D ratio
|
|
|
|
- *
|
|
|
|
- * K<factor> Set advance K factor
|
|
|
|
- * R<ratio> Set ratio directly (overrides WH/D)
|
|
|
|
- * W<width> H<height> D<diam> Set ratio from WH/D
|
|
|
|
- */
|
|
|
|
-inline void gcode_M900() {
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- const float newK = code_seen('K') ? code_value_float() : -1;
|
|
|
|
- if (newK >= 0) extruder_advance_k = newK;
|
|
|
|
-
|
|
|
|
- float newR = code_seen('R') ? code_value_float() : -1;
|
|
|
|
- if (newR < 0) {
|
|
|
|
- const float newD = code_seen('D') ? code_value_float() : -1,
|
|
|
|
- newW = code_seen('W') ? code_value_float() : -1,
|
|
|
|
- newH = code_seen('H') ? code_value_float() : -1;
|
|
|
|
- if (newD >= 0 && newW >= 0 && newH >= 0)
|
|
|
|
- newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
|
|
|
|
- }
|
|
|
|
- if (newR >= 0) advance_ed_ratio = newR;
|
|
|
|
-
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOPGM("Advance K=");
|
|
|
|
- SERIAL_ECHOLN(extruder_advance_k);
|
|
|
|
- SERIAL_ECHOPGM(" E/D=");
|
|
|
|
- const float ratio = advance_ed_ratio;
|
|
|
|
- if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
|
|
|
|
- }
|
|
|
|
-#endif // LIN_ADVANCE
|
|
|
|
-
|
|
|
|
-#ifdef TMC2130
|
|
|
|
-bool calibrate_z_auto()
|
|
|
|
-{
|
|
|
|
- lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
|
|
|
|
- bool endstops_enabled = enable_endstops(true);
|
|
|
|
- int axis_up_dir = -home_dir(Z_AXIS);
|
|
|
|
- tmc2130_home_enter(Z_AXIS_MASK);
|
|
|
|
- current_position[Z_AXIS] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- set_destination_to_current();
|
|
|
|
- destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- tmc2130_home_restart(Z_AXIS);
|
|
|
|
- st_synchronize();
|
|
|
|
-// current_position[axis] = 0;
|
|
|
|
-// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- tmc2130_home_exit();
|
|
|
|
- enable_endstops(false);
|
|
|
|
- current_position[Z_AXIS] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- set_destination_to_current();
|
|
|
|
- destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS] / 2;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- enable_endstops(endstops_enabled);
|
|
|
|
- current_position[Z_AXIS] = Z_MAX_POS-3.f;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- return true;
|
|
|
|
-}
|
|
|
|
-#endif //TMC2130
|
|
|
|
-
|
|
|
|
-void homeaxis(int axis)
|
|
|
|
-{
|
|
|
|
- bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
|
|
|
|
-#define HOMEAXIS_DO(LETTER) \
|
|
|
|
-((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
- if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
|
|
|
|
- {
|
|
|
|
- int axis_home_dir = home_dir(axis);
|
|
|
|
- feedrate = homing_feedrate[axis];
|
|
|
|
-
|
|
|
|
-#ifdef TMC2130
|
|
|
|
- tmc2130_home_enter(X_AXIS_MASK << axis);
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // Move right a bit, so that the print head does not touch the left end position,
|
|
|
|
- // and the following left movement has a chance to achieve the required velocity
|
|
|
|
- // for the stall guard to work.
|
|
|
|
- current_position[axis] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
-// destination[axis] = 11.f;
|
|
|
|
- destination[axis] = 3.f;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- // Move left away from the possible collision with the collision detection disabled.
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
- enable_endstops(false);
|
|
|
|
- current_position[axis] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[axis] = - 1.;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- // Now continue to move up to the left end stop with the collision detection enabled.
|
|
|
|
- enable_endstops(true);
|
|
|
|
- destination[axis] = - 1.1 * max_length(axis);
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
- enable_endstops(false);
|
|
|
|
- current_position[axis] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[axis] = 10.f;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
- // Now move left up to the collision, this time with a repeatable velocity.
|
|
|
|
- enable_endstops(true);
|
|
|
|
- destination[axis] = - 15.f;
|
|
|
|
- feedrate = homing_feedrate[axis]/2;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- axis_is_at_home(axis);
|
|
|
|
- axis_known_position[axis] = true;
|
|
|
|
-
|
|
|
|
-#ifdef TMC2130
|
|
|
|
- tmc2130_home_exit();
|
|
|
|
-#endif
|
|
|
|
- // Move the X carriage away from the collision.
|
|
|
|
- // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
- enable_endstops(false);
|
|
|
|
- {
|
|
|
|
- // Two full periods (4 full steps).
|
|
|
|
- float gap = 0.32f * 2.f;
|
|
|
|
- current_position[axis] -= gap;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- current_position[axis] += gap;
|
|
|
|
- }
|
|
|
|
- destination[axis] = current_position[axis];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- feedrate = 0.0;
|
|
|
|
- }
|
|
|
|
- else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
|
|
|
|
- {
|
|
|
|
- int axis_home_dir = home_dir(axis);
|
|
|
|
- current_position[axis] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
|
|
- feedrate = homing_feedrate[axis];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- current_position[axis] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
|
|
|
- feedrate = homing_feedrate[axis]/2 ;
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- axis_is_at_home(axis);
|
|
|
|
- destination[axis] = current_position[axis];
|
|
|
|
- feedrate = 0.0;
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
- axis_known_position[axis] = true;
|
|
|
|
- }
|
|
|
|
- enable_endstops(endstops_enabled);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**/
|
|
|
|
-void home_xy()
|
|
|
|
-{
|
|
|
|
- set_destination_to_current();
|
|
|
|
- homeaxis(X_AXIS);
|
|
|
|
- homeaxis(Y_AXIS);
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void refresh_cmd_timeout(void)
|
|
|
|
-{
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef FWRETRACT
|
|
|
|
- void retract(bool retracting, bool swapretract = false) {
|
|
|
|
- if(retracting && !retracted[active_extruder]) {
|
|
|
|
- destination[X_AXIS]=current_position[X_AXIS];
|
|
|
|
- destination[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
- destination[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
- destination[E_AXIS]=current_position[E_AXIS];
|
|
|
|
- if (swapretract) {
|
|
|
|
- current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
|
|
|
|
- } else {
|
|
|
|
- current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
|
|
|
- }
|
|
|
|
- plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
- float oldFeedrate = feedrate;
|
|
|
|
- feedrate=retract_feedrate*60;
|
|
|
|
- retracted[active_extruder]=true;
|
|
|
|
- prepare_move();
|
|
|
|
- current_position[Z_AXIS]-=retract_zlift;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- prepare_move();
|
|
|
|
- feedrate = oldFeedrate;
|
|
|
|
- } else if(!retracting && retracted[active_extruder]) {
|
|
|
|
- destination[X_AXIS]=current_position[X_AXIS];
|
|
|
|
- destination[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
- destination[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
- destination[E_AXIS]=current_position[E_AXIS];
|
|
|
|
- current_position[Z_AXIS]+=retract_zlift;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- //prepare_move();
|
|
|
|
- if (swapretract) {
|
|
|
|
- current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
|
|
|
|
- } else {
|
|
|
|
- current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
|
|
|
- }
|
|
|
|
- plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
- float oldFeedrate = feedrate;
|
|
|
|
- feedrate=retract_recover_feedrate*60;
|
|
|
|
- retracted[active_extruder]=false;
|
|
|
|
- prepare_move();
|
|
|
|
- feedrate = oldFeedrate;
|
|
|
|
- }
|
|
|
|
- } //retract
|
|
|
|
-#endif //FWRETRACT
|
|
|
|
-
|
|
|
|
-void trace() {
|
|
|
|
- tone(BEEPER, 440);
|
|
|
|
- delay(25);
|
|
|
|
- noTone(BEEPER);
|
|
|
|
- delay(20);
|
|
|
|
-}
|
|
|
|
-/*
|
|
|
|
-void ramming() {
|
|
|
|
-// float tmp[4] = DEFAULT_MAX_FEEDRATE;
|
|
|
|
- if (current_temperature[0] < 230) {
|
|
|
|
- //PLA
|
|
|
|
-
|
|
|
|
- max_feedrate[E_AXIS] = 50;
|
|
|
|
- //current_position[E_AXIS] -= 8;
|
|
|
|
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
- //current_position[E_AXIS] += 8;
|
|
|
|
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 5.4;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 3.2;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 3;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- max_feedrate[E_AXIS] = 80;
|
|
|
|
- current_position[E_AXIS] -= 82;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
|
|
|
|
- max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
|
|
- current_position[E_AXIS] -= 20;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] -= 10;
|
|
|
|
- st_synchronize();
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 10;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] -= 10;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 10;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] -= 10;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- //ABS
|
|
|
|
- max_feedrate[E_AXIS] = 50;
|
|
|
|
- //current_position[E_AXIS] -= 8;
|
|
|
|
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
- //current_position[E_AXIS] += 8;
|
|
|
|
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 3.1;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 3.1;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 4;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- //current_position[X_AXIS] += 23; //delay
|
|
|
|
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
|
|
- //current_position[X_AXIS] -= 23; //delay
|
|
|
|
- //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
|
|
- delay(4700);
|
|
|
|
- max_feedrate[E_AXIS] = 80;
|
|
|
|
- current_position[E_AXIS] -= 92;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
|
|
|
|
- max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
|
|
- current_position[E_AXIS] -= 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] -= 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- current_position[E_AXIS] += 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] -= 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] += 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- current_position[E_AXIS] -= 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-*/
|
|
|
|
-void process_commands()
|
|
|
|
-{
|
|
|
|
- #ifdef FILAMENT_RUNOUT_SUPPORT
|
|
|
|
- SET_INPUT(FR_SENS);
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
-#ifdef CMDBUFFER_DEBUG
|
|
|
|
- SERIAL_ECHOPGM("Processing a GCODE command: ");
|
|
|
|
- SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- SERIAL_ECHOPGM("In cmdqueue: ");
|
|
|
|
- SERIAL_ECHO(buflen);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
-#endif /* CMDBUFFER_DEBUG */
|
|
|
|
-
|
|
|
|
- unsigned long codenum; //throw away variable
|
|
|
|
- char *starpos = NULL;
|
|
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
- float x_tmp, y_tmp, z_tmp, real_z;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // PRUSA GCODES
|
|
|
|
-
|
|
|
|
-#ifdef SNMM
|
|
|
|
- float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
|
|
- float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
|
|
|
|
- int8_t SilentMode;
|
|
|
|
-#endif
|
|
|
|
- if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
|
|
|
|
- starpos = (strchr(strchr_pointer + 5, '*'));
|
|
|
|
- if (starpos != NULL)
|
|
|
|
- *(starpos) = '\0';
|
|
|
|
- lcd_setstatus(strchr_pointer + 5);
|
|
|
|
- }
|
|
|
|
- else if(code_seen("PRUSA")){
|
|
|
|
- if (code_seen("Ping")) { //PRUSA Ping
|
|
|
|
- if (farm_mode) {
|
|
|
|
- PingTime = millis();
|
|
|
|
- //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else if (code_seen("PRN")) {
|
|
|
|
- MYSERIAL.println(status_number);
|
|
|
|
-
|
|
|
|
- }else if (code_seen("fn")) {
|
|
|
|
- if (farm_mode) {
|
|
|
|
- MYSERIAL.println(farm_no);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- MYSERIAL.println("Not in farm mode.");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }else if (code_seen("fv")) {
|
|
|
|
- // get file version
|
|
|
|
- #ifdef SDSUPPORT
|
|
|
|
- card.openFile(strchr_pointer + 3,true);
|
|
|
|
- while (true) {
|
|
|
|
- uint16_t readByte = card.get();
|
|
|
|
- MYSERIAL.write(readByte);
|
|
|
|
- if (readByte=='\n') {
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- card.closefile();
|
|
|
|
-
|
|
|
|
- #endif // SDSUPPORT
|
|
|
|
-
|
|
|
|
- } else if (code_seen("M28")) {
|
|
|
|
- trace();
|
|
|
|
- prusa_sd_card_upload = true;
|
|
|
|
- card.openFile(strchr_pointer+4,false);
|
|
|
|
- } else if (code_seen("SN")) {
|
|
|
|
- if (farm_mode) {
|
|
|
|
- selectedSerialPort = 0;
|
|
|
|
- MSerial.write(";S");
|
|
|
|
- // S/N is:CZPX0917X003XC13518
|
|
|
|
- int numbersRead = 0;
|
|
|
|
-
|
|
|
|
- while (numbersRead < 19) {
|
|
|
|
- while (MSerial.available() > 0) {
|
|
|
|
- uint8_t serial_char = MSerial.read();
|
|
|
|
- selectedSerialPort = 1;
|
|
|
|
- MSerial.write(serial_char);
|
|
|
|
- numbersRead++;
|
|
|
|
- selectedSerialPort = 0;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- selectedSerialPort = 1;
|
|
|
|
- MSerial.write('\n');
|
|
|
|
- /*for (int b = 0; b < 3; b++) {
|
|
|
|
- tone(BEEPER, 110);
|
|
|
|
- delay(50);
|
|
|
|
- noTone(BEEPER);
|
|
|
|
- delay(50);
|
|
|
|
- }*/
|
|
|
|
- } else {
|
|
|
|
- MYSERIAL.println("Not in farm mode.");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- } else if(code_seen("Fir")){
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLLN(FW_version);
|
|
|
|
-
|
|
|
|
- } else if(code_seen("Rev")){
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
|
|
|
|
-
|
|
|
|
- } else if(code_seen("Lang")) {
|
|
|
|
- lcd_force_language_selection();
|
|
|
|
- } else if(code_seen("Lz")) {
|
|
|
|
- EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
|
|
|
|
-
|
|
|
|
- } else if (code_seen("SERIAL LOW")) {
|
|
|
|
- MYSERIAL.println("SERIAL LOW");
|
|
|
|
- MYSERIAL.begin(BAUDRATE);
|
|
|
|
- return;
|
|
|
|
- } else if (code_seen("SERIAL HIGH")) {
|
|
|
|
- MYSERIAL.println("SERIAL HIGH");
|
|
|
|
- MYSERIAL.begin(1152000);
|
|
|
|
- return;
|
|
|
|
- } else if(code_seen("Beat")) {
|
|
|
|
- // Kick farm link timer
|
|
|
|
- kicktime = millis();
|
|
|
|
-
|
|
|
|
- } else if(code_seen("FR")) {
|
|
|
|
- // Factory full reset
|
|
|
|
- factory_reset(0,true);
|
|
|
|
- }
|
|
|
|
- //else if (code_seen('Cal')) {
|
|
|
|
- // lcd_calibration();
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- else if (code_seen('^')) {
|
|
|
|
- // nothing, this is a version line
|
|
|
|
- } else if(code_seen('G'))
|
|
|
|
- {
|
|
|
|
- switch((int)code_value())
|
|
|
|
- {
|
|
|
|
- case 0: // G0 -> G1
|
|
|
|
- case 1: // G1
|
|
|
|
- if(Stopped == false) {
|
|
|
|
-
|
|
|
|
- #ifdef FILAMENT_RUNOUT_SUPPORT
|
|
|
|
-
|
|
|
|
- if(READ(FR_SENS)){
|
|
|
|
-
|
|
|
|
- feedmultiplyBckp=feedmultiply;
|
|
|
|
- float target[4];
|
|
|
|
- float lastpos[4];
|
|
|
|
- target[X_AXIS]=current_position[X_AXIS];
|
|
|
|
- target[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
- target[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
- target[E_AXIS]=current_position[E_AXIS];
|
|
|
|
- lastpos[X_AXIS]=current_position[X_AXIS];
|
|
|
|
- lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
- lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
- lastpos[E_AXIS]=current_position[E_AXIS];
|
|
|
|
- //retract by E
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
|
|
-
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
|
|
-
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
|
|
|
|
-
|
|
|
|
- target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
|
|
-
|
|
|
|
- target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
-
|
|
|
|
- //finish moves
|
|
|
|
- st_synchronize();
|
|
|
|
- //disable extruder steppers so filament can be removed
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- delay(100);
|
|
|
|
-
|
|
|
|
- //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
|
|
- uint8_t cnt=0;
|
|
|
|
- int counterBeep = 0;
|
|
|
|
- lcd_wait_interact();
|
|
|
|
- while(!lcd_clicked()){
|
|
|
|
- cnt++;
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity(true);
|
|
|
|
- //lcd_update();
|
|
|
|
- if(cnt==0)
|
|
|
|
- {
|
|
|
|
- #if BEEPER > 0
|
|
|
|
-
|
|
|
|
- if (counterBeep== 500){
|
|
|
|
- counterBeep = 0;
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- SET_OUTPUT(BEEPER);
|
|
|
|
- if (counterBeep== 0){
|
|
|
|
- WRITE(BEEPER,HIGH);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (counterBeep== 20){
|
|
|
|
- WRITE(BEEPER,LOW);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- counterBeep++;
|
|
|
|
- #else
|
|
|
|
- #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
|
|
- lcd_buzz(1000/6,100);
|
|
|
|
- #else
|
|
|
|
- lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- WRITE(BEEPER,LOW);
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- lcd_change_fil_state = 0;
|
|
|
|
- lcd_loading_filament();
|
|
|
|
- while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
|
|
-
|
|
|
|
- lcd_change_fil_state = 0;
|
|
|
|
- lcd_alright();
|
|
|
|
- switch(lcd_change_fil_state){
|
|
|
|
-
|
|
|
|
- case 2:
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- lcd_loading_filament();
|
|
|
|
- break;
|
|
|
|
- case 3:
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
- lcd_loading_color();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- default:
|
|
|
|
- lcd_change_success();
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= 5;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
-
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
|
|
- //plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
|
|
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
|
|
|
|
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
-
|
|
|
|
- feedmultiply=feedmultiplyBckp;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- char cmd[9];
|
|
|
|
-
|
|
|
|
- sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- get_coordinates(); // For X Y Z E F
|
|
|
|
- if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
|
|
|
|
- total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
|
|
|
|
- }
|
|
|
|
- #ifdef FWRETRACT
|
|
|
|
- if(autoretract_enabled)
|
|
|
|
- if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
|
|
- float echange=destination[E_AXIS]-current_position[E_AXIS];
|
|
|
|
-
|
|
|
|
- if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
|
|
|
|
- current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
|
|
|
- plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
|
|
|
- retract(!retracted);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- #endif //FWRETRACT
|
|
|
|
- prepare_move();
|
|
|
|
- //ClearToSend();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 2: // G2 - CW ARC
|
|
|
|
- if(Stopped == false) {
|
|
|
|
- get_arc_coordinates();
|
|
|
|
- prepare_arc_move(true);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 3: // G3 - CCW ARC
|
|
|
|
- if(Stopped == false) {
|
|
|
|
- get_arc_coordinates();
|
|
|
|
- prepare_arc_move(false);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 4: // G4 dwell
|
|
|
|
- codenum = 0;
|
|
|
|
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
|
|
|
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
|
|
|
- if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
|
|
|
|
- st_synchronize();
|
|
|
|
- codenum += millis(); // keep track of when we started waiting
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
- while(millis() < codenum) {
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity();
|
|
|
|
- lcd_update();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #ifdef FWRETRACT
|
|
|
|
- case 10: // G10 retract
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
|
|
|
- retract(true,retracted_swap[active_extruder]);
|
|
|
|
- #else
|
|
|
|
- retract(true);
|
|
|
|
- #endif
|
|
|
|
- break;
|
|
|
|
- case 11: // G11 retract_recover
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- retract(false,retracted_swap[active_extruder]);
|
|
|
|
- #else
|
|
|
|
- retract(false);
|
|
|
|
- #endif
|
|
|
|
- break;
|
|
|
|
- #endif //FWRETRACT
|
|
|
|
- case 28: //G28 Home all Axis one at a time
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
-#if 1
|
|
|
|
- SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
|
|
|
- SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // Flag for the display update routine and to disable the print cancelation during homing.
|
|
|
|
- homing_flag = true;
|
|
|
|
-
|
|
|
|
- // Which axes should be homed?
|
|
|
|
- bool home_x = code_seen(axis_codes[X_AXIS]);
|
|
|
|
- bool home_y = code_seen(axis_codes[Y_AXIS]);
|
|
|
|
- bool home_z = code_seen(axis_codes[Z_AXIS]);
|
|
|
|
- // Either all X,Y,Z codes are present, or none of them.
|
|
|
|
- bool home_all_axes = home_x == home_y && home_x == home_z;
|
|
|
|
- if (home_all_axes)
|
|
|
|
- // No X/Y/Z code provided means to home all axes.
|
|
|
|
- home_x = home_y = home_z = true;
|
|
|
|
-
|
|
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
- plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
|
-#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
-
|
|
|
|
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
- // the planner will not perform any adjustments in the XY plane.
|
|
|
|
- // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
- world2machine_revert_to_uncorrected();
|
|
|
|
-
|
|
|
|
- // For mesh bed leveling deactivate the matrix temporarily.
|
|
|
|
- // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
|
|
|
- // in a single axis only.
|
|
|
|
- // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
|
|
|
-#ifdef MESH_BED_LEVELING
|
|
|
|
- uint8_t mbl_was_active = mbl.active;
|
|
|
|
- mbl.active = 0;
|
|
|
|
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
|
|
- // consumed during the first movements following this statement.
|
|
|
|
- if (home_z)
|
|
|
|
- babystep_undo();
|
|
|
|
-
|
|
|
|
- saved_feedrate = feedrate;
|
|
|
|
- saved_feedmultiply = feedmultiply;
|
|
|
|
- feedmultiply = 100;
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
-
|
|
|
|
- enable_endstops(true);
|
|
|
|
-
|
|
|
|
- memcpy(destination, current_position, sizeof(destination));
|
|
|
|
- feedrate = 0.0;
|
|
|
|
-
|
|
|
|
- #if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
- if(home_z)
|
|
|
|
- homeaxis(Z_AXIS);
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #ifdef QUICK_HOME
|
|
|
|
- // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
|
|
- if(home_x && home_y) //first diagonal move
|
|
|
|
- {
|
|
|
|
- current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
|
|
-
|
|
|
|
- int x_axis_home_dir = home_dir(X_AXIS);
|
|
|
|
-
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
|
|
- feedrate = homing_feedrate[X_AXIS];
|
|
|
|
- if(homing_feedrate[Y_AXIS]<feedrate)
|
|
|
|
- feedrate = homing_feedrate[Y_AXIS];
|
|
|
|
- if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
|
|
- feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
|
|
- } else {
|
|
|
|
- feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
|
|
- }
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- axis_is_at_home(X_AXIS);
|
|
|
|
- axis_is_at_home(Y_AXIS);
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[X_AXIS] = current_position[X_AXIS];
|
|
|
|
- destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- feedrate = 0.0;
|
|
|
|
- st_synchronize();
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
- current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
- current_position[Z_AXIS] = destination[Z_AXIS];
|
|
|
|
- }
|
|
|
|
- #endif /* QUICK_HOME */
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- if(home_x)
|
|
|
|
- homeaxis(X_AXIS);
|
|
|
|
-
|
|
|
|
- if(home_y)
|
|
|
|
- homeaxis(Y_AXIS);
|
|
|
|
-
|
|
|
|
- if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
|
|
|
- current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
|
|
-
|
|
|
|
- if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
|
|
|
- current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
|
|
-
|
|
|
|
- #if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
|
|
- #ifndef Z_SAFE_HOMING
|
|
|
|
- if(home_z) {
|
|
|
|
- #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
- destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
- feedrate = max_feedrate[Z_AXIS];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
- #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
|
|
|
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
|
|
|
- {
|
|
|
|
- homeaxis(X_AXIS);
|
|
|
|
- homeaxis(Y_AXIS);
|
|
|
|
- }
|
|
|
|
- // 1st mesh bed leveling measurement point, corrected.
|
|
|
|
- world2machine_initialize();
|
|
|
|
- world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
|
|
|
- world2machine_reset();
|
|
|
|
- if (destination[Y_AXIS] < Y_MIN_POS)
|
|
|
|
- destination[Y_AXIS] = Y_MIN_POS;
|
|
|
|
- destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
- current_position[Z_AXIS] = 0;
|
|
|
|
- enable_endstops(false);
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
- current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
- enable_endstops(true);
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
- homeaxis(Z_AXIS);
|
|
|
|
- #else // MESH_BED_LEVELING
|
|
|
|
- homeaxis(Z_AXIS);
|
|
|
|
- #endif // MESH_BED_LEVELING
|
|
|
|
- }
|
|
|
|
- #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
|
|
|
- if(home_all_axes) {
|
|
|
|
- destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
- destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
- destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
- feedrate = XY_TRAVEL_SPEED/60;
|
|
|
|
- current_position[Z_AXIS] = 0;
|
|
|
|
-
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
- current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
-
|
|
|
|
- homeaxis(Z_AXIS);
|
|
|
|
- }
|
|
|
|
- // Let's see if X and Y are homed and probe is inside bed area.
|
|
|
|
- if(home_z) {
|
|
|
|
- if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
|
|
- && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
|
|
|
- && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
|
|
|
- && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
|
|
|
- && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = 0;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
- feedrate = max_feedrate[Z_AXIS];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- homeaxis(Z_AXIS);
|
|
|
|
- } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
|
|
- LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
- } else {
|
|
|
|
- LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- #endif // Z_SAFE_HOMING
|
|
|
|
- #endif // Z_HOME_DIR < 0
|
|
|
|
-
|
|
|
|
- if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
|
|
|
- current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
|
|
- #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
- if(home_z)
|
|
|
|
- current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- // Set the planner and stepper routine positions.
|
|
|
|
- // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
|
|
|
- // contains the machine coordinates.
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
-
|
|
|
|
- #ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
- enable_endstops(false);
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- feedrate = saved_feedrate;
|
|
|
|
- feedmultiply = saved_feedmultiply;
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
- endstops_hit_on_purpose();
|
|
|
|
-#ifndef MESH_BED_LEVELING
|
|
|
|
- // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
|
|
|
- // Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
|
|
|
- if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
|
|
|
- lcd_adjust_z();
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // Load the machine correction matrix
|
|
|
|
- world2machine_initialize();
|
|
|
|
- // and correct the current_position XY axes to match the transformed coordinate system.
|
|
|
|
- world2machine_update_current();
|
|
|
|
-
|
|
|
|
-#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
|
|
|
|
- if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
|
|
|
- {
|
|
|
|
- if (! home_z && mbl_was_active) {
|
|
|
|
- // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
|
|
|
- mbl.active = true;
|
|
|
|
- // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
|
|
|
- current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
- homing_flag = false;
|
|
|
|
- // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
- // There shall be always enough space reserved for these commands.
|
|
|
|
- // enquecommand_front_P((PSTR("G80")));
|
|
|
|
- goto case_G80;
|
|
|
|
- }
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- if (farm_mode) { prusa_statistics(20); };
|
|
|
|
-
|
|
|
|
- homing_flag = false;
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
|
|
|
- SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
|
|
|
- SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
- case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
|
- {
|
|
|
|
- #if Z_MIN_PIN == -1
|
|
|
|
- #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- // Prevent user from running a G29 without first homing in X and Y
|
|
|
|
- if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
|
|
|
|
- {
|
|
|
|
- LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
- break; // abort G29, since we don't know where we are
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
|
|
- //vector_3 corrected_position = plan_get_position_mm();
|
|
|
|
- //corrected_position.debug("position before G29");
|
|
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
|
|
- vector_3 uncorrected_position = plan_get_position();
|
|
|
|
- //uncorrected_position.debug("position durring G29");
|
|
|
|
- current_position[X_AXIS] = uncorrected_position.x;
|
|
|
|
- current_position[Y_AXIS] = uncorrected_position.y;
|
|
|
|
- current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
-
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
-#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
- // probe at the points of a lattice grid
|
|
|
|
-
|
|
|
|
- int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
|
|
- int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- // solve the plane equation ax + by + d = z
|
|
|
|
- // A is the matrix with rows [x y 1] for all the probed points
|
|
|
|
- // B is the vector of the Z positions
|
|
|
|
- // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
|
|
- // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
-
|
|
|
|
- // "A" matrix of the linear system of equations
|
|
|
|
- double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
|
|
|
|
- // "B" vector of Z points
|
|
|
|
- double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- int probePointCounter = 0;
|
|
|
|
- bool zig = true;
|
|
|
|
-
|
|
|
|
- for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
|
|
|
|
- {
|
|
|
|
- int xProbe, xInc;
|
|
|
|
- if (zig)
|
|
|
|
- {
|
|
|
|
- xProbe = LEFT_PROBE_BED_POSITION;
|
|
|
|
- //xEnd = RIGHT_PROBE_BED_POSITION;
|
|
|
|
- xInc = xGridSpacing;
|
|
|
|
- zig = false;
|
|
|
|
- } else // zag
|
|
|
|
- {
|
|
|
|
- xProbe = RIGHT_PROBE_BED_POSITION;
|
|
|
|
- //xEnd = LEFT_PROBE_BED_POSITION;
|
|
|
|
- xInc = -xGridSpacing;
|
|
|
|
- zig = true;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
|
|
|
|
- {
|
|
|
|
- float z_before;
|
|
|
|
- if (probePointCounter == 0)
|
|
|
|
- {
|
|
|
|
- // raise before probing
|
|
|
|
- z_before = Z_RAISE_BEFORE_PROBING;
|
|
|
|
- } else
|
|
|
|
- {
|
|
|
|
- // raise extruder
|
|
|
|
- z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- float measured_z = probe_pt(xProbe, yProbe, z_before);
|
|
|
|
-
|
|
|
|
- eqnBVector[probePointCounter] = measured_z;
|
|
|
|
-
|
|
|
|
- eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
|
|
|
|
- eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
|
|
|
|
- eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
|
|
|
|
- probePointCounter++;
|
|
|
|
- xProbe += xInc;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
-
|
|
|
|
- // solve lsq problem
|
|
|
|
- double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
|
|
- SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" b: ");
|
|
|
|
- SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" d: ");
|
|
|
|
- SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
-
|
|
|
|
- free(plane_equation_coefficients);
|
|
|
|
-
|
|
|
|
-#else // AUTO_BED_LEVELING_GRID not defined
|
|
|
|
-
|
|
|
|
- // Probe at 3 arbitrary points
|
|
|
|
- // probe 1
|
|
|
|
- float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
|
|
|
-
|
|
|
|
- // probe 2
|
|
|
|
- float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
-
|
|
|
|
- // probe 3
|
|
|
|
- float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
-
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
-
|
|
|
|
- set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- // The following code correct the Z height difference from z-probe position and hotend tip position.
|
|
|
|
- // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
|
|
- // When the bed is uneven, this height must be corrected.
|
|
|
|
- real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
- x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
- y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
- z_tmp = current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
- apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
|
|
- current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-#ifndef Z_PROBE_SLED
|
|
|
|
- case 30: // G30 Single Z Probe
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
- // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
-
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
-
|
|
|
|
- run_z_probe();
|
|
|
|
- SERIAL_PROTOCOLPGM(MSG_BED);
|
|
|
|
- SERIAL_PROTOCOLPGM(" X: ");
|
|
|
|
- SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
- SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
- SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
-
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-#else
|
|
|
|
- case 31: // dock the sled
|
|
|
|
- dock_sled(true);
|
|
|
|
- break;
|
|
|
|
- case 32: // undock the sled
|
|
|
|
- dock_sled(false);
|
|
|
|
- break;
|
|
|
|
-#endif // Z_PROBE_SLED
|
|
|
|
-#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
-
|
|
|
|
-#ifdef MESH_BED_LEVELING
|
|
|
|
- case 30: // G30 Single Z Probe
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
- // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
-
|
|
|
|
- feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
-
|
|
|
|
- find_bed_induction_sensor_point_z(-10.f, 3);
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
|
|
- SERIAL_PROTOCOLPGM(" X: ");
|
|
|
|
- MYSERIAL.print(current_position[X_AXIS], 5);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
- MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- case 75:
|
|
|
|
- {
|
|
|
|
- for (int i = 40; i <= 110; i++) {
|
|
|
|
- MYSERIAL.print(i);
|
|
|
|
- MYSERIAL.print(" ");
|
|
|
|
- MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 76: //PINDA probe temperature calibration
|
|
|
|
- {
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
- if (true)
|
|
|
|
- {
|
|
|
|
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
- // We don't know where we are! HOME!
|
|
|
|
- // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
- // There shall be always enough space reserved for these commands.
|
|
|
|
- repeatcommand_front(); // repeat G76 with all its parameters
|
|
|
|
- enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOLNPGM("PINDA probe calibration start");
|
|
|
|
-
|
|
|
|
- float zero_z;
|
|
|
|
- int z_shift = 0; //unit: steps
|
|
|
|
- float start_temp = 5 * (int)(current_temperature_pinda / 5);
|
|
|
|
- if (start_temp < 35) start_temp = 35;
|
|
|
|
- if (start_temp < current_temperature_pinda) start_temp += 5;
|
|
|
|
- SERIAL_ECHOPGM("start temperature: ");
|
|
|
|
- MYSERIAL.println(start_temp);
|
|
|
|
-
|
|
|
|
-// setTargetHotend(200, 0);
|
|
|
|
- setTargetBed(50 + 10 * (start_temp - 30) / 5);
|
|
|
|
-
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 4;
|
|
|
|
- custom_message_state = 1;
|
|
|
|
- custom_message = MSG_TEMP_CALIBRATION;
|
|
|
|
- current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- while (current_temperature_pinda < start_temp)
|
|
|
|
- {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- serialecho_temperatures();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
- zero_z = current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
- //current_position[Z_AXIS]
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- SERIAL_ECHOPGM("ZERO: ");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS]);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
-
|
|
|
|
- int i = -1; for (; i < 5; i++)
|
|
|
|
- {
|
|
|
|
- float temp = (40 + i * 5);
|
|
|
|
- SERIAL_ECHOPGM("Step: ");
|
|
|
|
- MYSERIAL.print(i + 2);
|
|
|
|
- SERIAL_ECHOLNPGM("/6 (skipped)");
|
|
|
|
- SERIAL_ECHOPGM("PINDA temperature: ");
|
|
|
|
- MYSERIAL.print((40 + i*5));
|
|
|
|
- SERIAL_ECHOPGM(" Z shift (mm):");
|
|
|
|
- MYSERIAL.print(0);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
|
|
- if (start_temp <= temp) break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (i++; i < 5; i++)
|
|
|
|
- {
|
|
|
|
- float temp = (40 + i * 5);
|
|
|
|
- SERIAL_ECHOPGM("Step: ");
|
|
|
|
- MYSERIAL.print(i + 2);
|
|
|
|
- SERIAL_ECHOLNPGM("/6");
|
|
|
|
- custom_message_state = i + 2;
|
|
|
|
- setTargetBed(50 + 10 * (temp - 30) / 5);
|
|
|
|
-// setTargetHotend(255, 0);
|
|
|
|
- current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- while (current_temperature_pinda < temp)
|
|
|
|
- {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- serialecho_temperatures();
|
|
|
|
- }
|
|
|
|
- current_position[Z_AXIS] = 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
- z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- SERIAL_ECHOPGM("PINDA temperature: ");
|
|
|
|
- MYSERIAL.print(current_temperature_pinda);
|
|
|
|
- SERIAL_ECHOPGM(" Z shift (mm):");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
-
|
|
|
|
- EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- custom_message_type = 0;
|
|
|
|
- custom_message = false;
|
|
|
|
-
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
|
|
- SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
|
|
- disable_x();
|
|
|
|
- disable_y();
|
|
|
|
- disable_z();
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
-
|
|
|
|
- setTargetBed(0); //set bed target temperature back to 0
|
|
|
|
-// setTargetHotend(0,0); //set hotend target temperature back to 0
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-#endif //PINDA_THERMISTOR
|
|
|
|
-
|
|
|
|
- setTargetBed(PINDA_MIN_T);
|
|
|
|
- float zero_z;
|
|
|
|
- int z_shift = 0; //unit: steps
|
|
|
|
- int t_c; // temperature
|
|
|
|
-
|
|
|
|
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
- // We don't know where we are! HOME!
|
|
|
|
- // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
- // There shall be always enough space reserved for these commands.
|
|
|
|
- repeatcommand_front(); // repeat G76 with all its parameters
|
|
|
|
- enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOLNPGM("PINDA probe calibration start");
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 4;
|
|
|
|
- custom_message_state = 1;
|
|
|
|
- custom_message = MSG_TEMP_CALIBRATION;
|
|
|
|
- current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- while (abs(degBed() - PINDA_MIN_T) > 1) {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- serialecho_temperatures();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- //enquecommand_P(PSTR("M190 S50"));
|
|
|
|
- for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- serialecho_temperatures();
|
|
|
|
- }
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
- zero_z = current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
- //current_position[Z_AXIS]
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- SERIAL_ECHOPGM("ZERO: ");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS]);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
-
|
|
|
|
- for (int i = 0; i<5; i++) {
|
|
|
|
- SERIAL_ECHOPGM("Step: ");
|
|
|
|
- MYSERIAL.print(i+2);
|
|
|
|
- SERIAL_ECHOLNPGM("/6");
|
|
|
|
- custom_message_state = i + 2;
|
|
|
|
- t_c = 60 + i * 10;
|
|
|
|
-
|
|
|
|
- setTargetBed(t_c);
|
|
|
|
- current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- while (degBed() < t_c) {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- serialecho_temperatures();
|
|
|
|
- }
|
|
|
|
- for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- serialecho_temperatures();
|
|
|
|
- }
|
|
|
|
- current_position[Z_AXIS] = 5;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
- z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- SERIAL_ECHOPGM("Temperature: ");
|
|
|
|
- MYSERIAL.print(t_c);
|
|
|
|
- SERIAL_ECHOPGM(" Z shift (mm):");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
-
|
|
|
|
- EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- custom_message_type = 0;
|
|
|
|
- custom_message = false;
|
|
|
|
-
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
|
|
- SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
|
|
- disable_x();
|
|
|
|
- disable_y();
|
|
|
|
- disable_z();
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- setTargetBed(0); //set bed target temperature back to 0
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#ifdef DIS
|
|
|
|
- case 77:
|
|
|
|
- {
|
|
|
|
- //G77 X200 Y150 XP100 YP15 XO10 Y015
|
|
|
|
-
|
|
|
|
- //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //G77 X232 Y218 XP116 YP109 XO-11 YO0
|
|
|
|
-
|
|
|
|
- float dimension_x = 40;
|
|
|
|
- float dimension_y = 40;
|
|
|
|
- int points_x = 40;
|
|
|
|
- int points_y = 40;
|
|
|
|
- float offset_x = 74;
|
|
|
|
- float offset_y = 33;
|
|
|
|
-
|
|
|
|
- if (code_seen('X')) dimension_x = code_value();
|
|
|
|
- if (code_seen('Y')) dimension_y = code_value();
|
|
|
|
- if (code_seen('XP')) points_x = code_value();
|
|
|
|
- if (code_seen('YP')) points_y = code_value();
|
|
|
|
- if (code_seen('XO')) offset_x = code_value();
|
|
|
|
- if (code_seen('YO')) offset_y = code_value();
|
|
|
|
-
|
|
|
|
- bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
|
|
|
|
-
|
|
|
|
- } break;
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- case 79: {
|
|
|
|
- for (int i = 255; i > 0; i = i - 5) {
|
|
|
|
- fanSpeed = i;
|
|
|
|
- //delay_keep_alive(2000);
|
|
|
|
- for (int j = 0; j < 100; j++) {
|
|
|
|
- delay_keep_alive(100);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- fan_speed[1];
|
|
|
|
- MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
|
|
|
|
- }
|
|
|
|
- }break;
|
|
|
|
-
|
|
|
|
- /**
|
|
|
|
- * G80: Mesh-based Z probe, probes a grid and produces a
|
|
|
|
- * mesh to compensate for variable bed height
|
|
|
|
- *
|
|
|
|
- * The S0 report the points as below
|
|
|
|
- *
|
|
|
|
- * +----> X-axis
|
|
|
|
- * |
|
|
|
|
- * |
|
|
|
|
- * v Y-axis
|
|
|
|
- *
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- case 80:
|
|
|
|
-#ifdef MK1BP
|
|
|
|
- break;
|
|
|
|
-#endif //MK1BP
|
|
|
|
- case_G80:
|
|
|
|
- {
|
|
|
|
- mesh_bed_leveling_flag = true;
|
|
|
|
- int8_t verbosity_level = 0;
|
|
|
|
- static bool run = false;
|
|
|
|
-
|
|
|
|
- if (code_seen('V')) {
|
|
|
|
- // Just 'V' without a number counts as V1.
|
|
|
|
- char c = strchr_pointer[1];
|
|
|
|
- verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
|
|
- }
|
|
|
|
- // Firstly check if we know where we are
|
|
|
|
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
- // We don't know where we are! HOME!
|
|
|
|
- // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
- // There shall be always enough space reserved for these commands.
|
|
|
|
- if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
|
|
|
|
- repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
- enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- mesh_bed_leveling_flag = false;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- bool temp_comp_start = true;
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
- temp_comp_start = false;
|
|
|
|
-#endif //PINDA_THERMISTOR
|
|
|
|
-
|
|
|
|
- if (temp_comp_start)
|
|
|
|
- if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
|
|
|
|
- if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
|
|
|
|
- temp_compensation_start();
|
|
|
|
- run = true;
|
|
|
|
- repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
- enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- mesh_bed_leveling_flag = false;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- run = false;
|
|
|
|
- if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
|
|
|
|
- mesh_bed_leveling_flag = false;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- // Save custom message state, set a new custom message state to display: Calibrating point 9.
|
|
|
|
- bool custom_message_old = custom_message;
|
|
|
|
- unsigned int custom_message_type_old = custom_message_type;
|
|
|
|
- unsigned int custom_message_state_old = custom_message_state;
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 1;
|
|
|
|
- custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
|
|
|
|
- lcd_update(1);
|
|
|
|
-
|
|
|
|
- mbl.reset(); //reset mesh bed leveling
|
|
|
|
-
|
|
|
|
- // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
|
|
- // consumed during the first movements following this statement.
|
|
|
|
- babystep_undo();
|
|
|
|
-
|
|
|
|
- // Cycle through all points and probe them
|
|
|
|
- // First move up. During this first movement, the babystepping will be reverted.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
|
|
- // The move to the first calibration point.
|
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
- bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
-
|
|
|
|
- if (verbosity_level >= 1) {
|
|
|
|
- clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
|
|
|
- }
|
|
|
|
- // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
|
|
|
- // Wait until the move is finished.
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- int mesh_point = 0; //index number of calibration point
|
|
|
|
-
|
|
|
|
- int ix = 0;
|
|
|
|
- int iy = 0;
|
|
|
|
-
|
|
|
|
- int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
|
|
- int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
|
|
- int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
|
|
- bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
|
|
|
|
- if (verbosity_level >= 1) {
|
|
|
|
- has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
|
|
|
|
- }
|
|
|
|
- setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
|
|
|
|
- const char *kill_message = NULL;
|
|
|
|
- while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
|
|
- if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
|
|
|
|
- // Get coords of a measuring point.
|
|
|
|
- ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
- iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
|
|
- if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
|
|
|
- float z0 = 0.f;
|
|
|
|
- if (has_z && mesh_point > 0) {
|
|
|
|
- uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
|
|
|
- z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
|
|
|
- //#if 0
|
|
|
|
- if (verbosity_level >= 1) {
|
|
|
|
- SERIAL_ECHOPGM("Bed leveling, point: ");
|
|
|
|
- MYSERIAL.print(mesh_point);
|
|
|
|
- SERIAL_ECHOPGM(", calibration z: ");
|
|
|
|
- MYSERIAL.print(z0, 5);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- }
|
|
|
|
- //#endif
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Move Z up to MESH_HOME_Z_SEARCH.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- // Move to XY position of the sensor point.
|
|
|
|
- current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
|
|
|
|
- current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
- if (verbosity_level >= 1) {
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOL(mesh_point);
|
|
|
|
- clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- // Go down until endstop is hit
|
|
|
|
- const float Z_CALIBRATION_THRESHOLD = 1.f;
|
|
|
|
- if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
|
|
- kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
|
|
|
|
- kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
|
|
|
|
- kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (verbosity_level >= 10) {
|
|
|
|
- SERIAL_ECHOPGM("X: ");
|
|
|
|
- MYSERIAL.print(current_position[X_AXIS], 5);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- SERIAL_ECHOPGM("Y: ");
|
|
|
|
- MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- float offset_z = 0;
|
|
|
|
-
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
- offset_z = temp_compensation_pinda_thermistor_offset();
|
|
|
|
-#endif //PINDA_THERMISTOR
|
|
|
|
-
|
|
|
|
- if (verbosity_level >= 1) {
|
|
|
|
- SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
|
|
- SERIAL_ECHOPGM(" offset: ");
|
|
|
|
- MYSERIAL.print(offset_z, 5);
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- }
|
|
|
|
- mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
|
|
|
|
-
|
|
|
|
- custom_message_state--;
|
|
|
|
- mesh_point++;
|
|
|
|
- lcd_update(1);
|
|
|
|
- }
|
|
|
|
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- if (verbosity_level >= 20) {
|
|
|
|
- SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
|
|
- }
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
|
|
- kill(kill_message);
|
|
|
|
- SERIAL_ECHOLNPGM("killed");
|
|
|
|
- }
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- SERIAL_ECHOLNPGM("clean up finished ");
|
|
|
|
-
|
|
|
|
- bool apply_temp_comp = true;
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
- apply_temp_comp = false;
|
|
|
|
-#endif
|
|
|
|
- if (apply_temp_comp)
|
|
|
|
- if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
|
|
|
|
- babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
|
|
|
|
- SERIAL_ECHOLNPGM("babystep applied");
|
|
|
|
- bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
|
|
|
|
-
|
|
|
|
- if (verbosity_level >= 1) {
|
|
|
|
- eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (uint8_t i = 0; i < 4; ++i) {
|
|
|
|
- unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
|
|
|
|
- long correction = 0;
|
|
|
|
- if (code_seen(codes[i]))
|
|
|
|
- correction = code_value_long();
|
|
|
|
- else if (eeprom_bed_correction_valid) {
|
|
|
|
- unsigned char *addr = (i < 2) ?
|
|
|
|
- ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
|
|
|
|
- ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
|
|
|
|
- correction = eeprom_read_int8(addr);
|
|
|
|
- }
|
|
|
|
- if (correction == 0)
|
|
|
|
- continue;
|
|
|
|
- float offset = float(correction) * 0.001f;
|
|
|
|
- if (fabs(offset) > 0.101f) {
|
|
|
|
- SERIAL_ERROR_START;
|
|
|
|
- SERIAL_ECHOPGM("Excessive bed leveling correction: ");
|
|
|
|
- SERIAL_ECHO(offset);
|
|
|
|
- SERIAL_ECHOLNPGM(" microns");
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- switch (i) {
|
|
|
|
- case 0:
|
|
|
|
- for (uint8_t row = 0; row < 3; ++row) {
|
|
|
|
- mbl.z_values[row][1] += 0.5f * offset;
|
|
|
|
- mbl.z_values[row][0] += offset;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 1:
|
|
|
|
- for (uint8_t row = 0; row < 3; ++row) {
|
|
|
|
- mbl.z_values[row][1] += 0.5f * offset;
|
|
|
|
- mbl.z_values[row][2] += offset;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 2:
|
|
|
|
- for (uint8_t col = 0; col < 3; ++col) {
|
|
|
|
- mbl.z_values[1][col] += 0.5f * offset;
|
|
|
|
- mbl.z_values[0][col] += offset;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 3:
|
|
|
|
- for (uint8_t col = 0; col < 3; ++col) {
|
|
|
|
- mbl.z_values[1][col] += 0.5f * offset;
|
|
|
|
- mbl.z_values[2][col] += offset;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOLNPGM("Bed leveling correction finished");
|
|
|
|
- mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
|
|
|
|
- SERIAL_ECHOLNPGM("Upsample finished");
|
|
|
|
- mbl.active = 1; //activate mesh bed leveling
|
|
|
|
- SERIAL_ECHOLNPGM("Mesh bed leveling activated");
|
|
|
|
- go_home_with_z_lift();
|
|
|
|
- SERIAL_ECHOLNPGM("Go home finished");
|
|
|
|
- //unretract (after PINDA preheat retraction)
|
|
|
|
- if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
|
|
|
|
- current_position[E_AXIS] += DEFAULT_RETRACTION;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
- }
|
|
|
|
- // Restore custom message state
|
|
|
|
- custom_message = custom_message_old;
|
|
|
|
- custom_message_type = custom_message_type_old;
|
|
|
|
- custom_message_state = custom_message_state_old;
|
|
|
|
- mesh_bed_leveling_flag = false;
|
|
|
|
- mesh_bed_run_from_menu = false;
|
|
|
|
- lcd_update(2);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- /**
|
|
|
|
- * G81: Print mesh bed leveling status and bed profile if activated
|
|
|
|
- */
|
|
|
|
- case 81:
|
|
|
|
- if (mbl.active) {
|
|
|
|
- SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
|
|
- SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
|
|
|
- SERIAL_PROTOCOLPGM(",");
|
|
|
|
- SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
|
|
|
- SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
|
|
- SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
|
|
|
|
- SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
|
|
- for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
|
|
|
|
- for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
|
|
|
- SERIAL_PROTOCOLPGM(" ");
|
|
|
|
- SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#if 0
|
|
|
|
- /**
|
|
|
|
- * G82: Single Z probe at current location
|
|
|
|
- *
|
|
|
|
- * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
|
|
|
|
- *
|
|
|
|
- */
|
|
|
|
- case 82:
|
|
|
|
- SERIAL_PROTOCOLLNPGM("Finding bed ");
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
- find_bed_induction_sensor_point_z();
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- SERIAL_PROTOCOLPGM("Bed found at: ");
|
|
|
|
- SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- /**
|
|
|
|
- * G83: Prusa3D specific: Babystep in Z and store to EEPROM
|
|
|
|
- */
|
|
|
|
- case 83:
|
|
|
|
- {
|
|
|
|
- int babystepz = code_seen('S') ? code_value() : 0;
|
|
|
|
- int BabyPosition = code_seen('P') ? code_value() : 0;
|
|
|
|
-
|
|
|
|
- if (babystepz != 0) {
|
|
|
|
- //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
|
|
|
|
- // Is the axis indexed starting with zero or one?
|
|
|
|
- if (BabyPosition > 4) {
|
|
|
|
- SERIAL_PROTOCOLLNPGM("Index out of bounds");
|
|
|
|
- }else{
|
|
|
|
- // Save it to the eeprom
|
|
|
|
- babystepLoadZ = babystepz;
|
|
|
|
- EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
|
|
|
|
- // adjust the Z
|
|
|
|
- babystepsTodoZadd(babystepLoadZ);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- /**
|
|
|
|
- * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
|
|
|
|
- */
|
|
|
|
- case 84:
|
|
|
|
- babystepsTodoZsubtract(babystepLoadZ);
|
|
|
|
- // babystepLoadZ = 0;
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- /**
|
|
|
|
- * G85: Prusa3D specific: Pick best babystep
|
|
|
|
- */
|
|
|
|
- case 85:
|
|
|
|
- lcd_pick_babystep();
|
|
|
|
- break;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- /**
|
|
|
|
- * G86: Prusa3D specific: Disable babystep correction after home.
|
|
|
|
- * This G-code will be performed at the start of a calibration script.
|
|
|
|
- */
|
|
|
|
- case 86:
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
|
|
- break;
|
|
|
|
- /**
|
|
|
|
- * G87: Prusa3D specific: Enable babystep correction after home
|
|
|
|
- * This G-code will be performed at the end of a calibration script.
