浏览代码

Merge pull request #1607 from PavelSindler/7x7

7x7 mbl and switching mmu modes
PavelSindler 5 年之前
父节点
当前提交
c05561d6b1

+ 1 - 0
.gitignore

@@ -50,3 +50,4 @@ Firmware/Doc
 /lang/textaddr.txt
 /build-env/
 /Firmware/Firmware.vcxproj
+/Firmware/Configuration_prusa_bckp.h

+ 2 - 0
Firmware/Configuration.h

@@ -446,7 +446,9 @@ your extruder heater takes 2 minutes to hit the target on heating.
 // When enabled Marlin will send a busy status message to the host
 // every couple of seconds when it can't accept commands.
 //
+#ifndef HEATBED_ANALYSIS
 #define HOST_KEEPALIVE_FEATURE    // Disable this if your host doesn't like keepalive messages
+#endif //HEATBED_ANALYSIS
 #define HOST_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
 
 //LCD and SD support

+ 7 - 8
Firmware/Marlin.h

@@ -21,6 +21,7 @@
 #include "Configuration.h"
 #include "pins.h"
 #include "Timer.h"
+extern int mbl_z_probe_nr;
 
 #ifndef AT90USB
 #define  HardwareSerial_h // trick to disable the standard HWserial
@@ -316,9 +317,9 @@ extern float retract_length_swap;
 extern float retract_recover_length_swap;
 #endif
 
-#ifdef HOST_KEEPALIVE_FEATURE
+
 extern uint8_t host_keepalive_interval;
-#endif
+
 
 extern unsigned long starttime;
 extern unsigned long stoptime;
@@ -402,13 +403,12 @@ extern void check_babystep();
 extern void long_pause();
 extern void crashdet_stop_and_save_print();
 
-#ifdef DIS
-
+#ifdef HEATBED_ANALYSIS
 void d_setup();
 float d_ReadData();
 void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y);
-
-#endif
+void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y);
+#endif //HEATBED_ANALYSIS
 float temp_comp_interpolation(float temperature);
 void temp_compensation_apply();
 void temp_compensation_start();
@@ -448,7 +448,7 @@ extern void restore_print_from_ram_and_continue(float e_move);
 extern uint16_t print_time_remaining();
 extern uint8_t calc_percent_done();
 
-#ifdef HOST_KEEPALIVE_FEATURE
+
 
 // States for managing Marlin and host communication
 // Marlin sends messages if blocked or busy
@@ -471,7 +471,6 @@ extern void host_keepalive();
 //extern MarlinBusyState busy_state;
 extern int busy_state;
 
-#endif //HOST_KEEPALIVE_FEATURE
 
 #ifdef TMC2130
 

+ 353 - 74
Firmware/Marlin_main.cpp

@@ -167,6 +167,7 @@ CardReader card;
 unsigned long PingTime = _millis();
 unsigned long NcTime;
 
+int mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
 
 //used for PINDA temp calibration and pause print
 #define DEFAULT_RETRACTION    1
@@ -302,16 +303,9 @@ int fanSpeed=0;
 
 bool cancel_heatup = false ;
 
-#ifdef HOST_KEEPALIVE_FEATURE
-  
-  int busy_state = NOT_BUSY;
-  static long prev_busy_signal_ms = -1;
-  uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
-#else
-  #define host_keepalive();
-  #define KEEPALIVE_STATE(n);
-#endif
-
+int busy_state = NOT_BUSY;
+static long prev_busy_signal_ms = -1;
+uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
 
 const char errormagic[] PROGMEM = "Error:";
 const char echomagic[] PROGMEM = "echo:";
@@ -1472,7 +1466,13 @@ void setup()
 	if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
 		eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
 	}
-
+	//mbl_mode_init();
+	mbl_settings_init();
+	SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
+	if (SilentModeMenu_MMU == 255) {
+		SilentModeMenu_MMU = 1;
+		eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
+	}
 	check_babystep(); //checking if Z babystep is in allowed range
 
 #ifdef UVLO_SUPPORT
@@ -1697,12 +1697,14 @@ void serial_read_stream() {
     }
 }
 
-#ifdef HOST_KEEPALIVE_FEATURE
 /**
 * Output a "busy" message at regular intervals
 * while the machine is not accepting commands.
 */
 void host_keepalive() {
+#ifndef HOST_KEEPALIVE_FEATURE
+  return;
+#endif //HOST_KEEPALIVE_FEATURE
   if (farm_mode) return;
   long ms = _millis();
   if (host_keepalive_interval && busy_state != NOT_BUSY) {
@@ -1727,7 +1729,7 @@ void host_keepalive() {
   }
   prev_busy_signal_ms = ms;
 }
-#endif
+
 
 // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
 // Before loop(), the setup() function is called by the main() routine.
@@ -4315,44 +4317,7 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 	}
 	break;
 
-#ifdef DIS
-	case 77:
-	{
-		//! G77 X200 Y150 XP100 YP15 XO10 Y015
-		//! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
-		//! G77 X232 Y218 XP116 YP109 XO-11 YO0
-
-		float dimension_x = 40;
-		float dimension_y = 40;
-		int points_x = 40;
-		int points_y = 40;
-		float offset_x = 74;
-		float offset_y = 33;
-
-		if (code_seen('X')) dimension_x = code_value();
-		if (code_seen('Y')) dimension_y = code_value();
-		if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
-		if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
-		if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
-		if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
-		
-		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
-		
-	} break;
-	
-#endif
 
-	case 79: {
-		for (int i = 255; i > 0; i = i - 5) {
-			fanSpeed = i;
-			//delay_keep_alive(2000);
-			for (int j = 0; j < 100; j++) {
-				delay_keep_alive(100);
-
-