|
|
|
|
- */
|
|
|
|
- case 87:
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- /**
|
|
|
|
- * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
|
|
|
|
- */
|
|
|
|
- case 88:
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#endif // ENABLE_MESH_BED_LEVELING
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- case 90: // G90
|
|
|
|
- relative_mode = false;
|
|
|
|
- break;
|
|
|
|
- case 91: // G91
|
|
|
|
- relative_mode = true;
|
|
|
|
- break;
|
|
|
|
- case 92: // G92
|
|
|
|
- if(!code_seen(axis_codes[E_AXIS]))
|
|
|
|
- st_synchronize();
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
- if(code_seen(axis_codes[i])) {
|
|
|
|
- if(i == E_AXIS) {
|
|
|
|
- current_position[i] = code_value();
|
|
|
|
- plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- current_position[i] = code_value()+add_homing[i];
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 98: //activate farm mode
|
|
|
|
- farm_mode = 1;
|
|
|
|
- PingTime = millis();
|
|
|
|
- eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 99: //deactivate farm mode
|
|
|
|
- farm_mode = 0;
|
|
|
|
- lcd_printer_connected();
|
|
|
|
- eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
|
|
- lcd_update(2);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- } // end if(code_seen('G'))
|
|
|
|
-
|
|
|
|
- else if(code_seen('M'))
|
|
|
|
- {
|
|
|
|
- int index;
|
|
|
|
- for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
-
|
|
|
|
- /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
|
|
|
|
- if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
|
|
|
|
- SERIAL_ECHOLNPGM("Invalid M code");
|
|
|
|
- } else
|
|
|
|
- switch((int)code_value())
|
|
|
|
- {
|
|
|
|
-#ifdef ULTIPANEL
|
|
|
|
-
|
|
|
|
- case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
|
|
- case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
|
|
- {
|
|
|
|
- char *src = strchr_pointer + 2;
|
|
|
|
-
|
|
|
|
- codenum = 0;
|
|
|
|
-
|
|
|
|
- bool hasP = false, hasS = false;
|
|
|
|
- if (code_seen('P')) {
|
|
|
|
- codenum = code_value(); // milliseconds to wait
|
|
|
|
- hasP = codenum > 0;
|
|
|
|
- }
|
|
|
|
- if (code_seen('S')) {
|
|
|
|
- codenum = code_value() * 1000; // seconds to wait
|
|
|
|
- hasS = codenum > 0;
|
|
|
|
- }
|
|
|
|
- starpos = strchr(src, '*');
|
|
|
|
- if (starpos != NULL) *(starpos) = '\0';
|
|
|
|
- while (*src == ' ') ++src;
|
|
|
|
- if (!hasP && !hasS && *src != '\0') {
|
|
|
|
- lcd_setstatus(src);
|
|
|
|
- } else {
|
|
|
|
- LCD_MESSAGERPGM(MSG_USERWAIT);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
|
|
|
|
- st_synchronize();
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
- if (codenum > 0){
|
|
|
|
- codenum += millis(); // keep track of when we started waiting
|
|
|
|
- while(millis() < codenum && !lcd_clicked()){
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity(true);
|
|
|
|
- lcd_update();
|
|
|
|
- }
|
|
|
|
- lcd_ignore_click(false);
|
|
|
|
- }else{
|
|
|
|
- if (!lcd_detected())
|
|
|
|
- break;
|
|
|
|
- while(!lcd_clicked()){
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity(true);
|
|
|
|
- lcd_update();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- if (IS_SD_PRINTING)
|
|
|
|
- LCD_MESSAGERPGM(MSG_RESUMING);
|
|
|
|
- else
|
|
|
|
- LCD_MESSAGERPGM(WELCOME_MSG);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-#endif
|
|
|
|
- case 17:
|
|
|
|
- LCD_MESSAGERPGM(MSG_NO_MOVE);
|
|
|
|
- enable_x();
|
|
|
|
- enable_y();
|
|
|
|
- enable_z();
|
|
|
|
- enable_e0();
|
|
|
|
- enable_e1();
|
|
|
|
- enable_e2();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#ifdef SDSUPPORT
|
|
|
|
- case 20: // M20 - list SD card
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
|
|
|
|
- card.ls();
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
|
|
|
|
- break;
|
|
|
|
- case 21: // M21 - init SD card
|
|
|
|
-
|
|
|
|
- card.initsd();
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- case 22: //M22 - release SD card
|
|
|
|
- card.release();
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- case 23: //M23 - Select file
|
|
|
|
- starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
- if(starpos!=NULL)
|
|
|
|
- *(starpos)='\0';
|
|
|
|
- card.openFile(strchr_pointer + 4,true);
|
|
|
|
- break;
|
|
|
|
- case 24: //M24 - Start SD print
|
|
|
|
- card.startFileprint();
|
|
|
|
- starttime=millis();
|
|
|
|
- break;
|
|
|
|
- case 25: //M25 - Pause SD print
|
|
|
|
- card.pauseSDPrint();
|
|
|
|
- break;
|
|
|
|
- case 26: //M26 - Set SD index
|
|
|
|
- if(card.cardOK && code_seen('S')) {
|
|
|
|
- card.setIndex(code_value_long());
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 27: //M27 - Get SD status
|
|
|
|
- card.getStatus();
|
|
|
|
- break;
|
|
|
|
- case 28: //M28 - Start SD write
|
|
|
|
- starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
- if(starpos != NULL){
|
|
|
|
- char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
|
|
- strchr_pointer = strchr(npos,' ') + 1;
|
|
|
|
- *(starpos) = '\0';
|
|
|
|
- }
|
|
|
|
- card.openFile(strchr_pointer+4,false);
|
|
|
|
- break;
|
|
|
|
- case 29: //M29 - Stop SD write
|
|
|
|
- //processed in write to file routine above
|
|
|
|
- //card,saving = false;
|
|
|
|
- break;
|
|
|
|
- case 30: //M30 <filename> Delete File
|
|
|
|
- if (card.cardOK){
|
|
|
|
- card.closefile();
|
|
|
|
- starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
- if(starpos != NULL){
|
|
|
|
- char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
|
|
- strchr_pointer = strchr(npos,' ') + 1;
|
|
|
|
- *(starpos) = '\0';
|
|
|
|
- }
|
|
|
|
- card.removeFile(strchr_pointer + 4);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 32: //M32 - Select file and start SD print
|
|
|
|
- {
|
|
|
|
- if(card.sdprinting) {
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
-
|
|
|
|
- char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
|
|
|
|
- if(namestartpos==NULL)
|
|
|
|
- {
|
|
|
|
- namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- namestartpos++; //to skip the '!'
|
|
|
|
-
|
|
|
|
- if(starpos!=NULL)
|
|
|
|
- *(starpos)='\0';
|
|
|
|
-
|
|
|
|
- bool call_procedure=(code_seen('P'));
|
|
|
|
-
|
|
|
|
- if(strchr_pointer>namestartpos)
|
|
|
|
- call_procedure=false; //false alert, 'P' found within filename
|
|
|
|
-
|
|
|
|
- if( card.cardOK )
|
|
|
|
- {
|
|
|
|
- card.openFile(namestartpos,true,!call_procedure);
|
|
|
|
- if(code_seen('S'))
|
|
|
|
- if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
|
|
|
|
- card.setIndex(code_value_long());
|
|
|
|
- card.startFileprint();
|
|
|
|
- if(!call_procedure)
|
|
|
|
- starttime=millis(); //procedure calls count as normal print time.
|
|
|
|
- }
|
|
|
|
- } break;
|
|
|
|
- case 928: //M928 - Start SD write
|
|
|
|
- starpos = (strchr(strchr_pointer + 5,'*'));
|
|
|
|
- if(starpos != NULL){
|
|
|
|
- char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
|
|
- strchr_pointer = strchr(npos,' ') + 1;
|
|
|
|
- *(starpos) = '\0';
|
|
|
|
- }
|
|
|
|
- card.openLogFile(strchr_pointer+5);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#endif //SDSUPPORT
|
|
|
|
-
|
|
|
|
- case 31: //M31 take time since the start of the SD print or an M109 command
|
|
|
|
- {
|
|
|
|
- stoptime=millis();
|
|
|
|
- char time[30];
|
|
|
|
- unsigned long t=(stoptime-starttime)/1000;
|
|
|
|
- int sec,min;
|
|
|
|
- min=t/60;
|
|
|
|
- sec=t%60;
|
|
|
|
- sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOLN(time);
|
|
|
|
- lcd_setstatus(time);
|
|
|
|
- autotempShutdown();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 42: //M42 -Change pin status via gcode
|
|
|
|
- if (code_seen('S'))
|
|
|
|
- {
|
|
|
|
- int pin_status = code_value();
|
|
|
|
- int pin_number = LED_PIN;
|
|
|
|
- if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
|
|
- pin_number = code_value();
|
|
|
|
- for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
|
|
- {
|
|
|
|
- if (sensitive_pins[i] == pin_number)
|
|
|
|
- {
|
|
|
|
- pin_number = -1;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- #if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
|
- if (pin_number == FAN_PIN)
|
|
|
|
- fanSpeed = pin_status;
|
|
|
|
- #endif
|
|
|
|
- if (pin_number > -1)
|
|
|
|
- {
|
|
|
|
- pinMode(pin_number, OUTPUT);
|
|
|
|
- digitalWrite(pin_number, pin_status);
|
|
|
|
- analogWrite(pin_number, pin_status);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
|
|
|
|
-
|
|
|
|
- // Reset the baby step value and the baby step applied flag.
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
|
|
- eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
-
|
|
|
|
- // Reset the skew and offset in both RAM and EEPROM.
|
|
|
|
- reset_bed_offset_and_skew();
|
|
|
|
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
- // the planner will not perform any adjustments in the XY plane.
|
|
|
|
- // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
- world2machine_revert_to_uncorrected();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 45: // M45: Prusa3D: bed skew and offset with manual Z up
|
|
|
|
- {
|
|
|
|
- // Only Z calibration?
|
|
|
|
- bool onlyZ = code_seen('Z');
|
|
|
|
-
|
|
|
|
- if (!onlyZ) {
|
|
|
|
- setTargetBed(0);
|
|
|
|
- setTargetHotend(0, 0);
|
|
|
|
- setTargetHotend(0, 1);
|
|
|
|
- setTargetHotend(0, 2);
|
|
|
|
- adjust_bed_reset(); //reset bed level correction
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Disable the default update procedure of the display. We will do a modal dialog.
|
|
|
|
- lcd_update_enable(false);
|
|
|
|
- // Let the planner use the uncorrected coordinates.
|
|
|
|
- mbl.reset();
|
|
|
|
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
- // the planner will not perform any adjustments in the XY plane.
|
|
|
|
- // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
- world2machine_revert_to_uncorrected();
|
|
|
|
- // Reset the baby step value applied without moving the axes.
|
|
|
|
- babystep_reset();
|
|
|
|
- // Mark all axes as in a need for homing.
|
|
|
|
- memset(axis_known_position, 0, sizeof(axis_known_position));
|
|
|
|
-
|
|
|
|
- // Home in the XY plane.
|
|
|
|
- //set_destination_to_current();
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
- lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
|
|
|
|
- home_xy();
|
|
|
|
-
|
|
|
|
- // Let the user move the Z axes up to the end stoppers.
|
|
|
|
-#ifdef TMC2130
|
|
|
|
- if (calibrate_z_auto()) {
|
|
|
|
-#else //TMC2130
|
|
|
|
- if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
|
|
|
|
-#endif //TMC2130
|
|
|
|
- refresh_cmd_timeout();
|
|
|
|
- if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
|
|
|
|
- lcd_wait_for_cool_down();
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
|
|
|
|
- lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
|
|
|
|
- lcd_implementation_print_at(0, 2, 1);
|
|
|
|
- lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Move the print head close to the bed.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-//#ifdef TMC2130
|
|
|
|
-// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
|
|
|
|
-//#endif
|
|
|
|
-
|
|
|
|
- int8_t verbosity_level = 0;
|
|
|
|
- if (code_seen('V')) {
|
|
|
|
- // Just 'V' without a number counts as V1.
|
|
|
|
- char c = strchr_pointer[1];
|
|
|
|
- verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (onlyZ) {
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- // Z only calibration.
|
|
|
|
- // Load the machine correction matrix
|
|
|
|
- world2machine_initialize();
|
|
|
|
- // and correct the current_position to match the transformed coordinate system.
|
|
|
|
- world2machine_update_current();
|
|
|
|
- //FIXME
|
|
|
|
- bool result = sample_mesh_and_store_reference();
|
|
|
|
- if (result) {
|
|
|
|
- if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
|
|
|
|
- // Shipped, the nozzle height has been set already. The user can start printing now.
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
|
|
- // babystep_apply();
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- // Reset the baby step value and the baby step applied flag.
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
|
|
- eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
- // Complete XYZ calibration.
|
|
|
|
- uint8_t point_too_far_mask = 0;
|
|
|
|
- BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- // Print head up.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- if (result >= 0) {
|
|
|
|
- point_too_far_mask = 0;
|
|
|
|
- // Second half: The fine adjustment.
|
|
|
|
- // Let the planner use the uncorrected coordinates.
|
|
|
|
- mbl.reset();
|
|
|
|
- world2machine_reset();
|
|
|
|
- // Home in the XY plane.
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
- home_xy();
|
|
|
|
- result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- // Print head up.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- // if (result >= 0) babystep_apply();
|
|
|
|
- }
|
|
|
|
- lcd_bed_calibration_show_result(result, point_too_far_mask);
|
|
|
|
- if (result >= 0) {
|
|
|
|
- // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#ifdef TMC2130
|
|
|
|
- tmc2130_home_exit();
|
|
|
|
-#endif
|
|
|
|
- } else {
|
|
|
|
- // Timeouted.
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- case 46:
|
|
|
|
- {
|
|
|
|
- // M46: Prusa3D: Show the assigned IP address.
|
|
|
|
- uint8_t ip[4];
|
|
|
|
- bool hasIP = card.ToshibaFlashAir_GetIP(ip);
|
|
|
|
- if (hasIP) {
|
|
|
|
- SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
|
|
|
|
- SERIAL_ECHO(int(ip[0]));
|
|
|
|
- SERIAL_ECHOPGM(".");
|
|
|
|
- SERIAL_ECHO(int(ip[1]));
|
|
|
|
- SERIAL_ECHOPGM(".");
|
|
|
|
- SERIAL_ECHO(int(ip[2]));
|
|
|
|
- SERIAL_ECHOPGM(".");
|
|
|
|
- SERIAL_ECHO(int(ip[3]));
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
- } else {
|
|
|
|
- SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- case 47:
|
|
|
|
- // M47: Prusa3D: Show end stops dialog on the display.
|
|
|
|
- lcd_diag_show_end_stops();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#if 0
|
|
|
|
- case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
|
|
|
|
- {
|
|
|
|
- // Disable the default update procedure of the display. We will do a modal dialog.
|
|
|
|
- lcd_update_enable(false);
|
|
|
|
- // Let the planner use the uncorrected coordinates.
|
|
|
|
- mbl.reset();
|
|
|
|
- // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
- // the planner will not perform any adjustments in the XY plane.
|
|
|
|
- // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
- world2machine_revert_to_uncorrected();
|
|
|
|
- // Move the print head close to the bed.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- // Home in the XY plane.
|
|
|
|
- set_destination_to_current();
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
- home_xy();
|
|
|
|
- int8_t verbosity_level = 0;
|
|
|
|
- if (code_seen('V')) {
|
|
|
|
- // Just 'V' without a number counts as V1.
|
|
|
|
- char c = strchr_pointer[1];
|
|
|
|
- verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
|
|
- }
|
|
|
|
- bool success = scan_bed_induction_points(verbosity_level);
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
- // Print head up.
|
|
|
|
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-// M48 Z-Probe repeatability measurement function.
|
|
|
|
-//
|
|
|
|
-// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
|
|
|
|
-//
|
|
|
|
-// This function assumes the bed has been homed. Specificaly, that a G28 command
|
|
|
|
-// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
|
|
-// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
|
|
-// regenerated.
|
|
|
|
-//
|
|
|
|
-// The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
|
|
-// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
|
|
-// N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
|
|
-//
|
|
|
|
-
|
|
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
-#ifdef Z_PROBE_REPEATABILITY_TEST
|
|
|
|
-
|
|
|
|
- case 48: // M48 Z-Probe repeatability
|
|
|
|
- {
|
|
|
|
- #if Z_MIN_PIN == -1
|
|
|
|
- #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- double sum=0.0;
|
|
|
|
- double mean=0.0;
|
|
|
|
- double sigma=0.0;
|
|
|
|
- double sample_set[50];
|
|
|
|
- int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
|
|
|
|
- double X_current, Y_current, Z_current;
|
|
|
|
- double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
|
|
|
-
|
|
|
|
- if (code_seen('V') || code_seen('v')) {
|
|
|
|
- verbose_level = code_value();
|
|
|
|
- if (verbose_level<0 || verbose_level>4 ) {
|
|
|
|
- SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
|
|
|
|
- goto Sigma_Exit;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (verbose_level > 0) {
|
|
|
|
- SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
|
|
|
- SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (code_seen('n')) {
|
|
|
|
- n_samples = code_value();
|
|
|
|
- if (n_samples<4 || n_samples>50 ) {
|
|
|
|
- SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
|
|
|
|
- goto Sigma_Exit;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
|
|
|
- Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
|
|
|
- Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
- Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
- ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
-
|
|
|
|
- if (code_seen('X') || code_seen('x') ) {
|
|
|
|
- X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
- if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
|
|
|
|
- SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
|
|
|
- goto Sigma_Exit;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (code_seen('Y') || code_seen('y') ) {
|
|
|
|
- Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
- if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
|
|
|
|
- SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
|
|
|
- goto Sigma_Exit;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (code_seen('L') || code_seen('l') ) {
|
|
|
|
- n_legs = code_value();
|
|
|
|
- if ( n_legs==1 )
|
|
|
|
- n_legs = 2;
|
|
|
|
- if ( n_legs<0 || n_legs>15 ) {
|
|
|
|
- SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
|
|
|
|
- goto Sigma_Exit;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-//
|
|
|
|
-// Do all the preliminary setup work. First raise the probe.
|
|
|
|
-//
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
|
|
- plan_buffer_line( X_current, Y_current, Z_start_location,
|
|
|
|
- ext_position,
|
|
|
|
- homing_feedrate[Z_AXIS]/60,
|
|
|
|
- active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
-//
|
|
|
|
-// Now get everything to the specified probe point So we can safely do a probe to
|
|
|
|
-// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
|
|
-// use that as a starting point for each probe.
|
|
|
|
-//
|
|
|
|
- if (verbose_level > 2)
|
|
|
|
- SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
|
|
|
-
|
|
|
|
- plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
|
|
- ext_position,
|
|
|
|
- homing_feedrate[X_AXIS]/60,
|
|
|
|
- active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
|
|
- current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
|
|
- current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
- current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
-
|
|
|
|
-//
|
|
|
|
-// OK, do the inital probe to get us close to the bed.
|
|
|
|
-// Then retrace the right amount and use that in subsequent probes
|
|
|
|
-//
|
|
|
|
-
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
- run_z_probe();
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
- Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
-
|
|
|
|
- plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
|
|
- ext_position,
|
|
|
|
- homing_feedrate[X_AXIS]/60,
|
|
|
|
- active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
-
|
|
|
|
- for( n=0; n<n_samples; n++) {
|
|
|
|
-
|
|
|
|
- do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
-
|
|
|
|
- if ( n_legs) {
|
|
|
|
- double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
|
|
- int rotational_direction, l;
|
|
|
|
-
|
|
|
|
- rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
|
|
- radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
|
|
|
|
- theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
|
|
|
|
-
|
|
|
|
-//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
|
|
-//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
|
|
-//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
|
|
|
-//SERIAL_PROTOCOLLNPGM("");
|
|
|
|
-
|
|
|
|
- for( l=0; l<n_legs-1; l++) {
|
|
|
|
- if (rotational_direction==1)
|
|
|
|
- theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
- else
|
|
|
|
- theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
-
|
|
|
|
- radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
|
|
|
|
- if ( radius<0.0 )
|
|
|
|
- radius = -radius;
|
|
|
|
-
|
|
|
|
- X_current = X_probe_location + cos(theta) * radius;
|
|
|
|
- Y_current = Y_probe_location + sin(theta) * radius;
|
|
|
|
-
|
|
|
|
- if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
|
|
|
|
- X_current = X_MIN_POS;
|
|
|
|
- if ( X_current>X_MAX_POS)
|
|
|
|
- X_current = X_MAX_POS;
|
|
|
|
-
|
|
|
|
- if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
|
|
|
|
- Y_current = Y_MIN_POS;
|
|
|
|
- if ( Y_current>Y_MAX_POS)
|
|
|
|
- Y_current = Y_MAX_POS;
|
|
|
|
-
|
|
|
|
- if (verbose_level>3 ) {
|
|
|
|
- SERIAL_ECHOPAIR("x: ", X_current);
|
|
|
|
- SERIAL_ECHOPAIR("y: ", Y_current);
|
|
|
|
- SERIAL_PROTOCOLLNPGM("");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- do_blocking_move_to( X_current, Y_current, Z_current );
|
|
|
|
- }
|
|
|
|
- do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- setup_for_endstop_move();
|
|
|
|
- run_z_probe();
|
|
|
|
-
|
|
|
|
- sample_set[n] = current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
-//
|
|
|
|
-// Get the current mean for the data points we have so far
|
|
|
|
-//
|
|
|
|
- sum=0.0;
|
|
|
|
- for( j=0; j<=n; j++) {
|
|
|
|
- sum = sum + sample_set[j];
|
|
|
|
- }
|
|
|
|
- mean = sum / (double (n+1));
|
|
|
|
-//
|
|
|
|
-// Now, use that mean to calculate the standard deviation for the
|
|
|
|
-// data points we have so far
|
|
|
|
-//
|
|
|
|
-
|
|
|
|
- sum=0.0;
|
|
|
|
- for( j=0; j<=n; j++) {
|
|
|
|
- sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
|
|
|
|
- }
|
|
|
|
- sigma = sqrt( sum / (double (n+1)) );
|
|
|
|
-
|
|
|
|
- if (verbose_level > 1) {
|
|
|
|
- SERIAL_PROTOCOL(n+1);
|
|
|
|
- SERIAL_PROTOCOL(" of ");
|
|
|
|
- SERIAL_PROTOCOL(n_samples);
|
|
|
|
- SERIAL_PROTOCOLPGM(" z: ");
|
|
|
|
- SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (verbose_level > 2) {
|
|
|
|
- SERIAL_PROTOCOL(" mean: ");
|
|
|
|
- SERIAL_PROTOCOL_F(mean,6);
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOL(" sigma: ");
|
|
|
|
- SERIAL_PROTOCOL_F(sigma,6);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (verbose_level > 0)
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
-
|
|
|
|
- plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
|
|
- current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- delay(1000);
|
|
|
|
-
|
|
|
|
- clean_up_after_endstop_move();
|
|
|
|
-
|
|
|
|
-// enable_endstops(true);
|
|
|
|
-
|
|
|
|
- if (verbose_level > 0) {
|
|
|
|
- SERIAL_PROTOCOLPGM("Mean: ");
|
|
|
|
- SERIAL_PROTOCOL_F(mean, 6);
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
|
|
-SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
-SERIAL_PROTOCOLPGM("\n\n");
|
|
|
|
-
|
|
|
|
-Sigma_Exit:
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-#endif // Z_PROBE_REPEATABILITY_TEST
|
|
|
|
-#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
-
|
|
|
|
- case 104: // M104
|
|
|
|
- if(setTargetedHotend(104)){
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
|
|
|
- setWatch();
|
|
|
|
- break;
|
|
|
|
- case 112: // M112 -Emergency Stop
|
|
|
|
- kill("", 3);
|
|
|
|
- break;
|
|
|
|
- case 140: // M140 set bed temp
|
|
|
|
- if (code_seen('S')) setTargetBed(code_value());
|
|
|
|
- break;
|
|
|
|
- case 105 : // M105
|
|
|
|
- if(setTargetedHotend(105)){
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLPGM("ok T:");
|
|
|
|
- SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
|
|
- SERIAL_PROTOCOLPGM(" /");
|
|
|
|
- SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
|
|
|
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
- SERIAL_PROTOCOL_F(degBed(),1);
|
|
|
|
- SERIAL_PROTOCOLPGM(" /");
|
|
|
|
- SERIAL_PROTOCOL_F(degTargetBed(),1);
|
|
|
|
- #endif //TEMP_BED_PIN
|
|
|
|
- for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
|
|
- SERIAL_PROTOCOLPGM(" T");
|
|
|
|
- SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM(":");
|
|
|
|
- SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
|
|
- SERIAL_PROTOCOLPGM(" /");
|
|
|
|
- SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
|
|
|
- }
|
|
|
|
- #else
|
|
|
|
- SERIAL_ERROR_START;
|
|
|
|
- SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLPGM(" @:");
|
|
|
|
- #ifdef EXTRUDER_WATTS
|
|
|
|
- SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
|
|
|
- SERIAL_PROTOCOLPGM("W");
|
|
|
|
- #else
|
|
|
|
- SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLPGM(" B@:");
|
|
|
|
- #ifdef BED_WATTS
|
|
|
|
- SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
|
|
- SERIAL_PROTOCOLPGM("W");
|
|
|
|
- #else
|
|
|
|
- SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
- SERIAL_PROTOCOLPGM(" P:");
|
|
|
|
- SERIAL_PROTOCOL_F(current_temperature_pinda,1);
|
|
|
|
-#endif //PINDA_THERMISTOR
|
|
|
|
-
|
|
|
|
-#ifdef AMBIENT_THERMISTOR
|
|
|
|
- SERIAL_PROTOCOLPGM(" A:");
|
|
|
|
- SERIAL_PROTOCOL_F(current_temperature_ambient,1);
|
|
|
|
-#endif //AMBIENT_THERMISTOR
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- #ifdef SHOW_TEMP_ADC_VALUES
|
|
|
|
- {float raw = 0.0;
|
|
|
|
-
|
|
|
|
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLPGM(" ADC B:");
|
|
|
|
- SERIAL_PROTOCOL_F(degBed(),1);
|
|
|
|
- SERIAL_PROTOCOLPGM("C->");
|
|
|
|
- raw = rawBedTemp();
|
|
|
|
- SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Rb->");
|
|
|
|
- SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Rxb->");
|
|
|
|
- SERIAL_PROTOCOL_F(raw, 5);
|
|
|
|
- #endif
|
|
|
|
- for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
|
|
- SERIAL_PROTOCOLPGM(" T");
|
|
|
|
- SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM(":");
|
|
|
|
- SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
|
|
- SERIAL_PROTOCOLPGM("C->");
|
|
|
|
- raw = rawHotendTemp(cur_extruder);
|
|
|
|
- SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Rt");
|
|
|
|
- SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM("->");
|
|
|
|
- SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Rx");
|
|
|
|
- SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM("->");
|
|
|
|
- SERIAL_PROTOCOL_F(raw, 5);
|
|
|
|
- }}
|
|
|
|
- #endif
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- return;
|
|
|
|
- break;
|
|
|
|
- case 109:
|
|
|
|
- {// M109 - Wait for extruder heater to reach target.
|
|
|
|
- if(setTargetedHotend(109)){
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- LCD_MESSAGERPGM(MSG_HEATING);
|
|
|
|
- heating_status = 1;
|
|
|
|
- if (farm_mode) { prusa_statistics(1); };
|
|
|
|
-
|
|
|
|
-#ifdef AUTOTEMP
|
|
|
|
- autotemp_enabled=false;
|
|
|
|
- #endif
|
|
|
|
- if (code_seen('S')) {
|
|
|
|
- setTargetHotend(code_value(), tmp_extruder);
|
|
|
|
- CooldownNoWait = true;
|
|
|
|
- } else if (code_seen('R')) {
|
|
|
|
- setTargetHotend(code_value(), tmp_extruder);
|
|
|
|
- CooldownNoWait = false;
|
|
|
|
- }
|
|
|
|
- #ifdef AUTOTEMP
|
|
|
|
- if (code_seen('S')) autotemp_min=code_value();
|
|
|
|
- if (code_seen('B')) autotemp_max=code_value();
|
|
|
|
- if (code_seen('F'))
|
|
|
|
- {
|
|
|
|
- autotemp_factor=code_value();
|
|
|
|
- autotemp_enabled=true;
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- setWatch();
|
|
|
|
- codenum = millis();
|
|
|
|
-
|
|
|
|
- /* See if we are heating up or cooling down */
|
|
|
|
- target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
|
|
|
-
|
|
|
|
- cancel_heatup = false;
|
|
|
|
-
|
|
|
|
- wait_for_heater(codenum); //loops until target temperature is reached
|
|
|
|
-
|
|
|
|
- LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
|
|
|
|
- heating_status = 2;
|
|
|
|
- if (farm_mode) { prusa_statistics(2); };
|
|
|
|
-
|
|
|
|
- //starttime=millis();
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 190: // M190 - Wait for bed heater to reach target.
|
|
|
|
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
- LCD_MESSAGERPGM(MSG_BED_HEATING);
|
|
|
|
- heating_status = 3;
|
|
|
|
- if (farm_mode) { prusa_statistics(1); };
|
|
|
|
- if (code_seen('S'))
|
|
|
|
- {
|
|
|
|
- setTargetBed(code_value());
|
|
|
|
- CooldownNoWait = true;
|
|
|
|
- }
|
|
|
|
- else if (code_seen('R'))
|
|
|
|
- {
|
|
|
|
- setTargetBed(code_value());
|
|
|
|
- CooldownNoWait = false;
|
|
|
|
- }
|
|
|
|
- codenum = millis();
|
|
|
|
-
|
|
|
|
- cancel_heatup = false;
|
|
|
|
- target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
|
|
-
|
|
|
|
- while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
|
|
|
|
- {
|
|
|
|
- if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
|
|
|
- {
|
|
|
|
- if (!farm_mode) {
|
|
|
|
- float tt = degHotend(active_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM("T:");
|
|
|
|
- SERIAL_PROTOCOL(tt);
|
|
|
|
- SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
- SERIAL_PROTOCOL((int)active_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
- SERIAL_PROTOCOL_F(degBed(), 1);
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- codenum = millis();
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity();
|
|
|
|
- lcd_update();
|
|
|
|
- }
|
|
|
|
- LCD_MESSAGERPGM(MSG_BED_DONE);
|
|
|
|
- heating_status = 4;
|
|
|
|
-
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
- #endif
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- #if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
|
- case 106: //M106 Fan On
|
|
|
|
- if (code_seen('S')){
|
|
|
|
- fanSpeed=constrain(code_value(),0,255);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- fanSpeed=255;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 107: //M107 Fan Off
|
|
|
|
- fanSpeed = 0;
|
|
|
|
- break;
|
|
|
|
- #endif //FAN_PIN
|
|
|
|
-
|
|
|
|
- #if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
- case 80: // M80 - Turn on Power Supply
|
|
|
|
- SET_OUTPUT(PS_ON_PIN); //GND
|
|
|
|
- WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
-
|
|
|
|
- // If you have a switch on suicide pin, this is useful
|
|
|
|
- // if you want to start another print with suicide feature after
|
|
|
|
- // a print without suicide...
|
|
|
|
- #if defined SUICIDE_PIN && SUICIDE_PIN > -1
|
|
|
|
- SET_OUTPUT(SUICIDE_PIN);
|
|
|
|
- WRITE(SUICIDE_PIN, HIGH);
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #ifdef ULTIPANEL
|
|
|
|
- powersupply = true;
|
|
|
|
- LCD_MESSAGERPGM(WELCOME_MSG);
|
|
|
|
- lcd_update();
|
|
|
|
- #endif
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- case 81: // M81 - Turn off Power Supply
|
|
|
|
- disable_heater();
|
|
|
|
- st_synchronize();
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- finishAndDisableSteppers();
|
|
|
|
- fanSpeed = 0;
|
|
|
|
- delay(1000); // Wait a little before to switch off
|
|
|
|
- #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
|
|
- st_synchronize();
|
|
|
|
- suicide();
|
|
|
|
- #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
- SET_OUTPUT(PS_ON_PIN);
|
|
|
|
- WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
|
|
- #endif
|
|
|
|
- #ifdef ULTIPANEL
|
|
|
|
- powersupply = false;
|
|
|
|
- LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- MACHNAME = "Prusa i3"
|
|
|
|
- MSGOFF = "Vypnuto"
|
|
|
|
- "Prusai3"" ""vypnuto""."
|
|
|
|
-
|
|
|
|
- "Prusa i3"" "MSG_ALL[lang_selected][50]"."
|
|
|
|
- */
|
|
|
|
- lcd_update();
|
|
|
|
- #endif
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 82:
|
|
|
|
- axis_relative_modes[3] = false;
|
|
|
|
- break;
|
|
|
|
- case 83:
|
|
|
|
- axis_relative_modes[3] = true;
|
|
|
|
- break;
|
|
|
|
- case 18: //compatibility
|
|
|
|
- case 84: // M84
|
|
|
|
- if(code_seen('S')){
|
|
|
|
- stepper_inactive_time = code_value() * 1000;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
|
|
- if(all_axis)
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- finishAndDisableSteppers();
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
- if (code_seen('X')) disable_x();
|
|
|
|
- if (code_seen('Y')) disable_y();
|
|
|
|
- if (code_seen('Z')) disable_z();
|
|
|
|
-#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
|
|
- if (code_seen('E')) {
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- snmm_filaments_used = 0;
|
|
|
|
- break;
|
|
|
|
- case 85: // M85
|
|
|
|
- if(code_seen('S')) {
|
|
|
|
- max_inactive_time = code_value() * 1000;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 92: // M92
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++)
|
|
|
|
- {
|
|
|
|
- if(code_seen(axis_codes[i]))
|
|
|
|
- {
|
|
|
|
- if(i == 3) { // E
|
|
|
|
- float value = code_value();
|
|
|
|
- if(value < 20.0) {
|
|
|
|
- float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
|
|
- max_jerk[E_AXIS] *= factor;
|
|
|
|
- max_feedrate[i] *= factor;
|
|
|
|
- axis_steps_per_sqr_second[i] *= factor;
|
|
|
|
- }
|
|
|
|
- axis_steps_per_unit[i] = value;
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- axis_steps_per_unit[i] = code_value();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 115: // M115
|
|
|
|
- if (code_seen('V')) {
|
|
|
|
- // Report the Prusa version number.
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
|
|
|
|
- } else if (code_seen('U')) {
|
|
|
|
- // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
|
|
|
|
- // pause the print and ask the user to upgrade the firmware.
|
|
|
|
- show_upgrade_dialog_if_version_newer(++ strchr_pointer);
|
|
|
|
- } else {
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-/* case 117: // M117 display message
|
|
|
|
- starpos = (strchr(strchr_pointer + 5,'*'));
|
|
|
|
- if(starpos!=NULL)
|
|
|
|
- *(starpos)='\0';
|
|
|
|
- lcd_setstatus(strchr_pointer + 5);
|
|
|
|
- break;*/
|
|
|
|
- case 114: // M114
|
|
|
|
- SERIAL_PROTOCOLPGM("X:");
|
|
|
|
- SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Y:");
|
|
|
|
- SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Z:");
|
|
|
|
- SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
- SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
|
|
|
|
- SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Y:");
|
|
|
|
- SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" Z:");
|
|
|
|
- SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
|
|
- SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
- SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- break;
|
|
|
|
- case 120: // M120
|
|
|
|
- enable_endstops(false) ;
|
|
|
|
- break;
|
|
|
|
- case 121: // M121
|
|
|
|
- enable_endstops(true) ;
|
|
|
|
- break;
|
|
|
|
- case 119: // M119
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_X_MIN);
|
|
|
|
- if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
- }else{
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #endif
|
|
|
|
- #if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_X_MAX);
|
|
|
|
- if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
- }else{
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #endif
|
|
|
|
- #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
|
|
|
|
- if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
- }else{
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #endif
|
|
|
|
- #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
|
|
|
|
- if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
- }else{
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #endif
|
|
|
|
- #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
|
|
|
|
- if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
- }else{
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #endif
|
|
|
|
- #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
|
|
|
|
- if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
- }else{
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- #endif
|
|
|
|
- break;
|
|
|
|
- //TODO: update for all axis, use for loop
|
|
|
|
- #ifdef BLINKM
|
|
|
|
- case 150: // M150
|
|
|
|
- {
|
|
|
|
- byte red;
|
|
|
|
- byte grn;
|
|
|
|
- byte blu;
|
|
|
|
-
|
|
|
|
- if(code_seen('R')) red = code_value();
|
|
|
|
- if(code_seen('U')) grn = code_value();
|
|
|
|
- if(code_seen('B')) blu = code_value();
|
|
|
|
-
|
|
|
|
- SendColors(red,grn,blu);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif //BLINKM
|
|
|
|
- case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
- tmp_extruder = active_extruder;
|
|
|
|
- if(code_seen('T')) {
|
|
|
|
- tmp_extruder = code_value();
|
|
|
|
- if(tmp_extruder >= EXTRUDERS) {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- float area = .0;
|
|
|
|
- if(code_seen('D')) {
|
|
|
|
- float diameter = (float)code_value();
|
|
|
|
- if (diameter == 0.0) {
|
|
|
|
- // setting any extruder filament size disables volumetric on the assumption that
|
|
|
|
- // slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
|
|
- // for all extruders
|
|
|
|
- volumetric_enabled = false;
|
|
|
|
- } else {
|
|
|
|
- filament_size[tmp_extruder] = (float)code_value();
|
|
|
|
- // make sure all extruders have some sane value for the filament size
|
|
|
|
- filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
- volumetric_enabled = true;
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- //reserved for setting filament diameter via UFID or filament measuring device
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- calculate_volumetric_multipliers();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 201: // M201
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++)
|
|
|
|
- {
|
|
|
|
- if(code_seen(axis_codes[i]))
|
|
|
|
- {
|
|
|
|
- max_acceleration_units_per_sq_second[i] = code_value();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
|
|
- reset_acceleration_rates();
|
|
|
|
- break;
|
|
|
|
- #if 0 // Not used for Sprinter/grbl gen6
|
|
|
|
- case 202: // M202
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
- case 203: // M203 max feedrate mm/sec
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
- if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
|
|
- {
|
|
|
|
- if(code_seen('S')) acceleration = code_value() ;
|
|
|
|
- if(code_seen('T')) retract_acceleration = code_value() ;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
|
|
- {
|
|
|
|
- if(code_seen('S')) minimumfeedrate = code_value();
|
|
|
|
- if(code_seen('T')) mintravelfeedrate = code_value();
|
|
|
|
- if(code_seen('B')) minsegmenttime = code_value() ;
|
|
|
|
- if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
|
|
|
|
- if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
|
|
|
|
- if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
|
|
|
|
- if(code_seen('E')) max_jerk[E_AXIS] = code_value();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 206: // M206 additional homing offset
|
|
|
|
- for(int8_t i=0; i < 3; i++)
|
|
|
|
- {
|
|
|
|
- if(code_seen(axis_codes[i])) add_homing[i] = code_value();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #ifdef FWRETRACT
|
|
|
|
- case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
|
|
- {
|
|
|
|
- if(code_seen('S'))
|
|
|
|
- {
|
|
|
|
- retract_length = code_value() ;
|
|
|
|
- }
|
|
|
|
- if(code_seen('F'))
|
|
|
|
- {
|
|
|
|
- retract_feedrate = code_value()/60 ;
|
|
|
|
- }
|
|
|
|
- if(code_seen('Z'))
|
|
|
|
- {
|
|
|
|
- retract_zlift = code_value() ;
|
|
|
|
- }
|
|
|
|
- }break;
|
|
|
|
- case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
|
|
- {
|
|
|
|
- if(code_seen('S'))
|
|
|
|
- {
|
|
|
|
- retract_recover_length = code_value() ;
|
|
|
|
- }
|
|
|
|
- if(code_seen('F'))
|
|
|
|
- {
|
|
|
|
- retract_recover_feedrate = code_value()/60 ;
|
|
|
|
- }
|
|
|
|
- }break;
|
|
|
|
- case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
|
|
- {
|
|
|
|
- if(code_seen('S'))
|
|
|
|
- {
|
|
|
|
- int t= code_value() ;
|
|
|
|
- switch(t)
|
|
|
|
- {
|
|
|
|
- case 0:
|
|
|
|
- {
|
|
|
|
- autoretract_enabled=false;
|
|
|
|
- retracted[0]=false;
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- retracted[1]=false;
|
|
|
|
- #endif
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- retracted[2]=false;
|
|
|
|
- #endif
|
|
|
|
- }break;
|
|
|
|
- case 1:
|
|
|
|
- {
|
|
|
|
- autoretract_enabled=true;
|
|
|
|
- retracted[0]=false;
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- retracted[1]=false;
|
|
|
|
- #endif
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- retracted[2]=false;
|
|
|
|
- #endif
|
|
|
|
- }break;
|
|
|
|
- default:
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
|
|
- SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
|
|
- SERIAL_ECHOLNPGM("\"(1)");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }break;
|
|
|
|
- #endif // FWRETRACT
|
|
|
|
- #if EXTRUDERS > 1
|
|
|
|
- case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
|
|
- {
|
|
|
|
- if(setTargetedHotend(218)){
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- if(code_seen('X'))
|
|
|
|
- {
|
|
|
|
- extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
|
|
- }
|
|
|
|
- if(code_seen('Y'))
|
|
|
|
- {
|
|
|
|
- extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
|
|
|
|
- for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
|
|
|
|
- {
|
|
|
|
- SERIAL_ECHO(" ");
|
|
|
|
- SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
|
|
- SERIAL_ECHO(",");
|
|
|
|
- SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOLN("");
|
|
|
|
- }break;
|
|
|
|
- #endif
|
|
|
|
- case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
|
|
- {
|
|
|
|
- if(code_seen('S'))
|
|
|
|
- {
|
|
|
|
- feedmultiply = code_value() ;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
|
|
- {
|
|
|
|
- if(code_seen('S'))
|
|
|
|
- {
|
|
|
|
- int tmp_code = code_value();
|
|
|
|
- if (code_seen('T'))
|
|
|
|
- {
|
|
|
|
- if(setTargetedHotend(221)){
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- extruder_multiply[tmp_extruder] = tmp_code;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- extrudemultiply = tmp_code ;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
|
|
- {
|
|
|
|
- if(code_seen('P')){
|
|
|
|
- int pin_number = code_value(); // pin number
|
|
|
|
- int pin_state = -1; // required pin state - default is inverted
|
|
|
|
-
|
|
|
|
- if(code_seen('S')) pin_state = code_value(); // required pin state
|
|
|
|
-
|
|
|
|
- if(pin_state >= -1 && pin_state <= 1){
|
|
|
|
-
|
|
|
|
- for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
|
|
- {
|
|
|
|
- if (sensitive_pins[i] == pin_number)
|
|
|
|
- {
|
|
|
|
- pin_number = -1;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (pin_number > -1)
|
|
|
|
- {
|
|
|
|
- int target = LOW;
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- pinMode(pin_number, INPUT);
|
|
|
|
-
|
|
|
|
- switch(pin_state){
|
|
|
|
- case 1:
|
|
|
|
- target = HIGH;
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 0:
|
|
|
|
- target = LOW;
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case -1:
|
|
|
|
- target = !digitalRead(pin_number);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- while(digitalRead(pin_number) != target){
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity();
|
|
|
|
- lcd_update();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- #if NUM_SERVOS > 0
|
|
|
|
- case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
|
|
- {
|
|
|
|
- int servo_index = -1;
|
|
|
|
- int servo_position = 0;
|
|
|
|
- if (code_seen('P'))
|
|
|
|
- servo_index = code_value();
|
|
|
|
- if (code_seen('S')) {
|
|
|
|
- servo_position = code_value();
|
|
|
|
- if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
|
|
- servos[servo_index].attach(0);
|
|
|
|
-#endif
|
|
|
|
- servos[servo_index].write(servo_position);
|
|
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
|
|
- delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
|
|
- servos[servo_index].detach();
|
|
|
|
-#endif
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHO("Servo ");
|
|
|
|
- SERIAL_ECHO(servo_index);
|
|
|
|
- SERIAL_ECHOLN(" out of range");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else if (servo_index >= 0) {
|
|
|
|
- SERIAL_PROTOCOL(MSG_OK);
|
|
|
|
- SERIAL_PROTOCOL(" Servo ");
|
|
|
|
- SERIAL_PROTOCOL(servo_index);
|
|
|
|
- SERIAL_PROTOCOL(": ");
|
|
|
|
- SERIAL_PROTOCOL(servos[servo_index].read());
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif // NUM_SERVOS > 0
|
|
|
|
-
|
|
|
|
- #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
|
|
|
|
- case 300: // M300
|
|
|
|
- {
|
|
|
|
- int beepS = code_seen('S') ? code_value() : 110;
|
|
|
|
- int beepP = code_seen('P') ? code_value() : 1000;
|
|
|
|
- if (beepS > 0)
|
|
|
|
- {
|
|
|
|
- #if BEEPER > 0
|
|
|
|
- tone(BEEPER, beepS);
|
|
|
|
- delay(beepP);
|
|
|
|
- noTone(BEEPER);
|
|
|
|
- #elif defined(ULTRALCD)
|
|
|
|
- lcd_buzz(beepS, beepP);
|
|
|
|
- #elif defined(LCD_USE_I2C_BUZZER)
|
|
|
|
- lcd_buzz(beepP, beepS);
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- delay(beepP);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif // M300
|
|
|
|
-
|
|
|
|
- #ifdef PIDTEMP
|
|
|
|
- case 301: // M301
|
|
|
|
- {
|
|
|
|
- if(code_seen('P')) Kp = code_value();
|
|
|
|
- if(code_seen('I')) Ki = scalePID_i(code_value());
|
|
|
|
- if(code_seen('D')) Kd = scalePID_d(code_value());
|
|
|
|
-
|
|
|
|
- #ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
- if(code_seen('C')) Kc = code_value();
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- updatePID();
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
|
|
- SERIAL_PROTOCOL(" p:");
|
|
|
|
- SERIAL_PROTOCOL(Kp);
|
|
|
|
- SERIAL_PROTOCOL(" i:");
|
|
|
|
- SERIAL_PROTOCOL(unscalePID_i(Ki));
|
|
|
|
- SERIAL_PROTOCOL(" d:");
|
|
|
|
- SERIAL_PROTOCOL(unscalePID_d(Kd));
|
|
|
|
- #ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
- SERIAL_PROTOCOL(" c:");
|
|
|
|
- //Kc does not have scaling applied above, or in resetting defaults
|
|
|
|
- SERIAL_PROTOCOL(Kc);
|
|
|
|
- #endif
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif //PIDTEMP
|
|
|
|
- #ifdef PIDTEMPBED
|
|
|
|
- case 304: // M304
|
|
|
|
- {
|
|
|
|
- if(code_seen('P')) bedKp = code_value();
|
|
|
|
- if(code_seen('I')) bedKi = scalePID_i(code_value());
|
|
|
|
- if(code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
-
|
|
|
|
- updatePID();
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
|
|
- SERIAL_PROTOCOL(" p:");
|
|
|
|
- SERIAL_PROTOCOL(bedKp);
|
|
|
|
- SERIAL_PROTOCOL(" i:");
|
|
|
|
- SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
|
|
- SERIAL_PROTOCOL(" d:");
|
|
|
|
- SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif //PIDTEMP
|
|
|
|
- case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
|
|
- {
|
|
|
|
- #ifdef CHDK
|
|
|
|
-
|
|
|
|
- SET_OUTPUT(CHDK);
|
|
|
|
- WRITE(CHDK, HIGH);
|
|
|
|
- chdkHigh = millis();
|
|
|
|
- chdkActive = true;
|
|
|
|
-
|
|
|
|
- #else
|
|
|
|
-
|
|
|
|
- #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
|
|
- const uint8_t NUM_PULSES=16;
|
|
|
|
- const float PULSE_LENGTH=0.01524;
|
|
|
|
- for(int i=0; i < NUM_PULSES; i++) {
|
|
|
|
- WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
|
|
- _delay_ms(PULSE_LENGTH);
|
|
|
|
- WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
- _delay_ms(PULSE_LENGTH);
|
|
|
|
- }
|
|
|
|
- delay(7.33);
|
|
|
|
- for(int i=0; i < NUM_PULSES; i++) {
|
|
|
|
- WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
|
|
- _delay_ms(PULSE_LENGTH);
|
|
|
|
- WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
- _delay_ms(PULSE_LENGTH);
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
- #endif //chdk end if
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-#ifdef DOGLCD
|
|
|
|
- case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
|
|
- {
|
|
|
|
- if (code_seen('C')) {
|
|
|
|
- lcd_setcontrast( ((int)code_value())&63 );
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
|
|
- SERIAL_PROTOCOL(lcd_contrast);
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-#endif
|
|
|
|
- #ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
- case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
|
|
- {
|
|
|
|
- float temp = .0;
|
|
|
|
- if (code_seen('S')) temp=code_value();
|
|
|
|
- set_extrude_min_temp(temp);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
- case 303: // M303 PID autotune
|
|
|
|
- {
|
|
|
|
- float temp = 150.0;
|
|
|
|
- int e=0;
|
|
|
|
- int c=5;
|
|
|
|
- if (code_seen('E')) e=code_value();
|
|
|
|
- if (e<0)
|
|
|
|
- temp=70;
|
|
|
|
- if (code_seen('S')) temp=code_value();
|
|
|
|
- if (code_seen('C')) c=code_value();
|
|
|
|
- PID_autotune(temp, e, c);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 400: // M400 finish all moves
|
|
|
|
- {
|
|
|
|
- st_synchronize();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#ifdef FILAMENT_SENSOR
|
|
|
|
-case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
|
|
- {
|
|
|
|
- #if (FILWIDTH_PIN > -1)
|
|
|
|
- if(code_seen('N')) filament_width_nominal=code_value();
|
|
|
|
- else{
|
|
|
|
- SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
|
|
- SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 405: //M405 Turn on filament sensor for control
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- if(code_seen('D')) meas_delay_cm=code_value();
|
|
|
|
-
|
|
|
|
- if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
|
|
|
|
- meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
|
|
|
-
|
|
|
|
- if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
|
|
|
|
- {
|
|
|
|
- int temp_ratio = widthFil_to_size_ratio();
|
|
|
|
-
|
|
|
|
- for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
|
|
|
|
- measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
|
|
|
|
- }
|
|
|
|
- delay_index1=0;
|
|
|
|
- delay_index2=0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- filament_sensor = true ;
|
|
|
|
-
|
|
|
|
- //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
|
|
- //SERIAL_PROTOCOL(filament_width_meas);
|
|
|
|
- //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
|
|
- //SERIAL_PROTOCOL(extrudemultiply);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 406: //M406 Turn off filament sensor for control
|
|
|
|
- {
|
|
|
|
- filament_sensor = false ;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 407: //M407 Display measured filament diameter
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
|
|
- SERIAL_PROTOCOLLN(filament_width_meas);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- case 500: // M500 Store settings in EEPROM
|
|
|
|
- {
|
|
|
|
- Config_StoreSettings(EEPROM_OFFSET);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 501: // M501 Read settings from EEPROM
|
|
|
|
- {
|
|
|
|
- Config_RetrieveSettings(EEPROM_OFFSET);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 502: // M502 Revert to default settings
|
|
|
|
- {
|
|
|
|
- Config_ResetDefault();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 503: // M503 print settings currently in memory
|
|
|
|
- {
|
|
|
|
- Config_PrintSettings();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 509: //M509 Force language selection
|
|
|
|
- {
|
|
|
|
- lcd_force_language_selection();
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
- case 540:
|
|
|
|
- {
|
|
|
|
- if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
- case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
|
|
- {
|
|
|
|
- float value;
|
|
|
|
- if (code_seen('Z'))
|
|
|
|
- {
|
|
|
|
- value = code_value();
|
|
|
|
- if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
|
|
|
|
- {
|
|
|
|
- zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
|
|
|
|
- SERIAL_ECHORPGM(MSG_Z_MIN);
|
|
|
|
- SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
|
|
- SERIAL_ECHORPGM(MSG_Z_MAX);
|
|
|
|
- SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
|
|
|
|
- SERIAL_ECHO(-zprobe_zoffset);
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
-
|
|
|
|
- #ifdef FILAMENTCHANGEENABLE
|
|
|
|
- case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
|
|
- {
|
|
|
|
- MYSERIAL.println("!!!!M600!!!!");
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- float target[4];
|
|
|
|
- float lastpos[4];
|
|
|
|
-
|
|
|
|
- if (farm_mode)
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
- prusa_statistics(22);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- feedmultiplyBckp=feedmultiply;
|
|
|
|
- int8_t TooLowZ = 0;
|
|
|
|
-
|
|
|
|
- target[X_AXIS]=current_position[X_AXIS];
|
|
|
|
- target[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
- target[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
- target[E_AXIS]=current_position[E_AXIS];
|
|
|
|
- lastpos[X_AXIS]=current_position[X_AXIS];
|
|
|
|
- lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
- lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
- lastpos[E_AXIS]=current_position[E_AXIS];
|
|
|
|
-
|
|
|
|
- //Restract extruder
|
|
|
|
- if(code_seen('E'))
|
|
|
|
- {
|
|
|
|
- target[E_AXIS]+= code_value();
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- #ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
-
|
|
|
|
- //Lift Z
|
|
|
|
- if(code_seen('Z'))
|
|
|
|
- {
|
|
|
|
- target[Z_AXIS]+= code_value();
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- #ifdef FILAMENTCHANGE_ZADD
|
|
|
|
- target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
|
|
- if(target[Z_AXIS] < 10){
|
|
|
|
- target[Z_AXIS]+= 10 ;
|
|
|
|
- TooLowZ = 1;
|
|
|
|
- }else{
|
|
|
|
- TooLowZ = 0;
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
-
|
|
|
|
- //Move XY to side
|
|
|
|
- if(code_seen('X'))
|
|
|
|
- {
|
|
|
|
- target[X_AXIS]+= code_value();
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- #ifdef FILAMENTCHANGE_XPOS
|
|
|
|
- target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- if(code_seen('Y'))
|
|
|
|
- {
|
|
|
|
- target[Y_AXIS]= code_value();
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- #ifdef FILAMENTCHANGE_YPOS
|
|
|
|
- target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- custom_message = true;
|
|
|
|
- lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
|
|
-
|
|
|
|
- // Unload filament
|
|
|
|
- if(code_seen('L'))
|
|
|
|
- {
|
|
|
|
- target[E_AXIS]+= code_value();
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- #ifdef SNMM
|
|
|
|
-
|
|
|
|
- #else
|
|
|
|
- #ifdef FILAMENTCHANGE_FINALRETRACT
|
|
|
|
- target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
|
|
|
- #endif
|
|
|
|
- #endif // SNMM
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-#ifdef SNMM
|
|
|
|
- target[E_AXIS] += 12;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
|
|
|
|
- target[E_AXIS] += 6;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
|
|
|
|
- target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- target[E_AXIS] += (FIL_COOLING);
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
- target[E_AXIS] += (FIL_COOLING*-1);
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
- target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
-#else
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
-#endif // SNMM
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //finish moves
|
|
|
|
- st_synchronize();
|
|
|
|
- //disable extruder steppers so filament can be removed
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- delay(100);
|
|
|
|
-
|
|
|
|
- //Wait for user to insert filament
|
|
|
|
- uint8_t cnt=0;
|
|
|
|
- int counterBeep = 0;
|
|
|
|
- lcd_wait_interact();
|
|
|
|
- load_filament_time = millis();
|
|
|
|
- while(!lcd_clicked()){
|
|
|
|
-
|
|
|
|
- cnt++;
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity(true);
|
|
|
|
-
|
|
|
|
-/*#ifdef SNMM
|
|
|
|
- target[E_AXIS] += 0.002;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
-
|
|
|
|
-#endif // SNMM*/
|
|
|
|
-
|
|
|
|
- if(cnt==0)
|
|
|
|
- {
|
|
|
|
- #if BEEPER > 0
|
|
|
|
- if (counterBeep== 500){
|
|
|
|
- counterBeep = 0;
|
|
|
|
- }
|
|
|
|
- SET_OUTPUT(BEEPER);
|
|
|
|
- if (counterBeep== 0){
|
|
|
|
- WRITE(BEEPER,HIGH);
|
|
|
|
- }
|
|
|
|
- if (counterBeep== 20){
|
|
|
|
- WRITE(BEEPER,LOW);
|
|
|
|
- }
|
|
|
|
- counterBeep++;
|
|
|
|
- #else
|
|
|
|
- #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
|
|
- lcd_buzz(1000/6,100);
|
|
|
|
- #else
|
|
|
|
- lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
|
|
- #endif
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-#ifdef SNMM
|
|
|
|
- display_loading();
|
|
|
|
- do {
|
|
|
|
- target[E_AXIS] += 0.002;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
- delay_keep_alive(2);
|
|
|
|
- } while (!lcd_clicked());
|
|
|
|
- /*if (millis() - load_filament_time > 2) {
|
|
|
|
- load_filament_time = millis();
|
|
|
|
- target[E_AXIS] += 0.001;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
|
|
|
|
- }*/
|
|
|
|
-#endif
|
|
|
|
- //Filament inserted
|
|
|
|
-
|
|
|
|
- WRITE(BEEPER,LOW);
|
|
|
|
-
|
|
|
|
- //Feed the filament to the end of nozzle quickly
|
|
|
|
-#ifdef SNMM
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- target[E_AXIS] += bowden_length[snmm_extruder];
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
|
|
- target[E_AXIS] += FIL_LOAD_LENGTH - 60;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
|
|
|
|
- target[E_AXIS] += 40;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
- target[E_AXIS] += 10;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
-#else
|
|
|
|
- target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
|
|
-#endif // SNMM
|
|
|
|
-
|
|
|
|
- //Extrude some filament
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //Wait for user to check the state
|
|
|
|
- lcd_change_fil_state = 0;
|
|
|
|
- lcd_loading_filament();
|
|
|
|
- while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
|
|
- lcd_change_fil_state = 0;
|
|
|
|
- lcd_alright();
|
|
|
|
- switch(lcd_change_fil_state){
|
|
|
|
-
|
|
|
|
- // Filament failed to load so load it again
|
|
|
|
- case 2:
|
|
|
|
-#ifdef SNMM
|
|
|
|
- display_loading();
|
|
|
|
- do {
|
|
|
|
- target[E_AXIS] += 0.002;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
- delay_keep_alive(2);
|
|
|
|
- } while (!lcd_clicked());
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- target[E_AXIS] += bowden_length[snmm_extruder];
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
|
|
- target[E_AXIS] += FIL_LOAD_LENGTH - 60;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
|
|
|
|
- target[E_AXIS] += 40;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
- target[E_AXIS] += 10;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
-
|
|
|
|
-#else
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
|
|
-#endif
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
-
|
|
|
|
- lcd_loading_filament();
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- // Filament loaded properly but color is not clear
|
|
|
|
- case 3:
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
- lcd_loading_color();
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- // Everything good
|
|
|
|
- default:
|
|
|
|
- lcd_change_success();
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //Not let's go back to print
|
|
|
|
-
|
|
|
|
- //Feed a little of filament to stabilize pressure
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
-
|
|
|
|
- //Retract
|
|
|
|
- target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
|
|
-
|
|
|
|
- //Move XY back
|
|
|
|
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
-
|
|
|
|
- //Move Z back
|
|
|
|
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
-
|
|
|
|
- //Unretract
|
|
|
|
- plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
-
|
|
|
|
- //Set E position to original
|
|
|
|
- plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
-
|
|
|
|
- //Recover feed rate
|
|
|
|
- feedmultiply=feedmultiplyBckp;
|
|
|
|
- char cmd[9];
|
|
|
|
- sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
-
|
|
|
|
- lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
- custom_message = false;
|
|
|
|
- custom_message_type = 0;
|
|
|
|
-#ifdef PAT9125
|
|
|
|
- if (fsensor_M600)
|
|
|
|
- {
|
|
|
|
- cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
|
|
|
|
- st_synchronize();
|
|
|
|
- while (!is_buffer_empty())
|
|
|
|
- {
|
|
|
|
- process_commands();
|
|
|
|
- cmdqueue_pop_front();
|
|
|
|
- }
|
|
|
|
- fsensor_enable();
|
|
|
|
- fsensor_restore_print_and_continue();
|
|
|
|
- }
|
|
|
|
-#endif //PAT9125
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- #endif //FILAMENTCHANGEENABLE
|
|
|
|
- case 601: {
|
|
|
|
- if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 602: {
|
|
|
|
- if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
-#ifdef LIN_ADVANCE
|
|
|
|
- case 900: // M900: Set LIN_ADVANCE options.
|
|
|
|
- gcode_M900();
|
|
|
|
- break;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
|
|
- {
|
|
|
|
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
- for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
|
|
|
|
- if(code_seen('B')) digipot_current(4,code_value());
|
|
|
|
- if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
|
|
|
|
- #endif
|
|
|
|
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
|
|
- if(code_seen('X')) digipot_current(0, code_value());
|
|
|
|
- #endif
|
|
|
|
- #ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
|
|
- if(code_seen('Z')) digipot_current(1, code_value());
|
|
|
|
- #endif
|
|
|
|
- #ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
|
|
- if(code_seen('E')) digipot_current(2, code_value());
|
|
|
|
- #endif
|
|
|
|
- #ifdef DIGIPOT_I2C
|
|
|
|
- // this one uses actual amps in floating point
|
|
|
|
- for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
|
|
- // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
|
|
- for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 908: // M908 Control digital trimpot directly.
|
|
|
|
- {
|
|
|
|
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
- uint8_t channel,current;
|
|
|
|
- if(code_seen('P')) channel=code_value();
|
|
|
|
- if(code_seen('S')) current=code_value();
|
|
|
|
- digitalPotWrite(channel, current);
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 910: // M910 TMC2130 init
|
|
|
|
- {
|
|
|
|
- tmc2130_init();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 911: // M911 Set TMC2130 holding currents
|
|
|
|
- {
|
|
|
|
- if (code_seen('X')) tmc2130_set_current_h(0, code_value());
|
|
|
|
- if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
|
|
|
|
- if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
|
|
|
|
- if (code_seen('E')) tmc2130_set_current_h(3, code_value());
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 912: // M912 Set TMC2130 running currents
|
|
|
|
- {
|
|
|
|
- if (code_seen('X')) tmc2130_set_current_r(0, code_value());
|
|
|
|
- if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
|
|
|
|
- if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
|
|
|
|
- if (code_seen('E')) tmc2130_set_current_r(3, code_value());
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 913: // M913 Print TMC2130 currents
|
|
|
|
- {
|
|
|
|
- tmc2130_print_currents();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 914: // M914 Set normal mode
|
|
|
|
- {
|
|
|
|
- tmc2130_mode = TMC2130_MODE_NORMAL;
|
|
|
|
- tmc2130_init();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 915: // M915 Set silent mode
|
|
|
|
- {
|
|
|
|
- tmc2130_mode = TMC2130_MODE_SILENT;
|
|
|
|
- tmc2130_init();
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 916: // M916 Set sg_thrs
|
|
|
|
- {
|
|
|
|
- if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
|
|
|
|
- if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
|
|
|
|
- if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
|
|
|
|
- if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
|
|
|
|
- MYSERIAL.print("tmc2130_sg_thr[X]=");
|
|
|
|
- MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
|
|
|
|
- MYSERIAL.print("tmc2130_sg_thr[Y]=");
|
|
|
|
- MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
|
|
|
|
- MYSERIAL.print("tmc2130_sg_thr[Z]=");
|
|
|
|
- MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
|
|
|
|
- MYSERIAL.print("tmc2130_sg_thr[E]=");
|
|
|
|
- MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 917: // M917 Set TMC2130 pwm_ampl
|
|
|
|
- {
|
|
|
|
- if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
|
|
|
|
- if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
|
|
|
|
- if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
|
|
|
|
- if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 918: // M918 Set TMC2130 pwm_grad
|
|
|
|
- {
|
|
|
|
- if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
|
|
|
|
- if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
|
|
|
|
- if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
|
|
|
|
- if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
|
|
- {
|
|
|
|
- #if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
|
|
- if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
|
|
- for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
|
|
- if(code_seen('B')) microstep_mode(4,code_value());
|
|
|
|
- microstep_readings();
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
|
|
- {
|
|
|
|
- #if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
|
|
- if(code_seen('S')) switch((int)code_value())
|
|
|
|
- {
|
|
|
|
- case 1:
|
|
|
|
- for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
|
|
|
|
- if(code_seen('B')) microstep_ms(4,code_value(),-1);
|
|
|
|
- break;
|
|
|
|
- case 2:
|
|
|
|
- for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
|
|
|
|
- if(code_seen('B')) microstep_ms(4,-1,code_value());
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- microstep_readings();
|
|
|
|
- #endif
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 701: //M701: load filament
|
|
|
|
- {
|
|
|
|
- enable_z();
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 2;
|
|
|
|
-
|
|
|
|
- lcd_setstatuspgm(MSG_LOADING_FILAMENT);
|
|
|
|
- current_position[E_AXIS] += 70;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
|
|
|
|
-
|
|
|
|
- current_position[E_AXIS] += 25;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- if (!farm_mode && loading_flag) {
|
|
|
|
- bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
-
|
|
|
|
- while (!clean) {
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
- current_position[E_AXIS] += 25;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
|
|
- st_synchronize();
|
|
|
|
- clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
- lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
- disable_z();
|
|
|
|
- loading_flag = false;
|
|
|
|
- custom_message = false;
|
|
|
|
- custom_message_type = 0;
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 702:
|
|
|
|
- {
|
|
|
|
-#ifdef SNMM
|
|
|
|
- if (code_seen('U')) {
|
|
|
|
- extr_unload_used(); //unload all filaments which were used in current print
|
|
|
|
- }
|
|
|
|
- else if (code_seen('C')) {
|
|
|
|
- extr_unload(); //unload just current filament
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- extr_unload_all(); //unload all filaments
|
|
|
|
- }
|
|
|
|
-#else
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 2;
|
|
|
|
- lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
|
|
- current_position[E_AXIS] -= 80;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
- custom_message = false;
|
|
|
|
- custom_message_type = 0;
|
|
|
|
-#endif
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 999: // M999: Restart after being stopped
|
|
|
|
- Stopped = false;
|
|
|
|
- lcd_reset_alert_level();
|
|
|
|
- gcode_LastN = Stopped_gcode_LastN;
|
|
|
|
- FlushSerialRequestResend();
|
|
|
|
- break;
|
|
|
|
- default: SERIAL_ECHOLNPGM("Invalid M code.");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- } // end if(code_seen('M')) (end of M codes)
|
|
|
|
-
|
|
|
|
- else if(code_seen('T'))
|
|
|
|
- {
|
|
|
|
- int index;
|
|
|
|
- for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
-
|
|
|
|
- if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
|
|
|
|
- SERIAL_ECHOLNPGM("Invalid T code.");
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- if (*(strchr_pointer + index) == '?') {
|
|
|
|
- tmp_extruder = choose_extruder_menu();
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- tmp_extruder = code_value();
|
|
|
|
- }
|
|
|
|
- snmm_filaments_used |= (1 << tmp_extruder); //for stop print
|
|
|
|
-#ifdef SNMM
|
|
|
|
-
|
|
|
|
- #ifdef LIN_ADVANCE
|
|
|
|
- if (snmm_extruder != tmp_extruder)
|
|
|
|
- clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- snmm_extruder = tmp_extruder;
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- delay(100);
|
|
|
|
-
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
-
|
|
|
|
- pinMode(E_MUX0_PIN, OUTPUT);
|
|
|
|
- pinMode(E_MUX1_PIN, OUTPUT);
|
|
|
|
- pinMode(E_MUX2_PIN, OUTPUT);
|
|
|
|
-
|
|
|
|
- delay(100);
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHO("T:");
|
|
|
|
- SERIAL_ECHOLN((int)tmp_extruder);
|
|
|
|
- switch (tmp_extruder) {
|
|
|
|
- case 1:
|
|
|
|
- WRITE(E_MUX0_PIN, HIGH);
|
|
|
|
- WRITE(E_MUX1_PIN, LOW);
|
|
|
|
- WRITE(E_MUX2_PIN, LOW);
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- case 2:
|
|
|
|
- WRITE(E_MUX0_PIN, LOW);
|
|
|
|
- WRITE(E_MUX1_PIN, HIGH);
|
|
|
|
- WRITE(E_MUX2_PIN, LOW);
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- case 3:
|
|
|
|
- WRITE(E_MUX0_PIN, HIGH);
|
|
|
|
- WRITE(E_MUX1_PIN, HIGH);
|
|
|
|
- WRITE(E_MUX2_PIN, LOW);
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- default:
|
|
|
|
- WRITE(E_MUX0_PIN, LOW);
|
|
|
|
- WRITE(E_MUX1_PIN, LOW);
|
|
|
|
- WRITE(E_MUX2_PIN, LOW);
|
|
|
|
-
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- delay(100);
|
|
|
|
-
|
|
|
|
-#else
|
|
|
|
- if (tmp_extruder >= EXTRUDERS) {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHOPGM("T");
|
|
|
|
- SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
|
|
- SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- boolean make_move = false;
|
|
|
|
- if (code_seen('F')) {
|
|
|
|
- make_move = true;
|
|
|
|
- next_feedrate = code_value();
|
|
|
|
- if (next_feedrate > 0.0) {
|
|
|
|
- feedrate = next_feedrate;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#if EXTRUDERS > 1
|
|
|
|
- if (tmp_extruder != active_extruder) {
|
|
|
|
- // Save current position to return to after applying extruder offset
|
|
|
|
- memcpy(destination, current_position, sizeof(destination));
|
|
|
|
- // Offset extruder (only by XY)
|
|
|
|
- int i;
|
|
|
|
- for (i = 0; i < 2; i++) {
|
|
|
|
- current_position[i] = current_position[i] -
|
|
|
|
- extruder_offset[i][active_extruder] +
|
|
|
|
- extruder_offset[i][tmp_extruder];
|
|
|
|
- }
|
|
|
|
- // Set the new active extruder and position
|
|
|
|
- active_extruder = tmp_extruder;
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
- // Move to the old position if 'F' was in the parameters
|
|
|
|
- if (make_move && Stopped == false) {
|
|
|
|
- prepare_move();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#endif
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
|
|
|
|
- SERIAL_PROTOCOLLN((int)active_extruder);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
- }
|
|
|
|
- } // end if(code_seen('T')) (end of T codes)
|
|
|
|
-
|
|
|
|
-#ifdef DEBUG_DCODES
|
|
|
|
- else if (code_seen('D')) // D codes (debug)
|
|
|
|
- {
|
|
|
|
- switch((int)code_value())
|
|
|
|
- {
|
|
|
|
- case 0: // D0 - Reset
|
|
|
|
- dcode_0(); break;
|
|
|
|
- case 1: // D1 - Clear EEPROM
|
|
|
|
- dcode_1(); break;
|
|
|
|
- case 2: // D2 - Read/Write RAM
|
|
|
|
- dcode_2(); break;
|
|
|
|
- case 3: // D3 - Read/Write EEPROM
|
|
|
|
- dcode_3(); break;
|
|
|
|
- case 4: // D4 - Read/Write PIN
|
|
|
|
- dcode_4(); break;
|
|
|
|
- case 9125: // D9125 - PAT9125
|
|
|
|
- dcode_9125(); break;
|
|
|
|
- case 5:
|
|
|
|
- MYSERIAL.println("D5 - Test");
|
|
|
|
- if (code_seen('P'))
|
|
|
|
- selectedSerialPort = (int)code_value();
|
|
|
|
- MYSERIAL.print("selectedSerialPort = ");
|
|
|
|
- MYSERIAL.println(selectedSerialPort, DEC);
|
|
|
|
- break;
|
|
|
|
- case 10: // D10 - Tell the printer that XYZ calibration went OK
|
|
|
|
- calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
|
|
|
|
- case 999:
|
|
|
|
- {
|
|
|
|
- MYSERIAL.println("D999 - crash");
|
|
|
|
-
|
|
|
|
-/* while (!is_buffer_empty())
|
|
|
|
- {
|
|
|
|
- process_commands();
|
|
|
|
- cmdqueue_pop_front();
|
|
|
|
- }*/
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_implementation_clear();
|
|
|
|
- lcd_update(2);
|
|
|
|
-
|
|
|
|
- // Increment crash counter
|
|
|
|
- uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
|
|
|
|
- crash_count++;
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
|
|
|
|
-
|
|
|
|
-#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
|
|
|
|
- bool yesno = true;
|
|
|
|
-#else
|
|
|
|
- bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
|
|
|
|
-#endif
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
- lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
- if (yesno)
|
|
|
|
- {
|
|
|
|
- enquecommand_P(PSTR("G28 X"));
|
|
|
|
- enquecommand_P(PSTR("G28 Y"));
|
|
|
|
- enquecommand_P(PSTR("D1000"));
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- enquecommand_P(PSTR("D1001"));
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 1000:
|
|
|
|
- crashdet_restore_print_and_continue();
|
|
|
|
- tmc2130_sg_stop_on_crash = true;
|
|
|
|
- break;
|
|
|
|
- case 1001:
|
|
|
|
- card.sdprinting = false;
|
|
|
|
- card.closefile();
|
|
|
|
- tmc2130_sg_stop_on_crash = true;
|
|
|
|
- break;
|
|
|
|
-/* case 4:
|
|
|
|
- {
|
|
|
|
- MYSERIAL.println("D4 - Test");
|
|
|
|
- uint8_t data[16];
|
|
|
|
- int cnt = parse_hex(strchr_pointer + 2, data, 16);
|
|
|
|
- MYSERIAL.println(cnt, DEC);
|
|
|
|
- for (int i = 0; i < cnt; i++)
|
|
|
|
- {
|
|
|
|
- serial_print_hex_byte(data[i]);
|
|
|
|
- MYSERIAL.write(' ');
|
|
|
|
- }
|
|
|
|
- MYSERIAL.write('\n');
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
-/* case 3:
|
|
|
|
- if (code_seen('L')) // lcd pwm (0-255)
|
|
|
|
- {
|
|
|
|
- lcdSoftPwm = (int)code_value();
|
|
|
|
- }
|
|
|
|
- if (code_seen('B')) // lcd blink delay (0-255)
|
|
|
|
- {
|
|
|
|
- lcdBlinkDelay = (int)code_value();
|
|
|
|
- }
|
|
|
|
-// calibrate_z_auto();
|
|
|
|
-/* MYSERIAL.print("fsensor_enable()");
|
|
|
|
-#ifdef PAT9125
|
|
|
|
- fsensor_enable();
|
|
|
|
-#endif*/
|
|
|
|
- break;
|
|
|
|
-// case 4:
|
|
|
|
-// lcdBlinkDelay = 10;
|
|
|
|
-/* MYSERIAL.print("fsensor_disable()");
|
|
|
|
-#ifdef PAT9125
|
|
|
|
- fsensor_disable();
|
|
|
|
-#endif
|
|
|
|
- break;*/
|
|
|
|
-// break;
|
|
|
|
-/* case 5:
|
|
|
|
- {
|
|
|
|
- MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
|
|
|
|
- int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
|
|
|
|
- MYSERIAL.println(val);
|
|
|
|
- homeaxis(0);
|
|
|
|
- }
|
|
|
|
- break;*/
|
|
|
|
- case 6:
|
|
|
|
- {
|
|
|
|
-/* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
|
|
|
|
- int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
|
|
|
|
- MYSERIAL.println(val);*/
|
|
|
|
- homeaxis(1);
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 7:
|
|
|
|
- {
|
|
|
|
- MYSERIAL.print("pat9125_init=");
|
|
|
|
- MYSERIAL.println(pat9125_init(200, 200));
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- case 8:
|
|
|
|
- {
|
|
|
|
- MYSERIAL.print("swi2c_check=");
|
|
|
|
- MYSERIAL.println(swi2c_check(0x75));
|
|
|
|
- }
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#endif //DEBUG_DCODES
|
|
|
|
-
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
|
|
- SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
|
|
- SERIAL_ECHOLNPGM("\"(2)");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ClearToSend();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void FlushSerialRequestResend()
|
|
|
|
-{
|
|
|
|
- //char cmdbuffer[bufindr][100]="Resend:";
|
|
|
|
- MYSERIAL.flush();
|
|
|
|
- SERIAL_PROTOCOLRPGM(MSG_RESEND);
|
|
|
|
- SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
|
|
- ClearToSend();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-// Confirm the execution of a command, if sent from a serial line.
|
|
|
|
-// Execution of a command from a SD card will not be confirmed.
|
|
|
|
-void ClearToSend()
|
|
|
|
-{
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
- if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
|
|
|
|
- SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void get_coordinates()
|
|
|
|
-{
|
|
|
|
- bool seen[4]={false,false,false,false};
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
- if(code_seen(axis_codes[i]))
|
|
|
|
- {
|
|
|
|
- destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
|
|
|
- seen[i]=true;
|
|
|
|
- }
|
|
|
|
- else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
|
|
- }
|
|
|
|
- if(code_seen('F')) {
|
|
|
|
- next_feedrate = code_value();
|
|
|
|
-#ifdef MAX_SILENT_FEEDRATE
|
|
|
|
- if (tmc2130_mode == TMC2130_MODE_SILENT)
|
|
|
|
- if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
|
|
|
|
-#endif //MAX_SILENT_FEEDRATE
|
|
|
|
- if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void get_arc_coordinates()
|
|
|
|
-{
|
|
|
|
-#ifdef SF_ARC_FIX
|
|
|
|
- bool relative_mode_backup = relative_mode;
|
|
|
|
- relative_mode = true;
|
|
|
|
-#endif
|
|
|
|
- get_coordinates();
|
|
|
|
-#ifdef SF_ARC_FIX
|
|
|
|
- relative_mode=relative_mode_backup;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- if(code_seen('I')) {
|
|
|
|
- offset[0] = code_value();
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- offset[0] = 0.0;
|
|
|
|
- }
|
|
|
|
- if(code_seen('J')) {
|
|
|
|
- offset[1] = code_value();
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- offset[1] = 0.0;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void clamp_to_software_endstops(float target[3])
|
|
|
|
-{
|
|
|
|
-#ifdef DEBUG_DISABLE_SWLIMITS
|
|
|
|
- return;
|
|
|
|
-#endif //DEBUG_DISABLE_SWLIMITS
|
|
|
|
- world2machine_clamp(target[0], target[1]);
|
|
|
|
-
|
|
|
|
- // Clamp the Z coordinate.
|
|
|
|
- if (min_software_endstops) {
|
|
|
|
- float negative_z_offset = 0;
|
|
|
|
- #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
- if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
- if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
|
|
|
- #endif
|
|
|
|
- if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
|
|
|
- }
|
|
|
|
- if (max_software_endstops) {
|
|
|
|
- if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef MESH_BED_LEVELING
|
|
|
|
- void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
|
|
|
|
- float dx = x - current_position[X_AXIS];
|
|
|
|
- float dy = y - current_position[Y_AXIS];
|
|
|
|
- float dz = z - current_position[Z_AXIS];
|
|
|
|
- int n_segments = 0;
|
|
|
|
-
|
|
|
|
- if (mbl.active) {
|
|
|
|
- float len = abs(dx) + abs(dy);
|
|
|
|
- if (len > 0)
|
|
|
|
- // Split to 3cm segments or shorter.
|
|
|
|
- n_segments = int(ceil(len / 30.f));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (n_segments > 1) {
|
|
|
|
- float de = e - current_position[E_AXIS];
|
|
|
|
- for (int i = 1; i < n_segments; ++ i) {
|
|
|
|
- float t = float(i) / float(n_segments);
|
|
|
|
- plan_buffer_line(
|
|
|
|
- current_position[X_AXIS] + t * dx,
|
|
|
|
- current_position[Y_AXIS] + t * dy,
|
|
|
|
- current_position[Z_AXIS] + t * dz,
|
|
|
|
- current_position[E_AXIS] + t * de,
|
|
|
|
- feed_rate, extruder);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- // The rest of the path.
|
|
|
|
- plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
|
|
- current_position[X_AXIS] = x;
|
|
|
|
- current_position[Y_AXIS] = y;
|
|
|
|
- current_position[Z_AXIS] = z;
|
|
|
|
- current_position[E_AXIS] = e;
|
|
|
|
- }
|
|
|
|
-#endif // MESH_BED_LEVELING
|
|
|
|
-
|
|
|
|
-void prepare_move()
|
|
|
|
-{
|
|
|
|
- clamp_to_software_endstops(destination);
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
-
|
|
|
|
- // Do not use feedmultiply for E or Z only moves
|
|
|
|
- if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
-#ifdef MESH_BED_LEVELING
|
|
|
|
- mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
|
|
-#else
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
|
|
-#endif
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
- current_position[i] = destination[i];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void prepare_arc_move(char isclockwise) {
|
|
|
|
- float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
-
|
|
|
|
- // Trace the arc
|
|
|
|
- mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
|
|
|
-
|
|
|
|
- // As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
- // motion control system might still be processing the action and the real tool position
|
|
|
|
- // in any intermediate location.
|
|
|
|
- for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
- current_position[i] = destination[i];
|
|
|
|
- }
|
|
|
|
- previous_millis_cmd = millis();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
-
|
|
|
|
-#if defined(FAN_PIN)
|
|
|
|
- #if CONTROLLERFAN_PIN == FAN_PIN
|
|
|
|
- #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
|
|
|
|
- #endif
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
|
|
|
|
-unsigned long lastMotorCheck = 0;
|
|
|
|
-
|
|
|
|
-void controllerFan()
|
|
|
|
-{
|
|
|
|
- if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
|
|
|
|
- {
|
|
|
|
- lastMotorCheck = millis();
|
|
|
|
-
|
|
|
|
- if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
|
|
|
|
- #if EXTRUDERS > 2
|
|
|
|
- || !READ(E2_ENABLE_PIN)
|
|
|
|
- #endif
|
|
|
|
- #if EXTRUDER > 1
|
|
|
|
- #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
|
|
- || !READ(X2_ENABLE_PIN)
|
|
|
|
- #endif
|
|
|
|
- || !READ(E1_ENABLE_PIN)
|
|
|
|
- #endif
|
|
|
|
- || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
|
|
|
- {
|
|
|
|
- lastMotor = millis(); //... set time to NOW so the fan will turn on
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
|
|
|
|
- {
|
|
|
|
- digitalWrite(CONTROLLERFAN_PIN, 0);
|
|
|
|
- analogWrite(CONTROLLERFAN_PIN, 0);
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- // allows digital or PWM fan output to be used (see M42 handling)
|
|
|
|
- digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
|
|
- analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#ifdef TEMP_STAT_LEDS
|
|
|
|
-static bool blue_led = false;
|
|
|
|
-static bool red_led = false;
|
|
|
|
-static uint32_t stat_update = 0;
|
|
|
|
-
|
|
|
|
-void handle_status_leds(void) {
|
|
|
|
- float max_temp = 0.0;
|
|
|
|
- if(millis() > stat_update) {
|
|
|
|
- stat_update += 500; // Update every 0.5s
|
|
|
|
- for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
|
|
- max_temp = max(max_temp, degHotend(cur_extruder));
|
|
|
|
- max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
|
|
|
- }
|
|
|
|
- #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
- max_temp = max(max_temp, degTargetBed());
|
|
|
|
- max_temp = max(max_temp, degBed());
|
|
|
|
- #endif
|
|
|
|
- if((max_temp > 55.0) && (red_led == false)) {
|
|
|
|
- digitalWrite(STAT_LED_RED, 1);
|
|
|
|
- digitalWrite(STAT_LED_BLUE, 0);
|
|
|
|
- red_led = true;
|
|
|
|
- blue_led = false;
|
|
|
|
- }
|
|
|
|
- if((max_temp < 54.0) && (blue_led == false)) {
|
|
|
|
- digitalWrite(STAT_LED_RED, 0);
|
|
|
|
- digitalWrite(STAT_LED_BLUE, 1);
|
|
|
|
- red_led = false;
|
|
|
|
- blue_led = true;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
|
|
|
-{
|
|
|
|
-
|
|
|
|
-#if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
- static int killCount = 0; // make the inactivity button a bit less responsive
|
|
|
|
- const int KILL_DELAY = 10000;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- if(buflen < (BUFSIZE-1)){
|
|
|
|
- get_command();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if( (millis() - previous_millis_cmd) > max_inactive_time )
|
|
|
|
- if(max_inactive_time)
|
|
|
|
- kill("", 4);
|
|
|
|
- if(stepper_inactive_time) {
|
|
|
|
- if( (millis() - previous_millis_cmd) > stepper_inactive_time )
|
|
|
|
- {
|
|
|
|
- if(blocks_queued() == false && ignore_stepper_queue == false) {
|
|
|
|
- disable_x();
|
|
|
|
-// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
|
|
|
|
- disable_y();
|
|
|
|
- disable_z();
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
|
|
|
|
- if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
|
|
|
|
- {
|
|
|
|
- chdkActive = false;
|
|
|
|
- WRITE(CHDK, LOW);
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
-
|
|
|
|
- // Check if the kill button was pressed and wait just in case it was an accidental
|
|
|
|
- // key kill key press
|
|
|
|
- // -------------------------------------------------------------------------------
|
|
|
|
- if( 0 == READ(KILL_PIN) )
|
|
|
|
- {
|
|
|
|
- killCount++;
|
|
|
|
- }
|
|
|
|
- else if (killCount > 0)
|
|
|
|
- {
|
|
|
|
- killCount--;
|
|
|
|
- }
|
|
|
|
- // Exceeded threshold and we can confirm that it was not accidental
|
|
|
|
- // KILL the machine
|
|
|
|
- // ----------------------------------------------------------------
|
|
|
|
- if ( killCount >= KILL_DELAY)
|
|
|
|
- {
|
|
|
|
- kill("", 5);
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
- controllerFan(); //Check if fan should be turned on to cool stepper drivers down
|
|
|
|
- #endif
|
|
|
|
- #ifdef EXTRUDER_RUNOUT_PREVENT
|
|
|
|
- if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
|
|
|
|
- if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
|
|
|
|
- {
|
|
|
|
- bool oldstatus=READ(E0_ENABLE_PIN);
|
|
|
|
- enable_e0();
|
|
|
|
- float oldepos=current_position[E_AXIS];
|
|
|
|
- float oldedes=destination[E_AXIS];
|
|
|
|
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
|
|
- destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
|
|
|
|
- EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
|
|
|
|
- current_position[E_AXIS]=oldepos;
|
|
|
|
- destination[E_AXIS]=oldedes;
|
|
|
|
- plan_set_e_position(oldepos);
|
|
|
|
- previous_millis_cmd=millis();
|
|
|
|
- st_synchronize();
|
|
|
|
- WRITE(E0_ENABLE_PIN,oldstatus);
|
|
|
|
- }
|
|
|
|
- #endif
|
|
|
|
- #ifdef TEMP_STAT_LEDS
|
|
|
|
- handle_status_leds();
|
|
|
|
- #endif
|
|
|
|
- check_axes_activity();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void kill(const char *full_screen_message, unsigned char id)
|
|
|
|
-{
|
|
|
|
- SERIAL_ECHOPGM("KILL: ");
|
|
|
|
- MYSERIAL.println(int(id));
|
|
|
|
- //return;
|
|
|
|
- cli(); // Stop interrupts
|
|
|
|
- disable_heater();
|
|
|
|
-
|
|
|
|
- disable_x();
|
|
|
|
-// SERIAL_ECHOLNPGM("kill - disable Y");
|
|
|
|
- disable_y();
|
|
|
|
- disable_z();
|
|
|
|
- disable_e0();
|
|
|
|
- disable_e1();
|
|
|
|
- disable_e2();
|
|
|
|
-
|
|
|
|
-#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
- pinMode(PS_ON_PIN,INPUT);
|
|
|
|
-#endif
|
|
|
|
- SERIAL_ERROR_START;
|
|
|
|
- SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
|
|
|
|
- if (full_screen_message != NULL) {
|
|
|
|
- SERIAL_ERRORLNRPGM(full_screen_message);
|
|
|
|
- lcd_display_message_fullscreen_P(full_screen_message);
|
|
|
|
- } else {
|
|
|
|
- LCD_ALERTMESSAGERPGM(MSG_KILLED);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // FMC small patch to update the LCD before ending
|
|
|
|
- sei(); // enable interrupts
|
|
|
|
- for ( int i=5; i--; lcd_update())
|
|
|
|
- {
|
|
|
|
- delay(200);
|
|
|
|
- }
|
|
|
|
- cli(); // disable interrupts
|
|
|
|
- suicide();
|
|
|
|
- while(1) { /* Intentionally left empty */ } // Wait for reset
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void Stop()
|
|
|
|
-{
|
|
|
|
- disable_heater();
|
|
|
|
- if(Stopped == false) {
|
|
|
|
- Stopped = true;
|
|
|
|
- Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
|
|
- SERIAL_ERROR_START;
|
|
|
|
- SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
|
|
|
|
- LCD_MESSAGERPGM(MSG_STOPPED);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-bool IsStopped() { return Stopped; };
|
|
|
|
-
|
|
|
|
-#ifdef FAST_PWM_FAN
|
|
|
|
-void setPwmFrequency(uint8_t pin, int val)
|
|
|
|
-{
|
|
|
|
- val &= 0x07;
|
|
|
|
- switch(digitalPinToTimer(pin))
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
- #if defined(TCCR0A)
|
|
|
|
- case TIMER0A:
|
|
|
|
- case TIMER0B:
|
|
|
|
-// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
|
|
-// TCCR0B |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(TCCR1A)
|
|
|
|
- case TIMER1A:
|
|
|
|
- case TIMER1B:
|
|
|
|
-// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
|
|
-// TCCR1B |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(TCCR2)
|
|
|
|
- case TIMER2:
|
|
|
|
- case TIMER2:
|
|
|
|
- TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
|
|
- TCCR2 |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(TCCR2A)
|
|
|
|
- case TIMER2A:
|
|
|
|
- case TIMER2B:
|
|
|
|
- TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
|
|
- TCCR2B |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(TCCR3A)
|
|
|
|
- case TIMER3A:
|
|
|
|
- case TIMER3B:
|
|
|
|
- case TIMER3C:
|
|
|
|
- TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
|
|
- TCCR3B |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(TCCR4A)
|
|
|
|
- case TIMER4A:
|
|
|
|
- case TIMER4B:
|
|
|
|
- case TIMER4C:
|
|
|
|
- TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
|
|
- TCCR4B |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- #if defined(TCCR5A)
|
|
|
|
- case TIMER5A:
|
|
|
|
- case TIMER5B:
|
|
|
|
- case TIMER5C:
|
|
|
|
- TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
|
|
- TCCR5B |= val;
|
|
|
|
- break;
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-#endif //FAST_PWM_FAN
|
|
|
|
-
|
|
|
|
-bool setTargetedHotend(int code){
|
|
|
|
- tmp_extruder = active_extruder;
|
|
|
|
- if(code_seen('T')) {
|
|
|
|
- tmp_extruder = code_value();
|
|
|
|
- if(tmp_extruder >= EXTRUDERS) {
|
|
|
|
- SERIAL_ECHO_START;
|
|
|
|
- switch(code){
|
|
|
|
- case 104:
|
|
|
|
- SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
|
|
|
|
- break;
|
|
|
|
- case 105:
|
|
|
|
- SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
|
|
|
|
- break;
|
|
|
|
- case 109:
|
|
|
|
- SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
|
|
|
|
- break;
|
|
|
|
- case 218:
|
|
|
|
- SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
|
|
|
|
- break;
|
|
|
|
- case 221:
|
|
|
|
- SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
|
|
- return true;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- return false;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
|
|
|
|
-{
|
|
|
|
- if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
|
|
|
|
- {
|
|
|
|
- eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
|
|
- eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
|
|
|
|
- unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
|
|
|
|
-
|
|
|
|
- eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
|
|
|
|
- eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
|
|
|
|
-
|
|
|
|
- total_filament_used = 0;
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-float calculate_volumetric_multiplier(float diameter) {
|
|
|
|
- float area = .0;
|
|
|
|
- float radius = .0;
|
|
|
|
-
|
|
|
|
- radius = diameter * .5;
|
|
|
|
- if (! volumetric_enabled || radius == 0) {
|
|
|
|
- area = 1;
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- area = M_PI * pow(radius, 2);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 1.0 / area;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void calculate_volumetric_multipliers() {
|
|
|
|
- volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
|
|
|
|
-#if EXTRUDERS > 1
|
|
|
|
- volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
|
|
|
|
-#if EXTRUDERS > 2
|
|
|
|
- volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
|
|
|
|
-#endif
|
|
|
|
-#endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void delay_keep_alive(unsigned int ms)
|
|
|
|
-{
|
|
|
|
- for (;;) {
|
|
|
|
- manage_heater();
|
|
|
|
- // Manage inactivity, but don't disable steppers on timeout.
|
|
|
|
- manage_inactivity(true);
|
|
|
|
- lcd_update();
|
|
|
|
- if (ms == 0)
|
|
|
|
- break;
|
|
|
|
- else if (ms >= 50) {
|
|
|
|
- delay(50);
|
|
|
|
- ms -= 50;
|
|
|
|
- } else {
|
|
|
|
- delay(ms);
|
|
|
|
- ms = 0;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void wait_for_heater(long codenum) {
|
|
|
|
-
|
|
|
|
-#ifdef TEMP_RESIDENCY_TIME
|
|
|
|
- long residencyStart;
|
|
|
|
- residencyStart = -1;
|
|
|
|
- /* continue to loop until we have reached the target temp
|
|
|
|
- _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
|
|
- while ((!cancel_heatup) && ((residencyStart == -1) ||
|
|
|
|
- (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
|
|
|
|
-#else
|
|
|
|
- while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
|
|
|
|
-#endif //TEMP_RESIDENCY_TIME
|
|
|
|
- if ((millis() - codenum) > 1000UL)
|
|
|
|
- { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
|
|
|
|
- if (!farm_mode) {
|
|
|
|
- SERIAL_PROTOCOLPGM("T:");
|
|
|
|
- SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
|
|
|
|
- SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
- SERIAL_PROTOCOL((int)tmp_extruder);
|
|
|
|
-
|
|
|
|
-#ifdef TEMP_RESIDENCY_TIME
|
|
|
|
- SERIAL_PROTOCOLPGM(" W:");
|
|
|
|
- if (residencyStart > -1)
|
|
|
|
- {
|
|
|
|
- codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
|
|
- SERIAL_PROTOCOLLN(codenum);
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- SERIAL_PROTOCOLLN("?");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#else
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
-#endif
|
|
|
|
- codenum = millis();
|
|
|
|
- }
|
|
|
|
- manage_heater();
|
|
|
|
- manage_inactivity();
|
|
|
|
- lcd_update();
|
|
|
|
-#ifdef TEMP_RESIDENCY_TIME
|
|
|
|
- /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
|
|
- or when current temp falls outside the hysteresis after target temp was reached */
|
|
|
|
- if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
|
|
|
|
- (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
|
|
|
|
- (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
|
|
|
|
- {
|
|
|
|
- residencyStart = millis();
|
|
|
|
- }
|
|
|
|
-#endif //TEMP_RESIDENCY_TIME
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void check_babystep() {
|
|
|
|
- int babystep_z;
|
|
|
|
- EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
|
|
- if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
|
|
|
|
- babystep_z = 0; //if babystep value is out of min max range, set it to 0
|
|
|
|
- SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
|
|
|
|
- EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
|
|
- lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-#ifdef DIS
|
|
|
|
-void d_setup()
|
|
|
|
-{
|
|
|
|
- pinMode(D_DATACLOCK, INPUT_PULLUP);
|
|
|
|
- pinMode(D_DATA, INPUT_PULLUP);
|
|
|
|
- pinMode(D_REQUIRE, OUTPUT);
|
|
|
|
- digitalWrite(D_REQUIRE, HIGH);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-float d_ReadData()
|
|
|
|
-{
|
|
|
|
- int digit[13];
|
|
|
|
- String mergeOutput;
|
|
|
|
- float output;
|
|
|
|
-
|
|
|
|
- digitalWrite(D_REQUIRE, HIGH);
|
|
|
|
- for (int i = 0; i<13; i++)
|
|
|
|
- {
|
|
|
|
- for (int j = 0; j < 4; j++)
|
|
|
|
- {
|
|
|
|
- while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
|
|
- while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
|
|
- bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- digitalWrite(D_REQUIRE, LOW);
|
|
|
|
- mergeOutput = "";
|
|
|
|
- output = 0;
|
|
|
|
- for (int r = 5; r <= 10; r++) //Merge digits
|
|
|
|
- {
|
|
|
|
- mergeOutput += digit[r];
|
|
|
|
- }
|
|
|
|
- output = mergeOutput.toFloat();
|
|
|
|
-
|
|
|
|
- if (digit[4] == 8) //Handle sign
|
|
|
|
- {
|
|
|
|
- output *= -1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
|
|
- {
|
|
|
|
- output /= 10;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return output;
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
|
|
|
|
- int t1 = 0;
|
|
|
|
- int t_delay = 0;
|
|
|
|
- int digit[13];
|
|
|
|
- int m;
|
|
|
|
- char str[3];
|
|
|
|
- //String mergeOutput;
|
|
|
|
- char mergeOutput[15];
|
|
|
|
- float output;
|
|
|
|
-
|
|
|
|
- int mesh_point = 0; //index number of calibration point
|
|
|
|
- float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
|
|
|
|
- float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
-
|
|
|
|
- float mesh_home_z_search = 4;
|
|
|
|
- float row[x_points_num];
|
|
|
|
- int ix = 0;
|
|
|
|
- int iy = 0;
|
|
|
|
-
|
|
|
|
- char* filename_wldsd = "wldsd.txt";
|
|
|
|
- char data_wldsd[70];
|
|
|
|
- char numb_wldsd[10];
|
|
|
|
-
|
|
|
|
- d_setup();
|
|
|
|
-
|
|
|
|
- if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
- // We don't know where we are! HOME!
|
|
|
|
- // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
- // There shall be always enough space reserved for these commands.
|
|
|
|
- repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
-
|
|
|
|
- enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
- enquecommand_front_P((PSTR("G1 Z5")));
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
- bool custom_message_old = custom_message;
|
|
|
|
- unsigned int custom_message_type_old = custom_message_type;
|
|
|
|
- unsigned int custom_message_state_old = custom_message_state;
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 1;
|
|
|
|
- custom_message_state = (x_points_num * y_points_num) + 10;
|
|
|
|
- lcd_update(1);
|
|
|
|
-
|
|
|
|
- mbl.reset();
|
|
|
|
- babystep_undo();
|
|
|
|
-
|
|
|
|
- card.openFile(filename_wldsd, false);
|
|
|
|
-
|
|
|
|
- current_position[Z_AXIS] = mesh_home_z_search;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
|
|
-
|
|
|
|
- int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
|
|
- int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
|
|
- int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
|
|
-
|
|
|
|
- setup_for_endstop_move(false);
|
|
|
|
-
|
|
|
|
- SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
|
|
- SERIAL_PROTOCOL(x_points_num);
|
|
|
|
- SERIAL_PROTOCOLPGM(",");
|
|
|
|
- SERIAL_PROTOCOL(y_points_num);
|
|
|
|
- SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
|
|
- SERIAL_PROTOCOL(mesh_home_z_search);
|
|
|
|
- SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
|
|
|
|
- SERIAL_PROTOCOL(x_dimension);
|
|
|
|
- SERIAL_PROTOCOLPGM(",");
|
|
|
|
- SERIAL_PROTOCOL(y_dimension);
|
|
|
|
- SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
|
|
-
|
|
|
|
- while (mesh_point != x_points_num * y_points_num) {
|
|
|
|
- ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
- iy = mesh_point / x_points_num;
|
|
|
|
- if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
|
|
|
|
- float z0 = 0.f;
|
|
|
|
- current_position[Z_AXIS] = mesh_home_z_search;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
|
|
|
|
- current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
|
|
|
|
-
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
|
|
- break;
|
|
|
|
- card.closefile();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
|
|
- //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
|
|
|
|
- //strcat(data_wldsd, numb_wldsd);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //MYSERIAL.println(data_wldsd);
|
|
|
|
- //delay(1000);
|
|
|
|
- //delay(3000);
|
|
|
|
- //t1 = millis();
|
|
|
|
-
|
|
|
|
- //while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
|
|
- //while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
|
|
- memset(digit, 0, sizeof(digit));
|
|
|
|
- //cli();
|
|
|
|
- digitalWrite(D_REQUIRE, LOW);
|
|
|
|
-
|
|
|
|
- for (int i = 0; i<13; i++)
|
|
|
|
- {
|
|
|
|
- //t1 = millis();
|
|
|
|
- for (int j = 0; j < 4; j++)
|
|
|
|
- {
|
|
|
|
- while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
|
|
- while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
|
|
- bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
|
|
- }
|
|
|
|
- //t_delay = (millis() - t1);
|
|
|
|
- //SERIAL_PROTOCOLPGM(" ");
|
|
|
|
- //SERIAL_PROTOCOL_F(t_delay, 5);
|
|
|
|
- //SERIAL_PROTOCOLPGM(" ");
|
|
|
|
- }
|
|
|
|
- //sei();
|
|
|
|
- digitalWrite(D_REQUIRE, HIGH);
|
|
|
|
- mergeOutput[0] = '\0';
|
|
|
|
- output = 0;
|
|
|
|
- for (int r = 5; r <= 10; r++) //Merge digits
|
|
|
|
- {
|
|
|
|
- sprintf(str, "%d", digit[r]);
|
|
|
|
- strcat(mergeOutput, str);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- output = atof(mergeOutput);
|
|
|
|
-
|
|
|
|
- if (digit[4] == 8) //Handle sign
|
|
|
|
- {
|
|
|
|
- output *= -1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
|
|
- {
|
|
|
|
- output *= 0.1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //output = d_ReadData();
|
|
|
|
-
|
|
|
|
- //row[ix] = current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
- memset(data_wldsd, 0, sizeof(data_wldsd));
|
|
|
|
-
|
|
|
|
- for (int i = 0; i <3; i++) {
|
|
|
|
- memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
|
|
- dtostrf(current_position[i], 8, 5, numb_wldsd);
|
|
|
|
- strcat(data_wldsd, numb_wldsd);
|
|
|
|
- strcat(data_wldsd, ";");
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
|
|
- dtostrf(output, 8, 5, numb_wldsd);
|
|
|
|
- strcat(data_wldsd, numb_wldsd);
|
|
|
|
- //strcat(data_wldsd, ";");
|
|
|
|
- card.write_command(data_wldsd);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //row[ix] = d_ReadData();
|
|
|
|
-
|
|
|
|
- row[ix] = output; // current_position[Z_AXIS];
|
|
|
|
-
|
|
|
|
- if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
|
|
|
|
- for (int i = 0; i < x_points_num; i++) {
|
|
|
|
- SERIAL_PROTOCOLPGM(" ");
|
|
|
|
- SERIAL_PROTOCOL_F(row[i], 5);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- }
|
|
|
|
- custom_message_state--;
|
|
|
|
- mesh_point++;
|
|
|
|
- lcd_update(1);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- card.closefile();
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-void temp_compensation_start() {
|
|
|
|
-
|
|
|
|
- custom_message = true;
|
|
|
|
- custom_message_type = 5;
|
|
|
|
- custom_message_state = PINDA_HEAT_T + 1;
|
|
|
|
- lcd_update(2);
|
|
|
|
- if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
|
|
|
|
- current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
|
|
- }
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
-
|
|
|
|
- current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
- current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
- current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
|
|
|
|
-
|
|
|
|
- for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- custom_message_state = PINDA_HEAT_T - i;
|
|
|
|
- if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
|
|
|
|
- else lcd_update(1);
|
|
|
|
- }
|
|
|
|
- custom_message_type = 0;
|
|
|
|
- custom_message_state = 0;
|
|
|
|
- custom_message = false;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void temp_compensation_apply() {
|
|
|
|
- int i_add;
|
|
|
|
- int compensation_value;
|
|
|
|
- int z_shift = 0;
|
|
|
|
- float z_shift_mm;
|
|
|
|
-
|
|
|
|
- if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
|
|
|
|
- if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
|
|
|
|
- i_add = (target_temperature_bed - 60) / 10;
|
|
|
|
- EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
|
|
|
|
- z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
|
|
|
|
- }else {
|
|
|
|
- //interpolation
|
|
|
|
- z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
- }
|
|
|
|
- SERIAL_PROTOCOLPGM("\n");
|
|
|
|
- SERIAL_PROTOCOLPGM("Z shift applied:");
|
|
|
|
- MYSERIAL.print(z_shift_mm);
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- plan_set_z_position(current_position[Z_AXIS]);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- //we have no temp compensation data
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-float temp_comp_interpolation(float inp_temperature) {
|
|
|
|
-
|
|
|
|
- //cubic spline interpolation
|
|
|
|
-
|
|
|
|
- int n, i, j, k;
|
|
|
|
- float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
|
|
|
|
- int shift[10];
|
|
|
|
- int temp_C[10];
|
|
|
|
-
|
|
|
|
- n = 6; //number of measured points
|
|
|
|
-
|
|
|
|
- shift[0] = 0;
|
|
|
|
- for (i = 0; i < n; i++) {
|
|
|
|
- if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
|
|
|
|
- temp_C[i] = 50 + i * 10; //temperature in C
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
- temp_C[i] = 35 + i * 5; //temperature in C
|
|
|
|
-#else
|
|
|
|
- temp_C[i] = 50 + i * 10; //temperature in C
|
|
|
|
-#endif
|
|
|
|
- x[i] = (float)temp_C[i];
|
|
|
|
- f[i] = (float)shift[i];
|
|
|
|
- }
|
|
|
|
- if (inp_temperature < x[0]) return 0;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- for (i = n - 1; i>0; i--) {
|
|
|
|
- F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
|
|
|
|
- h[i - 1] = x[i] - x[i - 1];
|
|
|
|
- }
|
|
|
|
- //*********** formation of h, s , f matrix **************
|
|
|
|
- for (i = 1; i<n - 1; i++) {
|
|
|
|
- m[i][i] = 2 * (h[i - 1] + h[i]);
|
|
|
|
- if (i != 1) {
|
|
|
|
- m[i][i - 1] = h[i - 1];
|
|
|
|
- m[i - 1][i] = h[i - 1];
|
|
|
|
- }
|
|
|
|
- m[i][n - 1] = 6 * (F[i + 1] - F[i]);
|
|
|
|
- }
|
|
|
|
- //*********** forward elimination **************
|
|
|
|
- for (i = 1; i<n - 2; i++) {
|
|
|
|
- temp = (m[i + 1][i] / m[i][i]);
|
|
|
|
- for (j = 1; j <= n - 1; j++)
|
|
|
|
- m[i + 1][j] -= temp*m[i][j];
|
|
|
|
- }
|
|
|
|
- //*********** backward substitution *********
|
|
|
|
- for (i = n - 2; i>0; i--) {
|
|
|
|
- sum = 0;
|
|
|
|
- for (j = i; j <= n - 2; j++)
|
|
|
|
- sum += m[i][j] * s[j];
|
|
|
|
- s[i] = (m[i][n - 1] - sum) / m[i][i];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (i = 0; i<n - 1; i++)
|
|
|
|
- if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
|
|
|
|
- a = (s[i + 1] - s[i]) / (6 * h[i]);
|
|
|
|
- b = s[i] / 2;
|
|
|
|
- c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
|
|
|
|
- d = f[i];
|
|
|
|
- sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return sum;
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef PINDA_THERMISTOR
|
|
|
|
-float temp_compensation_pinda_thermistor_offset()
|
|
|
|
-{
|
|
|
|
- if (!temp_cal_active) return 0;
|
|
|
|
- if (!calibration_status_pinda()) return 0;
|
|
|
|
- return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
-}
|
|
|
|
-#endif //PINDA_THERMISTOR
|
|
|
|
-
|
|
|
|
-void long_pause() //long pause print
|
|
|
|
-{
|
|
|
|
- st_synchronize();
|
|
|
|
-
|
|
|
|
- //save currently set parameters to global variables
|
|
|
|
- saved_feedmultiply = feedmultiply;
|
|
|
|
- HotendTempBckp = degTargetHotend(active_extruder);
|
|
|
|
- fanSpeedBckp = fanSpeed;
|
|
|
|
- start_pause_print = millis();
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //save position
|
|
|
|
- pause_lastpos[X_AXIS] = current_position[X_AXIS];
|
|
|
|
- pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
- pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
- pause_lastpos[E_AXIS] = current_position[E_AXIS];
|
|
|
|
-
|
|
|
|
- //retract
|
|
|
|
- current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
-
|
|
|
|
- //lift z
|
|
|
|
- current_position[Z_AXIS] += Z_PAUSE_LIFT;
|
|
|
|
- if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
|
|
-
|
|
|
|
- //set nozzle target temperature to 0
|
|
|
|
- setTargetHotend(0, 0);
|
|
|
|
- setTargetHotend(0, 1);
|
|
|
|
- setTargetHotend(0, 2);
|
|
|
|
-
|
|
|
|
- //Move XY to side
|
|
|
|
- current_position[X_AXIS] = X_PAUSE_POS;
|
|
|
|
- current_position[Y_AXIS] = Y_PAUSE_POS;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
|
|
-
|
|
|
|
- // Turn off the print fan
|
|
|
|
- fanSpeed = 0;
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void serialecho_temperatures() {
|
|
|
|
- float tt = degHotend(active_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM("T:");
|
|
|
|
- SERIAL_PROTOCOL(tt);
|
|
|
|
- SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
- SERIAL_PROTOCOL((int)active_extruder);
|
|
|
|
- SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
- SERIAL_PROTOCOL_F(degBed(), 1);
|
|
|
|
- SERIAL_PROTOCOLLN("");
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-extern uint32_t sdpos_atomic;
|
|
|
|
-
|
|
|
|
-void uvlo_()
|
|
|
|
-{
|
|
|
|
- // Conserve power as soon as possible.
|
|
|
|
- disable_x();
|
|
|
|
- disable_y();
|
|
|
|
-
|
|
|
|
- // Indicate that the interrupt has been triggered.
|
|
|
|
- SERIAL_ECHOLNPGM("UVLO");
|
|
|
|
-
|
|
|
|
- // Read out the current Z motor microstep counter. This will be later used
|
|
|
|
- // for reaching the zero full step before powering off.
|
|
|
|
- uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
|
|
|
-
|
|
|
|
- // Calculate the file position, from which to resume this print.
|
|
|
|
- long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
|
|
|
|
- {
|
|
|
|
- uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
|
|
|
|
- sd_position -= sdlen_planner;
|
|
|
|
- uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
|
|
|
|
- sd_position -= sdlen_cmdqueue;
|
|
|
|
- if (sd_position < 0) sd_position = 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Backup the feedrate in mm/min.
|
|
|
|
- int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
|
|
|
|
-
|
|
|
|
- // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
|
|
|
|
- // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
|
|
|
|
- // are in action.
|
|
|
|
- planner_abort_hard();
|
|
|
|
-
|
|
|
|
- // Clean the input command queue.
|
|
|
|
- cmdqueue_reset();
|
|
|
|
- card.sdprinting = false;
|
|
|
|
-// card.closefile();
|
|
|
|
-
|
|
|
|
- // Enable stepper driver interrupt to move Z axis.
|
|
|
|
- // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
|
|
|
|
- //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
|
|
|
|
- // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
|
|
|
|
- sei();
|
|
|
|
- plan_buffer_line(
|
|
|
|
- current_position[X_AXIS],
|
|
|
|
- current_position[Y_AXIS],
|
|
|
|
- current_position[Z_AXIS],
|
|
|
|
- current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
|
|
- 400, active_extruder);
|
|
|
|
- plan_buffer_line(
|
|
|
|
- current_position[X_AXIS],
|
|
|
|
- current_position[Y_AXIS],
|
|
|
|
- current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
|
|
|
|
- current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
|
|
- 40, active_extruder);
|
|
|
|
-
|
|
|
|
- // Move Z up to the next 0th full step.
|
|
|
|
- // Write the file position.
|
|
|
|
- eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
|
|
|
|
- // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
|
|
|
|
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
|
|
- uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
- uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
|
|
- // Scale the z value to 1u resolution.
|
|
|
|
- int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
|
|
|
|
- eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
|
|
|
|
- }
|
|
|
|
- // Read out the current Z motor microstep counter. This will be later used
|
|
|
|
- // for reaching the zero full step before powering off.
|
|
|
|
- eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
|
|
|
- // Store the current position.
|
|
|
|
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
|
|
|
|
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
|
|
|
|
- eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
|
|
|
|
- // Store the current feed rate, temperatures and fan speed.
|
|
|
|
- EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
|
|
|
|
- // Finaly store the "power outage" flag.
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
|
|
|
|
-
|
|
|
|
- st_synchronize();
|
|
|
|
- SERIAL_ECHOPGM("stps");
|
|
|
|
- MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
|
|
|
-#if 0
|
|
|
|
- // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
|
|
|
|
- current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
|
|
|
|
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
-#endif
|
|
|
|
- disable_z();
|
|
|
|
-
|
|
|
|
- // Increment power failure counter
|
|
|
|
- uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
|
|
|
|
- power_count++;
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOLNPGM("UVLO - end");
|
|
|
|
- cli();
|
|
|
|
- while(1);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void setup_fan_interrupt() {
|
|
|
|
-//INT7
|
|
|
|
- DDRE &= ~(1 << 7); //input pin
|
|
|
|
- PORTE &= ~(1 << 7); //no internal pull-up
|
|
|
|
-
|
|
|
|
- //start with sensing rising edge
|
|
|
|
- EICRB &= ~(1 << 6);
|
|
|
|
- EICRB |= (1 << 7);
|
|
|
|
-
|
|
|
|
- //enable INT7 interrupt
|
|
|
|
- EIMSK |= (1 << 7);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-ISR(INT7_vect) {
|
|
|
|
- //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
|
|
|
|
-
|
|
|
|
- if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
|
|
|
|
- if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
|
|
|
|
- t_fan_rising_edge = millis();
|
|
|
|
- }
|
|
|
|
- else { //interrupt was triggered by falling edge
|
|
|
|
- if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
|
|
|
|
- fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- EICRB ^= (1 << 6); //change edge
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void setup_uvlo_interrupt() {
|
|
|
|
- DDRE &= ~(1 << 4); //input pin
|
|
|
|
- PORTE &= ~(1 << 4); //no internal pull-up
|
|
|
|
-
|
|
|
|
- //sensing falling edge
|
|
|
|
- EICRB |= (1 << 0);
|
|
|
|
- EICRB &= ~(1 << 1);
|
|
|
|
-
|
|
|
|
- //enable INT4 interrupt
|
|
|
|
- EIMSK |= (1 << 4);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-ISR(INT4_vect) {
|
|
|
|
- EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
|
|
|
|
- SERIAL_ECHOLNPGM("INT4");
|
|
|
|
- if (IS_SD_PRINTING) uvlo_();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void recover_print(uint8_t automatic) {
|
|
|
|
- char cmd[30];
|
|
|
|
- lcd_update_enable(true);
|
|
|
|
- lcd_update(2);
|
|
|
|
- lcd_setstatuspgm(MSG_RECOVERING_PRINT);
|
|
|
|
-
|
|
|
|
- recover_machine_state_after_power_panic();
|
|
|
|
-
|
|
|
|
- // Set the target bed and nozzle temperatures.
|
|
|
|
- sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
-
|
|
|
|
- // Lift the print head, so one may remove the excess priming material.
|
|
|
|
- if (current_position[Z_AXIS] < 25)
|
|
|
|
- enquecommand_P(PSTR("G1 Z25 F800"));
|
|
|
|
- // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
|
|
|
|
- enquecommand_P(PSTR("G28 X Y"));
|
|
|
|
- // Set the target bed and nozzle temperatures and wait.
|
|
|
|
- sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- enquecommand_P(PSTR("M83")); //E axis relative mode
|
|
|
|
- //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
|
|
- // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
|
|
|
|
- if(automatic == 0){
|
|
|
|
- enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
|
|
- }
|
|
|
|
- enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
|
|
|
|
- // Mark the power panic status as inactive.
|
|
|
|
- eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
- /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
|
|
|
|
- delay_keep_alive(1000);
|
|
|
|
- }*/
|
|
|
|
- SERIAL_ECHOPGM("After waiting for temp:");
|
|
|
|
- SERIAL_ECHOPGM("Current position X_AXIS:");
|
|
|
|
- MYSERIAL.println(current_position[X_AXIS]);
|
|
|
|
- SERIAL_ECHOPGM("Current position Y_AXIS:");
|
|
|
|
- MYSERIAL.println(current_position[Y_AXIS]);
|
|
|
|
-
|
|
|
|
- // Restart the print.
|
|
|
|
- restore_print_from_eeprom();
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOPGM("current_position[Z_AXIS]:");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS]);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void recover_machine_state_after_power_panic()
|
|
|
|
-{
|
|
|
|
- // 1) Recover the logical cordinates at the time of the power panic.
|
|
|
|
- // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
|
|
|
|
- current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
|
|
|
|
- current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
|
|
|
|
- // Recover the logical coordinate of the Z axis at the time of the power panic.
|
|
|
|
- // The current position after power panic is moved to the next closest 0th full step.
|
|
|
|
- current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
|
|
|
|
- UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
- memcpy(destination, current_position, sizeof(destination));
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
|
- print_world_coordinates();
|
|
|
|
-
|
|
|
|
- // 2) Initialize the logical to physical coordinate system transformation.
|
|
|
|
- world2machine_initialize();
|
|
|
|
-
|
|
|
|
- // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
|
|
|
|
- mbl.active = false;
|
|
|
|
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
|
|
- uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
- uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
|
|
- // Scale the z value to 10u resolution.
|
|
|
|
- int16_t v;
|
|
|
|
- eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
|
|
|
|
- if (v != 0)
|
|
|
|
- mbl.active = true;
|
|
|
|
- mbl.z_values[iy][ix] = float(v) * 0.001f;
|
|
|
|
- }
|
|
|
|
- if (mbl.active)
|
|
|
|
- mbl.upsample_3x3();
|
|
|
|
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
|
- print_mesh_bed_leveling_table();
|
|
|
|
-
|
|
|
|
- // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
|
|
|
|
- // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
|
|
|
|
- babystep_load();
|
|
|
|
-
|
|
|
|
- // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
|
|
|
|
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
-
|
|
|
|
- // 6) Power up the motors, mark their positions as known.
|
|
|
|
- //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
|
|
|
|
- axis_known_position[X_AXIS] = true; enable_x();
|
|
|
|
- axis_known_position[Y_AXIS] = true; enable_y();
|
|
|
|
- axis_known_position[Z_AXIS] = true; enable_z();
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
|
- print_physical_coordinates();
|
|
|
|
-
|
|
|
|
- // 7) Recover the target temperatures.
|
|
|
|
- target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
|
|
|
|
- target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void restore_print_from_eeprom() {
|
|
|
|
- float x_rec, y_rec, z_pos;
|
|
|
|
- int feedrate_rec;
|
|
|
|
- uint8_t fan_speed_rec;
|
|
|
|
- char cmd[30];
|
|
|
|
- char* c;
|
|
|
|
- char filename[13];
|
|
|
|
-
|
|
|
|
- fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
|
|
|
|
- EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
|
|
|
|
- SERIAL_ECHOPGM("Feedrate:");
|
|
|
|
- MYSERIAL.println(feedrate_rec);
|
|
|
|
- for (int i = 0; i < 8; i++) {
|
|
|
|
- filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
- filename[8] = '\0';
|
|
|
|
-
|
|
|
|
- MYSERIAL.print(filename);
|
|
|
|
- strcat_P(filename, PSTR(".gco"));
|
|
|
|
- sprintf_P(cmd, PSTR("M23 %s"), filename);
|
|
|
|
- for (c = &cmd[4]; *c; c++)
|
|
|
|
- *c = tolower(*c);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
|
|
|
|
- SERIAL_ECHOPGM("Position read from eeprom:");
|
|
|
|
- MYSERIAL.println(position);
|
|
|
|
-
|
|
|
|
- // E axis relative mode.
|
|
|
|
- enquecommand_P(PSTR("M83"));
|
|
|
|
- // Move to the XY print position in logical coordinates, where the print has been killed.
|
|
|
|
- strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
|
|
|
|
- strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
|
|
|
|
- strcat_P(cmd, PSTR(" F2000"));
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- // Move the Z axis down to the print, in logical coordinates.
|
|
|
|
- strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- // Unretract.
|
|
|
|
- enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
|
|
|
|
- // Set the feedrate saved at the power panic.
|
|
|
|
- sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- // Set the fan speed saved at the power panic.
|
|
|
|
- strcpy_P(cmd, PSTR("M106 S"));
|
|
|
|
- strcat(cmd, itostr3(int(fan_speed_rec)));
|
|
|
|
- enquecommand(cmd);
|
|
|
|
-
|
|
|
|
- // Set a position in the file.
|
|
|
|
- sprintf_P(cmd, PSTR("M26 S%lu"), position);
|
|
|
|
- enquecommand(cmd);
|
|
|
|
- // Start SD print.
|
|
|
|
- enquecommand_P(PSTR("M24"));
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-////////////////////////////////////////////////////////////////////////////////
|
|
|
|
-// new save/restore printing
|
|
|
|
-
|
|
|
|
-//extern uint32_t sdpos_atomic;
|
|
|
|
-
|
|
|
|
-bool saved_printing = false;
|
|
|
|
-uint32_t saved_sdpos = 0;
|
|
|
|
-float saved_pos[4] = {0, 0, 0, 0};
|
|
|
|
-// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
|
|
|
|
-float saved_feedrate2 = 0;
|
|
|
|
-uint8_t saved_active_extruder = 0;
|
|
|
|
-bool saved_extruder_under_pressure = false;
|
|
|
|
-
|
|
|
|
-void stop_and_save_print_to_ram(float z_move, float e_move)
|
|
|
|
-{
|
|
|
|
- if (saved_printing) return;
|
|
|
|
- cli();
|
|
|
|
- unsigned char nplanner_blocks = number_of_blocks();
|
|
|
|
- saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
|
|
|
|
- uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
|
|
|
|
- saved_sdpos -= sdlen_planner;
|
|
|
|
- uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
|
|
|
|
- saved_sdpos -= sdlen_cmdqueue;
|
|
|
|
-
|
|
|
|
-#if 0
|
|
|
|
- SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
|
|
|
|
- SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
|
|
|
|
- SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
|
|
|
|
- SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
|
|
|
|
- SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
|
|
|
|
- SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
|
|
|
|
- SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- card.setIndex(saved_sdpos);
|
|
|
|
- SERIAL_ECHOLNPGM("Content of planner buffer: ");
|
|
|
|
- for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
|
|
|
|
- MYSERIAL.print(char(card.get()));
|
|
|
|
- SERIAL_ECHOLNPGM("Content of command buffer: ");
|
|
|
|
- for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
|
|
|
|
- MYSERIAL.print(char(card.get()));
|
|
|
|
- SERIAL_ECHOLNPGM("End of command buffer");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- // Print the content of the planner buffer, line by line:
|
|
|
|
- card.setIndex(saved_sdpos);
|
|
|
|
- int8_t iline = 0;
|
|
|
|
- for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
|
|
|
|
- SERIAL_ECHOPGM("Planner line (from file): ");
|
|
|
|
- MYSERIAL.print(int(iline), DEC);
|
|
|
|
- SERIAL_ECHOPGM(", length: ");
|
|
|
|
- MYSERIAL.print(block_buffer[idx].sdlen, DEC);
|
|
|
|
- SERIAL_ECHOPGM(", steps: (");
|
|
|
|
- MYSERIAL.print(block_buffer[idx].steps_x, DEC);
|
|
|
|
- SERIAL_ECHOPGM(",");
|
|
|
|
- MYSERIAL.print(block_buffer[idx].steps_y, DEC);
|
|
|
|
- SERIAL_ECHOPGM(",");
|
|
|
|
- MYSERIAL.print(block_buffer[idx].steps_z, DEC);
|
|
|
|
- SERIAL_ECHOPGM(",");
|
|
|
|
- MYSERIAL.print(block_buffer[idx].steps_e, DEC);
|
|
|
|
- SERIAL_ECHOPGM("), events: ");
|
|
|
|
- MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
|
|
|
|
- for (int len = block_buffer[idx].sdlen; len > 0; -- len)
|
|
|
|
- MYSERIAL.print(char(card.get()));
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- {
|
|
|
|
- // Print the content of the command buffer, line by line:
|
|
|
|
- int8_t iline = 0;
|
|
|
|
- union {
|
|
|
|
- struct {
|
|
|
|
- char lo;
|
|
|
|
- char hi;
|
|
|
|
- } lohi;
|
|
|
|
- uint16_t value;
|
|
|
|
- } sdlen_single;
|
|
|
|
- int _bufindr = bufindr;
|
|
|
|
- for (int _buflen = buflen; _buflen > 0; ++ iline) {
|
|
|
|
- if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
|
|
|
|
- sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
|
|
|
|
- sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOPGM("Buffer line (from buffer): ");
|
|
|
|
- MYSERIAL.print(int(iline), DEC);
|
|
|
|
- SERIAL_ECHOPGM(", type: ");
|
|
|
|
- MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
|
|
|
|
- SERIAL_ECHOPGM(", len: ");
|
|
|
|
- MYSERIAL.println(sdlen_single.value, DEC);
|
|
|
|
- // Print the content of the buffer line.
|
|
|
|
- MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
|
|
|
|
-
|
|
|
|
- SERIAL_ECHOPGM("Buffer line (from file): ");
|
|
|
|
- MYSERIAL.print(int(iline), DEC);
|
|
|
|
- MYSERIAL.println(int(iline), DEC);
|
|
|
|
- for (; sdlen_single.value > 0; -- sdlen_single.value)
|
|
|
|
- MYSERIAL.print(char(card.get()));
|
|
|
|
-
|
|
|
|
- if (-- _buflen == 0)
|
|
|
|
- break;
|
|
|
|
- // First skip the current command ID and iterate up to the end of the string.
|
|
|
|
- for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
|
|
|
|
- // Second, skip the end of string null character and iterate until a nonzero command ID is found.
|
|
|
|
- for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
|
|
|
|
- // If the end of the buffer was empty,
|
|
|
|
- if (_bufindr == sizeof(cmdbuffer)) {
|
|
|
|
- // skip to the start and find the nonzero command.
|
|
|
|
- for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#if 0
|
|
|
|
- saved_feedrate2 = feedrate; //save feedrate
|
|
|
|
-#else
|
|
|
|
- // Try to deduce the feedrate from the first block of the planner.
|
|
|
|
- // Speed is in mm/min.
|
|
|
|
- saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- planner_abort_hard(); //abort printing
|
|
|
|
- memcpy(saved_pos, current_position, sizeof(saved_pos));
|
|
|
|
- saved_active_extruder = active_extruder; //save active_extruder
|
|
|
|
-
|
|
|
|
- saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
|
|
|
|
-
|
|
|
|
- cmdqueue_reset(); //empty cmdqueue
|
|
|
|
- card.sdprinting = false;
|
|
|
|
-// card.closefile();
|
|
|
|
- saved_printing = true;
|
|
|
|
- sei();
|
|
|
|
- if ((z_move != 0) || (e_move != 0)) { // extruder or z move
|
|
|
|
-#if 1
|
|
|
|
- // Rather than calling plan_buffer_line directly, push the move into the command queue,
|
|
|
|
- char buf[48];
|
|
|
|
- strcpy_P(buf, PSTR("G1 Z"));
|
|
|
|
- dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
|
|
|
|
- strcat_P(buf, PSTR(" E"));
|
|
|
|
- // Relative extrusion
|
|
|
|
- dtostrf(e_move, 6, 3, buf + strlen(buf));
|
|
|
|
- strcat_P(buf, PSTR(" F"));
|
|
|
|
- dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
|
|
|
|
- // At this point the command queue is empty.
|
|
|
|
- enquecommand(buf, false);
|
|
|
|
- // If this call is invoked from the main Arduino loop() function, let the caller know that the command
|
|
|
|
- // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
|
|
|
|
- repeatcommand_front();
|
|
|
|
-#else
|
|
|
|
- plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
|
|
|
|
- st_synchronize(); //wait moving
|
|
|
|
- memcpy(current_position, saved_pos, sizeof(saved_pos));
|
|
|
|
- memcpy(destination, current_position, sizeof(destination));
|
|
|
|
-#endif
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void restore_print_from_ram_and_continue(float e_move)
|
|
|
|
-{
|
|
|
|
- if (!saved_printing) return;
|
|
|
|
-// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
|
|
|
|
-// current_position[axis] = st_get_position_mm(axis);
|
|
|
|
- active_extruder = saved_active_extruder; //restore active_extruder
|
|
|
|
- feedrate = saved_feedrate2; //restore feedrate
|
|
|
|
- float e = saved_pos[E_AXIS] - e_move;
|
|
|
|
- plan_set_e_position(e);
|
|
|
|
- plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
|
|
|
|
- st_synchronize();
|
|
|
|
- memcpy(current_position, saved_pos, sizeof(saved_pos));
|
|
|
|
- memcpy(destination, current_position, sizeof(destination));
|
|
|
|
- card.setIndex(saved_sdpos);
|
|
|
|
- sdpos_atomic = saved_sdpos;
|
|
|
|
- card.sdprinting = true;
|
|
|
|
- saved_printing = false;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void print_world_coordinates()
|
|
|
|
-{
|
|
|
|
- SERIAL_ECHOPGM("world coordinates: (");
|
|
|
|
- MYSERIAL.print(current_position[X_AXIS], 3);
|
|
|
|
- SERIAL_ECHOPGM(", ");
|
|
|
|
- MYSERIAL.print(current_position[Y_AXIS], 3);
|
|
|
|
- SERIAL_ECHOPGM(", ");
|
|
|
|
- MYSERIAL.print(current_position[Z_AXIS], 3);
|
|
|
|
- SERIAL_ECHOLNPGM(")");
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void print_physical_coordinates()
|
|
|
|
-{
|
|
|
|
- SERIAL_ECHOPGM("physical coordinates: (");
|
|
|
|
- MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
|
|
|
|
- SERIAL_ECHOPGM(", ");
|
|
|
|
- MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
|
|
|
|
- SERIAL_ECHOPGM(", ");
|
|
|
|
- MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
|
|
|
|
- SERIAL_ECHOLNPGM(")");
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void print_mesh_bed_leveling_table()
|
|
|
|
-{
|
|
|
|
- SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
|
|
- for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
|
|
|
|
- for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
|
|
|
|
- MYSERIAL.print(mbl.z_values[y][x], 3);
|
|
|
|
- SERIAL_ECHOPGM(" ");
|
|
|
|
- }
|
|
|
|
- SERIAL_ECHOLNPGM("");
|
|
|
|
-}
|
|
|
|
|
|
+/* -*- c++ -*- */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ Reprap firmware based on Sprinter and grbl.
|
|
|
|
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
+
|
|
|
|
+ This program is free software: you can redistribute it and/or modify
|
|
|
|
+ it under the terms of the GNU General Public License as published by
|
|
|
|
+ the Free Software Foundation, either version 3 of the License, or
|
|
|
|
+ (at your option) any later version.
|
|
|
|
+
|
|
|
|
+ This program is distributed in the hope that it will be useful,
|
|
|
|
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
+ GNU General Public License for more details.
|
|
|
|
+
|
|
|
|
+ You should have received a copy of the GNU General Public License
|
|
|
|
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ This firmware is a mashup between Sprinter and grbl.
|
|
|
|
+ (https://github.com/kliment/Sprinter)
|
|
|
|
+ (https://github.com/simen/grbl/tree)
|
|
|
|
+
|
|
|
|
+ It has preliminary support for Matthew Roberts advance algorithm
|
|
|
|
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#include "Marlin.h"
|
|
|
|
+
|
|
|
|
+#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+#include "vector_3.h"
|
|
|
|
+ #ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
+ #include "qr_solve.h"
|
|
|
|
+ #endif
|
|
|
|
+#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
+
|
|
|
|
+#ifdef MESH_BED_LEVELING
|
|
|
|
+ #include "mesh_bed_leveling.h"
|
|
|
|
+ #include "mesh_bed_calibration.h"
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#include "ultralcd.h"
|
|
|
|
+#include "Configuration_prusa.h"
|
|
|
|
+#include "planner.h"
|
|
|
|
+#include "stepper.h"
|
|
|
|
+#include "temperature.h"
|
|
|
|
+#include "motion_control.h"
|
|
|
|
+#include "cardreader.h"
|
|
|
|
+#include "watchdog.h"
|
|
|
|
+#include "ConfigurationStore.h"
|
|
|
|
+#include "language.h"
|
|
|
|
+#include "pins_arduino.h"
|
|
|
|
+#include "math.h"
|
|
|
|
+#include "util.h"
|
|
|
|
+
|
|
|
|
+#include <avr/wdt.h>
|
|
|
|
+
|
|
|
|
+#include "Dcodes.h"
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#ifdef SWSPI
|
|
|
|
+#include "swspi.h"
|
|
|
|
+#endif //SWSPI
|
|
|
|
+
|
|
|
|
+#ifdef SWI2C
|
|
|
|
+#include "swi2c.h"
|
|
|
|
+#endif //SWI2C
|
|
|
|
+
|
|
|
|
+#ifdef PAT9125
|
|
|
|
+#include "pat9125.h"
|
|
|
|
+#include "fsensor.h"
|
|
|
|
+#endif //PAT9125
|
|
|
|
+
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+#include "tmc2130.h"
|
|
|
|
+#endif //TMC2130
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#ifdef BLINKM
|
|
|
|
+#include "BlinkM.h"
|
|
|
|
+#include "Wire.h"
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef ULTRALCD
|
|
|
|
+#include "ultralcd.h"
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#if NUM_SERVOS > 0
|
|
|
|
+#include "Servo.h"
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
+#include <SPI.h>
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#define VERSION_STRING "1.0.2"
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#include "ultralcd.h"
|
|
|
|
+
|
|
|
|
+#include "cmdqueue.h"
|
|
|
|
+
|
|
|
|
+// Macros for bit masks
|
|
|
|
+#define BIT(b) (1<<(b))
|
|
|
|
+#define TEST(n,b) (((n)&BIT(b))!=0)
|
|
|
|
+#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
|
|
|
|
+
|
|
|
|
+//Macro for print fan speed
|
|
|
|
+#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
|
|
|
|
+
|
|
|
|
+// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
|
|
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
+
|
|
|
|
+//Implemented Codes
|
|
|
|
+//-------------------
|
|
|
|
+
|
|
|
|
+// PRUSA CODES
|
|
|
|
+// P F - Returns FW versions
|
|
|
|
+// P R - Returns revision of printer
|
|
|
|
+
|
|
|
|
+// G0 -> G1
|
|
|
|
+// G1 - Coordinated Movement X Y Z E
|
|
|
|
+// G2 - CW ARC
|
|
|
|
+// G3 - CCW ARC
|
|
|
|
+// G4 - Dwell S<seconds> or P<milliseconds>
|
|
|
|
+// G10 - retract filament according to settings of M207
|
|
|
|
+// G11 - retract recover filament according to settings of M208
|
|
|
|
+// G28 - Home all Axis
|
|
|
|
+// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
|
|
+// G30 - Single Z Probe, probes bed at current XY location.
|
|
|
|
+// G31 - Dock sled (Z_PROBE_SLED only)
|
|
|
|
+// G32 - Undock sled (Z_PROBE_SLED only)
|
|
|
|
+// G80 - Automatic mesh bed leveling
|
|
|
|
+// G81 - Print bed profile
|
|
|
|
+// G90 - Use Absolute Coordinates
|
|
|
|
+// G91 - Use Relative Coordinates
|
|
|
|
+// G92 - Set current position to coordinates given
|
|
|
|
+
|
|
|
|
+// M Codes
|
|
|
|
+// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
|
|
+// M1 - Same as M0
|
|
|
|
+// M17 - Enable/Power all stepper motors
|
|
|
|
+// M18 - Disable all stepper motors; same as M84
|
|
|
|
+// M20 - List SD card
|
|
|
|
+// M21 - Init SD card
|
|
|
|
+// M22 - Release SD card
|
|
|
|
+// M23 - Select SD file (M23 filename.g)
|
|
|
|
+// M24 - Start/resume SD print
|
|
|
|
+// M25 - Pause SD print
|
|
|
|
+// M26 - Set SD position in bytes (M26 S12345)
|
|
|
|
+// M27 - Report SD print status
|
|
|
|
+// M28 - Start SD write (M28 filename.g)
|
|
|
|
+// M29 - Stop SD write
|
|
|
|
+// M30 - Delete file from SD (M30 filename.g)
|
|
|
|
+// M31 - Output time since last M109 or SD card start to serial
|
|
|
|
+// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
|
|
+// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
|
|
+// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
|
|
+// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
|
|
+// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
|
|
+// M80 - Turn on Power Supply
|
|
|
|
+// M81 - Turn off Power Supply
|
|
|
|
+// M82 - Set E codes absolute (default)
|
|
|
|
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
|
|
+// M84 - Disable steppers until next move,
|
|
|
|
+// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
|
|
+// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
|
|
+// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
|
|
+// M104 - Set extruder target temp
|
|
|
|
+// M105 - Read current temp
|
|
|
|
+// M106 - Fan on
|
|
|
|
+// M107 - Fan off
|
|
|
|
+// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
|
|
+// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
|
|
+// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
|
|
+// M112 - Emergency stop
|
|
|
|
+// M114 - Output current position to serial port
|
|
|
|
+// M115 - Capabilities string
|
|
|
|
+// M117 - display message
|
|
|
|
+// M119 - Output Endstop status to serial port
|
|
|
|
+// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
|
|
+// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
|
|
+// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
|
|
+// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
|
|
+// M140 - Set bed target temp
|
|
|
|
+// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
|
|
+// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
|
|
+// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
|
|
+// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
|
|
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
|
|
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
|
|
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
|
|
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
|
|
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
|
|
+// M206 - set additional homing offset
|
|
|
|
+// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
|
|
+// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
|
|
|
+// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
|
|
+// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
|
|
+// M220 S<factor in percent>- set speed factor override percentage
|
|
|
|
+// M221 S<factor in percent>- set extrude factor override percentage
|
|
|
|
+// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
|
|
+// M240 - Trigger a camera to take a photograph
|
|
|
|
+// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
|
|
+// M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
|
|
+// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
|
|
+// M301 - Set PID parameters P I and D
|
|
|
|
+// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
|
|
+// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
|
|
+// M304 - Set bed PID parameters P I and D
|
|
|
|
+// M400 - Finish all moves
|
|
|
|
+// M401 - Lower z-probe if present
|
|
|
|
+// M402 - Raise z-probe if present
|
|
|
|
+// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
|
|
+// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
|
|
+// M406 - Turn off Filament Sensor extrusion control
|
|
|
|
+// M407 - Displays measured filament diameter
|
|
|
|
+// M500 - stores parameters in EEPROM
|
|
|
|
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
|
|
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
|
|
+// M503 - print the current settings (from memory not from EEPROM)
|
|
|
|
+// M509 - force language selection on next restart
|
|
|
|
+// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
+// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
|
|
+// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
|
|
+// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
|
|
|
|
+// M907 - Set digital trimpot motor current using axis codes.
|
|
|
|
+// M908 - Control digital trimpot directly.
|
|
|
|
+// M350 - Set microstepping mode.
|
|
|
|
+// M351 - Toggle MS1 MS2 pins directly.
|
|
|
|
+
|
|
|
|
+// M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
|
|
+// M999 - Restart after being stopped by error
|
|
|
|
+
|
|
|
|
+//Stepper Movement Variables
|
|
|
|
+
|
|
|
|
+//===========================================================================
|
|
|
|
+//=============================imported variables============================
|
|
|
|
+//===========================================================================
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+//===========================================================================
|
|
|
|
+//=============================public variables=============================
|
|
|
|
+//===========================================================================
|
|
|
|
+#ifdef SDSUPPORT
|
|
|
|
+CardReader card;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+unsigned long PingTime = millis();
|
|
|
|
+union Data
|
|
|
|
+{
|
|
|
|
+byte b[2];
|
|
|
|
+int value;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+float homing_feedrate[] = HOMING_FEEDRATE;
|
|
|
|
+// Currently only the extruder axis may be switched to a relative mode.
|
|
|
|
+// Other axes are always absolute or relative based on the common relative_mode flag.
|
|
|
|
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
|
|
+int feedmultiply=100; //100->1 200->2
|
|
|
|
+int saved_feedmultiply;
|
|
|
|
+int extrudemultiply=100; //100->1 200->2
|
|
|
|
+int extruder_multiply[EXTRUDERS] = {100
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ , 100
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ , 100
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+int bowden_length[4];
|
|
|
|
+
|
|
|
|
+bool is_usb_printing = false;
|
|
|
|
+bool homing_flag = false;
|
|
|
|
+
|
|
|
|
+bool temp_cal_active = false;
|
|
|
|
+
|
|
|
|
+unsigned long kicktime = millis()+100000;
|
|
|
|
+
|
|
|
|
+unsigned int usb_printing_counter;
|
|
|
|
+
|
|
|
|
+int lcd_change_fil_state = 0;
|
|
|
|
+
|
|
|
|
+int feedmultiplyBckp = 100;
|
|
|
|
+float HotendTempBckp = 0;
|
|
|
|
+int fanSpeedBckp = 0;
|
|
|
|
+float pause_lastpos[4];
|
|
|
|
+unsigned long pause_time = 0;
|
|
|
|
+unsigned long start_pause_print = millis();
|
|
|
|
+unsigned long t_fan_rising_edge = millis();
|
|
|
|
+
|
|
|
|
+unsigned long load_filament_time;
|
|
|
|
+
|
|
|
|
+bool mesh_bed_leveling_flag = false;
|
|
|
|
+bool mesh_bed_run_from_menu = false;
|
|
|
|
+
|
|
|
|
+unsigned char lang_selected = 0;
|
|
|
|
+int8_t FarmMode = 0;
|
|
|
|
+
|
|
|
|
+bool prusa_sd_card_upload = false;
|
|
|
|
+
|
|
|
|
+unsigned int status_number = 0;
|
|
|
|
+
|
|
|
|
+unsigned long total_filament_used;
|
|
|
|
+unsigned int heating_status;
|
|
|
|
+unsigned int heating_status_counter;
|
|
|
|
+bool custom_message;
|
|
|
|
+bool loading_flag = false;
|
|
|
|
+unsigned int custom_message_type;
|
|
|
|
+unsigned int custom_message_state;
|
|
|
|
+char snmm_filaments_used = 0;
|
|
|
|
+
|
|
|
|
+float distance_from_min[3];
|
|
|
|
+float angleDiff;
|
|
|
|
+
|
|
|
|
+bool fan_state[2];
|
|
|
|
+int fan_edge_counter[2];
|
|
|
|
+int fan_speed[2];
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+bool volumetric_enabled = false;
|
|
|
|
+float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ , DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ , DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+};
|
|
|
|
+float volumetric_multiplier[EXTRUDERS] = {1.0
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ , 1.0
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ , 1.0
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+};
|
|
|
|
+float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
|
|
|
|
+float add_homing[3]={0,0,0};
|
|
|
|
+
|
|
|
|
+float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
|
|
+float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
|
|
+bool axis_known_position[3] = {false, false, false};
|
|
|
|
+float zprobe_zoffset;
|
|
|
|
+
|
|
|
|
+// Extruder offset
|
|
|
|
+#if EXTRUDERS > 1
|
|
|
|
+ #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
|
|
|
|
+float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
|
|
|
|
+#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
|
|
|
|
+ EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
|
|
|
|
+#endif
|
|
|
|
+};
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+uint8_t active_extruder = 0;
|
|
|
|
+int fanSpeed=0;
|
|
|
|
+
|
|
|
|
+#ifdef FWRETRACT
|
|
|
|
+ bool autoretract_enabled=false;
|
|
|
|
+ bool retracted[EXTRUDERS]={false
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ , false
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ , false
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+ };
|
|
|
|
+ bool retracted_swap[EXTRUDERS]={false
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ , false
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ , false
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ float retract_length = RETRACT_LENGTH;
|
|
|
|
+ float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
|
|
+ float retract_feedrate = RETRACT_FEEDRATE;
|
|
|
|
+ float retract_zlift = RETRACT_ZLIFT;
|
|
|
|
+ float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
|
|
+ float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
|
|
+ float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef ULTIPANEL
|
|
|
|
+ #ifdef PS_DEFAULT_OFF
|
|
|
|
+ bool powersupply = false;
|
|
|
|
+ #else
|
|
|
|
+ bool powersupply = true;
|
|
|
|
+ #endif
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+bool cancel_heatup = false ;
|
|
|
|
+
|
|
|
|
+#ifdef FILAMENT_SENSOR
|
|
|
|
+ //Variables for Filament Sensor input
|
|
|
|
+ float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
|
|
|
+ bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
|
|
|
|
+ float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
|
|
|
+ signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
|
|
|
+ int delay_index1=0; //index into ring buffer
|
|
|
|
+ int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
|
|
|
+ float delay_dist=0; //delay distance counter
|
|
|
|
+ int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+const char errormagic[] PROGMEM = "Error:";
|
|
|
|
+const char echomagic[] PROGMEM = "echo:";
|
|
|
|
+
|
|
|
|
+//===========================================================================
|
|
|
|
+//=============================Private Variables=============================
|
|
|
|
+//===========================================================================
|
|
|
|
+const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
|
|
+float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
|
|
|
+
|
|
|
|
+static float delta[3] = {0.0, 0.0, 0.0};
|
|
|
|
+
|
|
|
|
+// For tracing an arc
|
|
|
|
+static float offset[3] = {0.0, 0.0, 0.0};
|
|
|
|
+static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
|
|
+
|
|
|
|
+// Determines Absolute or Relative Coordinates.
|
|
|
|
+// Also there is bool axis_relative_modes[] per axis flag.
|
|
|
|
+static bool relative_mode = false;
|
|
|
|
+
|
|
|
|
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
|
|
|
+
|
|
|
|
+//static float tt = 0;
|
|
|
|
+//static float bt = 0;
|
|
|
|
+
|
|
|
|
+//Inactivity shutdown variables
|
|
|
|
+static unsigned long previous_millis_cmd = 0;
|
|
|
|
+unsigned long max_inactive_time = 0;
|
|
|
|
+static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
|
|
|
+
|
|
|
|
+unsigned long starttime=0;
|
|
|
|
+unsigned long stoptime=0;
|
|
|
|
+unsigned long _usb_timer = 0;
|
|
|
|
+
|
|
|
|
+static uint8_t tmp_extruder;
|
|
|
|
+
|
|
|
|
+bool extruder_under_pressure = true;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+bool Stopped=false;
|
|
|
|
+
|
|
|
|
+#if NUM_SERVOS > 0
|
|
|
|
+ Servo servos[NUM_SERVOS];
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+bool CooldownNoWait = true;
|
|
|
|
+bool target_direction;
|
|
|
|
+
|
|
|
|
+//Insert variables if CHDK is defined
|
|
|
|
+#ifdef CHDK
|
|
|
|
+unsigned long chdkHigh = 0;
|
|
|
|
+boolean chdkActive = false;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+//===========================================================================
|
|
|
|
+//=============================Routines======================================
|
|
|
|
+//===========================================================================
|
|
|
|
+
|
|
|
|
+void get_arc_coordinates();
|
|
|
|
+bool setTargetedHotend(int code);
|
|
|
|
+
|
|
|
|
+void serial_echopair_P(const char *s_P, float v)
|
|
|
|
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
+void serial_echopair_P(const char *s_P, double v)
|
|
|
|
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
+void serial_echopair_P(const char *s_P, unsigned long v)
|
|
|
|
+ { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
+
|
|
|
|
+#ifdef SDSUPPORT
|
|
|
|
+ #include "SdFatUtil.h"
|
|
|
|
+ int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
|
|
+#else
|
|
|
|
+ extern "C" {
|
|
|
|
+ extern unsigned int __bss_end;
|
|
|
|
+ extern unsigned int __heap_start;
|
|
|
|
+ extern void *__brkval;
|
|
|
|
+
|
|
|
|
+ int freeMemory() {
|
|
|
|
+ int free_memory;
|
|
|
|
+
|
|
|
|
+ if ((int)__brkval == 0)
|
|
|
|
+ free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
|
|
+ else
|
|
|
|
+ free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
|
|
+
|
|
|
|
+ return free_memory;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#endif //!SDSUPPORT
|
|
|
|
+
|
|
|
|
+void setup_killpin()
|
|
|
|
+{
|
|
|
|
+ #if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
+ SET_INPUT(KILL_PIN);
|
|
|
|
+ WRITE(KILL_PIN,HIGH);
|
|
|
|
+ #endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// Set home pin
|
|
|
|
+void setup_homepin(void)
|
|
|
|
+{
|
|
|
|
+#if defined(HOME_PIN) && HOME_PIN > -1
|
|
|
|
+ SET_INPUT(HOME_PIN);
|
|
|
|
+ WRITE(HOME_PIN,HIGH);
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void setup_photpin()
|
|
|
|
+{
|
|
|
|
+ #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
|
|
+ SET_OUTPUT(PHOTOGRAPH_PIN);
|
|
|
|
+ WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
+ #endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void setup_powerhold()
|
|
|
|
+{
|
|
|
|
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
|
|
+ SET_OUTPUT(SUICIDE_PIN);
|
|
|
|
+ WRITE(SUICIDE_PIN, HIGH);
|
|
|
|
+ #endif
|
|
|
|
+ #if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
+ SET_OUTPUT(PS_ON_PIN);
|
|
|
|
+ #if defined(PS_DEFAULT_OFF)
|
|
|
|
+ WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
|
|
+ #else
|
|
|
|
+ WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void suicide()
|
|
|
|
+{
|
|
|
|
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
|
|
+ SET_OUTPUT(SUICIDE_PIN);
|
|
|
|
+ WRITE(SUICIDE_PIN, LOW);
|
|
|
|
+ #endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void servo_init()
|
|
|
|
+{
|
|
|
|
+ #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
|
|
|
|
+ servos[0].attach(SERVO0_PIN);
|
|
|
|
+ #endif
|
|
|
|
+ #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
|
|
|
|
+ servos[1].attach(SERVO1_PIN);
|
|
|
|
+ #endif
|
|
|
|
+ #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
|
|
|
|
+ servos[2].attach(SERVO2_PIN);
|
|
|
|
+ #endif
|
|
|
|
+ #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
|
|
|
|
+ servos[3].attach(SERVO3_PIN);
|
|
|
|
+ #endif
|
|
|
|
+ #if (NUM_SERVOS >= 5)
|
|
|
|
+ #error "TODO: enter initalisation code for more servos"
|
|
|
|
+ #endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void lcd_language_menu();
|
|
|
|
+
|
|
|
|
+void stop_and_save_print_to_ram(float z_move, float e_move);
|
|
|
|
+void restore_print_from_ram_and_continue(float e_move);
|
|
|
|
+
|
|
|
|
+extern int8_t CrashDetectMenu;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+void crashdet_enable()
|
|
|
|
+{
|
|
|
|
+ MYSERIAL.println("crashdet_enable");
|
|
|
|
+ tmc2130_sg_stop_on_crash = true;
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
|
|
|
|
+ CrashDetectMenu = 1;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void crashdet_disable()
|
|
|
|
+{
|
|
|
|
+ MYSERIAL.println("crashdet_disable");
|
|
|
|
+ tmc2130_sg_stop_on_crash = false;
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
|
|
|
|
+ CrashDetectMenu = 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void crashdet_stop_and_save_print()
|
|
|
|
+{
|
|
|
|
+ stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void crashdet_restore_print_and_continue()
|
|
|
|
+{
|
|
|
|
+ restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
|
|
|
|
+// babystep_apply();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+void crashdet_stop_and_save_print2()
|
|
|
|
+{
|
|
|
|
+ cli();
|
|
|
|
+ planner_abort_hard(); //abort printing
|
|
|
|
+ cmdqueue_reset(); //empty cmdqueue
|
|
|
|
+ card.sdprinting = false;
|
|
|
|
+ card.closefile();
|
|
|
|
+ sei();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#ifdef MESH_BED_LEVELING
|
|
|
|
+ enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// Factory reset function
|
|
|
|
+// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
|
|
|
|
+// Level input parameter sets depth of reset
|
|
|
|
+// Quiet parameter masks all waitings for user interact.
|
|
|
|
+int er_progress = 0;
|
|
|
|
+void factory_reset(char level, bool quiet)
|
|
|
|
+{
|
|
|
|
+ lcd_implementation_clear();
|
|
|
|
+ int cursor_pos = 0;
|
|
|
|
+ switch (level) {
|
|
|
|
+
|
|
|
|
+ // Level 0: Language reset
|
|
|
|
+ case 0:
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+
|
|
|
|
+ lcd_force_language_selection();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ //Level 1: Reset statistics
|
|
|
|
+ case 1:
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
|
|
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
|
|
+ lcd_menu_statistics();
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ // Level 2: Prepare for shipping
|
|
|
|
+ case 2:
|
|
|
|
+ //lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
+ //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
|
|
|
|
+
|
|
|
|
+ // Force language selection at the next boot up.
|
|
|
|
+ lcd_force_language_selection();
|
|
|
|
+ // Force the "Follow calibration flow" message at the next boot up.
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
|
|
|
|
+ farm_no = 0;
|
|
|
|
+ farm_mode == false;
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
|
|
|
|
+ EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
+
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+ //_delay_ms(2000);
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ // Level 3: erase everything, whole EEPROM will be set to 0xFF
|
|
|
|
+
|
|
|
|
+ case 3:
|
|
|
|
+ lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
+ lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
|
|
|
|
+
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+
|
|
|
|
+ er_progress = 0;
|
|
|
|
+ lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
|
|
+ lcd_implementation_print_at(3, 3, er_progress);
|
|
|
|
+
|
|
|
|
+ // Erase EEPROM
|
|
|
|
+ for (int i = 0; i < 4096; i++) {
|
|
|
|
+ eeprom_write_byte((uint8_t*)i, 0xFF);
|
|
|
|
+
|
|
|
|
+ if (i % 41 == 0) {
|
|
|
|
+ er_progress++;
|
|
|
|
+ lcd_print_at_PGM(3, 3, PSTR(" "));
|
|
|
|
+ lcd_implementation_print_at(3, 3, er_progress);
|
|
|
|
+ lcd_printPGM(PSTR("%"));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ case 4:
|
|
|
|
+ bowden_menu();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ default:
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// "Setup" function is called by the Arduino framework on startup.
|
|
|
|
+// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
|
|
|
|
+// are initialized by the main() routine provided by the Arduino framework.
|
|
|
|
+void setup()
|
|
|
|
+{
|
|
|
|
+ lcd_init();
|
|
|
|
+ lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
|
|
|
|
+ lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
|
|
|
|
+ setup_killpin();
|
|
|
|
+ setup_powerhold();
|
|
|
|
+ farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
|
|
+ EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
+ if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
|
|
+ if (farm_no == 0xFFFF) farm_no = 0;
|
|
|
|
+ if (farm_mode)
|
|
|
|
+ {
|
|
|
|
+ prusa_statistics(8);
|
|
|
|
+ selectedSerialPort = 1;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ selectedSerialPort = 0;
|
|
|
|
+ MYSERIAL.begin(BAUDRATE);
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("start");
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+
|
|
|
|
+#if 0
|
|
|
|
+ SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
|
|
|
|
+ for (int i = 0; i < 4096; ++i) {
|
|
|
|
+ int b = eeprom_read_byte((unsigned char*)i);
|
|
|
|
+ if (b != 255) {
|
|
|
|
+ SERIAL_ECHO(i);
|
|
|
|
+ SERIAL_ECHO(":");
|
|
|
|
+ SERIAL_ECHO(b);
|
|
|
|
+ SERIAL_ECHOLN("");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // Check startup - does nothing if bootloader sets MCUSR to 0
|
|
|
|
+ byte mcu = MCUSR;
|
|
|
|
+ if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
|
|
|
|
+ if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
|
|
|
|
+ if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
|
|
|
|
+ if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
|
|
|
|
+ if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
|
|
|
|
+ MCUSR = 0;
|
|
|
|
+
|
|
|
|
+ //SERIAL_ECHORPGM(MSG_MARLIN);
|
|
|
|
+ //SERIAL_ECHOLNRPGM(VERSION_STRING);
|
|
|
|
+
|
|
|
|
+#ifdef STRING_VERSION_CONFIG_H
|
|
|
|
+#ifdef STRING_CONFIG_H_AUTHOR
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
|
|
|
|
+ SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
|
|
|
|
+ SERIAL_ECHORPGM(MSG_AUTHOR);
|
|
|
|
+ SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
|
|
+ SERIAL_ECHOPGM("Compiled: ");
|
|
|
|
+ SERIAL_ECHOLNPGM(__DATE__);
|
|
|
|
+#endif
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_FREE_MEMORY);
|
|
|
|
+ SERIAL_ECHO(freeMemory());
|
|
|
|
+ SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
|
|
+ SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
|
+ //lcd_update_enable(false); // why do we need this?? - andre
|
|
|
|
+ // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
|
|
+ Config_RetrieveSettings(EEPROM_OFFSET);
|
|
|
|
+ SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
|
|
|
|
+ tp_init(); // Initialize temperature loop
|
|
|
|
+ plan_init(); // Initialize planner;
|
|
|
|
+ watchdog_init();
|
|
|
|
+
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+ uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
|
|
|
|
+ tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
|
|
|
|
+ uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
|
|
|
|
+ if (crashdet)
|
|
|
|
+ {
|
|
|
|
+ crashdet_enable();
|
|
|
|
+ MYSERIAL.println("CrashDetect ENABLED!");
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ crashdet_disable();
|
|
|
|
+ MYSERIAL.println("CrashDetect DISABLED");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#endif //TMC2130
|
|
|
|
+
|
|
|
|
+#ifdef PAT9125
|
|
|
|
+ MYSERIAL.print("PAT9125_init:");
|
|
|
|
+ int pat9125 = pat9125_init(200, 200);
|
|
|
|
+ MYSERIAL.println(pat9125);
|
|
|
|
+ uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
|
|
|
|
+ if (!pat9125) fsensor = 0; //disable sensor
|
|
|
|
+ if (fsensor)
|
|
|
|
+ {
|
|
|
|
+ fsensor_enable();
|
|
|
|
+ MYSERIAL.println("Filament Sensor ENABLED!");
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ fsensor_disable();
|
|
|
|
+ MYSERIAL.println("Filament Sensor DISABLED");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#endif //PAT9125
|
|
|
|
+
|
|
|
|
+ st_init(); // Initialize stepper, this enables interrupts!
|
|
|
|
+
|
|
|
|
+ setup_photpin();
|
|
|
|
+ lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
|
|
|
|
+ lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
|
|
|
|
+ servo_init();
|
|
|
|
+ // Reset the machine correction matrix.
|
|
|
|
+ // It does not make sense to load the correction matrix until the machine is homed.
|
|
|
|
+ world2machine_reset();
|
|
|
|
+
|
|
|
|
+ if (!READ(BTN_ENC))
|
|
|
|
+ {
|
|
|
|
+ _delay_ms(1000);
|
|
|
|
+ if (!READ(BTN_ENC))
|
|
|
|
+ {
|
|
|
|
+ lcd_implementation_clear();
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ lcd_printPGM(PSTR("Factory RESET"));
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ SET_OUTPUT(BEEPER);
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+
|
|
|
|
+ while (!READ(BTN_ENC));
|
|
|
|
+
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ _delay_ms(2000);
|
|
|
|
+
|
|
|
|
+ char level = reset_menu();
|
|
|
|
+ factory_reset(level, false);
|
|
|
|
+
|
|
|
|
+ switch (level) {
|
|
|
|
+ case 0: _delay_ms(0); break;
|
|
|
|
+ case 1: _delay_ms(0); break;
|
|
|
|
+ case 2: _delay_ms(0); break;
|
|
|
|
+ case 3: _delay_ms(0); break;
|
|
|
|
+ }
|
|
|
|
+ // _delay_ms(100);
|
|
|
|
+ /*
|
|
|
|
+ #ifdef MESH_BED_LEVELING
|
|
|
|
+ _delay_ms(2000);
|
|
|
|
+
|
|
|
|
+ if (!READ(BTN_ENC))
|
|
|
|
+ {
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+ _delay_ms(200);
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+
|
|
|
|
+ int _z = 0;
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
|
|
+ EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
|
|
|
|
+ EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
|
|
|
|
+ EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ WRITE(BEEPER, HIGH);
|
|
|
|
+ _delay_ms(100);
|
|
|
|
+ WRITE(BEEPER, LOW);
|
|
|
|
+ }
|
|
|
|
+ #endif // mesh */
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
|
|
|
|
+ SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
|
|
|
|
+ SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef DIGIPOT_I2C
|
|
|
|
+ digipot_i2c_init();
|
|
|
|
+#endif
|
|
|
|
+ setup_homepin();
|
|
|
|
+
|
|
|
|
+ if (1) {
|
|
|
|
+ SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
|
|
|
+ // try to run to zero phase before powering the Z motor.
|
|
|
|
+ // Move in negative direction
|
|
|
|
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
|
+ // Round the current micro-micro steps to micro steps.
|
|
|
|
+ for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
|
|
|
|
+ // Until the phase counter is reset to zero.
|
|
|
|
+ WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
|
|
|
|
+ delay(2);
|
|
|
|
+ WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
|
|
|
|
+ delay(2);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#if defined(Z_AXIS_ALWAYS_ON)
|
|
|
|
+ enable_z();
|
|
|
|
+#endif
|
|
|
|
+ farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
|
|
|
|
+ EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
|
|
|
|
+ if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
|
|
|
|
+ if (farm_no == 0xFFFF) farm_no = 0;
|
|
|
|
+ if (farm_mode)
|
|
|
|
+ {
|
|
|
|
+ prusa_statistics(8);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Enable Toshiba FlashAir SD card / WiFi enahanced card.
|
|
|
|
+ card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
|
|
|
|
+ // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
|
|
|
|
+ // but this times out if a blocking dialog is shown in setup().
|
|
|
|
+ card.initsd();
|
|
|
|
+
|
|
|
|
+ if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
|
|
|
|
+ eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
|
|
|
|
+ eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
|
|
|
|
+ // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
|
|
|
|
+ // where all the EEPROM entries are set to 0x0ff.
|
|
|
|
+ // Once a firmware boots up, it forces at least a language selection, which changes
|
|
|
|
+ // EEPROM_LANG to number lower than 0x0ff.
|
|
|
|
+ // 1) Set a high power mode.
|
|
|
|
+ eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
|
|
|
|
+ }
|
|
|
|
+#ifdef SNMM
|
|
|
|
+ if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
|
|
|
|
+ int _z = BOWDEN_LENGTH;
|
|
|
|
+ for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
|
|
|
|
+ // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
|
|
|
|
+ // is being written into the EEPROM, so the update procedure will be triggered only once.
|
|
|
|
+ lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
|
|
|
|
+ if (lang_selected >= LANG_NUM){
|
|
|
|
+ lcd_mylang();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
|
|
|
|
+ eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
|
|
|
|
+ temp_cal_active = false;
|
|
|
|
+ } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
|
|
|
|
+
|
|
|
|
+ if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
|
|
|
|
+ eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
|
|
|
|
+ }
|
|
|
|
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
|
|
|
|
+ eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ check_babystep(); //checking if Z babystep is in allowed range
|
|
|
|
+ setup_uvlo_interrupt();
|
|
|
|
+ setup_fan_interrupt();
|
|
|
|
+ fsensor_setup_interrupt();
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#ifndef DEBUG_DISABLE_STARTMSGS
|
|
|
|
+
|
|
|
|
+ if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
|
|
|
|
+ calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
|
|
|
|
+ // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
|
|
|
|
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
+ // Show the message.
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
|
|
+ } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
|
|
|
|
+ // Show the message.
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
|
|
|
|
+ // Show the message.
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
|
|
|
|
+ }
|
|
|
|
+#endif //DEBUG_DISABLE_STARTMSGS
|
|
|
|
+ for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_implementation_clear();
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ // Store the currently running firmware into an eeprom,
|
|
|
|
+ // so the next time the firmware gets updated, it will know from which version it has been updated.
|
|
|
|
+ update_current_firmware_version_to_eeprom();
|
|
|
|
+ if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
|
|
|
|
+/*
|
|
|
|
+ if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
|
|
|
|
+ else {
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
+ }
|
|
|
|
+*/
|
|
|
|
+ manage_heater(); // Update temperatures
|
|
|
|
+#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
|
|
+ MYSERIAL.println("Power panic detected!");
|
|
|
|
+ MYSERIAL.print("Current bed temp:");
|
|
|
|
+ MYSERIAL.println(degBed());
|
|
|
|
+ MYSERIAL.print("Saved bed temp:");
|
|
|
|
+ MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
|
|
|
|
+#endif
|
|
|
|
+ if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
|
|
|
|
+ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
|
|
+ MYSERIAL.println("Automatic recovery!");
|
|
|
|
+ #endif
|
|
|
|
+ recover_print(1);
|
|
|
|
+ }
|
|
|
|
+ else{
|
|
|
|
+ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
|
|
|
|
+ MYSERIAL.println("Normal recovery!");
|
|
|
|
+ #endif
|
|
|
|
+ if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
|
|
|
|
+ else {
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void trace();
|
|
|
|
+
|
|
|
|
+#define CHUNK_SIZE 64 // bytes
|
|
|
|
+#define SAFETY_MARGIN 1
|
|
|
|
+char chunk[CHUNK_SIZE+SAFETY_MARGIN];
|
|
|
|
+int chunkHead = 0;
|
|
|
|
+
|
|
|
|
+int serial_read_stream() {
|
|
|
|
+
|
|
|
|
+ setTargetHotend(0, 0);
|
|
|
|
+ setTargetBed(0);
|
|
|
|
+
|
|
|
|
+ lcd_implementation_clear();
|
|
|
|
+ lcd_printPGM(PSTR(" Upload in progress"));
|
|
|
|
+
|
|
|
|
+ // first wait for how many bytes we will receive
|
|
|
|
+ uint32_t bytesToReceive;
|
|
|
|
+
|
|
|
|
+ // receive the four bytes
|
|
|
|
+ char bytesToReceiveBuffer[4];
|
|
|
|
+ for (int i=0; i<4; i++) {
|
|
|
|
+ int data;
|
|
|
|
+ while ((data = MYSERIAL.read()) == -1) {};
|
|
|
|
+ bytesToReceiveBuffer[i] = data;
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // make it a uint32
|
|
|
|
+ memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
|
|
|
|
+
|
|
|
|
+ // we're ready, notify the sender
|
|
|
|
+ MYSERIAL.write('+');
|
|
|
|
+
|
|
|
|
+ // lock in the routine
|
|
|
|
+ uint32_t receivedBytes = 0;
|
|
|
|
+ while (prusa_sd_card_upload) {
|
|
|
|
+ int i;
|
|
|
|
+ for (i=0; i<CHUNK_SIZE; i++) {
|
|
|
|
+ int data;
|
|
|
|
+
|
|
|
|
+ // check if we're not done
|
|
|
|
+ if (receivedBytes == bytesToReceive) {
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // read the next byte
|
|
|
|
+ while ((data = MYSERIAL.read()) == -1) {};
|
|
|
|
+ receivedBytes++;
|
|
|
|
+
|
|
|
|
+ // save it to the chunk
|
|
|
|
+ chunk[i] = data;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // write the chunk to SD
|
|
|
|
+ card.write_command_no_newline(&chunk[0]);
|
|
|
|
+
|
|
|
|
+ // notify the sender we're ready for more data
|
|
|
|
+ MYSERIAL.write('+');
|
|
|
|
+
|
|
|
|
+ // for safety
|
|
|
|
+ manage_heater();
|
|
|
|
+
|
|
|
|
+ // check if we're done
|
|
|
|
+ if(receivedBytes == bytesToReceive) {
|
|
|
|
+ trace(); // beep
|
|
|
|
+ card.closefile();
|
|
|
|
+ prusa_sd_card_upload = false;
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
|
|
|
|
+// Before loop(), the setup() function is called by the main() routine.
|
|
|
|
+void loop()
|
|
|
|
+{
|
|
|
|
+ bool stack_integrity = true;
|
|
|
|
+
|
|
|
|
+ if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
|
|
|
|
+ {
|
|
|
|
+ is_usb_printing = true;
|
|
|
|
+ usb_printing_counter--;
|
|
|
|
+ _usb_timer = millis();
|
|
|
|
+ }
|
|
|
|
+ if (usb_printing_counter == 0)
|
|
|
|
+ {
|
|
|
|
+ is_usb_printing = false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (prusa_sd_card_upload)
|
|
|
|
+ {
|
|
|
|
+ //we read byte-by byte
|
|
|
|
+ serial_read_stream();
|
|
|
|
+ } else
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ get_command();
|
|
|
|
+
|
|
|
|
+ #ifdef SDSUPPORT
|
|
|
|
+ card.checkautostart(false);
|
|
|
|
+ #endif
|
|
|
|
+ if(buflen)
|
|
|
|
+ {
|
|
|
|
+ cmdbuffer_front_already_processed = false;
|
|
|
|
+ #ifdef SDSUPPORT
|
|
|
|
+ if(card.saving)
|
|
|
|
+ {
|
|
|
|
+ // Saving a G-code file onto an SD-card is in progress.
|
|
|
|
+ // Saving starts with M28, saving until M29 is seen.
|
|
|
|
+ if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
|
|
|
|
+ card.write_command(CMDBUFFER_CURRENT_STRING);
|
|
|
|
+ if(card.logging)
|
|
|
|
+ process_commands();
|
|
|
|
+ else
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
|
|
+ } else {
|
|
|
|
+ card.closefile();
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ process_commands();
|
|
|
|
+ }
|
|
|
|
+ #else
|
|
|
|
+ process_commands();
|
|
|
|
+ #endif //SDSUPPORT
|
|
|
|
+
|
|
|
|
+ if (! cmdbuffer_front_already_processed && buflen)
|
|
|
|
+ {
|
|
|
|
+ cli();
|
|
|
|
+ union {
|
|
|
|
+ struct {
|
|
|
|
+ char lo;
|
|
|
|
+ char hi;
|
|
|
|
+ } lohi;
|
|
|
|
+ uint16_t value;
|
|
|
|
+ } sdlen;
|
|
|
|
+ sdlen.value = 0;
|
|
|
|
+ if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
|
|
|
|
+ sdlen.lohi.lo = cmdbuffer[bufindr + 1];
|
|
|
|
+ sdlen.lohi.hi = cmdbuffer[bufindr + 2];
|
|
|
|
+ }
|
|
|
|
+ cmdqueue_pop_front();
|
|
|
|
+ planner_add_sd_length(sdlen.value);
|
|
|
|
+ sei();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+ //check heater every n milliseconds
|
|
|
|
+ manage_heater();
|
|
|
|
+ isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
|
|
|
|
+ checkHitEndstops();
|
|
|
|
+ lcd_update();
|
|
|
|
+#ifdef PAT9125
|
|
|
|
+ fsensor_update();
|
|
|
|
+#endif //PAT9125
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+ tmc2130_check_overtemp();
|
|
|
|
+ if (tmc2130_sg_crash)
|
|
|
|
+ {
|
|
|
|
+ tmc2130_sg_crash = false;
|
|
|
|
+// crashdet_stop_and_save_print();
|
|
|
|
+ enquecommand_P((PSTR("D999")));
|
|
|
|
+ }
|
|
|
|
+#endif //TMC2130
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
|
|
+ static inline type pgm_read_any(const type *p) \
|
|
|
|
+ { return pgm_read_##reader##_near(p); }
|
|
|
|
+
|
|
|
|
+DEFINE_PGM_READ_ANY(float, float);
|
|
|
|
+DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
+
|
|
|
|
+#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
|
|
+static const PROGMEM type array##_P[3] = \
|
|
|
|
+ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
|
|
+static inline type array(int axis) \
|
|
|
|
+ { return pgm_read_any(&array##_P[axis]); } \
|
|
|
|
+type array##_ext(int axis) \
|
|
|
|
+ { return pgm_read_any(&array##_P[axis]); }
|
|
|
|
+
|
|
|
|
+XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
|
|
+XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
|
|
+XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
|
|
+XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
|
|
+XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
|
|
|
+XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
+
|
|
|
|
+static void axis_is_at_home(int axis) {
|
|
|
|
+ current_position[axis] = base_home_pos(axis) + add_homing[axis];
|
|
|
|
+ min_pos[axis] = base_min_pos(axis) + add_homing[axis];
|
|
|
|
+ max_pos[axis] = base_max_pos(axis) + add_homing[axis];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
|
|
+inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+static void setup_for_endstop_move(bool enable_endstops_now = true) {
|
|
|
|
+ saved_feedrate = feedrate;
|
|
|
|
+ saved_feedmultiply = feedmultiply;
|
|
|
|
+ feedmultiply = 100;
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+
|
|
|
|
+ enable_endstops(enable_endstops_now);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void clean_up_after_endstop_move() {
|
|
|
|
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ feedrate = saved_feedrate;
|
|
|
|
+ feedmultiply = saved_feedmultiply;
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
+static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
|
|
+{
|
|
|
|
+ vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
|
|
+ planeNormal.debug("planeNormal");
|
|
|
|
+ plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
+ //bedLevel.debug("bedLevel");
|
|
|
|
+
|
|
|
|
+ //plan_bed_level_matrix.debug("bed level before");
|
|
|
|
+ //vector_3 uncorrected_position = plan_get_position_mm();
|
|
|
|
+ //uncorrected_position.debug("position before");
|
|
|
|
+
|
|
|
|
+ vector_3 corrected_position = plan_get_position();
|
|
|
|
+// corrected_position.debug("position after");
|
|
|
|
+ current_position[X_AXIS] = corrected_position.x;
|
|
|
|
+ current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
+ current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
+
|
|
|
|
+ // put the bed at 0 so we don't go below it.
|
|
|
|
+ current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
|
|
+
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
+
|
|
|
|
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
+
|
|
|
|
+ plan_bed_level_matrix.set_to_identity();
|
|
|
|
+
|
|
|
|
+ vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
|
|
+ vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
|
|
+ vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
+
|
|
|
|
+ vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
|
|
|
+ vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
|
|
|
+ vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
|
|
|
+ planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
|
|
|
+
|
|
|
|
+ plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
+
|
|
|
|
+ vector_3 corrected_position = plan_get_position();
|
|
|
|
+ current_position[X_AXIS] = corrected_position.x;
|
|
|
|
+ current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
+ current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
+
|
|
|
|
+ // put the bed at 0 so we don't go below it.
|
|
|
|
+ current_position[Z_AXIS] = zprobe_zoffset;
|
|
|
|
+
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
+
|
|
|
|
+static void run_z_probe() {
|
|
|
|
+ plan_bed_level_matrix.set_to_identity();
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ // move down until you find the bed
|
|
|
|
+ float zPosition = -10;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ // we have to let the planner know where we are right now as it is not where we said to go.
|
|
|
|
+ zPosition = st_get_position_mm(Z_AXIS);
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ // move up the retract distance
|
|
|
|
+ zPosition += home_retract_mm(Z_AXIS);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ // move back down slowly to find bed
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS]/4;
|
|
|
|
+ zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
+ // make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void do_blocking_move_to(float x, float y, float z) {
|
|
|
|
+ float oldFeedRate = feedrate;
|
|
|
|
+
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = z;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ feedrate = XY_TRAVEL_SPEED;
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = x;
|
|
|
|
+ current_position[Y_AXIS] = y;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ feedrate = oldFeedRate;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
|
|
|
|
+ do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+/// Probe bed height at position (x,y), returns the measured z value
|
|
|
|
+static float probe_pt(float x, float y, float z_before) {
|
|
|
|
+ // move to right place
|
|
|
|
+ do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
|
|
+ do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
+
|
|
|
|
+ run_z_probe();
|
|
|
|
+ float measured_z = current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" x: ");
|
|
|
|
+ SERIAL_PROTOCOL(x);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" y: ");
|
|
|
|
+ SERIAL_PROTOCOL(y);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" z: ");
|
|
|
|
+ SERIAL_PROTOCOL(measured_z);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ return measured_z;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
|
+ /**
|
|
|
|
+ * M900: Set and/or Get advance K factor and WH/D ratio
|
|
|
|
+ *
|
|
|
|
+ * K<factor> Set advance K factor
|
|
|
|
+ * R<ratio> Set ratio directly (overrides WH/D)
|
|
|
|
+ * W<width> H<height> D<diam> Set ratio from WH/D
|
|
|
|
+ */
|
|
|
|
+inline void gcode_M900() {
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ const float newK = code_seen('K') ? code_value_float() : -1;
|
|
|
|
+ if (newK >= 0) extruder_advance_k = newK;
|
|
|
|
+
|
|
|
|
+ float newR = code_seen('R') ? code_value_float() : -1;
|
|
|
|
+ if (newR < 0) {
|
|
|
|
+ const float newD = code_seen('D') ? code_value_float() : -1,
|
|
|
|
+ newW = code_seen('W') ? code_value_float() : -1,
|
|
|
|
+ newH = code_seen('H') ? code_value_float() : -1;
|
|
|
|
+ if (newD >= 0 && newW >= 0 && newH >= 0)
|
|
|
|
+ newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
|
|
|
|
+ }
|
|
|
|
+ if (newR >= 0) advance_ed_ratio = newR;
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOPGM("Advance K=");
|
|
|
|
+ SERIAL_ECHOLN(extruder_advance_k);
|
|
|
|
+ SERIAL_ECHOPGM(" E/D=");
|
|
|
|
+ const float ratio = advance_ed_ratio;
|
|
|
|
+ if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
|
|
|
|
+ }
|
|
|
|
+#endif // LIN_ADVANCE
|
|
|
|
+
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+bool calibrate_z_auto()
|
|
|
|
+{
|
|
|
|
+ lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
|
|
|
|
+ bool endstops_enabled = enable_endstops(true);
|
|
|
|
+ int axis_up_dir = -home_dir(Z_AXIS);
|
|
|
|
+ tmc2130_home_enter(Z_AXIS_MASK);
|
|
|
|
+ current_position[Z_AXIS] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ set_destination_to_current();
|
|
|
|
+ destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ tmc2130_home_restart(Z_AXIS);
|
|
|
|
+ st_synchronize();
|
|
|
|
+// current_position[axis] = 0;
|
|
|
|
+// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ tmc2130_home_exit();
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+ current_position[Z_AXIS] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ set_destination_to_current();
|
|
|
|
+ destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS] / 2;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ enable_endstops(endstops_enabled);
|
|
|
|
+ current_position[Z_AXIS] = Z_MAX_POS-3.f;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ return true;
|
|
|
|
+}
|
|
|
|
+#endif //TMC2130
|
|
|
|
+
|
|
|
|
+void homeaxis(int axis)
|
|
|
|
+{
|
|
|
|
+ bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
|
|
|
|
+#define HOMEAXIS_DO(LETTER) \
|
|
|
|
+((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
+ if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
|
|
|
|
+ {
|
|
|
|
+ int axis_home_dir = home_dir(axis);
|
|
|
|
+ feedrate = homing_feedrate[axis];
|
|
|
|
+
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+ tmc2130_home_enter(X_AXIS_MASK << axis);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // Move right a bit, so that the print head does not touch the left end position,
|
|
|
|
+ // and the following left movement has a chance to achieve the required velocity
|
|
|
|
+ // for the stall guard to work.
|
|
|
|
+ current_position[axis] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+// destination[axis] = 11.f;
|
|
|
|
+ destination[axis] = 3.f;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // Move left away from the possible collision with the collision detection disabled.
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+ current_position[axis] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[axis] = - 1.;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // Now continue to move up to the left end stop with the collision detection enabled.
|
|
|
|
+ enable_endstops(true);
|
|
|
|
+ destination[axis] = - 1.1 * max_length(axis);
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+ current_position[axis] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[axis] = 10.f;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+ // Now move left up to the collision, this time with a repeatable velocity.
|
|
|
|
+ enable_endstops(true);
|
|
|
|
+ destination[axis] = - 15.f;
|
|
|
|
+ feedrate = homing_feedrate[axis]/2;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ axis_is_at_home(axis);
|
|
|
|
+ axis_known_position[axis] = true;
|
|
|
|
+
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+ tmc2130_home_exit();
|
|
|
|
+#endif
|
|
|
|
+ // Move the X carriage away from the collision.
|
|
|
|
+ // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+ {
|
|
|
|
+ // Two full periods (4 full steps).
|
|
|
|
+ float gap = 0.32f * 2.f;
|
|
|
|
+ current_position[axis] -= gap;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ current_position[axis] += gap;
|
|
|
|
+ }
|
|
|
|
+ destination[axis] = current_position[axis];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ feedrate = 0.0;
|
|
|
|
+ }
|
|
|
|
+ else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
|
|
|
|
+ {
|
|
|
|
+ int axis_home_dir = home_dir(axis);
|
|
|
|
+ current_position[axis] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
|
|
+ feedrate = homing_feedrate[axis];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ current_position[axis] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
|
|
|
+ feedrate = homing_feedrate[axis]/2 ;
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ axis_is_at_home(axis);
|
|
|
|
+ destination[axis] = current_position[axis];
|
|
|
|
+ feedrate = 0.0;
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+ axis_known_position[axis] = true;
|
|
|
|
+ }
|
|
|
|
+ enable_endstops(endstops_enabled);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**/
|
|
|
|
+void home_xy()
|
|
|
|
+{
|
|
|
|
+ set_destination_to_current();
|
|
|
|
+ homeaxis(X_AXIS);
|
|
|
|
+ homeaxis(Y_AXIS);
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void refresh_cmd_timeout(void)
|
|
|
|
+{
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef FWRETRACT
|
|
|
|
+ void retract(bool retracting, bool swapretract = false) {
|
|
|
|
+ if(retracting && !retracted[active_extruder]) {
|
|
|
|
+ destination[X_AXIS]=current_position[X_AXIS];
|
|
|
|
+ destination[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
+ destination[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
+ destination[E_AXIS]=current_position[E_AXIS];
|
|
|
|
+ if (swapretract) {
|
|
|
|
+ current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
|
|
|
|
+ } else {
|
|
|
|
+ current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
|
|
|
+ }
|
|
|
|
+ plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
+ float oldFeedrate = feedrate;
|
|
|
|
+ feedrate=retract_feedrate*60;
|
|
|
|
+ retracted[active_extruder]=true;
|
|
|
|
+ prepare_move();
|
|
|
|
+ current_position[Z_AXIS]-=retract_zlift;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ prepare_move();
|
|
|
|
+ feedrate = oldFeedrate;
|
|
|
|
+ } else if(!retracting && retracted[active_extruder]) {
|
|
|
|
+ destination[X_AXIS]=current_position[X_AXIS];
|
|
|
|
+ destination[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
+ destination[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
+ destination[E_AXIS]=current_position[E_AXIS];
|
|
|
|
+ current_position[Z_AXIS]+=retract_zlift;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ //prepare_move();
|
|
|
|
+ if (swapretract) {
|
|
|
|
+ current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
|
|
|
|
+ } else {
|
|
|
|
+ current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
|
|
|
+ }
|
|
|
|
+ plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
+ float oldFeedrate = feedrate;
|
|
|
|
+ feedrate=retract_recover_feedrate*60;
|
|
|
|
+ retracted[active_extruder]=false;
|
|
|
|
+ prepare_move();
|
|
|
|
+ feedrate = oldFeedrate;
|
|
|
|
+ }
|
|
|
|
+ } //retract
|
|
|
|
+#endif //FWRETRACT
|
|
|
|
+
|
|
|
|
+void trace() {
|
|
|
|
+ tone(BEEPER, 440);
|
|
|
|
+ delay(25);
|
|
|
|
+ noTone(BEEPER);
|
|
|
|
+ delay(20);
|
|
|
|
+}
|
|
|
|
+/*
|
|
|
|
+void ramming() {
|
|
|
|
+// float tmp[4] = DEFAULT_MAX_FEEDRATE;
|
|
|
|
+ if (current_temperature[0] < 230) {
|
|
|
|
+ //PLA
|
|
|
|
+
|
|
|
|
+ max_feedrate[E_AXIS] = 50;
|
|
|
|
+ //current_position[E_AXIS] -= 8;
|
|
|
|
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
+ //current_position[E_AXIS] += 8;
|
|
|
|
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 5.4;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 3.2;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 3;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ max_feedrate[E_AXIS] = 80;
|
|
|
|
+ current_position[E_AXIS] -= 82;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
|
|
|
|
+ max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
|
|
+ current_position[E_AXIS] -= 20;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] -= 10;
|
|
|
|
+ st_synchronize();
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 10;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] -= 10;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 10;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] -= 10;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ //ABS
|
|
|
|
+ max_feedrate[E_AXIS] = 50;
|
|
|
|
+ //current_position[E_AXIS] -= 8;
|
|
|
|
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
+ //current_position[E_AXIS] += 8;
|
|
|
|
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 3.1;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 3.1;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 4;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ //current_position[X_AXIS] += 23; //delay
|
|
|
|
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
|
|
+ //current_position[X_AXIS] -= 23; //delay
|
|
|
|
+ //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
|
|
|
|
+ delay(4700);
|
|
|
|
+ max_feedrate[E_AXIS] = 80;
|
|
|
|
+ current_position[E_AXIS] -= 92;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
|
|
|
|
+ max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
|
|
|
|
+ current_position[E_AXIS] -= 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] -= 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ current_position[E_AXIS] += 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] -= 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] += 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ current_position[E_AXIS] -= 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+*/
|
|
|
|
+void process_commands()
|
|
|
|
+{
|
|
|
|
+ #ifdef FILAMENT_RUNOUT_SUPPORT
|
|
|
|
+ SET_INPUT(FR_SENS);
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+#ifdef CMDBUFFER_DEBUG
|
|
|
|
+ SERIAL_ECHOPGM("Processing a GCODE command: ");
|
|
|
|
+ SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ SERIAL_ECHOPGM("In cmdqueue: ");
|
|
|
|
+ SERIAL_ECHO(buflen);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+#endif /* CMDBUFFER_DEBUG */
|
|
|
|
+
|
|
|
|
+ unsigned long codenum; //throw away variable
|
|
|
|
+ char *starpos = NULL;
|
|
|
|
+#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+ float x_tmp, y_tmp, z_tmp, real_z;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // PRUSA GCODES
|
|
|
|
+
|
|
|
|
+#ifdef SNMM
|
|
|
|
+ float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
|
|
+ float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
|
|
|
|
+ int8_t SilentMode;
|
|
|
|
+#endif
|
|
|
|
+ if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
|
|
|
|
+ starpos = (strchr(strchr_pointer + 5, '*'));
|
|
|
|
+ if (starpos != NULL)
|
|
|
|
+ *(starpos) = '\0';
|
|
|
|
+ lcd_setstatus(strchr_pointer + 5);
|
|
|
|
+ }
|
|
|
|
+ else if(code_seen("PRUSA")){
|
|
|
|
+ if (code_seen("Ping")) { //PRUSA Ping
|
|
|
|
+ if (farm_mode) {
|
|
|
|
+ PingTime = millis();
|
|
|
|
+ //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else if (code_seen("PRN")) {
|
|
|
|
+ MYSERIAL.println(status_number);
|
|
|
|
+
|
|
|
|
+ }else if (code_seen("fn")) {
|
|
|
|
+ if (farm_mode) {
|
|
|
|
+ MYSERIAL.println(farm_no);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ MYSERIAL.println("Not in farm mode.");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }else if (code_seen("fv")) {
|
|
|
|
+ // get file version
|
|
|
|
+ #ifdef SDSUPPORT
|
|
|
|
+ card.openFile(strchr_pointer + 3,true);
|
|
|
|
+ while (true) {
|
|
|
|
+ uint16_t readByte = card.get();
|
|
|
|
+ MYSERIAL.write(readByte);
|
|
|
|
+ if (readByte=='\n') {
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ card.closefile();
|
|
|
|
+
|
|
|
|
+ #endif // SDSUPPORT
|
|
|
|
+
|
|
|
|
+ } else if (code_seen("M28")) {
|
|
|
|
+ trace();
|
|
|
|
+ prusa_sd_card_upload = true;
|
|
|
|
+ card.openFile(strchr_pointer+4,false);
|
|
|
|
+ } else if (code_seen("SN")) {
|
|
|
|
+ if (farm_mode) {
|
|
|
|
+ selectedSerialPort = 0;
|
|
|
|
+ MSerial.write(";S");
|
|
|
|
+ // S/N is:CZPX0917X003XC13518
|
|
|
|
+ int numbersRead = 0;
|
|
|
|
+
|
|
|
|
+ while (numbersRead < 19) {
|
|
|
|
+ while (MSerial.available() > 0) {
|
|
|
|
+ uint8_t serial_char = MSerial.read();
|
|
|
|
+ selectedSerialPort = 1;
|
|
|
|
+ MSerial.write(serial_char);
|
|
|
|
+ numbersRead++;
|
|
|
|
+ selectedSerialPort = 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ selectedSerialPort = 1;
|
|
|
|
+ MSerial.write('\n');
|
|
|
|
+ /*for (int b = 0; b < 3; b++) {
|
|
|
|
+ tone(BEEPER, 110);
|
|
|
|
+ delay(50);
|
|
|
|
+ noTone(BEEPER);
|
|
|
|
+ delay(50);
|
|
|
|
+ }*/
|
|
|
|
+ } else {
|
|
|
|
+ MYSERIAL.println("Not in farm mode.");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ } else if(code_seen("Fir")){
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLLN(FW_version);
|
|
|
|
+
|
|
|
|
+ } else if(code_seen("Rev")){
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
|
|
|
|
+
|
|
|
|
+ } else if(code_seen("Lang")) {
|
|
|
|
+ lcd_force_language_selection();
|
|
|
|
+ } else if(code_seen("Lz")) {
|
|
|
|
+ EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
|
|
|
|
+
|
|
|
|
+ } else if (code_seen("SERIAL LOW")) {
|
|
|
|
+ MYSERIAL.println("SERIAL LOW");
|
|
|
|
+ MYSERIAL.begin(BAUDRATE);
|
|
|
|
+ return;
|
|
|
|
+ } else if (code_seen("SERIAL HIGH")) {
|
|
|
|
+ MYSERIAL.println("SERIAL HIGH");
|
|
|
|
+ MYSERIAL.begin(1152000);
|
|
|
|
+ return;
|
|
|
|
+ } else if(code_seen("Beat")) {
|
|
|
|
+ // Kick farm link timer
|
|
|
|
+ kicktime = millis();
|
|
|
|
+
|
|
|
|
+ } else if(code_seen("FR")) {
|
|
|
|
+ // Factory full reset
|
|
|
|
+ factory_reset(0,true);
|
|
|
|
+ }
|
|
|
|
+ //else if (code_seen('Cal')) {
|
|
|
|
+ // lcd_calibration();
|
|
|
|
+ // }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ else if (code_seen('^')) {
|
|
|
|
+ // nothing, this is a version line
|
|
|
|
+ } else if(code_seen('G'))
|
|
|
|
+ {
|
|
|
|
+ switch((int)code_value())
|
|
|
|
+ {
|
|
|
|
+ case 0: // G0 -> G1
|
|
|
|
+ case 1: // G1
|
|
|
|
+ if(Stopped == false) {
|
|
|
|
+
|
|
|
|
+ #ifdef FILAMENT_RUNOUT_SUPPORT
|
|
|
|
+
|
|
|
|
+ if(READ(FR_SENS)){
|
|
|
|
+
|
|
|
|
+ feedmultiplyBckp=feedmultiply;
|
|
|
|
+ float target[4];
|
|
|
|
+ float lastpos[4];
|
|
|
|
+ target[X_AXIS]=current_position[X_AXIS];
|
|
|
|
+ target[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
+ target[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
+ target[E_AXIS]=current_position[E_AXIS];
|
|
|
|
+ lastpos[X_AXIS]=current_position[X_AXIS];
|
|
|
|
+ lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
+ lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
+ lastpos[E_AXIS]=current_position[E_AXIS];
|
|
|
|
+ //retract by E
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
|
|
|
|
+
|
|
|
|
+ target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
|
|
+
|
|
|
|
+ target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
+
|
|
|
|
+ //finish moves
|
|
|
|
+ st_synchronize();
|
|
|
|
+ //disable extruder steppers so filament can be removed
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ delay(100);
|
|
|
|
+
|
|
|
|
+ //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
|
|
+ uint8_t cnt=0;
|
|
|
|
+ int counterBeep = 0;
|
|
|
|
+ lcd_wait_interact();
|
|
|
|
+ while(!lcd_clicked()){
|
|
|
|
+ cnt++;
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity(true);
|
|
|
|
+ //lcd_update();
|
|
|
|
+ if(cnt==0)
|
|
|
|
+ {
|
|
|
|
+ #if BEEPER > 0
|
|
|
|
+
|
|
|
|
+ if (counterBeep== 500){
|
|
|
|
+ counterBeep = 0;
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ SET_OUTPUT(BEEPER);
|
|
|
|
+ if (counterBeep== 0){
|
|
|
|
+ WRITE(BEEPER,HIGH);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (counterBeep== 20){
|
|
|
|
+ WRITE(BEEPER,LOW);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ counterBeep++;
|
|
|
|
+ #else
|
|
|
|
+ #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
|
|
+ lcd_buzz(1000/6,100);
|
|
|
|
+ #else
|
|
|
|
+ lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ WRITE(BEEPER,LOW);
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ lcd_change_fil_state = 0;
|
|
|
|
+ lcd_loading_filament();
|
|
|
|
+ while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
|
|
+
|
|
|
|
+ lcd_change_fil_state = 0;
|
|
|
|
+ lcd_alright();
|
|
|
|
+ switch(lcd_change_fil_state){
|
|
|
|
+
|
|
|
|
+ case 2:
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ lcd_loading_filament();
|
|
|
|
+ break;
|
|
|
|
+ case 3:
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
+ lcd_loading_color();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ default:
|
|
|
|
+ lcd_change_success();
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= 5;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
|
|
+ //plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
|
|
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
|
|
|
|
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ feedmultiply=feedmultiplyBckp;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ char cmd[9];
|
|
|
|
+
|
|
|
|
+ sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ get_coordinates(); // For X Y Z E F
|
|
|
|
+ if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
|
|
|
|
+ total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
|
|
|
|
+ }
|
|
|
|
+ #ifdef FWRETRACT
|
|
|
|
+ if(autoretract_enabled)
|
|
|
|
+ if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
|
|
+ float echange=destination[E_AXIS]-current_position[E_AXIS];
|
|
|
|
+
|
|
|
|
+ if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
|
|
|
|
+ current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
|
|
|
+ plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
|
|
|
+ retract(!retracted);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ #endif //FWRETRACT
|
|
|
|
+ prepare_move();
|
|
|
|
+ //ClearToSend();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 2: // G2 - CW ARC
|
|
|
|
+ if(Stopped == false) {
|
|
|
|
+ get_arc_coordinates();
|
|
|
|
+ prepare_arc_move(true);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 3: // G3 - CCW ARC
|
|
|
|
+ if(Stopped == false) {
|
|
|
|
+ get_arc_coordinates();
|
|
|
|
+ prepare_arc_move(false);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 4: // G4 dwell
|
|
|
|
+ codenum = 0;
|
|
|
|
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
|
|
|
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
|
|
|
+ if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ codenum += millis(); // keep track of when we started waiting
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+ while(millis() < codenum) {
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity();
|
|
|
|
+ lcd_update();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #ifdef FWRETRACT
|
|
|
|
+ case 10: // G10 retract
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
|
|
|
+ retract(true,retracted_swap[active_extruder]);
|
|
|
|
+ #else
|
|
|
|
+ retract(true);
|
|
|
|
+ #endif
|
|
|
|
+ break;
|
|
|
|
+ case 11: // G11 retract_recover
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ retract(false,retracted_swap[active_extruder]);
|
|
|
|
+ #else
|
|
|
|
+ retract(false);
|
|
|
|
+ #endif
|
|
|
|
+ break;
|
|
|
|
+ #endif //FWRETRACT
|
|
|
|
+ case 28: //G28 Home all Axis one at a time
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+#if 1
|
|
|
|
+ SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
|
|
|
|
+ SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // Flag for the display update routine and to disable the print cancelation during homing.
|
|
|
|
+ homing_flag = true;
|
|
|
|
+
|
|
|
|
+ // Which axes should be homed?
|
|
|
|
+ bool home_x = code_seen(axis_codes[X_AXIS]);
|
|
|
|
+ bool home_y = code_seen(axis_codes[Y_AXIS]);
|
|
|
|
+ bool home_z = code_seen(axis_codes[Z_AXIS]);
|
|
|
|
+ // Either all X,Y,Z codes are present, or none of them.
|
|
|
|
+ bool home_all_axes = home_x == home_y && home_x == home_z;
|
|
|
|
+ if (home_all_axes)
|
|
|
|
+ // No X/Y/Z code provided means to home all axes.
|
|
|
|
+ home_x = home_y = home_z = true;
|
|
|
|
+
|
|
|
|
+#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+ plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
|
+#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
+
|
|
|
|
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
+ // the planner will not perform any adjustments in the XY plane.
|
|
|
|
+ // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
+ world2machine_revert_to_uncorrected();
|
|
|
|
+
|
|
|
|
+ // For mesh bed leveling deactivate the matrix temporarily.
|
|
|
|
+ // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
|
|
|
|
+ // in a single axis only.
|
|
|
|
+ // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
|
|
|
|
+#ifdef MESH_BED_LEVELING
|
|
|
|
+ uint8_t mbl_was_active = mbl.active;
|
|
|
|
+ mbl.active = 0;
|
|
|
|
+ current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
|
|
+ // consumed during the first movements following this statement.
|
|
|
|
+ if (home_z)
|
|
|
|
+ babystep_undo();
|
|
|
|
+
|
|
|
|
+ saved_feedrate = feedrate;
|
|
|
|
+ saved_feedmultiply = feedmultiply;
|
|
|
|
+ feedmultiply = 100;
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+
|
|
|
|
+ enable_endstops(true);
|
|
|
|
+
|
|
|
|
+ memcpy(destination, current_position, sizeof(destination));
|
|
|
|
+ feedrate = 0.0;
|
|
|
|
+
|
|
|
|
+ #if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
+ if(home_z)
|
|
|
|
+ homeaxis(Z_AXIS);
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #ifdef QUICK_HOME
|
|
|
|
+ // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
|
|
+ if(home_x && home_y) //first diagonal move
|
|
|
|
+ {
|
|
|
|
+ current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
|
|
+
|
|
|
|
+ int x_axis_home_dir = home_dir(X_AXIS);
|
|
|
|
+
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
|
|
+ feedrate = homing_feedrate[X_AXIS];
|
|
|
|
+ if(homing_feedrate[Y_AXIS]<feedrate)
|
|
|
|
+ feedrate = homing_feedrate[Y_AXIS];
|
|
|
|
+ if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
|
|
|
+ feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
|
|
|
+ } else {
|
|
|
|
+ feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
|
|
+ }
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ axis_is_at_home(X_AXIS);
|
|
|
|
+ axis_is_at_home(Y_AXIS);
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[X_AXIS] = current_position[X_AXIS];
|
|
|
|
+ destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ feedrate = 0.0;
|
|
|
|
+ st_synchronize();
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
+ current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
+ current_position[Z_AXIS] = destination[Z_AXIS];
|
|
|
|
+ }
|
|
|
|
+ #endif /* QUICK_HOME */
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ if(home_x)
|
|
|
|
+ homeaxis(X_AXIS);
|
|
|
|
+
|
|
|
|
+ if(home_y)
|
|
|
|
+ homeaxis(Y_AXIS);
|
|
|
|
+
|
|
|
|
+ if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
|
|
|
|
+ current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
|
|
+
|
|
|
|
+ if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
|
|
|
|
+ current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
|
|
+
|
|
|
|
+ #if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
|
|
+ #ifndef Z_SAFE_HOMING
|
|
|
|
+ if(home_z) {
|
|
|
|
+ #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
+ feedrate = max_feedrate[Z_AXIS];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
|
|
+ #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
|
|
|
|
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
|
|
|
|
+ {
|
|
|
|
+ homeaxis(X_AXIS);
|
|
|
|
+ homeaxis(Y_AXIS);
|
|
|
|
+ }
|
|
|
|
+ // 1st mesh bed leveling measurement point, corrected.
|
|
|
|
+ world2machine_initialize();
|
|
|
|
+ world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
|
|
|
|
+ world2machine_reset();
|
|
|
|
+ if (destination[Y_AXIS] < Y_MIN_POS)
|
|
|
|
+ destination[Y_AXIS] = Y_MIN_POS;
|
|
|
|
+ destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
+ current_position[Z_AXIS] = 0;
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
+ current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
+ enable_endstops(true);
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+ homeaxis(Z_AXIS);
|
|
|
|
+ #else // MESH_BED_LEVELING
|
|
|
|
+ homeaxis(Z_AXIS);
|
|
|
|
+ #endif // MESH_BED_LEVELING
|
|
|
|
+ }
|
|
|
|
+ #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
|
|
|
|
+ if(home_all_axes) {
|
|
|
|
+ destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
+ destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
+ feedrate = XY_TRAVEL_SPEED/60;
|
|
|
|
+ current_position[Z_AXIS] = 0;
|
|
|
|
+
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
+ current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
+
|
|
|
|
+ homeaxis(Z_AXIS);
|
|
|
|
+ }
|
|
|
|
+ // Let's see if X and Y are homed and probe is inside bed area.
|
|
|
|
+ if(home_z) {
|
|
|
|
+ if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
|
|
+ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
|
|
|
+ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
|
|
|
+ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
|
|
|
+ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = 0;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
|
|
+ feedrate = max_feedrate[Z_AXIS];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ homeaxis(Z_AXIS);
|
|
|
|
+ } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
|
|
|
+ LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
+ } else {
|
|
|
|
+ LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ #endif // Z_SAFE_HOMING
|
|
|
|
+ #endif // Z_HOME_DIR < 0
|
|
|
|
+
|
|
|
|
+ if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
|
|
|
+ current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
|
|
+ #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+ if(home_z)
|
|
|
|
+ current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ // Set the planner and stepper routine positions.
|
|
|
|
+ // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
|
|
|
|
+ // contains the machine coordinates.
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ #ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
+ enable_endstops(false);
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ feedrate = saved_feedrate;
|
|
|
|
+ feedmultiply = saved_feedmultiply;
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+ endstops_hit_on_purpose();
|
|
|
|
+#ifndef MESH_BED_LEVELING
|
|
|
|
+ // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
|
|
|
|
+ // Offer the user to load the baby step value, which has been adjusted at the previous print session.
|
|
|
|
+ if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
|
|
|
|
+ lcd_adjust_z();
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // Load the machine correction matrix
|
|
|
|
+ world2machine_initialize();
|
|
|
|
+ // and correct the current_position XY axes to match the transformed coordinate system.
|
|
|
|
+ world2machine_update_current();
|
|
|
|
+
|
|
|
|
+#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
|
|
|
|
+ if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
|
|
|
|
+ {
|
|
|
|
+ if (! home_z && mbl_was_active) {
|
|
|
|
+ // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
|
|
|
|
+ mbl.active = true;
|
|
|
|
+ // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
|
|
|
|
+ current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+ homing_flag = false;
|
|
|
|
+ // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
+ // There shall be always enough space reserved for these commands.
|
|
|
|
+ // enquecommand_front_P((PSTR("G80")));
|
|
|
|
+ goto case_G80;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ if (farm_mode) { prusa_statistics(20); };
|
|
|
|
+
|
|
|
|
+ homing_flag = false;
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
|
|
|
|
+ SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
|
|
|
|
+ SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+ case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
|
+ {
|
|
|
|
+ #if Z_MIN_PIN == -1
|
|
|
|
+ #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ // Prevent user from running a G29 without first homing in X and Y
|
|
|
|
+ if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
|
|
|
|
+ {
|
|
|
|
+ LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
+ break; // abort G29, since we don't know where we are
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
|
|
+ //vector_3 corrected_position = plan_get_position_mm();
|
|
|
|
+ //corrected_position.debug("position before G29");
|
|
|
|
+ plan_bed_level_matrix.set_to_identity();
|
|
|
|
+ vector_3 uncorrected_position = plan_get_position();
|
|
|
|
+ //uncorrected_position.debug("position durring G29");
|
|
|
|
+ current_position[X_AXIS] = uncorrected_position.x;
|
|
|
|
+ current_position[Y_AXIS] = uncorrected_position.y;
|
|
|
|
+ current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
+#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
+ // probe at the points of a lattice grid
|
|
|
|
+
|
|
|
|
+ int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
|
|
+ int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ // solve the plane equation ax + by + d = z
|
|
|
|
+ // A is the matrix with rows [x y 1] for all the probed points
|
|
|
|
+ // B is the vector of the Z positions
|
|
|
|
+ // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
|
|
+ // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
+
|
|
|
|
+ // "A" matrix of the linear system of equations
|
|
|
|
+ double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
|
|
|
|
+ // "B" vector of Z points
|
|
|
|
+ double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ int probePointCounter = 0;
|
|
|
|
+ bool zig = true;
|
|
|
|
+
|
|
|
|
+ for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
|
|
|
|
+ {
|
|
|
|
+ int xProbe, xInc;
|
|
|
|
+ if (zig)
|
|
|
|
+ {
|
|
|
|
+ xProbe = LEFT_PROBE_BED_POSITION;
|
|
|
|
+ //xEnd = RIGHT_PROBE_BED_POSITION;
|
|
|
|
+ xInc = xGridSpacing;
|
|
|
|
+ zig = false;
|
|
|
|
+ } else // zag
|
|
|
|
+ {
|
|
|
|
+ xProbe = RIGHT_PROBE_BED_POSITION;
|
|
|
|
+ //xEnd = LEFT_PROBE_BED_POSITION;
|
|
|
|
+ xInc = -xGridSpacing;
|
|
|
|
+ zig = true;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
|
|
|
|
+ {
|
|
|
|
+ float z_before;
|
|
|
|
+ if (probePointCounter == 0)
|
|
|
|
+ {
|
|
|
|
+ // raise before probing
|
|
|
|
+ z_before = Z_RAISE_BEFORE_PROBING;
|
|
|
|
+ } else
|
|
|
|
+ {
|
|
|
|
+ // raise extruder
|
|
|
|
+ z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ float measured_z = probe_pt(xProbe, yProbe, z_before);
|
|
|
|
+
|
|
|
|
+ eqnBVector[probePointCounter] = measured_z;
|
|
|
|
+
|
|
|
|
+ eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
|
|
|
|
+ eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
|
|
|
|
+ eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
|
|
|
|
+ probePointCounter++;
|
|
|
|
+ xProbe += xInc;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+
|
|
|
|
+ // solve lsq problem
|
|
|
|
+ double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
|
|
+ SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" b: ");
|
|
|
|
+ SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" d: ");
|
|
|
|
+ SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
+
|
|
|
|
+ free(plane_equation_coefficients);
|
|
|
|
+
|
|
|
|
+#else // AUTO_BED_LEVELING_GRID not defined
|
|
|
|
+
|
|
|
|
+ // Probe at 3 arbitrary points
|
|
|
|
+ // probe 1
|
|
|
|
+ float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
|
|
|
+
|
|
|
|
+ // probe 2
|
|
|
|
+ float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
+
|
|
|
|
+ // probe 3
|
|
|
|
+ float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
|
|
+
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+
|
|
|
|
+ set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ // The following code correct the Z height difference from z-probe position and hotend tip position.
|
|
|
|
+ // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
|
|
+ // When the bed is uneven, this height must be corrected.
|
|
|
|
+ real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
+ x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
+ y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
+ z_tmp = current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
|
|
+ current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+#ifndef Z_PROBE_SLED
|
|
|
|
+ case 30: // G30 Single Z Probe
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ run_z_probe();
|
|
|
|
+ SERIAL_PROTOCOLPGM(MSG_BED);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" X: ");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+#else
|
|
|
|
+ case 31: // dock the sled
|
|
|
|
+ dock_sled(true);
|
|
|
|
+ break;
|
|
|
|
+ case 32: // undock the sled
|
|
|
|
+ dock_sled(false);
|
|
|
|
+ break;
|
|
|
|
+#endif // Z_PROBE_SLED
|
|
|
|
+#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
+
|
|
|
|
+#ifdef MESH_BED_LEVELING
|
|
|
|
+ case 30: // G30 Single Z Probe
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+
|
|
|
|
+ feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ find_bed_induction_sensor_point_z(-10.f, 3);
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_BED);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" X: ");
|
|
|
|
+ MYSERIAL.print(current_position[X_AXIS], 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
+ MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ case 75:
|
|
|
|
+ {
|
|
|
|
+ for (int i = 40; i <= 110; i++) {
|
|
|
|
+ MYSERIAL.print(i);
|
|
|
|
+ MYSERIAL.print(" ");
|
|
|
|
+ MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 76: //PINDA probe temperature calibration
|
|
|
|
+ {
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+ if (true)
|
|
|
|
+ {
|
|
|
|
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
+ // We don't know where we are! HOME!
|
|
|
|
+ // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
+ // There shall be always enough space reserved for these commands.
|
|
|
|
+ repeatcommand_front(); // repeat G76 with all its parameters
|
|
|
|
+ enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOLNPGM("PINDA probe calibration start");
|
|
|
|
+
|
|
|
|
+ float zero_z;
|
|
|
|
+ int z_shift = 0; //unit: steps
|
|
|
|
+ float start_temp = 5 * (int)(current_temperature_pinda / 5);
|
|
|
|
+ if (start_temp < 35) start_temp = 35;
|
|
|
|
+ if (start_temp < current_temperature_pinda) start_temp += 5;
|
|
|
|
+ SERIAL_ECHOPGM("start temperature: ");
|
|
|
|
+ MYSERIAL.println(start_temp);
|
|
|
|
+
|
|
|
|
+// setTargetHotend(200, 0);
|
|
|
|
+ setTargetBed(50 + 10 * (start_temp - 30) / 5);
|
|
|
|
+
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 4;
|
|
|
|
+ custom_message_state = 1;
|
|
|
|
+ custom_message = MSG_TEMP_CALIBRATION;
|
|
|
|
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ while (current_temperature_pinda < start_temp)
|
|
|
|
+ {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ serialecho_temperatures();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
+ zero_z = current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ //current_position[Z_AXIS]
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ SERIAL_ECHOPGM("ZERO: ");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS]);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+
|
|
|
|
+ int i = -1; for (; i < 5; i++)
|
|
|
|
+ {
|
|
|
|
+ float temp = (40 + i * 5);
|
|
|
|
+ SERIAL_ECHOPGM("Step: ");
|
|
|
|
+ MYSERIAL.print(i + 2);
|
|
|
|
+ SERIAL_ECHOLNPGM("/6 (skipped)");
|
|
|
|
+ SERIAL_ECHOPGM("PINDA temperature: ");
|
|
|
|
+ MYSERIAL.print((40 + i*5));
|
|
|
|
+ SERIAL_ECHOPGM(" Z shift (mm):");
|
|
|
|
+ MYSERIAL.print(0);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
|
|
+ if (start_temp <= temp) break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (i++; i < 5; i++)
|
|
|
|
+ {
|
|
|
|
+ float temp = (40 + i * 5);
|
|
|
|
+ SERIAL_ECHOPGM("Step: ");
|
|
|
|
+ MYSERIAL.print(i + 2);
|
|
|
|
+ SERIAL_ECHOLNPGM("/6");
|
|
|
|
+ custom_message_state = i + 2;
|
|
|
|
+ setTargetBed(50 + 10 * (temp - 30) / 5);
|
|
|
|
+// setTargetHotend(255, 0);
|
|
|
|
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ while (current_temperature_pinda < temp)
|
|
|
|
+ {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ serialecho_temperatures();
|
|
|
|
+ }
|
|
|
|
+ current_position[Z_AXIS] = 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
+ z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ SERIAL_ECHOPGM("PINDA temperature: ");
|
|
|
|
+ MYSERIAL.print(current_temperature_pinda);
|
|
|
|
+ SERIAL_ECHOPGM(" Z shift (mm):");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+
|
|
|
|
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ custom_message_type = 0;
|
|
|
|
+ custom_message = false;
|
|
|
|
+
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
|
|
+ SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
|
|
+ disable_x();
|
|
|
|
+ disable_y();
|
|
|
|
+ disable_z();
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+
|
|
|
|
+ setTargetBed(0); //set bed target temperature back to 0
|
|
|
|
+// setTargetHotend(0,0); //set hotend target temperature back to 0
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+#endif //PINDA_THERMISTOR
|
|
|
|
+
|
|
|
|
+ setTargetBed(PINDA_MIN_T);
|
|
|
|
+ float zero_z;
|
|
|
|
+ int z_shift = 0; //unit: steps
|
|
|
|
+ int t_c; // temperature
|
|
|
|
+
|
|
|
|
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
+ // We don't know where we are! HOME!
|
|
|
|
+ // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
+ // There shall be always enough space reserved for these commands.
|
|
|
|
+ repeatcommand_front(); // repeat G76 with all its parameters
|
|
|
|
+ enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOLNPGM("PINDA probe calibration start");
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 4;
|
|
|
|
+ custom_message_state = 1;
|
|
|
|
+ custom_message = MSG_TEMP_CALIBRATION;
|
|
|
|
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ while (abs(degBed() - PINDA_MIN_T) > 1) {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ serialecho_temperatures();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ //enquecommand_P(PSTR("M190 S50"));
|
|
|
|
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ serialecho_temperatures();
|
|
|
|
+ }
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
+ zero_z = current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ //current_position[Z_AXIS]
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ SERIAL_ECHOPGM("ZERO: ");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS]);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+
|
|
|
|
+ for (int i = 0; i<5; i++) {
|
|
|
|
+ SERIAL_ECHOPGM("Step: ");
|
|
|
|
+ MYSERIAL.print(i+2);
|
|
|
|
+ SERIAL_ECHOLNPGM("/6");
|
|
|
|
+ custom_message_state = i + 2;
|
|
|
|
+ t_c = 60 + i * 10;
|
|
|
|
+
|
|
|
|
+ setTargetBed(t_c);
|
|
|
|
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ while (degBed() < t_c) {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ serialecho_temperatures();
|
|
|
|
+ }
|
|
|
|
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ serialecho_temperatures();
|
|
|
|
+ }
|
|
|
|
+ current_position[Z_AXIS] = 5;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ find_bed_induction_sensor_point_z(-1.f);
|
|
|
|
+ z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ SERIAL_ECHOPGM("Temperature: ");
|
|
|
|
+ MYSERIAL.print(t_c);
|
|
|
|
+ SERIAL_ECHOPGM(" Z shift (mm):");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS] - zero_z);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+
|
|
|
|
+ EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ custom_message_type = 0;
|
|
|
|
+ custom_message = false;
|
|
|
|
+
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
|
|
|
|
+ SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
|
|
|
|
+ disable_x();
|
|
|
|
+ disable_y();
|
|
|
|
+ disable_z();
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ setTargetBed(0); //set bed target temperature back to 0
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#ifdef DIS
|
|
|
|
+ case 77:
|
|
|
|
+ {
|
|
|
|
+ //G77 X200 Y150 XP100 YP15 XO10 Y015
|
|
|
|
+
|
|
|
|
+ //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //G77 X232 Y218 XP116 YP109 XO-11 YO0
|
|
|
|
+
|
|
|
|
+ float dimension_x = 40;
|
|
|
|
+ float dimension_y = 40;
|
|
|
|
+ int points_x = 40;
|
|
|
|
+ int points_y = 40;
|
|
|
|
+ float offset_x = 74;
|
|
|
|
+ float offset_y = 33;
|
|
|
|
+
|
|
|
|
+ if (code_seen('X')) dimension_x = code_value();
|
|
|
|
+ if (code_seen('Y')) dimension_y = code_value();
|
|
|
|
+ if (code_seen('XP')) points_x = code_value();
|
|
|
|
+ if (code_seen('YP')) points_y = code_value();
|
|
|
|
+ if (code_seen('XO')) offset_x = code_value();
|
|
|
|
+ if (code_seen('YO')) offset_y = code_value();
|
|
|
|
+
|
|
|
|
+ bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
|
|
|
|
+
|
|
|
|
+ } break;
|
|
|
|
+
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ case 79: {
|
|
|
|
+ for (int i = 255; i > 0; i = i - 5) {
|
|
|
|
+ fanSpeed = i;
|
|
|
|
+ //delay_keep_alive(2000);
|
|
|
|
+ for (int j = 0; j < 100; j++) {
|
|
|
|
+ delay_keep_alive(100);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ fan_speed[1];
|
|
|
|
+ MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
|
|
|
|
+ }
|
|
|
|
+ }break;
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * G80: Mesh-based Z probe, probes a grid and produces a
|
|
|
|
+ * mesh to compensate for variable bed height
|
|
|
|
+ *
|
|
|
|
+ * The S0 report the points as below
|
|
|
|
+ *
|
|
|
|
+ * +----> X-axis
|
|
|
|
+ * |
|
|
|
|
+ * |
|
|
|
|
+ * v Y-axis
|
|
|
|
+ *
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ case 80:
|
|
|
|
+#ifdef MK1BP
|
|
|
|
+ break;
|
|
|
|
+#endif //MK1BP
|
|
|
|
+ case_G80:
|
|
|
|
+ {
|
|
|
|
+ mesh_bed_leveling_flag = true;
|
|
|
|
+ int8_t verbosity_level = 0;
|
|
|
|
+ static bool run = false;
|
|
|
|
+
|
|
|
|
+ if (code_seen('V')) {
|
|
|
|
+ // Just 'V' without a number counts as V1.
|
|
|
|
+ char c = strchr_pointer[1];
|
|
|
|
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
|
|
+ }
|
|
|
|
+ // Firstly check if we know where we are
|
|
|
|
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
+ // We don't know where we are! HOME!
|
|
|
|
+ // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
+ // There shall be always enough space reserved for these commands.
|
|
|
|
+ if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
|
|
|
|
+ repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
+ enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ mesh_bed_leveling_flag = false;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ bool temp_comp_start = true;
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+ temp_comp_start = false;
|
|
|
|
+#endif //PINDA_THERMISTOR
|
|
|
|
+
|
|
|
|
+ if (temp_comp_start)
|
|
|
|
+ if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
|
|
|
|
+ if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
|
|
|
|
+ temp_compensation_start();
|
|
|
|
+ run = true;
|
|
|
|
+ repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
+ enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ mesh_bed_leveling_flag = false;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ run = false;
|
|
|
|
+ if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
|
|
|
|
+ mesh_bed_leveling_flag = false;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ // Save custom message state, set a new custom message state to display: Calibrating point 9.
|
|
|
|
+ bool custom_message_old = custom_message;
|
|
|
|
+ unsigned int custom_message_type_old = custom_message_type;
|
|
|
|
+ unsigned int custom_message_state_old = custom_message_state;
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 1;
|
|
|
|
+ custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
|
|
|
|
+ lcd_update(1);
|
|
|
|
+
|
|
|
|
+ mbl.reset(); //reset mesh bed leveling
|
|
|
|
+
|
|
|
|
+ // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
|
|
|
|
+ // consumed during the first movements following this statement.
|
|
|
|
+ babystep_undo();
|
|
|
|
+
|
|
|
|
+ // Cycle through all points and probe them
|
|
|
|
+ // First move up. During this first movement, the babystepping will be reverted.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
|
|
+ // The move to the first calibration point.
|
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
|
|
|
|
+ bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
+
|
|
|
|
+ if (verbosity_level >= 1) {
|
|
|
|
+ clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
|
|
|
|
+ }
|
|
|
|
+ // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
|
|
|
|
+ // Wait until the move is finished.
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ int mesh_point = 0; //index number of calibration point
|
|
|
|
+
|
|
|
|
+ int ix = 0;
|
|
|
|
+ int iy = 0;
|
|
|
|
+
|
|
|
|
+ int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
|
|
+ int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
|
|
+ int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
|
|
+ bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
|
|
|
|
+ if (verbosity_level >= 1) {
|
|
|
|
+ has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
|
|
|
|
+ }
|
|
|
|
+ setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
|
|
|
|
+ const char *kill_message = NULL;
|
|
|
|
+ while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
|
|
+ if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
|
|
|
|
+ // Get coords of a measuring point.
|
|
|
|
+ ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
+ iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
|
|
+ if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
|
|
|
|
+ float z0 = 0.f;
|
|
|
|
+ if (has_z && mesh_point > 0) {
|
|
|
|
+ uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
|
|
|
|
+ z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
|
|
|
|
+ //#if 0
|
|
|
|
+ if (verbosity_level >= 1) {
|
|
|
|
+ SERIAL_ECHOPGM("Bed leveling, point: ");
|
|
|
|
+ MYSERIAL.print(mesh_point);
|
|
|
|
+ SERIAL_ECHOPGM(", calibration z: ");
|
|
|
|
+ MYSERIAL.print(z0, 5);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ }
|
|
|
|
+ //#endif
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Move Z up to MESH_HOME_Z_SEARCH.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ // Move to XY position of the sensor point.
|
|
|
|
+ current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
|
|
|
|
+ current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
|
|
|
|
+ if (verbosity_level >= 1) {
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOL(mesh_point);
|
|
|
|
+ clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ // Go down until endstop is hit
|
|
|
|
+ const float Z_CALIBRATION_THRESHOLD = 1.f;
|
|
|
|
+ if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
|
|
+ kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
|
|
|
|
+ kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
|
|
|
|
+ kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (verbosity_level >= 10) {
|
|
|
|
+ SERIAL_ECHOPGM("X: ");
|
|
|
|
+ MYSERIAL.print(current_position[X_AXIS], 5);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ SERIAL_ECHOPGM("Y: ");
|
|
|
|
+ MYSERIAL.print(current_position[Y_AXIS], 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ float offset_z = 0;
|
|
|
|
+
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+ offset_z = temp_compensation_pinda_thermistor_offset();
|
|
|
|
+#endif //PINDA_THERMISTOR
|
|
|
|
+
|
|
|
|
+ if (verbosity_level >= 1) {
|
|
|
|
+ SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
|
|
+ SERIAL_ECHOPGM(" offset: ");
|
|
|
|
+ MYSERIAL.print(offset_z, 5);
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ }
|
|
|
|
+ mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
|
|
|
|
+
|
|
|
|
+ custom_message_state--;
|
|
|
|
+ mesh_point++;
|
|
|
|
+ lcd_update(1);
|
|
|
|
+ }
|
|
|
|
+ if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ if (verbosity_level >= 20) {
|
|
|
|
+ SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS], 5);
|
|
|
|
+ }
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
|
|
|
|
+ kill(kill_message);
|
|
|
|
+ SERIAL_ECHOLNPGM("killed");
|
|
|
|
+ }
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ SERIAL_ECHOLNPGM("clean up finished ");
|
|
|
|
+
|
|
|
|
+ bool apply_temp_comp = true;
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+ apply_temp_comp = false;
|
|
|
|
+#endif
|
|
|
|
+ if (apply_temp_comp)
|
|
|
|
+ if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
|
|
|
|
+ babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
|
|
|
|
+ SERIAL_ECHOLNPGM("babystep applied");
|
|
|
|
+ bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
|
|
|
|
+
|
|
|
|
+ if (verbosity_level >= 1) {
|
|
|
|
+ eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (uint8_t i = 0; i < 4; ++i) {
|
|
|
|
+ unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
|
|
|
|
+ long correction = 0;
|
|
|
|
+ if (code_seen(codes[i]))
|
|
|
|
+ correction = code_value_long();
|
|
|
|
+ else if (eeprom_bed_correction_valid) {
|
|
|
|
+ unsigned char *addr = (i < 2) ?
|
|
|
|
+ ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
|
|
|
|
+ ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
|
|
|
|
+ correction = eeprom_read_int8(addr);
|
|
|
|
+ }
|
|
|
|
+ if (correction == 0)
|
|
|
|
+ continue;
|
|
|
|
+ float offset = float(correction) * 0.001f;
|
|
|
|
+ if (fabs(offset) > 0.101f) {
|
|
|
|
+ SERIAL_ERROR_START;
|
|
|
|
+ SERIAL_ECHOPGM("Excessive bed leveling correction: ");
|
|
|
|
+ SERIAL_ECHO(offset);
|
|
|
|
+ SERIAL_ECHOLNPGM(" microns");
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ switch (i) {
|
|
|
|
+ case 0:
|
|
|
|
+ for (uint8_t row = 0; row < 3; ++row) {
|
|
|
|
+ mbl.z_values[row][1] += 0.5f * offset;
|
|
|
|
+ mbl.z_values[row][0] += offset;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 1:
|
|
|
|
+ for (uint8_t row = 0; row < 3; ++row) {
|
|
|
|
+ mbl.z_values[row][1] += 0.5f * offset;
|
|
|
|
+ mbl.z_values[row][2] += offset;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 2:
|
|
|
|
+ for (uint8_t col = 0; col < 3; ++col) {
|
|
|
|
+ mbl.z_values[1][col] += 0.5f * offset;
|
|
|
|
+ mbl.z_values[0][col] += offset;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 3:
|
|
|
|
+ for (uint8_t col = 0; col < 3; ++col) {
|
|
|
|
+ mbl.z_values[1][col] += 0.5f * offset;
|
|
|
|
+ mbl.z_values[2][col] += offset;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOLNPGM("Bed leveling correction finished");
|
|
|
|
+ mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
|
|
|
|
+ SERIAL_ECHOLNPGM("Upsample finished");
|
|
|
|
+ mbl.active = 1; //activate mesh bed leveling
|
|
|
|
+ SERIAL_ECHOLNPGM("Mesh bed leveling activated");
|
|
|
|
+ go_home_with_z_lift();
|
|
|
|
+ SERIAL_ECHOLNPGM("Go home finished");
|
|
|
|
+ //unretract (after PINDA preheat retraction)
|
|
|
|
+ if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
|
|
|
|
+ current_position[E_AXIS] += DEFAULT_RETRACTION;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
+ }
|
|
|
|
+ // Restore custom message state
|
|
|
|
+ custom_message = custom_message_old;
|
|
|
|
+ custom_message_type = custom_message_type_old;
|
|
|
|
+ custom_message_state = custom_message_state_old;
|
|
|
|
+ mesh_bed_leveling_flag = false;
|
|
|
|
+ mesh_bed_run_from_menu = false;
|
|
|
|
+ lcd_update(2);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * G81: Print mesh bed leveling status and bed profile if activated
|
|
|
|
+ */
|
|
|
|
+ case 81:
|
|
|
|
+ if (mbl.active) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
|
|
+ SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
|
|
|
+ SERIAL_PROTOCOLPGM(",");
|
|
|
|
+ SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
|
|
+ SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
|
|
+ for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
|
|
|
|
+ for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
|
|
|
+ SERIAL_PROTOCOLPGM(" ");
|
|
|
|
+ SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#if 0
|
|
|
|
+ /**
|
|
|
|
+ * G82: Single Z probe at current location
|
|
|
|
+ *
|
|
|
|
+ * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
|
|
|
|
+ *
|
|
|
|
+ */
|
|
|
|
+ case 82:
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("Finding bed ");
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+ find_bed_induction_sensor_point_z();
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ SERIAL_PROTOCOLPGM("Bed found at: ");
|
|
|
|
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * G83: Prusa3D specific: Babystep in Z and store to EEPROM
|
|
|
|
+ */
|
|
|
|
+ case 83:
|
|
|
|
+ {
|
|
|
|
+ int babystepz = code_seen('S') ? code_value() : 0;
|
|
|
|
+ int BabyPosition = code_seen('P') ? code_value() : 0;
|
|
|
|
+
|
|
|
|
+ if (babystepz != 0) {
|
|
|
|
+ //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
|
|
|
|
+ // Is the axis indexed starting with zero or one?
|
|
|
|
+ if (BabyPosition > 4) {
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("Index out of bounds");
|
|
|
|
+ }else{
|
|
|
|
+ // Save it to the eeprom
|
|
|
|
+ babystepLoadZ = babystepz;
|
|
|
|
+ EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
|
|
|
|
+ // adjust the Z
|
|
|
|
+ babystepsTodoZadd(babystepLoadZ);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ /**
|
|
|
|
+ * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
|
|
|
|
+ */
|
|
|
|
+ case 84:
|
|
|
|
+ babystepsTodoZsubtract(babystepLoadZ);
|
|
|
|
+ // babystepLoadZ = 0;
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * G85: Prusa3D specific: Pick best babystep
|
|
|
|
+ */
|
|
|
|
+ case 85:
|
|
|
|
+ lcd_pick_babystep();
|
|
|
|
+ break;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * G86: Prusa3D specific: Disable babystep correction after home.
|
|
|
|
+ * This G-code will be performed at the start of a calibration script.
|
|
|
|
+ */
|
|
|
|
+ case 86:
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
|
|
+ break;
|
|
|
|
+ /**
|
|
|
|
+ * G87: Prusa3D specific: Enable babystep correction after home
|
|
|
|
+ * This G-code will be performed at the end of a calibration script.
|
|
|
|
+ */
|
|
|
|
+ case 87:
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ /**
|
|
|
|
+ * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
|
|
|
|
+ */
|
|
|
|
+ case 88:
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#endif // ENABLE_MESH_BED_LEVELING
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ case 90: // G90
|
|
|
|
+ relative_mode = false;
|
|
|
|
+ break;
|
|
|
|
+ case 91: // G91
|
|
|
|
+ relative_mode = true;
|
|
|
|
+ break;
|
|
|
|
+ case 92: // G92
|
|
|
|
+ if(!code_seen(axis_codes[E_AXIS]))
|
|
|
|
+ st_synchronize();
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
+ if(code_seen(axis_codes[i])) {
|
|
|
|
+ if(i == E_AXIS) {
|
|
|
|
+ current_position[i] = code_value();
|
|
|
|
+ plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ current_position[i] = code_value()+add_homing[i];
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 98: //activate farm mode
|
|
|
|
+ farm_mode = 1;
|
|
|
|
+ PingTime = millis();
|
|
|
|
+ eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 99: //deactivate farm mode
|
|
|
|
+ farm_mode = 0;
|
|
|
|
+ lcd_printer_connected();
|
|
|
|
+ eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ } // end if(code_seen('G'))
|
|
|
|
+
|
|
|
|
+ else if(code_seen('M'))
|
|
|
|
+ {
|
|
|
|
+ int index;
|
|
|
|
+ for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
+
|
|
|
|
+ /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
|
|
|
|
+ if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
|
|
|
|
+ SERIAL_ECHOLNPGM("Invalid M code");
|
|
|
|
+ } else
|
|
|
|
+ switch((int)code_value())
|
|
|
|
+ {
|
|
|
|
+#ifdef ULTIPANEL
|
|
|
|
+
|
|
|
|
+ case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
|
|
+ case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
|
|
+ {
|
|
|
|
+ char *src = strchr_pointer + 2;
|
|
|
|
+
|
|
|
|
+ codenum = 0;
|
|
|
|
+
|
|
|
|
+ bool hasP = false, hasS = false;
|
|
|
|
+ if (code_seen('P')) {
|
|
|
|
+ codenum = code_value(); // milliseconds to wait
|
|
|
|
+ hasP = codenum > 0;
|
|
|
|
+ }
|
|
|
|
+ if (code_seen('S')) {
|
|
|
|
+ codenum = code_value() * 1000; // seconds to wait
|
|
|
|
+ hasS = codenum > 0;
|
|
|
|
+ }
|
|
|
|
+ starpos = strchr(src, '*');
|
|
|
|
+ if (starpos != NULL) *(starpos) = '\0';
|
|
|
|
+ while (*src == ' ') ++src;
|
|
|
|
+ if (!hasP && !hasS && *src != '\0') {
|
|
|
|
+ lcd_setstatus(src);
|
|
|
|
+ } else {
|
|
|
|
+ LCD_MESSAGERPGM(MSG_USERWAIT);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
|
|
|
|
+ st_synchronize();
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+ if (codenum > 0){
|
|
|
|
+ codenum += millis(); // keep track of when we started waiting
|
|
|
|
+ while(millis() < codenum && !lcd_clicked()){
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity(true);
|
|
|
|
+ lcd_update();
|
|
|
|
+ }
|
|
|
|
+ lcd_ignore_click(false);
|
|
|
|
+ }else{
|
|
|
|
+ if (!lcd_detected())
|
|
|
|
+ break;
|
|
|
|
+ while(!lcd_clicked()){
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity(true);
|
|
|
|
+ lcd_update();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (IS_SD_PRINTING)
|
|
|
|
+ LCD_MESSAGERPGM(MSG_RESUMING);
|
|
|
|
+ else
|
|
|
|
+ LCD_MESSAGERPGM(WELCOME_MSG);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+#endif
|
|
|
|
+ case 17:
|
|
|
|
+ LCD_MESSAGERPGM(MSG_NO_MOVE);
|
|
|
|
+ enable_x();
|
|
|
|
+ enable_y();
|
|
|
|
+ enable_z();
|
|
|
|
+ enable_e0();
|
|
|
|
+ enable_e1();
|
|
|
|
+ enable_e2();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#ifdef SDSUPPORT
|
|
|
|
+ case 20: // M20 - list SD card
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
|
|
|
|
+ card.ls();
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
|
|
|
|
+ break;
|
|
|
|
+ case 21: // M21 - init SD card
|
|
|
|
+
|
|
|
|
+ card.initsd();
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ case 22: //M22 - release SD card
|
|
|
|
+ card.release();
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ case 23: //M23 - Select file
|
|
|
|
+ starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
+ if(starpos!=NULL)
|
|
|
|
+ *(starpos)='\0';
|
|
|
|
+ card.openFile(strchr_pointer + 4,true);
|
|
|
|
+ break;
|
|
|
|
+ case 24: //M24 - Start SD print
|
|
|
|
+ card.startFileprint();
|
|
|
|
+ starttime=millis();
|
|
|
|
+ break;
|
|
|
|
+ case 25: //M25 - Pause SD print
|
|
|
|
+ card.pauseSDPrint();
|
|
|
|
+ break;
|
|
|
|
+ case 26: //M26 - Set SD index
|
|
|
|
+ if(card.cardOK && code_seen('S')) {
|
|
|
|
+ card.setIndex(code_value_long());
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 27: //M27 - Get SD status
|
|
|
|
+ card.getStatus();
|
|
|
|
+ break;
|
|
|
|
+ case 28: //M28 - Start SD write
|
|
|
|
+ starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
+ if(starpos != NULL){
|
|
|
|
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
|
|
+ strchr_pointer = strchr(npos,' ') + 1;
|
|
|
|
+ *(starpos) = '\0';
|
|
|
|
+ }
|
|
|
|
+ card.openFile(strchr_pointer+4,false);
|
|
|
|
+ break;
|
|
|
|
+ case 29: //M29 - Stop SD write
|
|
|
|
+ //processed in write to file routine above
|
|
|
|
+ //card,saving = false;
|
|
|
|
+ break;
|
|
|
|
+ case 30: //M30 <filename> Delete File
|
|
|
|
+ if (card.cardOK){
|
|
|
|
+ card.closefile();
|
|
|
|
+ starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
+ if(starpos != NULL){
|
|
|
|
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
|
|
+ strchr_pointer = strchr(npos,' ') + 1;
|
|
|
|
+ *(starpos) = '\0';
|
|
|
|
+ }
|
|
|
|
+ card.removeFile(strchr_pointer + 4);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 32: //M32 - Select file and start SD print
|
|
|
|
+ {
|
|
|
|
+ if(card.sdprinting) {
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ starpos = (strchr(strchr_pointer + 4,'*'));
|
|
|
|
+
|
|
|
|
+ char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
|
|
|
|
+ if(namestartpos==NULL)
|
|
|
|
+ {
|
|
|
|
+ namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ namestartpos++; //to skip the '!'
|
|
|
|
+
|
|
|
|
+ if(starpos!=NULL)
|
|
|
|
+ *(starpos)='\0';
|
|
|
|
+
|
|
|
|
+ bool call_procedure=(code_seen('P'));
|
|
|
|
+
|
|
|
|
+ if(strchr_pointer>namestartpos)
|
|
|
|
+ call_procedure=false; //false alert, 'P' found within filename
|
|
|
|
+
|
|
|
|
+ if( card.cardOK )
|
|
|
|
+ {
|
|
|
|
+ card.openFile(namestartpos,true,!call_procedure);
|
|
|
|
+ if(code_seen('S'))
|
|
|
|
+ if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
|
|
|
|
+ card.setIndex(code_value_long());
|
|
|
|
+ card.startFileprint();
|
|
|
|
+ if(!call_procedure)
|
|
|
|
+ starttime=millis(); //procedure calls count as normal print time.
|
|
|
|
+ }
|
|
|
|
+ } break;
|
|
|
|
+ case 928: //M928 - Start SD write
|
|
|
|
+ starpos = (strchr(strchr_pointer + 5,'*'));
|
|
|
|
+ if(starpos != NULL){
|
|
|
|
+ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
|
|
|
|
+ strchr_pointer = strchr(npos,' ') + 1;
|
|
|
|
+ *(starpos) = '\0';
|
|
|
|
+ }
|
|
|
|
+ card.openLogFile(strchr_pointer+5);
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#endif //SDSUPPORT
|
|
|
|
+
|
|
|
|
+ case 31: //M31 take time since the start of the SD print or an M109 command
|
|
|
|
+ {
|
|
|
|
+ stoptime=millis();
|
|
|
|
+ char time[30];
|
|
|
|
+ unsigned long t=(stoptime-starttime)/1000;
|
|
|
|
+ int sec,min;
|
|
|
|
+ min=t/60;
|
|
|
|
+ sec=t%60;
|
|
|
|
+ sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOLN(time);
|
|
|
|
+ lcd_setstatus(time);
|
|
|
|
+ autotempShutdown();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 42: //M42 -Change pin status via gcode
|
|
|
|
+ if (code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ int pin_status = code_value();
|
|
|
|
+ int pin_number = LED_PIN;
|
|
|
|
+ if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
|
|
+ pin_number = code_value();
|
|
|
|
+ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
|
|
+ {
|
|
|
|
+ if (sensitive_pins[i] == pin_number)
|
|
|
|
+ {
|
|
|
|
+ pin_number = -1;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ #if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
|
+ if (pin_number == FAN_PIN)
|
|
|
|
+ fanSpeed = pin_status;
|
|
|
|
+ #endif
|
|
|
|
+ if (pin_number > -1)
|
|
|
|
+ {
|
|
|
|
+ pinMode(pin_number, OUTPUT);
|
|
|
|
+ digitalWrite(pin_number, pin_status);
|
|
|
|
+ analogWrite(pin_number, pin_status);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
|
|
|
|
+
|
|
|
|
+ // Reset the baby step value and the baby step applied flag.
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
|
|
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
+
|
|
|
|
+ // Reset the skew and offset in both RAM and EEPROM.
|
|
|
|
+ reset_bed_offset_and_skew();
|
|
|
|
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
+ // the planner will not perform any adjustments in the XY plane.
|
|
|
|
+ // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
+ world2machine_revert_to_uncorrected();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 45: // M45: Prusa3D: bed skew and offset with manual Z up
|
|
|
|
+ {
|
|
|
|
+ // Only Z calibration?
|
|
|
|
+ bool onlyZ = code_seen('Z');
|
|
|
|
+
|
|
|
|
+ if (!onlyZ) {
|
|
|
|
+ setTargetBed(0);
|
|
|
|
+ setTargetHotend(0, 0);
|
|
|
|
+ setTargetHotend(0, 1);
|
|
|
|
+ setTargetHotend(0, 2);
|
|
|
|
+ adjust_bed_reset(); //reset bed level correction
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Disable the default update procedure of the display. We will do a modal dialog.
|
|
|
|
+ lcd_update_enable(false);
|
|
|
|
+ // Let the planner use the uncorrected coordinates.
|
|
|
|
+ mbl.reset();
|
|
|
|
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
+ // the planner will not perform any adjustments in the XY plane.
|
|
|
|
+ // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
+ world2machine_revert_to_uncorrected();
|
|
|
|
+ // Reset the baby step value applied without moving the axes.
|
|
|
|
+ babystep_reset();
|
|
|
|
+ // Mark all axes as in a need for homing.
|
|
|
|
+ memset(axis_known_position, 0, sizeof(axis_known_position));
|
|
|
|
+
|
|
|
|
+ // Home in the XY plane.
|
|
|
|
+ //set_destination_to_current();
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+ lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
|
|
|
|
+ home_xy();
|
|
|
|
+
|
|
|
|
+ // Let the user move the Z axes up to the end stoppers.
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+ if (calibrate_z_auto()) {
|
|
|
|
+#else //TMC2130
|
|
|
|
+ if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
|
|
|
|
+#endif //TMC2130
|
|
|
|
+ refresh_cmd_timeout();
|
|
|
|
+ if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
|
|
|
|
+ lcd_wait_for_cool_down();
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
|
|
|
|
+ lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
|
|
|
|
+ lcd_implementation_print_at(0, 2, 1);
|
|
|
|
+ lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Move the print head close to the bed.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+//#ifdef TMC2130
|
|
|
|
+// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
|
|
|
|
+//#endif
|
|
|
|
+
|
|
|
|
+ int8_t verbosity_level = 0;
|
|
|
|
+ if (code_seen('V')) {
|
|
|
|
+ // Just 'V' without a number counts as V1.
|
|
|
|
+ char c = strchr_pointer[1];
|
|
|
|
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (onlyZ) {
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ // Z only calibration.
|
|
|
|
+ // Load the machine correction matrix
|
|
|
|
+ world2machine_initialize();
|
|
|
|
+ // and correct the current_position to match the transformed coordinate system.
|
|
|
|
+ world2machine_update_current();
|
|
|
|
+ //FIXME
|
|
|
|
+ bool result = sample_mesh_and_store_reference();
|
|
|
|
+ if (result) {
|
|
|
|
+ if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
|
|
|
|
+ // Shipped, the nozzle height has been set already. The user can start printing now.
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
|
|
|
|
+ // babystep_apply();
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ // Reset the baby step value and the baby step applied flag.
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
|
|
|
|
+ eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
|
|
|
|
+ // Complete XYZ calibration.
|
|
|
|
+ uint8_t point_too_far_mask = 0;
|
|
|
|
+ BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ // Print head up.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ if (result >= 0) {
|
|
|
|
+ point_too_far_mask = 0;
|
|
|
|
+ // Second half: The fine adjustment.
|
|
|
|
+ // Let the planner use the uncorrected coordinates.
|
|
|
|
+ mbl.reset();
|
|
|
|
+ world2machine_reset();
|
|
|
|
+ // Home in the XY plane.
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+ home_xy();
|
|
|
|
+ result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ // Print head up.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // if (result >= 0) babystep_apply();
|
|
|
|
+ }
|
|
|
|
+ lcd_bed_calibration_show_result(result, point_too_far_mask);
|
|
|
|
+ if (result >= 0) {
|
|
|
|
+ // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#ifdef TMC2130
|
|
|
|
+ tmc2130_home_exit();
|
|
|
|
+#endif
|
|
|
|
+ } else {
|
|
|
|
+ // Timeouted.
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ case 46:
|
|
|
|
+ {
|
|
|
|
+ // M46: Prusa3D: Show the assigned IP address.
|
|
|
|
+ uint8_t ip[4];
|
|
|
|
+ bool hasIP = card.ToshibaFlashAir_GetIP(ip);
|
|
|
|
+ if (hasIP) {
|
|
|
|
+ SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
|
|
|
|
+ SERIAL_ECHO(int(ip[0]));
|
|
|
|
+ SERIAL_ECHOPGM(".");
|
|
|
|
+ SERIAL_ECHO(int(ip[1]));
|
|
|
|
+ SERIAL_ECHOPGM(".");
|
|
|
|
+ SERIAL_ECHO(int(ip[2]));
|
|
|
|
+ SERIAL_ECHOPGM(".");
|
|
|
|
+ SERIAL_ECHO(int(ip[3]));
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+ } else {
|
|
|
|
+ SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ case 47:
|
|
|
|
+ // M47: Prusa3D: Show end stops dialog on the display.
|
|
|
|
+ lcd_diag_show_end_stops();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#if 0
|
|
|
|
+ case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
|
|
|
|
+ {
|
|
|
|
+ // Disable the default update procedure of the display. We will do a modal dialog.
|
|
|
|
+ lcd_update_enable(false);
|
|
|
|
+ // Let the planner use the uncorrected coordinates.
|
|
|
|
+ mbl.reset();
|
|
|
|
+ // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
|
|
|
|
+ // the planner will not perform any adjustments in the XY plane.
|
|
|
|
+ // Wait for the motors to stop and update the current position with the absolute values.
|
|
|
|
+ world2machine_revert_to_uncorrected();
|
|
|
|
+ // Move the print head close to the bed.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ // Home in the XY plane.
|
|
|
|
+ set_destination_to_current();
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+ home_xy();
|
|
|
|
+ int8_t verbosity_level = 0;
|
|
|
|
+ if (code_seen('V')) {
|
|
|
|
+ // Just 'V' without a number counts as V1.
|
|
|
|
+ char c = strchr_pointer[1];
|
|
|
|
+ verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
|
|
|
|
+ }
|
|
|
|
+ bool success = scan_bed_induction_points(verbosity_level);
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+ // Print head up.
|
|
|
|
+ current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+// M48 Z-Probe repeatability measurement function.
|
|
|
|
+//
|
|
|
|
+// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
|
|
|
|
+//
|
|
|
|
+// This function assumes the bed has been homed. Specificaly, that a G28 command
|
|
|
|
+// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
|
|
+// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
|
|
+// regenerated.
|
|
|
|
+//
|
|
|
|
+// The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
|
|
+// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
|
|
+// N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
|
|
+//
|
|
|
|
+
|
|
|
|
+#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+#ifdef Z_PROBE_REPEATABILITY_TEST
|
|
|
|
+
|
|
|
|
+ case 48: // M48 Z-Probe repeatability
|
|
|
|
+ {
|
|
|
|
+ #if Z_MIN_PIN == -1
|
|
|
|
+ #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ double sum=0.0;
|
|
|
|
+ double mean=0.0;
|
|
|
|
+ double sigma=0.0;
|
|
|
|
+ double sample_set[50];
|
|
|
|
+ int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
|
|
|
|
+ double X_current, Y_current, Z_current;
|
|
|
|
+ double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
|
|
|
+
|
|
|
|
+ if (code_seen('V') || code_seen('v')) {
|
|
|
|
+ verbose_level = code_value();
|
|
|
|
+ if (verbose_level<0 || verbose_level>4 ) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
|
|
|
|
+ goto Sigma_Exit;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (verbose_level > 0) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
|
|
|
+ SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (code_seen('n')) {
|
|
|
|
+ n_samples = code_value();
|
|
|
|
+ if (n_samples<4 || n_samples>50 ) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
|
|
|
|
+ goto Sigma_Exit;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
|
|
|
+ Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
|
|
|
+ Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
+ Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
+ ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
+
|
|
|
|
+ if (code_seen('X') || code_seen('x') ) {
|
|
|
|
+ X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
+ if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
|
|
|
+ goto Sigma_Exit;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (code_seen('Y') || code_seen('y') ) {
|
|
|
|
+ Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
+ if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
|
|
|
+ goto Sigma_Exit;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (code_seen('L') || code_seen('l') ) {
|
|
|
|
+ n_legs = code_value();
|
|
|
|
+ if ( n_legs==1 )
|
|
|
|
+ n_legs = 2;
|
|
|
|
+ if ( n_legs<0 || n_legs>15 ) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
|
|
|
|
+ goto Sigma_Exit;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+//
|
|
|
|
+// Do all the preliminary setup work. First raise the probe.
|
|
|
|
+//
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ plan_bed_level_matrix.set_to_identity();
|
|
|
|
+ plan_buffer_line( X_current, Y_current, Z_start_location,
|
|
|
|
+ ext_position,
|
|
|
|
+ homing_feedrate[Z_AXIS]/60,
|
|
|
|
+ active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+//
|
|
|
|
+// Now get everything to the specified probe point So we can safely do a probe to
|
|
|
|
+// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
|
|
+// use that as a starting point for each probe.
|
|
|
|
+//
|
|
|
|
+ if (verbose_level > 2)
|
|
|
|
+ SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
|
|
|
+
|
|
|
|
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
|
|
+ ext_position,
|
|
|
|
+ homing_feedrate[X_AXIS]/60,
|
|
|
|
+ active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
|
|
+ current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
|
|
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
+ current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
+
|
|
|
|
+//
|
|
|
|
+// OK, do the inital probe to get us close to the bed.
|
|
|
|
+// Then retrace the right amount and use that in subsequent probes
|
|
|
|
+//
|
|
|
|
+
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+ run_z_probe();
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
+ Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
+
|
|
|
|
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
|
|
+ ext_position,
|
|
|
|
+ homing_feedrate[X_AXIS]/60,
|
|
|
|
+ active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
+
|
|
|
|
+ for( n=0; n<n_samples; n++) {
|
|
|
|
+
|
|
|
|
+ do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
+
|
|
|
|
+ if ( n_legs) {
|
|
|
|
+ double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
|
|
+ int rotational_direction, l;
|
|
|
|
+
|
|
|
|
+ rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
|
|
+ radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
|
|
|
|
+ theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
|
|
|
|
+
|
|
|
|
+//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
|
|
+//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
|
|
+//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
|
|
|
+//SERIAL_PROTOCOLLNPGM("");
|
|
|
|
+
|
|
|
|
+ for( l=0; l<n_legs-1; l++) {
|
|
|
|
+ if (rotational_direction==1)
|
|
|
|
+ theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
+ else
|
|
|
|
+ theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
|
|
+
|
|
|
|
+ radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
|
|
|
|
+ if ( radius<0.0 )
|
|
|
|
+ radius = -radius;
|
|
|
|
+
|
|
|
|
+ X_current = X_probe_location + cos(theta) * radius;
|
|
|
|
+ Y_current = Y_probe_location + sin(theta) * radius;
|
|
|
|
+
|
|
|
|
+ if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
|
|
|
|
+ X_current = X_MIN_POS;
|
|
|
|
+ if ( X_current>X_MAX_POS)
|
|
|
|
+ X_current = X_MAX_POS;
|
|
|
|
+
|
|
|
|
+ if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
|
|
|
|
+ Y_current = Y_MIN_POS;
|
|
|
|
+ if ( Y_current>Y_MAX_POS)
|
|
|
|
+ Y_current = Y_MAX_POS;
|
|
|
|
+
|
|
|
|
+ if (verbose_level>3 ) {
|
|
|
|
+ SERIAL_ECHOPAIR("x: ", X_current);
|
|
|
|
+ SERIAL_ECHOPAIR("y: ", Y_current);
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ do_blocking_move_to( X_current, Y_current, Z_current );
|
|
|
|
+ }
|
|
|
|
+ do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ setup_for_endstop_move();
|
|
|
|
+ run_z_probe();
|
|
|
|
+
|
|
|
|
+ sample_set[n] = current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+//
|
|
|
|
+// Get the current mean for the data points we have so far
|
|
|
|
+//
|
|
|
|
+ sum=0.0;
|
|
|
|
+ for( j=0; j<=n; j++) {
|
|
|
|
+ sum = sum + sample_set[j];
|
|
|
|
+ }
|
|
|
|
+ mean = sum / (double (n+1));
|
|
|
|
+//
|
|
|
|
+// Now, use that mean to calculate the standard deviation for the
|
|
|
|
+// data points we have so far
|
|
|
|
+//
|
|
|
|
+
|
|
|
|
+ sum=0.0;
|
|
|
|
+ for( j=0; j<=n; j++) {
|
|
|
|
+ sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
|
|
|
|
+ }
|
|
|
|
+ sigma = sqrt( sum / (double (n+1)) );
|
|
|
|
+
|
|
|
|
+ if (verbose_level > 1) {
|
|
|
|
+ SERIAL_PROTOCOL(n+1);
|
|
|
|
+ SERIAL_PROTOCOL(" of ");
|
|
|
|
+ SERIAL_PROTOCOL(n_samples);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" z: ");
|
|
|
|
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (verbose_level > 2) {
|
|
|
|
+ SERIAL_PROTOCOL(" mean: ");
|
|
|
|
+ SERIAL_PROTOCOL_F(mean,6);
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOL(" sigma: ");
|
|
|
|
+ SERIAL_PROTOCOL_F(sigma,6);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (verbose_level > 0)
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+
|
|
|
|
+ plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
|
|
+ current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ delay(1000);
|
|
|
|
+
|
|
|
|
+ clean_up_after_endstop_move();
|
|
|
|
+
|
|
|
|
+// enable_endstops(true);
|
|
|
|
+
|
|
|
|
+ if (verbose_level > 0) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("Mean: ");
|
|
|
|
+ SERIAL_PROTOCOL_F(mean, 6);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
|
|
+SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
+SERIAL_PROTOCOLPGM("\n\n");
|
|
|
|
+
|
|
|
|
+Sigma_Exit:
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+#endif // Z_PROBE_REPEATABILITY_TEST
|
|
|
|
+#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
+
|
|
|
|
+ case 104: // M104
|
|
|
|
+ if(setTargetedHotend(104)){
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
|
|
|
+ setWatch();
|
|
|
|
+ break;
|
|
|
|
+ case 112: // M112 -Emergency Stop
|
|
|
|
+ kill("", 3);
|
|
|
|
+ break;
|
|
|
|
+ case 140: // M140 set bed temp
|
|
|
|
+ if (code_seen('S')) setTargetBed(code_value());
|
|
|
|
+ break;
|
|
|
|
+ case 105 : // M105
|
|
|
|
+ if(setTargetedHotend(105)){
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLPGM("ok T:");
|
|
|
|
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" /");
|
|
|
|
+ SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
|
|
|
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
+ SERIAL_PROTOCOL_F(degBed(),1);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" /");
|
|
|
|
+ SERIAL_PROTOCOL_F(degTargetBed(),1);
|
|
|
|
+ #endif //TEMP_BED_PIN
|
|
|
|
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
|
|
+ SERIAL_PROTOCOLPGM(" T");
|
|
|
|
+ SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM(":");
|
|
|
|
+ SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" /");
|
|
|
|
+ SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
|
|
|
+ }
|
|
|
|
+ #else
|
|
|
|
+ SERIAL_ERROR_START;
|
|
|
|
+ SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLPGM(" @:");
|
|
|
|
+ #ifdef EXTRUDER_WATTS
|
|
|
|
+ SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
|
|
|
+ SERIAL_PROTOCOLPGM("W");
|
|
|
|
+ #else
|
|
|
|
+ SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLPGM(" B@:");
|
|
|
|
+ #ifdef BED_WATTS
|
|
|
|
+ SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
|
|
+ SERIAL_PROTOCOLPGM("W");
|
|
|
|
+ #else
|
|
|
|
+ SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+ SERIAL_PROTOCOLPGM(" P:");
|
|
|
|
+ SERIAL_PROTOCOL_F(current_temperature_pinda,1);
|
|
|
|
+#endif //PINDA_THERMISTOR
|
|
|
|
+
|
|
|
|
+#ifdef AMBIENT_THERMISTOR
|
|
|
|
+ SERIAL_PROTOCOLPGM(" A:");
|
|
|
|
+ SERIAL_PROTOCOL_F(current_temperature_ambient,1);
|
|
|
|
+#endif //AMBIENT_THERMISTOR
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ #ifdef SHOW_TEMP_ADC_VALUES
|
|
|
|
+ {float raw = 0.0;
|
|
|
|
+
|
|
|
|
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLPGM(" ADC B:");
|
|
|
|
+ SERIAL_PROTOCOL_F(degBed(),1);
|
|
|
|
+ SERIAL_PROTOCOLPGM("C->");
|
|
|
|
+ raw = rawBedTemp();
|
|
|
|
+ SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Rb->");
|
|
|
|
+ SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Rxb->");
|
|
|
|
+ SERIAL_PROTOCOL_F(raw, 5);
|
|
|
|
+ #endif
|
|
|
|
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
|
|
+ SERIAL_PROTOCOLPGM(" T");
|
|
|
|
+ SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM(":");
|
|
|
|
+ SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
|
|
+ SERIAL_PROTOCOLPGM("C->");
|
|
|
|
+ raw = rawHotendTemp(cur_extruder);
|
|
|
|
+ SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Rt");
|
|
|
|
+ SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM("->");
|
|
|
|
+ SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Rx");
|
|
|
|
+ SERIAL_PROTOCOL(cur_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM("->");
|
|
|
|
+ SERIAL_PROTOCOL_F(raw, 5);
|
|
|
|
+ }}
|
|
|
|
+ #endif
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ return;
|
|
|
|
+ break;
|
|
|
|
+ case 109:
|
|
|
|
+ {// M109 - Wait for extruder heater to reach target.
|
|
|
|
+ if(setTargetedHotend(109)){
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ LCD_MESSAGERPGM(MSG_HEATING);
|
|
|
|
+ heating_status = 1;
|
|
|
|
+ if (farm_mode) { prusa_statistics(1); };
|
|
|
|
+
|
|
|
|
+#ifdef AUTOTEMP
|
|
|
|
+ autotemp_enabled=false;
|
|
|
|
+ #endif
|
|
|
|
+ if (code_seen('S')) {
|
|
|
|
+ setTargetHotend(code_value(), tmp_extruder);
|
|
|
|
+ CooldownNoWait = true;
|
|
|
|
+ } else if (code_seen('R')) {
|
|
|
|
+ setTargetHotend(code_value(), tmp_extruder);
|
|
|
|
+ CooldownNoWait = false;
|
|
|
|
+ }
|
|
|
|
+ #ifdef AUTOTEMP
|
|
|
|
+ if (code_seen('S')) autotemp_min=code_value();
|
|
|
|
+ if (code_seen('B')) autotemp_max=code_value();
|
|
|
|
+ if (code_seen('F'))
|
|
|
|
+ {
|
|
|
|
+ autotemp_factor=code_value();
|
|
|
|
+ autotemp_enabled=true;
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ setWatch();
|
|
|
|
+ codenum = millis();
|
|
|
|
+
|
|
|
|
+ /* See if we are heating up or cooling down */
|
|
|
|
+ target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
|
|
|
+
|
|
|
|
+ cancel_heatup = false;
|
|
|
|
+
|
|
|
|
+ wait_for_heater(codenum); //loops until target temperature is reached
|
|
|
|
+
|
|
|
|
+ LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
|
|
|
|
+ heating_status = 2;
|
|
|
|
+ if (farm_mode) { prusa_statistics(2); };
|
|
|
|
+
|
|
|
|
+ //starttime=millis();
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 190: // M190 - Wait for bed heater to reach target.
|
|
|
|
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
+ LCD_MESSAGERPGM(MSG_BED_HEATING);
|
|
|
|
+ heating_status = 3;
|
|
|
|
+ if (farm_mode) { prusa_statistics(1); };
|
|
|
|
+ if (code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ setTargetBed(code_value());
|
|
|
|
+ CooldownNoWait = true;
|
|
|
|
+ }
|
|
|
|
+ else if (code_seen('R'))
|
|
|
|
+ {
|
|
|
|
+ setTargetBed(code_value());
|
|
|
|
+ CooldownNoWait = false;
|
|
|
|
+ }
|
|
|
|
+ codenum = millis();
|
|
|
|
+
|
|
|
|
+ cancel_heatup = false;
|
|
|
|
+ target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
|
|
+
|
|
|
|
+ while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
|
|
|
|
+ {
|
|
|
|
+ if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
|
|
|
+ {
|
|
|
|
+ if (!farm_mode) {
|
|
|
|
+ float tt = degHotend(active_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM("T:");
|
|
|
|
+ SERIAL_PROTOCOL(tt);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
+ SERIAL_PROTOCOL((int)active_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
+ SERIAL_PROTOCOL_F(degBed(), 1);
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ codenum = millis();
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity();
|
|
|
|
+ lcd_update();
|
|
|
|
+ }
|
|
|
|
+ LCD_MESSAGERPGM(MSG_BED_DONE);
|
|
|
|
+ heating_status = 4;
|
|
|
|
+
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+ #endif
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ #if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
|
+ case 106: //M106 Fan On
|
|
|
|
+ if (code_seen('S')){
|
|
|
|
+ fanSpeed=constrain(code_value(),0,255);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ fanSpeed=255;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 107: //M107 Fan Off
|
|
|
|
+ fanSpeed = 0;
|
|
|
|
+ break;
|
|
|
|
+ #endif //FAN_PIN
|
|
|
|
+
|
|
|
|
+ #if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
+ case 80: // M80 - Turn on Power Supply
|
|
|
|
+ SET_OUTPUT(PS_ON_PIN); //GND
|
|
|
|
+ WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
+
|
|
|
|
+ // If you have a switch on suicide pin, this is useful
|
|
|
|
+ // if you want to start another print with suicide feature after
|
|
|
|
+ // a print without suicide...
|
|
|
|
+ #if defined SUICIDE_PIN && SUICIDE_PIN > -1
|
|
|
|
+ SET_OUTPUT(SUICIDE_PIN);
|
|
|
|
+ WRITE(SUICIDE_PIN, HIGH);
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #ifdef ULTIPANEL
|
|
|
|
+ powersupply = true;
|
|
|
|
+ LCD_MESSAGERPGM(WELCOME_MSG);
|
|
|
|
+ lcd_update();
|
|
|
|
+ #endif
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ case 81: // M81 - Turn off Power Supply
|
|
|
|
+ disable_heater();
|
|
|
|
+ st_synchronize();
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ finishAndDisableSteppers();
|
|
|
|
+ fanSpeed = 0;
|
|
|
|
+ delay(1000); // Wait a little before to switch off
|
|
|
|
+ #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
|
|
+ st_synchronize();
|
|
|
|
+ suicide();
|
|
|
|
+ #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
+ SET_OUTPUT(PS_ON_PIN);
|
|
|
|
+ WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef ULTIPANEL
|
|
|
|
+ powersupply = false;
|
|
|
|
+ LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ MACHNAME = "Prusa i3"
|
|
|
|
+ MSGOFF = "Vypnuto"
|
|
|
|
+ "Prusai3"" ""vypnuto""."
|
|
|
|
+
|
|
|
|
+ "Prusa i3"" "MSG_ALL[lang_selected][50]"."
|
|
|
|
+ */
|
|
|
|
+ lcd_update();
|
|
|
|
+ #endif
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 82:
|
|
|
|
+ axis_relative_modes[3] = false;
|
|
|
|
+ break;
|
|
|
|
+ case 83:
|
|
|
|
+ axis_relative_modes[3] = true;
|
|
|
|
+ break;
|
|
|
|
+ case 18: //compatibility
|
|
|
|
+ case 84: // M84
|
|
|
|
+ if(code_seen('S')){
|
|
|
|
+ stepper_inactive_time = code_value() * 1000;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
|
|
+ if(all_axis)
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ finishAndDisableSteppers();
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+ if (code_seen('X')) disable_x();
|
|
|
|
+ if (code_seen('Y')) disable_y();
|
|
|
|
+ if (code_seen('Z')) disable_z();
|
|
|
|
+#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
|
|
+ if (code_seen('E')) {
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ snmm_filaments_used = 0;
|
|
|
|
+ break;
|
|
|
|
+ case 85: // M85
|
|
|
|
+ if(code_seen('S')) {
|
|
|
|
+ max_inactive_time = code_value() * 1000;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 92: // M92
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++)
|
|
|
|
+ {
|
|
|
|
+ if(code_seen(axis_codes[i]))
|
|
|
|
+ {
|
|
|
|
+ if(i == 3) { // E
|
|
|
|
+ float value = code_value();
|
|
|
|
+ if(value < 20.0) {
|
|
|
|
+ float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
|
|
+ max_jerk[E_AXIS] *= factor;
|
|
|
|
+ max_feedrate[i] *= factor;
|
|
|
|
+ axis_steps_per_sqr_second[i] *= factor;
|
|
|
|
+ }
|
|
|
|
+ axis_steps_per_unit[i] = value;
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ axis_steps_per_unit[i] = code_value();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 115: // M115
|
|
|
|
+ if (code_seen('V')) {
|
|
|
|
+ // Report the Prusa version number.
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
|
|
|
|
+ } else if (code_seen('U')) {
|
|
|
|
+ // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
|
|
|
|
+ // pause the print and ask the user to upgrade the firmware.
|
|
|
|
+ show_upgrade_dialog_if_version_newer(++ strchr_pointer);
|
|
|
|
+ } else {
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+/* case 117: // M117 display message
|
|
|
|
+ starpos = (strchr(strchr_pointer + 5,'*'));
|
|
|
|
+ if(starpos!=NULL)
|
|
|
|
+ *(starpos)='\0';
|
|
|
|
+ lcd_setstatus(strchr_pointer + 5);
|
|
|
|
+ break;*/
|
|
|
|
+ case 114: // M114
|
|
|
|
+ SERIAL_PROTOCOLPGM("X:");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Y:");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Z:");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
+ SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
|
|
|
|
+ SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Y:");
|
|
|
|
+ SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" Z:");
|
|
|
|
+ SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
+ SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ break;
|
|
|
|
+ case 120: // M120
|
|
|
|
+ enable_endstops(false) ;
|
|
|
|
+ break;
|
|
|
|
+ case 121: // M121
|
|
|
|
+ enable_endstops(true) ;
|
|
|
|
+ break;
|
|
|
|
+ case 119: // M119
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_X_MIN);
|
|
|
|
+ if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
+ }else{
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #endif
|
|
|
|
+ #if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_X_MAX);
|
|
|
|
+ if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
+ }else{
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #endif
|
|
|
|
+ #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
|
|
|
|
+ if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
+ }else{
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #endif
|
|
|
|
+ #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
|
|
|
|
+ if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
+ }else{
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #endif
|
|
|
|
+ #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
|
|
|
|
+ if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
+ }else{
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #endif
|
|
|
|
+ #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
|
|
|
|
+ if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
|
|
|
|
+ }else{
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ #endif
|
|
|
|
+ break;
|
|
|
|
+ //TODO: update for all axis, use for loop
|
|
|
|
+ #ifdef BLINKM
|
|
|
|
+ case 150: // M150
|
|
|
|
+ {
|
|
|
|
+ byte red;
|
|
|
|
+ byte grn;
|
|
|
|
+ byte blu;
|
|
|
|
+
|
|
|
|
+ if(code_seen('R')) red = code_value();
|
|
|
|
+ if(code_seen('U')) grn = code_value();
|
|
|
|
+ if(code_seen('B')) blu = code_value();
|
|
|
|
+
|
|
|
|
+ SendColors(red,grn,blu);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif //BLINKM
|
|
|
|
+ case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ tmp_extruder = active_extruder;
|
|
|
|
+ if(code_seen('T')) {
|
|
|
|
+ tmp_extruder = code_value();
|
|
|
|
+ if(tmp_extruder >= EXTRUDERS) {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ float area = .0;
|
|
|
|
+ if(code_seen('D')) {
|
|
|
|
+ float diameter = (float)code_value();
|
|
|
|
+ if (diameter == 0.0) {
|
|
|
|
+ // setting any extruder filament size disables volumetric on the assumption that
|
|
|
|
+ // slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
|
|
+ // for all extruders
|
|
|
|
+ volumetric_enabled = false;
|
|
|
|
+ } else {
|
|
|
|
+ filament_size[tmp_extruder] = (float)code_value();
|
|
|
|
+ // make sure all extruders have some sane value for the filament size
|
|
|
|
+ filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+ volumetric_enabled = true;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ //reserved for setting filament diameter via UFID or filament measuring device
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ calculate_volumetric_multipliers();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 201: // M201
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++)
|
|
|
|
+ {
|
|
|
|
+ if(code_seen(axis_codes[i]))
|
|
|
|
+ {
|
|
|
|
+ max_acceleration_units_per_sq_second[i] = code_value();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
|
|
+ reset_acceleration_rates();
|
|
|
|
+ break;
|
|
|
|
+ #if 0 // Not used for Sprinter/grbl gen6
|
|
|
|
+ case 202: // M202
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+ case 203: // M203 max feedrate mm/sec
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S')) acceleration = code_value() ;
|
|
|
|
+ if(code_seen('T')) retract_acceleration = code_value() ;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S')) minimumfeedrate = code_value();
|
|
|
|
+ if(code_seen('T')) mintravelfeedrate = code_value();
|
|
|
|
+ if(code_seen('B')) minsegmenttime = code_value() ;
|
|
|
|
+ if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
|
|
|
|
+ if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
|
|
|
|
+ if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
|
|
|
|
+ if(code_seen('E')) max_jerk[E_AXIS] = code_value();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 206: // M206 additional homing offset
|
|
|
|
+ for(int8_t i=0; i < 3; i++)
|
|
|
|
+ {
|
|
|
|
+ if(code_seen(axis_codes[i])) add_homing[i] = code_value();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #ifdef FWRETRACT
|
|
|
|
+ case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ retract_length = code_value() ;
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('F'))
|
|
|
|
+ {
|
|
|
|
+ retract_feedrate = code_value()/60 ;
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('Z'))
|
|
|
|
+ {
|
|
|
|
+ retract_zlift = code_value() ;
|
|
|
|
+ }
|
|
|
|
+ }break;
|
|
|
|
+ case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ retract_recover_length = code_value() ;
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('F'))
|
|
|
|
+ {
|
|
|
|
+ retract_recover_feedrate = code_value()/60 ;
|
|
|
|
+ }
|
|
|
|
+ }break;
|
|
|
|
+ case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ int t= code_value() ;
|
|
|
|
+ switch(t)
|
|
|
|
+ {
|
|
|
|
+ case 0:
|
|
|
|
+ {
|
|
|
|
+ autoretract_enabled=false;
|
|
|
|
+ retracted[0]=false;
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ retracted[1]=false;
|
|
|
|
+ #endif
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ retracted[2]=false;
|
|
|
|
+ #endif
|
|
|
|
+ }break;
|
|
|
|
+ case 1:
|
|
|
|
+ {
|
|
|
|
+ autoretract_enabled=true;
|
|
|
|
+ retracted[0]=false;
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ retracted[1]=false;
|
|
|
|
+ #endif
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ retracted[2]=false;
|
|
|
|
+ #endif
|
|
|
|
+ }break;
|
|
|
|
+ default:
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
|
|
+ SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
|
|
+ SERIAL_ECHOLNPGM("\"(1)");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }break;
|
|
|
|
+ #endif // FWRETRACT
|
|
|
|
+ #if EXTRUDERS > 1
|
|
|
|
+ case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
|
|
+ {
|
|
|
|
+ if(setTargetedHotend(218)){
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('X'))
|
|
|
|
+ {
|
|
|
|
+ extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('Y'))
|
|
|
|
+ {
|
|
|
|
+ extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
|
|
|
|
+ for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
|
|
|
|
+ {
|
|
|
|
+ SERIAL_ECHO(" ");
|
|
|
|
+ SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
|
|
+ SERIAL_ECHO(",");
|
|
|
|
+ SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOLN("");
|
|
|
|
+ }break;
|
|
|
|
+ #endif
|
|
|
|
+ case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ feedmultiply = code_value() ;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S'))
|
|
|
|
+ {
|
|
|
|
+ int tmp_code = code_value();
|
|
|
|
+ if (code_seen('T'))
|
|
|
|
+ {
|
|
|
|
+ if(setTargetedHotend(221)){
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ extruder_multiply[tmp_extruder] = tmp_code;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ extrudemultiply = tmp_code ;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('P')){
|
|
|
|
+ int pin_number = code_value(); // pin number
|
|
|
|
+ int pin_state = -1; // required pin state - default is inverted
|
|
|
|
+
|
|
|
|
+ if(code_seen('S')) pin_state = code_value(); // required pin state
|
|
|
|
+
|
|
|
|
+ if(pin_state >= -1 && pin_state <= 1){
|
|
|
|
+
|
|
|
|
+ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
|
|
+ {
|
|
|
|
+ if (sensitive_pins[i] == pin_number)
|
|
|
|
+ {
|
|
|
|
+ pin_number = -1;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (pin_number > -1)
|
|
|
|
+ {
|
|
|
|
+ int target = LOW;
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ pinMode(pin_number, INPUT);
|
|
|
|
+
|
|
|
|
+ switch(pin_state){
|
|
|
|
+ case 1:
|
|
|
|
+ target = HIGH;
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 0:
|
|
|
|
+ target = LOW;
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case -1:
|
|
|
|
+ target = !digitalRead(pin_number);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ while(digitalRead(pin_number) != target){
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity();
|
|
|
|
+ lcd_update();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ #if NUM_SERVOS > 0
|
|
|
|
+ case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
|
|
+ {
|
|
|
|
+ int servo_index = -1;
|
|
|
|
+ int servo_position = 0;
|
|
|
|
+ if (code_seen('P'))
|
|
|
|
+ servo_index = code_value();
|
|
|
|
+ if (code_seen('S')) {
|
|
|
|
+ servo_position = code_value();
|
|
|
|
+ if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
|
|
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
|
|
+ servos[servo_index].attach(0);
|
|
|
|
+#endif
|
|
|
|
+ servos[servo_index].write(servo_position);
|
|
|
|
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
|
|
+ delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
|
|
+ servos[servo_index].detach();
|
|
|
|
+#endif
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHO("Servo ");
|
|
|
|
+ SERIAL_ECHO(servo_index);
|
|
|
|
+ SERIAL_ECHOLN(" out of range");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else if (servo_index >= 0) {
|
|
|
|
+ SERIAL_PROTOCOL(MSG_OK);
|
|
|
|
+ SERIAL_PROTOCOL(" Servo ");
|
|
|
|
+ SERIAL_PROTOCOL(servo_index);
|
|
|
|
+ SERIAL_PROTOCOL(": ");
|
|
|
|
+ SERIAL_PROTOCOL(servos[servo_index].read());
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif // NUM_SERVOS > 0
|
|
|
|
+
|
|
|
|
+ #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
|
|
|
|
+ case 300: // M300
|
|
|
|
+ {
|
|
|
|
+ int beepS = code_seen('S') ? code_value() : 110;
|
|
|
|
+ int beepP = code_seen('P') ? code_value() : 1000;
|
|
|
|
+ if (beepS > 0)
|
|
|
|
+ {
|
|
|
|
+ #if BEEPER > 0
|
|
|
|
+ tone(BEEPER, beepS);
|
|
|
|
+ delay(beepP);
|
|
|
|
+ noTone(BEEPER);
|
|
|
|
+ #elif defined(ULTRALCD)
|
|
|
|
+ lcd_buzz(beepS, beepP);
|
|
|
|
+ #elif defined(LCD_USE_I2C_BUZZER)
|
|
|
|
+ lcd_buzz(beepP, beepS);
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ delay(beepP);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif // M300
|
|
|
|
+
|
|
|
|
+ #ifdef PIDTEMP
|
|
|
|
+ case 301: // M301
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('P')) Kp = code_value();
|
|
|
|
+ if(code_seen('I')) Ki = scalePID_i(code_value());
|
|
|
|
+ if(code_seen('D')) Kd = scalePID_d(code_value());
|
|
|
|
+
|
|
|
|
+ #ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
+ if(code_seen('C')) Kc = code_value();
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ updatePID();
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
|
|
+ SERIAL_PROTOCOL(" p:");
|
|
|
|
+ SERIAL_PROTOCOL(Kp);
|
|
|
|
+ SERIAL_PROTOCOL(" i:");
|
|
|
|
+ SERIAL_PROTOCOL(unscalePID_i(Ki));
|
|
|
|
+ SERIAL_PROTOCOL(" d:");
|
|
|
|
+ SERIAL_PROTOCOL(unscalePID_d(Kd));
|
|
|
|
+ #ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
+ SERIAL_PROTOCOL(" c:");
|
|
|
|
+ //Kc does not have scaling applied above, or in resetting defaults
|
|
|
|
+ SERIAL_PROTOCOL(Kc);
|
|
|
|
+ #endif
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif //PIDTEMP
|
|
|
|
+ #ifdef PIDTEMPBED
|
|
|
|
+ case 304: // M304
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('P')) bedKp = code_value();
|
|
|
|
+ if(code_seen('I')) bedKi = scalePID_i(code_value());
|
|
|
|
+ if(code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
+
|
|
|
|
+ updatePID();
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_OK);
|
|
|
|
+ SERIAL_PROTOCOL(" p:");
|
|
|
|
+ SERIAL_PROTOCOL(bedKp);
|
|
|
|
+ SERIAL_PROTOCOL(" i:");
|
|
|
|
+ SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
|
|
+ SERIAL_PROTOCOL(" d:");
|
|
|
|
+ SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif //PIDTEMP
|
|
|
|
+ case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
|
|
+ {
|
|
|
|
+ #ifdef CHDK
|
|
|
|
+
|
|
|
|
+ SET_OUTPUT(CHDK);
|
|
|
|
+ WRITE(CHDK, HIGH);
|
|
|
|
+ chdkHigh = millis();
|
|
|
|
+ chdkActive = true;
|
|
|
|
+
|
|
|
|
+ #else
|
|
|
|
+
|
|
|
|
+ #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
|
|
+ const uint8_t NUM_PULSES=16;
|
|
|
|
+ const float PULSE_LENGTH=0.01524;
|
|
|
|
+ for(int i=0; i < NUM_PULSES; i++) {
|
|
|
|
+ WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
|
|
+ _delay_ms(PULSE_LENGTH);
|
|
|
|
+ WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
+ _delay_ms(PULSE_LENGTH);
|
|
|
|
+ }
|
|
|
|
+ delay(7.33);
|
|
|
|
+ for(int i=0; i < NUM_PULSES; i++) {
|
|
|
|
+ WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
|
|
+ _delay_ms(PULSE_LENGTH);
|
|
|
|
+ WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
+ _delay_ms(PULSE_LENGTH);
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+ #endif //chdk end if
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+#ifdef DOGLCD
|
|
|
|
+ case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
|
|
+ {
|
|
|
|
+ if (code_seen('C')) {
|
|
|
|
+ lcd_setcontrast( ((int)code_value())&63 );
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
|
|
+ SERIAL_PROTOCOL(lcd_contrast);
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+#endif
|
|
|
|
+ #ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
+ case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
|
|
+ {
|
|
|
|
+ float temp = .0;
|
|
|
|
+ if (code_seen('S')) temp=code_value();
|
|
|
|
+ set_extrude_min_temp(temp);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+ case 303: // M303 PID autotune
|
|
|
|
+ {
|
|
|
|
+ float temp = 150.0;
|
|
|
|
+ int e=0;
|
|
|
|
+ int c=5;
|
|
|
|
+ if (code_seen('E')) e=code_value();
|
|
|
|
+ if (e<0)
|
|
|
|
+ temp=70;
|
|
|
|
+ if (code_seen('S')) temp=code_value();
|
|
|
|
+ if (code_seen('C')) c=code_value();
|
|
|
|
+ PID_autotune(temp, e, c);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 400: // M400 finish all moves
|
|
|
|
+ {
|
|
|
|
+ st_synchronize();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#ifdef FILAMENT_SENSOR
|
|
|
|
+case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
|
|
+ {
|
|
|
|
+ #if (FILWIDTH_PIN > -1)
|
|
|
|
+ if(code_seen('N')) filament_width_nominal=code_value();
|
|
|
|
+ else{
|
|
|
|
+ SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
|
|
+ SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 405: //M405 Turn on filament sensor for control
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ if(code_seen('D')) meas_delay_cm=code_value();
|
|
|
|
+
|
|
|
|
+ if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
|
|
|
|
+ meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
|
|
|
+
|
|
|
|
+ if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
|
|
|
|
+ {
|
|
|
|
+ int temp_ratio = widthFil_to_size_ratio();
|
|
|
|
+
|
|
|
|
+ for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
|
|
|
|
+ measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
|
|
|
|
+ }
|
|
|
|
+ delay_index1=0;
|
|
|
|
+ delay_index2=0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ filament_sensor = true ;
|
|
|
|
+
|
|
|
|
+ //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
|
|
+ //SERIAL_PROTOCOL(filament_width_meas);
|
|
|
|
+ //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
|
|
+ //SERIAL_PROTOCOL(extrudemultiply);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 406: //M406 Turn off filament sensor for control
|
|
|
|
+ {
|
|
|
|
+ filament_sensor = false ;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 407: //M407 Display measured filament diameter
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
|
|
+ SERIAL_PROTOCOLLN(filament_width_meas);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ case 500: // M500 Store settings in EEPROM
|
|
|
|
+ {
|
|
|
|
+ Config_StoreSettings(EEPROM_OFFSET);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 501: // M501 Read settings from EEPROM
|
|
|
|
+ {
|
|
|
|
+ Config_RetrieveSettings(EEPROM_OFFSET);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 502: // M502 Revert to default settings
|
|
|
|
+ {
|
|
|
|
+ Config_ResetDefault();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 503: // M503 print settings currently in memory
|
|
|
|
+ {
|
|
|
|
+ Config_PrintSettings();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 509: //M509 Force language selection
|
|
|
|
+ {
|
|
|
|
+ lcd_force_language_selection();
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
+ case 540:
|
|
|
|
+ {
|
|
|
|
+ if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
+ case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
|
|
+ {
|
|
|
|
+ float value;
|
|
|
|
+ if (code_seen('Z'))
|
|
|
|
+ {
|
|
|
|
+ value = code_value();
|
|
|
|
+ if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
|
|
|
|
+ {
|
|
|
|
+ zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
|
|
|
|
+ SERIAL_ECHORPGM(MSG_Z_MIN);
|
|
|
|
+ SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
|
|
+ SERIAL_ECHORPGM(MSG_Z_MAX);
|
|
|
|
+ SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
|
|
|
|
+ SERIAL_ECHO(-zprobe_zoffset);
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
+
|
|
|
|
+ #ifdef FILAMENTCHANGEENABLE
|
|
|
|
+ case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
|
|
+ {
|
|
|
|
+ MYSERIAL.println("!!!!M600!!!!");
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ float target[4];
|
|
|
|
+ float lastpos[4];
|
|
|
|
+
|
|
|
|
+ if (farm_mode)
|
|
|
|
+
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ prusa_statistics(22);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ feedmultiplyBckp=feedmultiply;
|
|
|
|
+ int8_t TooLowZ = 0;
|
|
|
|
+
|
|
|
|
+ target[X_AXIS]=current_position[X_AXIS];
|
|
|
|
+ target[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
+ target[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
+ target[E_AXIS]=current_position[E_AXIS];
|
|
|
|
+ lastpos[X_AXIS]=current_position[X_AXIS];
|
|
|
|
+ lastpos[Y_AXIS]=current_position[Y_AXIS];
|
|
|
|
+ lastpos[Z_AXIS]=current_position[Z_AXIS];
|
|
|
|
+ lastpos[E_AXIS]=current_position[E_AXIS];
|
|
|
|
+
|
|
|
|
+ //Restract extruder
|
|
|
|
+ if(code_seen('E'))
|
|
|
|
+ {
|
|
|
|
+ target[E_AXIS]+= code_value();
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ #ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+ //Lift Z
|
|
|
|
+ if(code_seen('Z'))
|
|
|
|
+ {
|
|
|
|
+ target[Z_AXIS]+= code_value();
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ #ifdef FILAMENTCHANGE_ZADD
|
|
|
|
+ target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
|
|
+ if(target[Z_AXIS] < 10){
|
|
|
|
+ target[Z_AXIS]+= 10 ;
|
|
|
|
+ TooLowZ = 1;
|
|
|
|
+ }else{
|
|
|
|
+ TooLowZ = 0;
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+ //Move XY to side
|
|
|
|
+ if(code_seen('X'))
|
|
|
|
+ {
|
|
|
|
+ target[X_AXIS]+= code_value();
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ #ifdef FILAMENTCHANGE_XPOS
|
|
|
|
+ target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('Y'))
|
|
|
|
+ {
|
|
|
|
+ target[Y_AXIS]= code_value();
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ #ifdef FILAMENTCHANGE_YPOS
|
|
|
|
+ target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ custom_message = true;
|
|
|
|
+ lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
|
|
+
|
|
|
|
+ // Unload filament
|
|
|
|
+ if(code_seen('L'))
|
|
|
|
+ {
|
|
|
|
+ target[E_AXIS]+= code_value();
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ #ifdef SNMM
|
|
|
|
+
|
|
|
|
+ #else
|
|
|
|
+ #ifdef FILAMENTCHANGE_FINALRETRACT
|
|
|
|
+ target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
|
|
|
+ #endif
|
|
|
|
+ #endif // SNMM
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#ifdef SNMM
|
|
|
|
+ target[E_AXIS] += 12;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
|
|
|
|
+ target[E_AXIS] += 6;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
|
|
|
|
+ target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ target[E_AXIS] += (FIL_COOLING);
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
+ target[E_AXIS] += (FIL_COOLING*-1);
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
+ target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
+#endif // SNMM
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //finish moves
|
|
|
|
+ st_synchronize();
|
|
|
|
+ //disable extruder steppers so filament can be removed
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ delay(100);
|
|
|
|
+
|
|
|
|
+ //Wait for user to insert filament
|
|
|
|
+ uint8_t cnt=0;
|
|
|
|
+ int counterBeep = 0;
|
|
|
|
+ lcd_wait_interact();
|
|
|
|
+ load_filament_time = millis();
|
|
|
|
+ while(!lcd_clicked()){
|
|
|
|
+
|
|
|
|
+ cnt++;
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity(true);
|
|
|
|
+
|
|
|
|
+/*#ifdef SNMM
|
|
|
|
+ target[E_AXIS] += 0.002;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
+
|
|
|
|
+#endif // SNMM*/
|
|
|
|
+
|
|
|
|
+ if(cnt==0)
|
|
|
|
+ {
|
|
|
|
+ #if BEEPER > 0
|
|
|
|
+ if (counterBeep== 500){
|
|
|
|
+ counterBeep = 0;
|
|
|
|
+ }
|
|
|
|
+ SET_OUTPUT(BEEPER);
|
|
|
|
+ if (counterBeep== 0){
|
|
|
|
+ WRITE(BEEPER,HIGH);
|
|
|
|
+ }
|
|
|
|
+ if (counterBeep== 20){
|
|
|
|
+ WRITE(BEEPER,LOW);
|
|
|
|
+ }
|
|
|
|
+ counterBeep++;
|
|
|
|
+ #else
|
|
|
|
+ #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
|
|
+ lcd_buzz(1000/6,100);
|
|
|
|
+ #else
|
|
|
|
+ lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
|
|
+ #endif
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+#ifdef SNMM
|
|
|
|
+ display_loading();
|
|
|
|
+ do {
|
|
|
|
+ target[E_AXIS] += 0.002;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
+ delay_keep_alive(2);
|
|
|
|
+ } while (!lcd_clicked());
|
|
|
|
+ /*if (millis() - load_filament_time > 2) {
|
|
|
|
+ load_filament_time = millis();
|
|
|
|
+ target[E_AXIS] += 0.001;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
|
|
|
|
+ }*/
|
|
|
|
+#endif
|
|
|
|
+ //Filament inserted
|
|
|
|
+
|
|
|
|
+ WRITE(BEEPER,LOW);
|
|
|
|
+
|
|
|
|
+ //Feed the filament to the end of nozzle quickly
|
|
|
|
+#ifdef SNMM
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ target[E_AXIS] += bowden_length[snmm_extruder];
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
|
|
+ target[E_AXIS] += FIL_LOAD_LENGTH - 60;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
|
|
|
|
+ target[E_AXIS] += 40;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
+ target[E_AXIS] += 10;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
+#else
|
|
|
|
+ target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
|
|
+#endif // SNMM
|
|
|
|
+
|
|
|
|
+ //Extrude some filament
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //Wait for user to check the state
|
|
|
|
+ lcd_change_fil_state = 0;
|
|
|
|
+ lcd_loading_filament();
|
|
|
|
+ while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
|
|
|
|
+ lcd_change_fil_state = 0;
|
|
|
|
+ lcd_alright();
|
|
|
|
+ switch(lcd_change_fil_state){
|
|
|
|
+
|
|
|
|
+ // Filament failed to load so load it again
|
|
|
|
+ case 2:
|
|
|
|
+#ifdef SNMM
|
|
|
|
+ display_loading();
|
|
|
|
+ do {
|
|
|
|
+ target[E_AXIS] += 0.002;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
|
|
|
|
+ delay_keep_alive(2);
|
|
|
|
+ } while (!lcd_clicked());
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ target[E_AXIS] += bowden_length[snmm_extruder];
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
|
|
|
|
+ target[E_AXIS] += FIL_LOAD_LENGTH - 60;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
|
|
|
|
+ target[E_AXIS] += 40;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
|
|
|
|
+ target[E_AXIS] += 10;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
|
|
|
|
+#endif
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+ lcd_loading_filament();
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ // Filament loaded properly but color is not clear
|
|
|
|
+ case 3:
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
|
|
|
|
+ lcd_loading_color();
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ // Everything good
|
|
|
|
+ default:
|
|
|
|
+ lcd_change_success();
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //Not let's go back to print
|
|
|
|
+
|
|
|
|
+ //Feed a little of filament to stabilize pressure
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+ //Retract
|
|
|
|
+ target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
|
|
|
|
+
|
|
|
|
+ //Move XY back
|
|
|
|
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+ //Move Z back
|
|
|
|
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
|
|
|
|
+
|
|
|
|
+ //Unretract
|
|
|
|
+ plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
|
|
|
|
+
|
|
|
|
+ //Set E position to original
|
|
|
|
+ plan_set_e_position(lastpos[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ //Recover feed rate
|
|
|
|
+ feedmultiply=feedmultiplyBckp;
|
|
|
|
+ char cmd[9];
|
|
|
|
+ sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+
|
|
|
|
+ lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
+ custom_message = false;
|
|
|
|
+ custom_message_type = 0;
|
|
|
|
+#ifdef PAT9125
|
|
|
|
+ if (fsensor_M600)
|
|
|
|
+ {
|
|
|
|
+ cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
|
|
|
|
+ st_synchronize();
|
|
|
|
+ while (!is_buffer_empty())
|
|
|
|
+ {
|
|
|
|
+ process_commands();
|
|
|
|
+ cmdqueue_pop_front();
|
|
|
|
+ }
|
|
|
|
+ fsensor_enable();
|
|
|
|
+ fsensor_restore_print_and_continue();
|
|
|
|
+ }
|
|
|
|
+#endif //PAT9125
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ #endif //FILAMENTCHANGEENABLE
|
|
|
|
+ case 601: {
|
|
|
|
+ if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 602: {
|
|
|
|
+ if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+#ifdef LIN_ADVANCE
|
|
|
|
+ case 900: // M900: Set LIN_ADVANCE options.
|
|
|
|
+ gcode_M900();
|
|
|
|
+ break;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
|
|
+ {
|
|
|
|
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
+ for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
|
|
|
|
+ if(code_seen('B')) digipot_current(4,code_value());
|
|
|
|
+ if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
|
|
+ if(code_seen('X')) digipot_current(0, code_value());
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
|
|
+ if(code_seen('Z')) digipot_current(1, code_value());
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
|
|
+ if(code_seen('E')) digipot_current(2, code_value());
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef DIGIPOT_I2C
|
|
|
|
+ // this one uses actual amps in floating point
|
|
|
|
+ for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
|
|
+ // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
|
|
+ for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 908: // M908 Control digital trimpot directly.
|
|
|
|
+ {
|
|
|
|
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
|
|
+ uint8_t channel,current;
|
|
|
|
+ if(code_seen('P')) channel=code_value();
|
|
|
|
+ if(code_seen('S')) current=code_value();
|
|
|
|
+ digitalPotWrite(channel, current);
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 910: // M910 TMC2130 init
|
|
|
|
+ {
|
|
|
|
+ tmc2130_init();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 911: // M911 Set TMC2130 holding currents
|
|
|
|
+ {
|
|
|
|
+ if (code_seen('X')) tmc2130_set_current_h(0, code_value());
|
|
|
|
+ if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
|
|
|
|
+ if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
|
|
|
|
+ if (code_seen('E')) tmc2130_set_current_h(3, code_value());
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 912: // M912 Set TMC2130 running currents
|
|
|
|
+ {
|
|
|
|
+ if (code_seen('X')) tmc2130_set_current_r(0, code_value());
|
|
|
|
+ if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
|
|
|
|
+ if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
|
|
|
|
+ if (code_seen('E')) tmc2130_set_current_r(3, code_value());
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 913: // M913 Print TMC2130 currents
|
|
|
|
+ {
|
|
|
|
+ tmc2130_print_currents();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 914: // M914 Set normal mode
|
|
|
|
+ {
|
|
|
|
+ tmc2130_mode = TMC2130_MODE_NORMAL;
|
|
|
|
+ tmc2130_init();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 915: // M915 Set silent mode
|
|
|
|
+ {
|
|
|
|
+ tmc2130_mode = TMC2130_MODE_SILENT;
|
|
|
|
+ tmc2130_init();
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 916: // M916 Set sg_thrs
|
|
|
|
+ {
|
|
|
|
+ if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
|
|
|
|
+ if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
|
|
|
|
+ if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
|
|
|
|
+ if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
|
|
|
|
+ MYSERIAL.print("tmc2130_sg_thr[X]=");
|
|
|
|
+ MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
|
|
|
|
+ MYSERIAL.print("tmc2130_sg_thr[Y]=");
|
|
|
|
+ MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
|
|
|
|
+ MYSERIAL.print("tmc2130_sg_thr[Z]=");
|
|
|
|
+ MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
|
|
|
|
+ MYSERIAL.print("tmc2130_sg_thr[E]=");
|
|
|
|
+ MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 917: // M917 Set TMC2130 pwm_ampl
|
|
|
|
+ {
|
|
|
|
+ if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
|
|
|
|
+ if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
|
|
|
|
+ if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
|
|
|
|
+ if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 918: // M918 Set TMC2130 pwm_grad
|
|
|
|
+ {
|
|
|
|
+ if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
|
|
|
|
+ if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
|
|
|
|
+ if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
|
|
|
|
+ if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
|
|
+ {
|
|
|
|
+ #if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
|
|
+ if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
|
|
+ for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
|
|
+ if(code_seen('B')) microstep_mode(4,code_value());
|
|
|
|
+ microstep_readings();
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
|
|
+ {
|
|
|
|
+ #if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
|
|
+ if(code_seen('S')) switch((int)code_value())
|
|
|
|
+ {
|
|
|
|
+ case 1:
|
|
|
|
+ for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
|
|
|
|
+ if(code_seen('B')) microstep_ms(4,code_value(),-1);
|
|
|
|
+ break;
|
|
|
|
+ case 2:
|
|
|
|
+ for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
|
|
|
|
+ if(code_seen('B')) microstep_ms(4,-1,code_value());
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ microstep_readings();
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 701: //M701: load filament
|
|
|
|
+ {
|
|
|
|
+ enable_z();
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 2;
|
|
|
|
+
|
|
|
|
+ lcd_setstatuspgm(MSG_LOADING_FILAMENT);
|
|
|
|
+ current_position[E_AXIS] += 70;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
|
|
|
|
+
|
|
|
|
+ current_position[E_AXIS] += 25;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ if (!farm_mode && loading_flag) {
|
|
|
|
+ bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
+
|
|
|
|
+ while (!clean) {
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ current_position[E_AXIS] += 25;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
|
|
|
|
+ st_synchronize();
|
|
|
|
+ clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
+ disable_z();
|
|
|
|
+ loading_flag = false;
|
|
|
|
+ custom_message = false;
|
|
|
|
+ custom_message_type = 0;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 702:
|
|
|
|
+ {
|
|
|
|
+#ifdef SNMM
|
|
|
|
+ if (code_seen('U')) {
|
|
|
|
+ extr_unload_used(); //unload all filaments which were used in current print
|
|
|
|
+ }
|
|
|
|
+ else if (code_seen('C')) {
|
|
|
|
+ extr_unload(); //unload just current filament
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ extr_unload_all(); //unload all filaments
|
|
|
|
+ }
|
|
|
|
+#else
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 2;
|
|
|
|
+ lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
|
|
|
|
+ current_position[E_AXIS] -= 80;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
+ custom_message = false;
|
|
|
|
+ custom_message_type = 0;
|
|
|
|
+#endif
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 999: // M999: Restart after being stopped
|
|
|
|
+ Stopped = false;
|
|
|
|
+ lcd_reset_alert_level();
|
|
|
|
+ gcode_LastN = Stopped_gcode_LastN;
|
|
|
|
+ FlushSerialRequestResend();
|
|
|
|
+ break;
|
|
|
|
+ default: SERIAL_ECHOLNPGM("Invalid M code.");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ } // end if(code_seen('M')) (end of M codes)
|
|
|
|
+
|
|
|
|
+ else if(code_seen('T'))
|
|
|
|
+ {
|
|
|
|
+ int index;
|
|
|
|
+ for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
|
|
|
|
+
|
|
|
|
+ if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
|
|
|
|
+ SERIAL_ECHOLNPGM("Invalid T code.");
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ if (*(strchr_pointer + index) == '?') {
|
|
|
|
+ tmp_extruder = choose_extruder_menu();
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ tmp_extruder = code_value();
|
|
|
|
+ }
|
|
|
|
+ snmm_filaments_used |= (1 << tmp_extruder); //for stop print
|
|
|
|
+#ifdef SNMM
|
|
|
|
+
|
|
|
|
+ #ifdef LIN_ADVANCE
|
|
|
|
+ if (snmm_extruder != tmp_extruder)
|
|
|
|
+ clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ snmm_extruder = tmp_extruder;
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ delay(100);
|
|
|
|
+
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+
|
|
|
|
+ pinMode(E_MUX0_PIN, OUTPUT);
|
|
|
|
+ pinMode(E_MUX1_PIN, OUTPUT);
|
|
|
|
+ pinMode(E_MUX2_PIN, OUTPUT);
|
|
|
|
+
|
|
|
|
+ delay(100);
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHO("T:");
|
|
|
|
+ SERIAL_ECHOLN((int)tmp_extruder);
|
|
|
|
+ switch (tmp_extruder) {
|
|
|
|
+ case 1:
|
|
|
|
+ WRITE(E_MUX0_PIN, HIGH);
|
|
|
|
+ WRITE(E_MUX1_PIN, LOW);
|
|
|
|
+ WRITE(E_MUX2_PIN, LOW);
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ case 2:
|
|
|
|
+ WRITE(E_MUX0_PIN, LOW);
|
|
|
|
+ WRITE(E_MUX1_PIN, HIGH);
|
|
|
|
+ WRITE(E_MUX2_PIN, LOW);
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ case 3:
|
|
|
|
+ WRITE(E_MUX0_PIN, HIGH);
|
|
|
|
+ WRITE(E_MUX1_PIN, HIGH);
|
|
|
|
+ WRITE(E_MUX2_PIN, LOW);
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ WRITE(E_MUX0_PIN, LOW);
|
|
|
|
+ WRITE(E_MUX1_PIN, LOW);
|
|
|
|
+ WRITE(E_MUX2_PIN, LOW);
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ delay(100);
|
|
|
|
+
|
|
|
|
+#else
|
|
|
|
+ if (tmp_extruder >= EXTRUDERS) {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHOPGM("T");
|
|
|
|
+ SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
|
|
+ SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ boolean make_move = false;
|
|
|
|
+ if (code_seen('F')) {
|
|
|
|
+ make_move = true;
|
|
|
|
+ next_feedrate = code_value();
|
|
|
|
+ if (next_feedrate > 0.0) {
|
|
|
|
+ feedrate = next_feedrate;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#if EXTRUDERS > 1
|
|
|
|
+ if (tmp_extruder != active_extruder) {
|
|
|
|
+ // Save current position to return to after applying extruder offset
|
|
|
|
+ memcpy(destination, current_position, sizeof(destination));
|
|
|
|
+ // Offset extruder (only by XY)
|
|
|
|
+ int i;
|
|
|
|
+ for (i = 0; i < 2; i++) {
|
|
|
|
+ current_position[i] = current_position[i] -
|
|
|
|
+ extruder_offset[i][active_extruder] +
|
|
|
|
+ extruder_offset[i][tmp_extruder];
|
|
|
|
+ }
|
|
|
|
+ // Set the new active extruder and position
|
|
|
|
+ active_extruder = tmp_extruder;
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+ // Move to the old position if 'F' was in the parameters
|
|
|
|
+ if (make_move && Stopped == false) {
|
|
|
|
+ prepare_move();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
|
|
|
|
+ SERIAL_PROTOCOLLN((int)active_extruder);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#endif
|
|
|
|
+ }
|
|
|
|
+ } // end if(code_seen('T')) (end of T codes)
|
|
|
|
+
|
|
|
|
+#ifdef DEBUG_DCODES
|
|
|
|
+ else if (code_seen('D')) // D codes (debug)
|
|
|
|
+ {
|
|
|
|
+ switch((int)code_value())
|
|
|
|
+ {
|
|
|
|
+ case 0: // D0 - Reset
|
|
|
|
+ dcode_0(); break;
|
|
|
|
+ case 1: // D1 - Clear EEPROM
|
|
|
|
+ dcode_1(); break;
|
|
|
|
+ case 2: // D2 - Read/Write RAM
|
|
|
|
+ dcode_2(); break;
|
|
|
|
+ case 3: // D3 - Read/Write EEPROM
|
|
|
|
+ dcode_3(); break;
|
|
|
|
+ case 4: // D4 - Read/Write PIN
|
|
|
|
+ dcode_4(); break;
|
|
|
|
+ case 9125: // D9125 - PAT9125
|
|
|
|
+ dcode_9125(); break;
|
|
|
|
+ case 5:
|
|
|
|
+ MYSERIAL.println("D5 - Test");
|
|
|
|
+ if (code_seen('P'))
|
|
|
|
+ selectedSerialPort = (int)code_value();
|
|
|
|
+ MYSERIAL.print("selectedSerialPort = ");
|
|
|
|
+ MYSERIAL.println(selectedSerialPort, DEC);
|
|
|
|
+ break;
|
|
|
|
+ case 10: // D10 - Tell the printer that XYZ calibration went OK
|
|
|
|
+ calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
|
|
|
|
+ case 999:
|
|
|
|
+ {
|
|
|
|
+ MYSERIAL.println("D999 - crash");
|
|
|
|
+
|
|
|
|
+/* while (!is_buffer_empty())
|
|
|
|
+ {
|
|
|
|
+ process_commands();
|
|
|
|
+ cmdqueue_pop_front();
|
|
|
|
+ }*/
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_implementation_clear();
|
|
|
|
+ lcd_update(2);
|
|
|
|
+
|
|
|
|
+ // Increment crash counter
|
|
|
|
+ uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
|
|
|
|
+ crash_count++;
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
|
|
|
|
+
|
|
|
|
+#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
|
|
|
|
+ bool yesno = true;
|
|
|
|
+#else
|
|
|
|
+ bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
|
|
|
|
+#endif
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ lcd_setstatuspgm(WELCOME_MSG);
|
|
|
|
+ if (yesno)
|
|
|
|
+ {
|
|
|
|
+ enquecommand_P(PSTR("G28 X"));
|
|
|
|
+ enquecommand_P(PSTR("G28 Y"));
|
|
|
|
+ enquecommand_P(PSTR("D1000"));
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ enquecommand_P(PSTR("D1001"));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 1000:
|
|
|
|
+ crashdet_restore_print_and_continue();
|
|
|
|
+ tmc2130_sg_stop_on_crash = true;
|
|
|
|
+ break;
|
|
|
|
+ case 1001:
|
|
|
|
+ card.sdprinting = false;
|
|
|
|
+ card.closefile();
|
|
|
|
+ tmc2130_sg_stop_on_crash = true;
|
|
|
|
+ break;
|
|
|
|
+/* case 4:
|
|
|
|
+ {
|
|
|
|
+ MYSERIAL.println("D4 - Test");
|
|
|
|
+ uint8_t data[16];
|
|
|
|
+ int cnt = parse_hex(strchr_pointer + 2, data, 16);
|
|
|
|
+ MYSERIAL.println(cnt, DEC);
|
|
|
|
+ for (int i = 0; i < cnt; i++)
|
|
|
|
+ {
|
|
|
|
+ serial_print_hex_byte(data[i]);
|
|
|
|
+ MYSERIAL.write(' ');
|
|
|
|
+ }
|
|
|
|
+ MYSERIAL.write('\n');
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+/* case 3:
|
|
|
|
+ if (code_seen('L')) // lcd pwm (0-255)
|
|
|
|
+ {
|
|
|
|
+ lcdSoftPwm = (int)code_value();
|
|
|
|
+ }
|
|
|
|
+ if (code_seen('B')) // lcd blink delay (0-255)
|
|
|
|
+ {
|
|
|
|
+ lcdBlinkDelay = (int)code_value();
|
|
|
|
+ }
|
|
|
|
+// calibrate_z_auto();
|
|
|
|
+/* MYSERIAL.print("fsensor_enable()");
|
|
|
|
+#ifdef PAT9125
|
|
|
|
+ fsensor_enable();
|
|
|
|
+#endif*/
|
|
|
|
+ break;
|
|
|
|
+// case 4:
|
|
|
|
+// lcdBlinkDelay = 10;
|
|
|
|
+/* MYSERIAL.print("fsensor_disable()");
|
|
|
|
+#ifdef PAT9125
|
|
|
|
+ fsensor_disable();
|
|
|
|
+#endif
|
|
|
|
+ break;*/
|
|
|
|
+// break;
|
|
|
|
+/* case 5:
|
|
|
|
+ {
|
|
|
|
+ MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
|
|
|
|
+ int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
|
|
|
|
+ MYSERIAL.println(val);
|
|
|
|
+ homeaxis(0);
|
|
|
|
+ }
|
|
|
|
+ break;*/
|
|
|
|
+ case 6:
|
|
|
|
+ {
|
|
|
|
+/* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
|
|
|
|
+ int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
|
|
|
|
+ MYSERIAL.println(val);*/
|
|
|
|
+ homeaxis(1);
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 7:
|
|
|
|
+ {
|
|
|
|
+ MYSERIAL.print("pat9125_init=");
|
|
|
|
+ MYSERIAL.println(pat9125_init(200, 200));
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ case 8:
|
|
|
|
+ {
|
|
|
|
+ MYSERIAL.print("swi2c_check=");
|
|
|
|
+ MYSERIAL.println(swi2c_check(0x75));
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#endif //DEBUG_DCODES
|
|
|
|
+
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
|
|
|
|
+ SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
|
|
|
|
+ SERIAL_ECHOLNPGM("\"(2)");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ClearToSend();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void FlushSerialRequestResend()
|
|
|
|
+{
|
|
|
|
+ //char cmdbuffer[bufindr][100]="Resend:";
|
|
|
|
+ MYSERIAL.flush();
|
|
|
|
+ SERIAL_PROTOCOLRPGM(MSG_RESEND);
|
|
|
|
+ SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
|
|
+ ClearToSend();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// Confirm the execution of a command, if sent from a serial line.
|
|
|
|
+// Execution of a command from a SD card will not be confirmed.
|
|
|
|
+void ClearToSend()
|
|
|
|
+{
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+ if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
|
|
|
|
+ SERIAL_PROTOCOLLNRPGM(MSG_OK);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void get_coordinates()
|
|
|
|
+{
|
|
|
|
+ bool seen[4]={false,false,false,false};
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
+ if(code_seen(axis_codes[i]))
|
|
|
|
+ {
|
|
|
|
+ destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
|
|
|
+ seen[i]=true;
|
|
|
|
+ }
|
|
|
|
+ else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('F')) {
|
|
|
|
+ next_feedrate = code_value();
|
|
|
|
+#ifdef MAX_SILENT_FEEDRATE
|
|
|
|
+ if (tmc2130_mode == TMC2130_MODE_SILENT)
|
|
|
|
+ if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
|
|
|
|
+#endif //MAX_SILENT_FEEDRATE
|
|
|
|
+ if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void get_arc_coordinates()
|
|
|
|
+{
|
|
|
|
+#ifdef SF_ARC_FIX
|
|
|
|
+ bool relative_mode_backup = relative_mode;
|
|
|
|
+ relative_mode = true;
|
|
|
|
+#endif
|
|
|
|
+ get_coordinates();
|
|
|
|
+#ifdef SF_ARC_FIX
|
|
|
|
+ relative_mode=relative_mode_backup;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ if(code_seen('I')) {
|
|
|
|
+ offset[0] = code_value();
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ offset[0] = 0.0;
|
|
|
|
+ }
|
|
|
|
+ if(code_seen('J')) {
|
|
|
|
+ offset[1] = code_value();
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ offset[1] = 0.0;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void clamp_to_software_endstops(float target[3])
|
|
|
|
+{
|
|
|
|
+#ifdef DEBUG_DISABLE_SWLIMITS
|
|
|
|
+ return;
|
|
|
|
+#endif //DEBUG_DISABLE_SWLIMITS
|
|
|
|
+ world2machine_clamp(target[0], target[1]);
|
|
|
|
+
|
|
|
|
+ // Clamp the Z coordinate.
|
|
|
|
+ if (min_software_endstops) {
|
|
|
|
+ float negative_z_offset = 0;
|
|
|
|
+ #ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
+ if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
+ if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
|
|
|
|
+ #endif
|
|
|
|
+ if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
|
|
|
+ }
|
|
|
|
+ if (max_software_endstops) {
|
|
|
|
+ if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef MESH_BED_LEVELING
|
|
|
|
+ void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
|
|
|
|
+ float dx = x - current_position[X_AXIS];
|
|
|
|
+ float dy = y - current_position[Y_AXIS];
|
|
|
|
+ float dz = z - current_position[Z_AXIS];
|
|
|
|
+ int n_segments = 0;
|
|
|
|
+
|
|
|
|
+ if (mbl.active) {
|
|
|
|
+ float len = abs(dx) + abs(dy);
|
|
|
|
+ if (len > 0)
|
|
|
|
+ // Split to 3cm segments or shorter.
|
|
|
|
+ n_segments = int(ceil(len / 30.f));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (n_segments > 1) {
|
|
|
|
+ float de = e - current_position[E_AXIS];
|
|
|
|
+ for (int i = 1; i < n_segments; ++ i) {
|
|
|
|
+ float t = float(i) / float(n_segments);
|
|
|
|
+ plan_buffer_line(
|
|
|
|
+ current_position[X_AXIS] + t * dx,
|
|
|
|
+ current_position[Y_AXIS] + t * dy,
|
|
|
|
+ current_position[Z_AXIS] + t * dz,
|
|
|
|
+ current_position[E_AXIS] + t * de,
|
|
|
|
+ feed_rate, extruder);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ // The rest of the path.
|
|
|
|
+ plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
|
|
+ current_position[X_AXIS] = x;
|
|
|
|
+ current_position[Y_AXIS] = y;
|
|
|
|
+ current_position[Z_AXIS] = z;
|
|
|
|
+ current_position[E_AXIS] = e;
|
|
|
|
+ }
|
|
|
|
+#endif // MESH_BED_LEVELING
|
|
|
|
+
|
|
|
|
+void prepare_move()
|
|
|
|
+{
|
|
|
|
+ clamp_to_software_endstops(destination);
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+
|
|
|
|
+ // Do not use feedmultiply for E or Z only moves
|
|
|
|
+ if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+#ifdef MESH_BED_LEVELING
|
|
|
|
+ mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
|
|
+#else
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
|
|
|
|
+#endif
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
+ current_position[i] = destination[i];
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void prepare_arc_move(char isclockwise) {
|
|
|
|
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
+
|
|
|
|
+ // Trace the arc
|
|
|
|
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
|
|
|
+
|
|
|
|
+ // As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
+ // motion control system might still be processing the action and the real tool position
|
|
|
|
+ // in any intermediate location.
|
|
|
|
+ for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
+ current_position[i] = destination[i];
|
|
|
|
+ }
|
|
|
|
+ previous_millis_cmd = millis();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
+
|
|
|
|
+#if defined(FAN_PIN)
|
|
|
|
+ #if CONTROLLERFAN_PIN == FAN_PIN
|
|
|
|
+ #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
|
|
|
|
+ #endif
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
|
|
|
|
+unsigned long lastMotorCheck = 0;
|
|
|
|
+
|
|
|
|
+void controllerFan()
|
|
|
|
+{
|
|
|
|
+ if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
|
|
|
|
+ {
|
|
|
|
+ lastMotorCheck = millis();
|
|
|
|
+
|
|
|
|
+ if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
|
|
|
|
+ #if EXTRUDERS > 2
|
|
|
|
+ || !READ(E2_ENABLE_PIN)
|
|
|
|
+ #endif
|
|
|
|
+ #if EXTRUDER > 1
|
|
|
|
+ #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
|
|
|
+ || !READ(X2_ENABLE_PIN)
|
|
|
|
+ #endif
|
|
|
|
+ || !READ(E1_ENABLE_PIN)
|
|
|
|
+ #endif
|
|
|
|
+ || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
|
|
|
+ {
|
|
|
|
+ lastMotor = millis(); //... set time to NOW so the fan will turn on
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
|
|
|
|
+ {
|
|
|
|
+ digitalWrite(CONTROLLERFAN_PIN, 0);
|
|
|
|
+ analogWrite(CONTROLLERFAN_PIN, 0);
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ // allows digital or PWM fan output to be used (see M42 handling)
|
|
|
|
+ digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
|
|
+ analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#ifdef TEMP_STAT_LEDS
|
|
|
|
+static bool blue_led = false;
|
|
|
|
+static bool red_led = false;
|
|
|
|
+static uint32_t stat_update = 0;
|
|
|
|
+
|
|
|
|
+void handle_status_leds(void) {
|
|
|
|
+ float max_temp = 0.0;
|
|
|
|
+ if(millis() > stat_update) {
|
|
|
|
+ stat_update += 500; // Update every 0.5s
|
|
|
|
+ for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
|
|
+ max_temp = max(max_temp, degHotend(cur_extruder));
|
|
|
|
+ max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
|
|
|
+ }
|
|
|
|
+ #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
|
|
+ max_temp = max(max_temp, degTargetBed());
|
|
|
|
+ max_temp = max(max_temp, degBed());
|
|
|
|
+ #endif
|
|
|
|
+ if((max_temp > 55.0) && (red_led == false)) {
|
|
|
|
+ digitalWrite(STAT_LED_RED, 1);
|
|
|
|
+ digitalWrite(STAT_LED_BLUE, 0);
|
|
|
|
+ red_led = true;
|
|
|
|
+ blue_led = false;
|
|
|
|
+ }
|
|
|
|
+ if((max_temp < 54.0) && (blue_led == false)) {
|
|
|
|
+ digitalWrite(STAT_LED_RED, 0);
|
|
|
|
+ digitalWrite(STAT_LED_BLUE, 1);
|
|
|
|
+ red_led = false;
|
|
|
|
+ blue_led = true;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
|
|
|
+{
|
|
|
|
+
|
|
|
|
+#if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
+ static int killCount = 0; // make the inactivity button a bit less responsive
|
|
|
|
+ const int KILL_DELAY = 10000;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ if(buflen < (BUFSIZE-1)){
|
|
|
|
+ get_command();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if( (millis() - previous_millis_cmd) > max_inactive_time )
|
|
|
|
+ if(max_inactive_time)
|
|
|
|
+ kill("", 4);
|
|
|
|
+ if(stepper_inactive_time) {
|
|
|
|
+ if( (millis() - previous_millis_cmd) > stepper_inactive_time )
|
|
|
|
+ {
|
|
|
|
+ if(blocks_queued() == false && ignore_stepper_queue == false) {
|
|
|
|
+ disable_x();
|
|
|
|
+// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
|
|
|
|
+ disable_y();
|
|
|
|
+ disable_z();
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
|
|
|
|
+ if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
|
|
|
|
+ {
|
|
|
|
+ chdkActive = false;
|
|
|
|
+ WRITE(CHDK, LOW);
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
+
|
|
|
|
+ // Check if the kill button was pressed and wait just in case it was an accidental
|
|
|
|
+ // key kill key press
|
|
|
|
+ // -------------------------------------------------------------------------------
|
|
|
|
+ if( 0 == READ(KILL_PIN) )
|
|
|
|
+ {
|
|
|
|
+ killCount++;
|
|
|
|
+ }
|
|
|
|
+ else if (killCount > 0)
|
|
|
|
+ {
|
|
|
|
+ killCount--;
|
|
|
|
+ }
|
|
|
|
+ // Exceeded threshold and we can confirm that it was not accidental
|
|
|
|
+ // KILL the machine
|
|
|
|
+ // ----------------------------------------------------------------
|
|
|
|
+ if ( killCount >= KILL_DELAY)
|
|
|
|
+ {
|
|
|
|
+ kill("", 5);
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
|
|
+ controllerFan(); //Check if fan should be turned on to cool stepper drivers down
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef EXTRUDER_RUNOUT_PREVENT
|
|
|
|
+ if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
|
|
|
|
+ if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
|
|
|
|
+ {
|
|
|
|
+ bool oldstatus=READ(E0_ENABLE_PIN);
|
|
|
|
+ enable_e0();
|
|
|
|
+ float oldepos=current_position[E_AXIS];
|
|
|
|
+ float oldedes=destination[E_AXIS];
|
|
|
|
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
|
|
+ destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
|
|
|
|
+ EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
|
|
|
|
+ current_position[E_AXIS]=oldepos;
|
|
|
|
+ destination[E_AXIS]=oldedes;
|
|
|
|
+ plan_set_e_position(oldepos);
|
|
|
|
+ previous_millis_cmd=millis();
|
|
|
|
+ st_synchronize();
|
|
|
|
+ WRITE(E0_ENABLE_PIN,oldstatus);
|
|
|
|
+ }
|
|
|
|
+ #endif
|
|
|
|
+ #ifdef TEMP_STAT_LEDS
|
|
|
|
+ handle_status_leds();
|
|
|
|
+ #endif
|
|
|
|
+ check_axes_activity();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void kill(const char *full_screen_message, unsigned char id)
|
|
|
|
+{
|
|
|
|
+ SERIAL_ECHOPGM("KILL: ");
|
|
|
|
+ MYSERIAL.println(int(id));
|
|
|
|
+ //return;
|
|
|
|
+ cli(); // Stop interrupts
|
|
|
|
+ disable_heater();
|
|
|
|
+
|
|
|
|
+ disable_x();
|
|
|
|
+// SERIAL_ECHOLNPGM("kill - disable Y");
|
|
|
|
+ disable_y();
|
|
|
|
+ disable_z();
|
|
|
|
+ disable_e0();
|
|
|
|
+ disable_e1();
|
|
|
|
+ disable_e2();
|
|
|
|
+
|
|
|
|
+#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
|
|
+ pinMode(PS_ON_PIN,INPUT);
|
|
|
|
+#endif
|
|
|
|
+ SERIAL_ERROR_START;
|
|
|
|
+ SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
|
|
|
|
+ if (full_screen_message != NULL) {
|
|
|
|
+ SERIAL_ERRORLNRPGM(full_screen_message);
|
|
|
|
+ lcd_display_message_fullscreen_P(full_screen_message);
|
|
|
|
+ } else {
|
|
|
|
+ LCD_ALERTMESSAGERPGM(MSG_KILLED);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // FMC small patch to update the LCD before ending
|
|
|
|
+ sei(); // enable interrupts
|
|
|
|
+ for ( int i=5; i--; lcd_update())
|
|
|
|
+ {
|
|
|
|
+ delay(200);
|
|
|
|
+ }
|
|
|
|
+ cli(); // disable interrupts
|
|
|
|
+ suicide();
|
|
|
|
+ while(1) { /* Intentionally left empty */ } // Wait for reset
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void Stop()
|
|
|
|
+{
|
|
|
|
+ disable_heater();
|
|
|
|
+ if(Stopped == false) {
|
|
|
|
+ Stopped = true;
|
|
|
|
+ Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
|
|
+ SERIAL_ERROR_START;
|
|
|
|
+ SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
|
|
|
|
+ LCD_MESSAGERPGM(MSG_STOPPED);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+bool IsStopped() { return Stopped; };
|
|
|
|
+
|
|
|
|
+#ifdef FAST_PWM_FAN
|
|
|
|
+void setPwmFrequency(uint8_t pin, int val)
|
|
|
|
+{
|
|
|
|
+ val &= 0x07;
|
|
|
|
+ switch(digitalPinToTimer(pin))
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR0A)
|
|
|
|
+ case TIMER0A:
|
|
|
|
+ case TIMER0B:
|
|
|
|
+// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
|
|
+// TCCR0B |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR1A)
|
|
|
|
+ case TIMER1A:
|
|
|
|
+ case TIMER1B:
|
|
|
|
+// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
|
|
+// TCCR1B |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR2)
|
|
|
|
+ case TIMER2:
|
|
|
|
+ case TIMER2:
|
|
|
|
+ TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
|
|
+ TCCR2 |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR2A)
|
|
|
|
+ case TIMER2A:
|
|
|
|
+ case TIMER2B:
|
|
|
|
+ TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
|
|
+ TCCR2B |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR3A)
|
|
|
|
+ case TIMER3A:
|
|
|
|
+ case TIMER3B:
|
|
|
|
+ case TIMER3C:
|
|
|
|
+ TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
|
|
+ TCCR3B |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR4A)
|
|
|
|
+ case TIMER4A:
|
|
|
|
+ case TIMER4B:
|
|
|
|
+ case TIMER4C:
|
|
|
|
+ TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
|
|
+ TCCR4B |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ #if defined(TCCR5A)
|
|
|
|
+ case TIMER5A:
|
|
|
|
+ case TIMER5B:
|
|
|
|
+ case TIMER5C:
|
|
|
|
+ TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
|
|
+ TCCR5B |= val;
|
|
|
|
+ break;
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#endif //FAST_PWM_FAN
|
|
|
|
+
|
|
|
|
+bool setTargetedHotend(int code){
|
|
|
|
+ tmp_extruder = active_extruder;
|
|
|
|
+ if(code_seen('T')) {
|
|
|
|
+ tmp_extruder = code_value();
|
|
|
|
+ if(tmp_extruder >= EXTRUDERS) {
|
|
|
|
+ SERIAL_ECHO_START;
|
|
|
|
+ switch(code){
|
|
|
|
+ case 104:
|
|
|
|
+ SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
|
|
|
|
+ break;
|
|
|
|
+ case 105:
|
|
|
|
+ SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
|
|
|
|
+ break;
|
|
|
|
+ case 109:
|
|
|
|
+ SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
|
|
|
|
+ break;
|
|
|
|
+ case 218:
|
|
|
|
+ SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
|
|
|
|
+ break;
|
|
|
|
+ case 221:
|
|
|
|
+ SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLLN((int)tmp_extruder);
|
|
|
|
+ return true;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
|
|
|
|
+{
|
|
|
|
+ if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
|
|
|
|
+ {
|
|
|
|
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
|
|
|
|
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
|
|
|
|
+ unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
|
|
|
|
+
|
|
|
|
+ eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
|
|
|
|
+ eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
|
|
|
|
+
|
|
|
|
+ total_filament_used = 0;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+float calculate_volumetric_multiplier(float diameter) {
|
|
|
|
+ float area = .0;
|
|
|
|
+ float radius = .0;
|
|
|
|
+
|
|
|
|
+ radius = diameter * .5;
|
|
|
|
+ if (! volumetric_enabled || radius == 0) {
|
|
|
|
+ area = 1;
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ area = M_PI * pow(radius, 2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 1.0 / area;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void calculate_volumetric_multipliers() {
|
|
|
|
+ volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
|
|
|
|
+#if EXTRUDERS > 1
|
|
|
|
+ volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
|
|
|
|
+#if EXTRUDERS > 2
|
|
|
|
+ volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
|
|
|
|
+#endif
|
|
|
|
+#endif
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void delay_keep_alive(unsigned int ms)
|
|
|
|
+{
|
|
|
|
+ for (;;) {
|
|
|
|
+ manage_heater();
|
|
|
|
+ // Manage inactivity, but don't disable steppers on timeout.
|
|
|
|
+ manage_inactivity(true);
|
|
|
|
+ lcd_update();
|
|
|
|
+ if (ms == 0)
|
|
|
|
+ break;
|
|
|
|
+ else if (ms >= 50) {
|
|
|
|
+ delay(50);
|
|
|
|
+ ms -= 50;
|
|
|
|
+ } else {
|
|
|
|
+ delay(ms);
|
|
|
|
+ ms = 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void wait_for_heater(long codenum) {
|
|
|
|
+
|
|
|
|
+#ifdef TEMP_RESIDENCY_TIME
|
|
|
|
+ long residencyStart;
|
|
|
|
+ residencyStart = -1;
|
|
|
|
+ /* continue to loop until we have reached the target temp
|
|
|
|
+ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
|
|
+ while ((!cancel_heatup) && ((residencyStart == -1) ||
|
|
|
|
+ (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
|
|
|
|
+#else
|
|
|
|
+ while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
|
|
|
|
+#endif //TEMP_RESIDENCY_TIME
|
|
|
|
+ if ((millis() - codenum) > 1000UL)
|
|
|
|
+ { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
|
|
|
|
+ if (!farm_mode) {
|
|
|
|
+ SERIAL_PROTOCOLPGM("T:");
|
|
|
|
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
+ SERIAL_PROTOCOL((int)tmp_extruder);
|
|
|
|
+
|
|
|
|
+#ifdef TEMP_RESIDENCY_TIME
|
|
|
|
+ SERIAL_PROTOCOLPGM(" W:");
|
|
|
|
+ if (residencyStart > -1)
|
|
|
|
+ {
|
|
|
|
+ codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
|
|
+ SERIAL_PROTOCOLLN(codenum);
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ SERIAL_PROTOCOLLN("?");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#else
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+#endif
|
|
|
|
+ codenum = millis();
|
|
|
|
+ }
|
|
|
|
+ manage_heater();
|
|
|
|
+ manage_inactivity();
|
|
|
|
+ lcd_update();
|
|
|
|
+#ifdef TEMP_RESIDENCY_TIME
|
|
|
|
+ /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
|
|
+ or when current temp falls outside the hysteresis after target temp was reached */
|
|
|
|
+ if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
|
|
|
|
+ (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
|
|
|
|
+ (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
|
|
|
|
+ {
|
|
|
|
+ residencyStart = millis();
|
|
|
|
+ }
|
|
|
|
+#endif //TEMP_RESIDENCY_TIME
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void check_babystep() {
|
|
|
|
+ int babystep_z;
|
|
|
|
+ EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
|
|
+ if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
|
|
|
|
+ babystep_z = 0; //if babystep value is out of min max range, set it to 0
|
|
|
|
+ SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
|
|
|
|
+ EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
|
|
|
|
+ lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+#ifdef DIS
|
|
|
|
+void d_setup()
|
|
|
|
+{
|
|
|
|
+ pinMode(D_DATACLOCK, INPUT_PULLUP);
|
|
|
|
+ pinMode(D_DATA, INPUT_PULLUP);
|
|
|
|
+ pinMode(D_REQUIRE, OUTPUT);
|
|
|
|
+ digitalWrite(D_REQUIRE, HIGH);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+float d_ReadData()
|
|
|
|
+{
|
|
|
|
+ int digit[13];
|
|
|
|
+ String mergeOutput;
|
|
|
|
+ float output;
|
|
|
|
+
|
|
|
|
+ digitalWrite(D_REQUIRE, HIGH);
|
|
|
|
+ for (int i = 0; i<13; i++)
|
|
|
|
+ {
|
|
|
|
+ for (int j = 0; j < 4; j++)
|
|
|
|
+ {
|
|
|
|
+ while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
|
|
+ while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
|
|
+ bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ digitalWrite(D_REQUIRE, LOW);
|
|
|
|
+ mergeOutput = "";
|
|
|
|
+ output = 0;
|
|
|
|
+ for (int r = 5; r <= 10; r++) //Merge digits
|
|
|
|
+ {
|
|
|
|
+ mergeOutput += digit[r];
|
|
|
|
+ }
|
|
|
|
+ output = mergeOutput.toFloat();
|
|
|
|
+
|
|
|
|
+ if (digit[4] == 8) //Handle sign
|
|
|
|
+ {
|
|
|
|
+ output *= -1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
|
|
+ {
|
|
|
|
+ output /= 10;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return output;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
|
|
|
|
+ int t1 = 0;
|
|
|
|
+ int t_delay = 0;
|
|
|
|
+ int digit[13];
|
|
|
|
+ int m;
|
|
|
|
+ char str[3];
|
|
|
|
+ //String mergeOutput;
|
|
|
|
+ char mergeOutput[15];
|
|
|
|
+ float output;
|
|
|
|
+
|
|
|
|
+ int mesh_point = 0; //index number of calibration point
|
|
|
|
+ float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
|
|
|
|
+ float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
+
|
|
|
|
+ float mesh_home_z_search = 4;
|
|
|
|
+ float row[x_points_num];
|
|
|
|
+ int ix = 0;
|
|
|
|
+ int iy = 0;
|
|
|
|
+
|
|
|
|
+ char* filename_wldsd = "wldsd.txt";
|
|
|
|
+ char data_wldsd[70];
|
|
|
|
+ char numb_wldsd[10];
|
|
|
|
+
|
|
|
|
+ d_setup();
|
|
|
|
+
|
|
|
|
+ if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
|
|
|
|
+ // We don't know where we are! HOME!
|
|
|
|
+ // Push the commands to the front of the message queue in the reverse order!
|
|
|
|
+ // There shall be always enough space reserved for these commands.
|
|
|
|
+ repeatcommand_front(); // repeat G80 with all its parameters
|
|
|
|
+
|
|
|
|
+ enquecommand_front_P((PSTR("G28 W0")));
|
|
|
|
+ enquecommand_front_P((PSTR("G1 Z5")));
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ bool custom_message_old = custom_message;
|
|
|
|
+ unsigned int custom_message_type_old = custom_message_type;
|
|
|
|
+ unsigned int custom_message_state_old = custom_message_state;
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 1;
|
|
|
|
+ custom_message_state = (x_points_num * y_points_num) + 10;
|
|
|
|
+ lcd_update(1);
|
|
|
|
+
|
|
|
|
+ mbl.reset();
|
|
|
|
+ babystep_undo();
|
|
|
|
+
|
|
|
|
+ card.openFile(filename_wldsd, false);
|
|
|
|
+
|
|
|
|
+ current_position[Z_AXIS] = mesh_home_z_search;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
|
|
|
|
+
|
|
|
|
+ int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
|
|
|
|
+ int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
|
|
|
|
+ int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
|
|
|
|
+
|
|
|
|
+ setup_for_endstop_move(false);
|
|
|
|
+
|
|
|
|
+ SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
|
|
+ SERIAL_PROTOCOL(x_points_num);
|
|
|
|
+ SERIAL_PROTOCOLPGM(",");
|
|
|
|
+ SERIAL_PROTOCOL(y_points_num);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
|
|
+ SERIAL_PROTOCOL(mesh_home_z_search);
|
|
|
|
+ SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
|
|
|
|
+ SERIAL_PROTOCOL(x_dimension);
|
|
|
|
+ SERIAL_PROTOCOLPGM(",");
|
|
|
|
+ SERIAL_PROTOCOL(y_dimension);
|
|
|
|
+ SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
|
|
+
|
|
|
|
+ while (mesh_point != x_points_num * y_points_num) {
|
|
|
|
+ ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
+ iy = mesh_point / x_points_num;
|
|
|
|
+ if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
|
|
|
|
+ float z0 = 0.f;
|
|
|
|
+ current_position[Z_AXIS] = mesh_home_z_search;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
|
|
|
|
+ current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
|
|
|
|
+
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
|
|
|
|
+ break;
|
|
|
|
+ card.closefile();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
|
|
+ //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
|
|
|
|
+ //strcat(data_wldsd, numb_wldsd);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //MYSERIAL.println(data_wldsd);
|
|
|
|
+ //delay(1000);
|
|
|
|
+ //delay(3000);
|
|
|
|
+ //t1 = millis();
|
|
|
|
+
|
|
|
|
+ //while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
|
|
+ //while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
|
|
+ memset(digit, 0, sizeof(digit));
|
|
|
|
+ //cli();
|
|
|
|
+ digitalWrite(D_REQUIRE, LOW);
|
|
|
|
+
|
|
|
|
+ for (int i = 0; i<13; i++)
|
|
|
|
+ {
|
|
|
|
+ //t1 = millis();
|
|
|
|
+ for (int j = 0; j < 4; j++)
|
|
|
|
+ {
|
|
|
|
+ while (digitalRead(D_DATACLOCK) == LOW) {}
|
|
|
|
+ while (digitalRead(D_DATACLOCK) == HIGH) {}
|
|
|
|
+ bitWrite(digit[i], j, digitalRead(D_DATA));
|
|
|
|
+ }
|
|
|
|
+ //t_delay = (millis() - t1);
|
|
|
|
+ //SERIAL_PROTOCOLPGM(" ");
|
|
|
|
+ //SERIAL_PROTOCOL_F(t_delay, 5);
|
|
|
|
+ //SERIAL_PROTOCOLPGM(" ");
|
|
|
|
+ }
|
|
|
|
+ //sei();
|
|
|
|
+ digitalWrite(D_REQUIRE, HIGH);
|
|
|
|
+ mergeOutput[0] = '\0';
|
|
|
|
+ output = 0;
|
|
|
|
+ for (int r = 5; r <= 10; r++) //Merge digits
|
|
|
|
+ {
|
|
|
|
+ sprintf(str, "%d", digit[r]);
|
|
|
|
+ strcat(mergeOutput, str);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ output = atof(mergeOutput);
|
|
|
|
+
|
|
|
|
+ if (digit[4] == 8) //Handle sign
|
|
|
|
+ {
|
|
|
|
+ output *= -1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (int i = digit[11]; i > 0; i--) //Handle floating point
|
|
|
|
+ {
|
|
|
|
+ output *= 0.1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //output = d_ReadData();
|
|
|
|
+
|
|
|
|
+ //row[ix] = current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ memset(data_wldsd, 0, sizeof(data_wldsd));
|
|
|
|
+
|
|
|
|
+ for (int i = 0; i <3; i++) {
|
|
|
|
+ memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
|
|
+ dtostrf(current_position[i], 8, 5, numb_wldsd);
|
|
|
|
+ strcat(data_wldsd, numb_wldsd);
|
|
|
|
+ strcat(data_wldsd, ";");
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ memset(numb_wldsd, 0, sizeof(numb_wldsd));
|
|
|
|
+ dtostrf(output, 8, 5, numb_wldsd);
|
|
|
|
+ strcat(data_wldsd, numb_wldsd);
|
|
|
|
+ //strcat(data_wldsd, ";");
|
|
|
|
+ card.write_command(data_wldsd);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //row[ix] = d_ReadData();
|
|
|
|
+
|
|
|
|
+ row[ix] = output; // current_position[Z_AXIS];
|
|
|
|
+
|
|
|
|
+ if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
|
|
|
|
+ for (int i = 0; i < x_points_num; i++) {
|
|
|
|
+ SERIAL_PROTOCOLPGM(" ");
|
|
|
|
+ SERIAL_PROTOCOL_F(row[i], 5);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ }
|
|
|
|
+ custom_message_state--;
|
|
|
|
+ mesh_point++;
|
|
|
|
+ lcd_update(1);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ card.closefile();
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+void temp_compensation_start() {
|
|
|
|
+
|
|
|
|
+ custom_message = true;
|
|
|
|
+ custom_message_type = 5;
|
|
|
|
+ custom_message_state = PINDA_HEAT_T + 1;
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
|
|
|
|
+ current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
|
|
+ }
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
+
|
|
|
|
+ current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
|
+ current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
|
+ current_position[Z_AXIS] = PINDA_PREHEAT_Z;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
|
|
|
|
+
|
|
|
|
+ for (int i = 0; i < PINDA_HEAT_T; i++) {
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ custom_message_state = PINDA_HEAT_T - i;
|
|
|
|
+ if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
|
|
|
|
+ else lcd_update(1);
|
|
|
|
+ }
|
|
|
|
+ custom_message_type = 0;
|
|
|
|
+ custom_message_state = 0;
|
|
|
|
+ custom_message = false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void temp_compensation_apply() {
|
|
|
|
+ int i_add;
|
|
|
|
+ int compensation_value;
|
|
|
|
+ int z_shift = 0;
|
|
|
|
+ float z_shift_mm;
|
|
|
|
+
|
|
|
|
+ if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
|
|
|
|
+ if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
|
|
|
|
+ i_add = (target_temperature_bed - 60) / 10;
|
|
|
|
+ EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
|
|
|
|
+ z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
|
|
|
|
+ }else {
|
|
|
|
+ //interpolation
|
|
|
|
+ z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
+ }
|
|
|
|
+ SERIAL_PROTOCOLPGM("\n");
|
|
|
|
+ SERIAL_PROTOCOLPGM("Z shift applied:");
|
|
|
|
+ MYSERIAL.print(z_shift_mm);
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ plan_set_z_position(current_position[Z_AXIS]);
|
|
|
|
+ }
|
|
|
|
+ else {
|
|
|
|
+ //we have no temp compensation data
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+float temp_comp_interpolation(float inp_temperature) {
|
|
|
|
+
|
|
|
|
+ //cubic spline interpolation
|
|
|
|
+
|
|
|
|
+ int n, i, j, k;
|
|
|
|
+ float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
|
|
|
|
+ int shift[10];
|
|
|
|
+ int temp_C[10];
|
|
|
|
+
|
|
|
|
+ n = 6; //number of measured points
|
|
|
|
+
|
|
|
|
+ shift[0] = 0;
|
|
|
|
+ for (i = 0; i < n; i++) {
|
|
|
|
+ if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
|
|
|
|
+ temp_C[i] = 50 + i * 10; //temperature in C
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+ temp_C[i] = 35 + i * 5; //temperature in C
|
|
|
|
+#else
|
|
|
|
+ temp_C[i] = 50 + i * 10; //temperature in C
|
|
|
|
+#endif
|
|
|
|
+ x[i] = (float)temp_C[i];
|
|
|
|
+ f[i] = (float)shift[i];
|
|
|
|
+ }
|
|
|
|
+ if (inp_temperature < x[0]) return 0;
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ for (i = n - 1; i>0; i--) {
|
|
|
|
+ F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
|
|
|
|
+ h[i - 1] = x[i] - x[i - 1];
|
|
|
|
+ }
|
|
|
|
+ //*********** formation of h, s , f matrix **************
|
|
|
|
+ for (i = 1; i<n - 1; i++) {
|
|
|
|
+ m[i][i] = 2 * (h[i - 1] + h[i]);
|
|
|
|
+ if (i != 1) {
|
|
|
|
+ m[i][i - 1] = h[i - 1];
|
|
|
|
+ m[i - 1][i] = h[i - 1];
|
|
|
|
+ }
|
|
|
|
+ m[i][n - 1] = 6 * (F[i + 1] - F[i]);
|
|
|
|
+ }
|
|
|
|
+ //*********** forward elimination **************
|
|
|
|
+ for (i = 1; i<n - 2; i++) {
|
|
|
|
+ temp = (m[i + 1][i] / m[i][i]);
|
|
|
|
+ for (j = 1; j <= n - 1; j++)
|
|
|
|
+ m[i + 1][j] -= temp*m[i][j];
|
|
|
|
+ }
|
|
|
|
+ //*********** backward substitution *********
|
|
|
|
+ for (i = n - 2; i>0; i--) {
|
|
|
|
+ sum = 0;
|
|
|
|
+ for (j = i; j <= n - 2; j++)
|
|
|
|
+ sum += m[i][j] * s[j];
|
|
|
|
+ s[i] = (m[i][n - 1] - sum) / m[i][i];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (i = 0; i<n - 1; i++)
|
|
|
|
+ if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
|
|
|
|
+ a = (s[i + 1] - s[i]) / (6 * h[i]);
|
|
|
|
+ b = s[i] / 2;
|
|
|
|
+ c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
|
|
|
|
+ d = f[i];
|
|
|
|
+ sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return sum;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#ifdef PINDA_THERMISTOR
|
|
|
|
+float temp_compensation_pinda_thermistor_offset()
|
|
|
|
+{
|
|
|
|
+ if (!temp_cal_active) return 0;
|
|
|
|
+ if (!calibration_status_pinda()) return 0;
|
|
|
|
+ return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
+}
|
|
|
|
+#endif //PINDA_THERMISTOR
|
|
|
|
+
|
|
|
|
+void long_pause() //long pause print
|
|
|
|
+{
|
|
|
|
+ st_synchronize();
|
|
|
|
+
|
|
|
|
+ //save currently set parameters to global variables
|
|
|
|
+ saved_feedmultiply = feedmultiply;
|
|
|
|
+ HotendTempBckp = degTargetHotend(active_extruder);
|
|
|
|
+ fanSpeedBckp = fanSpeed;
|
|
|
|
+ start_pause_print = millis();
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ //save position
|
|
|
|
+ pause_lastpos[X_AXIS] = current_position[X_AXIS];
|
|
|
|
+ pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
+ pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
+ pause_lastpos[E_AXIS] = current_position[E_AXIS];
|
|
|
|
+
|
|
|
|
+ //retract
|
|
|
|
+ current_position[E_AXIS] -= DEFAULT_RETRACTION;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
|
|
|
|
+
|
|
|
|
+ //lift z
|
|
|
|
+ current_position[Z_AXIS] += Z_PAUSE_LIFT;
|
|
|
|
+ if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
|
|
|
|
+
|
|
|
|
+ //set nozzle target temperature to 0
|
|
|
|
+ setTargetHotend(0, 0);
|
|
|
|
+ setTargetHotend(0, 1);
|
|
|
|
+ setTargetHotend(0, 2);
|
|
|
|
+
|
|
|
|
+ //Move XY to side
|
|
|
|
+ current_position[X_AXIS] = X_PAUSE_POS;
|
|
|
|
+ current_position[Y_AXIS] = Y_PAUSE_POS;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
|
|
|
|
+
|
|
|
|
+ // Turn off the print fan
|
|
|
|
+ fanSpeed = 0;
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void serialecho_temperatures() {
|
|
|
|
+ float tt = degHotend(active_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM("T:");
|
|
|
|
+ SERIAL_PROTOCOL(tt);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
+ SERIAL_PROTOCOL((int)active_extruder);
|
|
|
|
+ SERIAL_PROTOCOLPGM(" B:");
|
|
|
|
+ SERIAL_PROTOCOL_F(degBed(), 1);
|
|
|
|
+ SERIAL_PROTOCOLLN("");
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+extern uint32_t sdpos_atomic;
|
|
|
|
+
|
|
|
|
+void uvlo_()
|
|
|
|
+{
|
|
|
|
+ // Conserve power as soon as possible.
|
|
|
|
+ disable_x();
|
|
|
|
+ disable_y();
|
|
|
|
+
|
|
|
|
+ // Indicate that the interrupt has been triggered.
|
|
|
|
+ SERIAL_ECHOLNPGM("UVLO");
|
|
|
|
+
|
|
|
|
+ // Read out the current Z motor microstep counter. This will be later used
|
|
|
|
+ // for reaching the zero full step before powering off.
|
|
|
|
+ uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
|
|
|
|
+
|
|
|
|
+ // Calculate the file position, from which to resume this print.
|
|
|
|
+ long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
|
|
|
|
+ {
|
|
|
|
+ uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
|
|
|
|
+ sd_position -= sdlen_planner;
|
|
|
|
+ uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
|
|
|
|
+ sd_position -= sdlen_cmdqueue;
|
|
|
|
+ if (sd_position < 0) sd_position = 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Backup the feedrate in mm/min.
|
|
|
|
+ int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
|
|
|
|
+
|
|
|
|
+ // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
|
|
|
|
+ // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
|
|
|
|
+ // are in action.
|
|
|
|
+ planner_abort_hard();
|
|
|
|
+
|
|
|
|
+ // Clean the input command queue.
|
|
|
|
+ cmdqueue_reset();
|
|
|
|
+ card.sdprinting = false;
|
|
|
|
+// card.closefile();
|
|
|
|
+
|
|
|
|
+ // Enable stepper driver interrupt to move Z axis.
|
|
|
|
+ // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
|
|
|
|
+ //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
|
|
|
|
+ // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
|
|
|
|
+ sei();
|
|
|
|
+ plan_buffer_line(
|
|
|
|
+ current_position[X_AXIS],
|
|
|
|
+ current_position[Y_AXIS],
|
|
|
|
+ current_position[Z_AXIS],
|
|
|
|
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
|
|
+ 400, active_extruder);
|
|
|
|
+ plan_buffer_line(
|
|
|
|
+ current_position[X_AXIS],
|
|
|
|
+ current_position[Y_AXIS],
|
|
|
|
+ current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
|
|
|
|
+ current_position[E_AXIS] - DEFAULT_RETRACTION,
|
|
|
|
+ 40, active_extruder);
|
|
|
|
+
|
|
|
|
+ // Move Z up to the next 0th full step.
|
|
|
|
+ // Write the file position.
|
|
|
|
+ eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
|
|
|
|
+ // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
|
|
|
|
+ for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
|
|
+ uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
+ uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
|
|
+ // Scale the z value to 1u resolution.
|
|
|
|
+ int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
|
|
|
|
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
|
|
|
|
+ }
|
|
|
|
+ // Read out the current Z motor microstep counter. This will be later used
|
|
|
|
+ // for reaching the zero full step before powering off.
|
|
|
|
+ eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
|
|
|
|
+ // Store the current position.
|
|
|
|
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
|
|
|
|
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
|
|
|
|
+ eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
|
|
|
|
+ // Store the current feed rate, temperatures and fan speed.
|
|
|
|
+ EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
|
|
|
|
+ // Finaly store the "power outage" flag.
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
|
|
|
|
+
|
|
|
|
+ st_synchronize();
|
|
|
|
+ SERIAL_ECHOPGM("stps");
|
|
|
|
+ MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
|
|
|
|
+#if 0
|
|
|
|
+ // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
|
|
|
|
+ current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
|
|
|
|
+ plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+#endif
|
|
|
|
+ disable_z();
|
|
|
|
+
|
|
|
|
+ // Increment power failure counter
|
|
|
|
+ uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
|
|
|
|
+ power_count++;
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOLNPGM("UVLO - end");
|
|
|
|
+ cli();
|
|
|
|
+ while(1);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void setup_fan_interrupt() {
|
|
|
|
+//INT7
|
|
|
|
+ DDRE &= ~(1 << 7); //input pin
|
|
|
|
+ PORTE &= ~(1 << 7); //no internal pull-up
|
|
|
|
+
|
|
|
|
+ //start with sensing rising edge
|
|
|
|
+ EICRB &= ~(1 << 6);
|
|
|
|
+ EICRB |= (1 << 7);
|
|
|
|
+
|
|
|
|
+ //enable INT7 interrupt
|
|
|
|
+ EIMSK |= (1 << 7);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+ISR(INT7_vect) {
|
|
|
|
+ //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
|
|
|
|
+
|
|
|
|
+ if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
|
|
|
|
+ if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
|
|
|
|
+ t_fan_rising_edge = millis();
|
|
|
|
+ }
|
|
|
|
+ else { //interrupt was triggered by falling edge
|
|
|
|
+ if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
|
|
|
|
+ fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ EICRB ^= (1 << 6); //change edge
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void setup_uvlo_interrupt() {
|
|
|
|
+ DDRE &= ~(1 << 4); //input pin
|
|
|
|
+ PORTE &= ~(1 << 4); //no internal pull-up
|
|
|
|
+
|
|
|
|
+ //sensing falling edge
|
|
|
|
+ EICRB |= (1 << 0);
|
|
|
|
+ EICRB &= ~(1 << 1);
|
|
|
|
+
|
|
|
|
+ //enable INT4 interrupt
|
|
|
|
+ EIMSK |= (1 << 4);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+ISR(INT4_vect) {
|
|
|
|
+ EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
|
|
|
|
+ SERIAL_ECHOLNPGM("INT4");
|
|
|
|
+ if (IS_SD_PRINTING) uvlo_();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void recover_print(uint8_t automatic) {
|
|
|
|
+ char cmd[30];
|
|
|
|
+ lcd_update_enable(true);
|
|
|
|
+ lcd_update(2);
|
|
|
|
+ lcd_setstatuspgm(MSG_RECOVERING_PRINT);
|
|
|
|
+
|
|
|
|
+ recover_machine_state_after_power_panic();
|
|
|
|
+
|
|
|
|
+ // Set the target bed and nozzle temperatures.
|
|
|
|
+ sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+
|
|
|
|
+ // Lift the print head, so one may remove the excess priming material.
|
|
|
|
+ if (current_position[Z_AXIS] < 25)
|
|
|
|
+ enquecommand_P(PSTR("G1 Z25 F800"));
|
|
|
|
+ // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
|
|
|
|
+ enquecommand_P(PSTR("G28 X Y"));
|
|
|
|
+ // Set the target bed and nozzle temperatures and wait.
|
|
|
|
+ sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ enquecommand_P(PSTR("M83")); //E axis relative mode
|
|
|
|
+ //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
|
|
+ // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
|
|
|
|
+ if(automatic == 0){
|
|
|
|
+ enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
|
|
|
|
+ }
|
|
|
|
+ enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
|
|
|
|
+ // Mark the power panic status as inactive.
|
|
|
|
+ eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
|
|
|
|
+ /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
|
|
|
|
+ delay_keep_alive(1000);
|
|
|
|
+ }*/
|
|
|
|
+ SERIAL_ECHOPGM("After waiting for temp:");
|
|
|
|
+ SERIAL_ECHOPGM("Current position X_AXIS:");
|
|
|
|
+ MYSERIAL.println(current_position[X_AXIS]);
|
|
|
|
+ SERIAL_ECHOPGM("Current position Y_AXIS:");
|
|
|
|
+ MYSERIAL.println(current_position[Y_AXIS]);
|
|
|
|
+
|
|
|
|
+ // Restart the print.
|
|
|
|
+ restore_print_from_eeprom();
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOPGM("current_position[Z_AXIS]:");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS]);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void recover_machine_state_after_power_panic()
|
|
|
|
+{
|
|
|
|
+ // 1) Recover the logical cordinates at the time of the power panic.
|
|
|
|
+ // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
|
|
|
|
+ current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
|
|
|
|
+ current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
|
|
|
|
+ // Recover the logical coordinate of the Z axis at the time of the power panic.
|
|
|
|
+ // The current position after power panic is moved to the next closest 0th full step.
|
|
|
|
+ current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
|
|
|
|
+ UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
+ memcpy(destination, current_position, sizeof(destination));
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
|
+ print_world_coordinates();
|
|
|
|
+
|
|
|
|
+ // 2) Initialize the logical to physical coordinate system transformation.
|
|
|
|
+ world2machine_initialize();
|
|
|
|
+
|
|
|
|
+ // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
|
|
|
|
+ mbl.active = false;
|
|
|
|
+ for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
|
|
|
|
+ uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
|
|
|
|
+ uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
|
|
|
|
+ // Scale the z value to 10u resolution.
|
|
|
|
+ int16_t v;
|
|
|
|
+ eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
|
|
|
|
+ if (v != 0)
|
|
|
|
+ mbl.active = true;
|
|
|
|
+ mbl.z_values[iy][ix] = float(v) * 0.001f;
|
|
|
|
+ }
|
|
|
|
+ if (mbl.active)
|
|
|
|
+ mbl.upsample_3x3();
|
|
|
|
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
|
+ print_mesh_bed_leveling_table();
|
|
|
|
+
|
|
|
|
+ // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
|
|
|
|
+ // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
|
|
|
|
+ babystep_load();
|
|
|
|
+
|
|
|
|
+ // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
|
|
|
|
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
+
|
|
|
|
+ // 6) Power up the motors, mark their positions as known.
|
|
|
|
+ //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
|
|
|
|
+ axis_known_position[X_AXIS] = true; enable_x();
|
|
|
|
+ axis_known_position[Y_AXIS] = true; enable_y();
|
|
|
|
+ axis_known_position[Z_AXIS] = true; enable_z();
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
|
|
|
|
+ print_physical_coordinates();
|
|
|
|
+
|
|
|
|
+ // 7) Recover the target temperatures.
|
|
|
|
+ target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
|
|
|
|
+ target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void restore_print_from_eeprom() {
|
|
|
|
+ float x_rec, y_rec, z_pos;
|
|
|
|
+ int feedrate_rec;
|
|
|
|
+ uint8_t fan_speed_rec;
|
|
|
|
+ char cmd[30];
|
|
|
|
+ char* c;
|
|
|
|
+ char filename[13];
|
|
|
|
+
|
|
|
|
+ fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
|
|
|
|
+ EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
|
|
|
|
+ SERIAL_ECHOPGM("Feedrate:");
|
|
|
|
+ MYSERIAL.println(feedrate_rec);
|
|
|
|
+ for (int i = 0; i < 8; i++) {
|
|
|
|
+ filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ filename[8] = '\0';
|
|
|
|
+
|
|
|
|
+ MYSERIAL.print(filename);
|
|
|
|
+ strcat_P(filename, PSTR(".gco"));
|
|
|
|
+ sprintf_P(cmd, PSTR("M23 %s"), filename);
|
|
|
|
+ for (c = &cmd[4]; *c; c++)
|
|
|
|
+ *c = tolower(*c);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
|
|
|
|
+ SERIAL_ECHOPGM("Position read from eeprom:");
|
|
|
|
+ MYSERIAL.println(position);
|
|
|
|
+
|
|
|
|
+ // E axis relative mode.
|
|
|
|
+ enquecommand_P(PSTR("M83"));
|
|
|
|
+ // Move to the XY print position in logical coordinates, where the print has been killed.
|
|
|
|
+ strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
|
|
|
|
+ strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
|
|
|
|
+ strcat_P(cmd, PSTR(" F2000"));
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ // Move the Z axis down to the print, in logical coordinates.
|
|
|
|
+ strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ // Unretract.
|
|
|
|
+ enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
|
|
|
|
+ // Set the feedrate saved at the power panic.
|
|
|
|
+ sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ // Set the fan speed saved at the power panic.
|
|
|
|
+ strcpy_P(cmd, PSTR("M106 S"));
|
|
|
|
+ strcat(cmd, itostr3(int(fan_speed_rec)));
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+
|
|
|
|
+ // Set a position in the file.
|
|
|
|
+ sprintf_P(cmd, PSTR("M26 S%lu"), position);
|
|
|
|
+ enquecommand(cmd);
|
|
|
|
+ // Start SD print.
|
|
|
|
+ enquecommand_P(PSTR("M24"));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+////////////////////////////////////////////////////////////////////////////////
|
|
|
|
+// new save/restore printing
|
|
|
|
+
|
|
|
|
+//extern uint32_t sdpos_atomic;
|
|
|
|
+
|
|
|
|
+bool saved_printing = false;
|
|
|
|
+uint32_t saved_sdpos = 0;
|
|
|
|
+float saved_pos[4] = {0, 0, 0, 0};
|
|
|
|
+// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
|
|
|
|
+float saved_feedrate2 = 0;
|
|
|
|
+uint8_t saved_active_extruder = 0;
|
|
|
|
+bool saved_extruder_under_pressure = false;
|
|
|
|
+
|
|
|
|
+void stop_and_save_print_to_ram(float z_move, float e_move)
|
|
|
|
+{
|
|
|
|
+ if (saved_printing) return;
|
|
|
|
+ cli();
|
|
|
|
+ unsigned char nplanner_blocks = number_of_blocks();
|
|
|
|
+ saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
|
|
|
|
+ uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
|
|
|
|
+ saved_sdpos -= sdlen_planner;
|
|
|
|
+ uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
|
|
|
|
+ saved_sdpos -= sdlen_cmdqueue;
|
|
|
|
+
|
|
|
|
+#if 0
|
|
|
|
+ SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
|
|
|
|
+ SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
|
|
|
|
+ SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
|
|
|
|
+ SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
|
|
|
|
+ SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
|
|
|
|
+ SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
|
|
|
|
+ SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
|
|
|
|
+
|
|
|
|
+ {
|
|
|
|
+ card.setIndex(saved_sdpos);
|
|
|
|
+ SERIAL_ECHOLNPGM("Content of planner buffer: ");
|
|
|
|
+ for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
|
|
|
|
+ MYSERIAL.print(char(card.get()));
|
|
|
|
+ SERIAL_ECHOLNPGM("Content of command buffer: ");
|
|
|
|
+ for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
|
|
|
|
+ MYSERIAL.print(char(card.get()));
|
|
|
|
+ SERIAL_ECHOLNPGM("End of command buffer");
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ {
|
|
|
|
+ // Print the content of the planner buffer, line by line:
|
|
|
|
+ card.setIndex(saved_sdpos);
|
|
|
|
+ int8_t iline = 0;
|
|
|
|
+ for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
|
|
|
|
+ SERIAL_ECHOPGM("Planner line (from file): ");
|
|
|
|
+ MYSERIAL.print(int(iline), DEC);
|
|
|
|
+ SERIAL_ECHOPGM(", length: ");
|
|
|
|
+ MYSERIAL.print(block_buffer[idx].sdlen, DEC);
|
|
|
|
+ SERIAL_ECHOPGM(", steps: (");
|
|
|
|
+ MYSERIAL.print(block_buffer[idx].steps_x, DEC);
|
|
|
|
+ SERIAL_ECHOPGM(",");
|
|
|
|
+ MYSERIAL.print(block_buffer[idx].steps_y, DEC);
|
|
|
|
+ SERIAL_ECHOPGM(",");
|
|
|
|
+ MYSERIAL.print(block_buffer[idx].steps_z, DEC);
|
|
|
|
+ SERIAL_ECHOPGM(",");
|
|
|
|
+ MYSERIAL.print(block_buffer[idx].steps_e, DEC);
|
|
|
|
+ SERIAL_ECHOPGM("), events: ");
|
|
|
|
+ MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
|
|
|
|
+ for (int len = block_buffer[idx].sdlen; len > 0; -- len)
|
|
|
|
+ MYSERIAL.print(char(card.get()));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ {
|
|
|
|
+ // Print the content of the command buffer, line by line:
|
|
|
|
+ int8_t iline = 0;
|
|
|
|
+ union {
|
|
|
|
+ struct {
|
|
|
|
+ char lo;
|
|
|
|
+ char hi;
|
|
|
|
+ } lohi;
|
|
|
|
+ uint16_t value;
|
|
|
|
+ } sdlen_single;
|
|
|
|
+ int _bufindr = bufindr;
|
|
|
|
+ for (int _buflen = buflen; _buflen > 0; ++ iline) {
|
|
|
|
+ if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
|
|
|
|
+ sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
|
|
|
|
+ sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOPGM("Buffer line (from buffer): ");
|
|
|
|
+ MYSERIAL.print(int(iline), DEC);
|
|
|
|
+ SERIAL_ECHOPGM(", type: ");
|
|
|
|
+ MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
|
|
|
|
+ SERIAL_ECHOPGM(", len: ");
|
|
|
|
+ MYSERIAL.println(sdlen_single.value, DEC);
|
|
|
|
+ // Print the content of the buffer line.
|
|
|
|
+ MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
|
|
|
|
+
|
|
|
|
+ SERIAL_ECHOPGM("Buffer line (from file): ");
|
|
|
|
+ MYSERIAL.print(int(iline), DEC);
|
|
|
|
+ MYSERIAL.println(int(iline), DEC);
|
|
|
|
+ for (; sdlen_single.value > 0; -- sdlen_single.value)
|
|
|
|
+ MYSERIAL.print(char(card.get()));
|
|
|
|
+
|
|
|
|
+ if (-- _buflen == 0)
|
|
|
|
+ break;
|
|
|
|
+ // First skip the current command ID and iterate up to the end of the string.
|
|
|
|
+ for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
|
|
|
|
+ // Second, skip the end of string null character and iterate until a nonzero command ID is found.
|
|
|
|
+ for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
|
|
|
|
+ // If the end of the buffer was empty,
|
|
|
|
+ if (_bufindr == sizeof(cmdbuffer)) {
|
|
|
|
+ // skip to the start and find the nonzero command.
|
|
|
|
+ for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#if 0
|
|
|
|
+ saved_feedrate2 = feedrate; //save feedrate
|
|
|
|
+#else
|
|
|
|
+ // Try to deduce the feedrate from the first block of the planner.
|
|
|
|
+ // Speed is in mm/min.
|
|
|
|
+ saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ planner_abort_hard(); //abort printing
|
|
|
|
+ memcpy(saved_pos, current_position, sizeof(saved_pos));
|
|
|
|
+ saved_active_extruder = active_extruder; //save active_extruder
|
|
|
|
+
|
|
|
|
+ saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
|
|
|
|
+
|
|
|
|
+ cmdqueue_reset(); //empty cmdqueue
|
|
|
|
+ card.sdprinting = false;
|
|
|
|
+// card.closefile();
|
|
|
|
+ saved_printing = true;
|
|
|
|
+ sei();
|
|
|
|
+ if ((z_move != 0) || (e_move != 0)) { // extruder or z move
|
|
|
|
+#if 1
|
|
|
|
+ // Rather than calling plan_buffer_line directly, push the move into the command queue,
|
|
|
|
+ char buf[48];
|
|
|
|
+ strcpy_P(buf, PSTR("G1 Z"));
|
|
|
|
+ dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
|
|
|
|
+ strcat_P(buf, PSTR(" E"));
|
|
|
|
+ // Relative extrusion
|
|
|
|
+ dtostrf(e_move, 6, 3, buf + strlen(buf));
|
|
|
|
+ strcat_P(buf, PSTR(" F"));
|
|
|
|
+ dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
|
|
|
|
+ // At this point the command queue is empty.
|
|
|
|
+ enquecommand(buf, false);
|
|
|
|
+ // If this call is invoked from the main Arduino loop() function, let the caller know that the command
|
|
|
|
+ // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
|
|
|
|
+ repeatcommand_front();
|
|
|
|
+#else
|
|
|
|
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
|
|
|
|
+ st_synchronize(); //wait moving
|
|
|
|
+ memcpy(current_position, saved_pos, sizeof(saved_pos));
|
|
|
|
+ memcpy(destination, current_position, sizeof(destination));
|
|
|
|
+#endif
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void restore_print_from_ram_and_continue(float e_move)
|
|
|
|
+{
|
|
|
|
+ if (!saved_printing) return;
|
|
|
|
+// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
|
|
|
|
+// current_position[axis] = st_get_position_mm(axis);
|
|
|
|
+ active_extruder = saved_active_extruder; //restore active_extruder
|
|
|
|
+ feedrate = saved_feedrate2; //restore feedrate
|
|
|
|
+ float e = saved_pos[E_AXIS] - e_move;
|
|
|
|
+ plan_set_e_position(e);
|
|
|
|
+ plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
|
|
|
|
+ st_synchronize();
|
|
|
|
+ memcpy(current_position, saved_pos, sizeof(saved_pos));
|
|
|
|
+ memcpy(destination, current_position, sizeof(destination));
|
|
|
|
+ card.setIndex(saved_sdpos);
|
|
|
|
+ sdpos_atomic = saved_sdpos;
|
|
|
|
+ card.sdprinting = true;
|
|
|
|
+ saved_printing = false;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void print_world_coordinates()
|
|
|
|
+{
|
|
|
|
+ SERIAL_ECHOPGM("world coordinates: (");
|
|
|
|
+ MYSERIAL.print(current_position[X_AXIS], 3);
|
|
|
|
+ SERIAL_ECHOPGM(", ");
|
|
|
|
+ MYSERIAL.print(current_position[Y_AXIS], 3);
|
|
|
|
+ SERIAL_ECHOPGM(", ");
|
|
|
|
+ MYSERIAL.print(current_position[Z_AXIS], 3);
|
|
|
|
+ SERIAL_ECHOLNPGM(")");
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void print_physical_coordinates()
|
|
|
|
+{
|
|
|
|
+ SERIAL_ECHOPGM("physical coordinates: (");
|
|
|
|
+ MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
|
|
|
|
+ SERIAL_ECHOPGM(", ");
|
|
|
|
+ MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
|
|
|
|
+ SERIAL_ECHOPGM(", ");
|
|
|
|
+ MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
|
|
|
|
+ SERIAL_ECHOLNPGM(")");
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void print_mesh_bed_leveling_table()
|
|
|
|
+{
|
|
|
|
+ SERIAL_ECHOPGM("mesh bed leveling: ");
|
|
|
|
+ for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
|
|
|
|
+ for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
|
|
|
|
+ MYSERIAL.print(mbl.z_values[y][x], 3);
|
|
|
|
+ SERIAL_ECHOPGM(" ");
|
|
|
|
+ }
|
|
|
|
+ SERIAL_ECHOLNPGM("");
|
|
|
|
+}
|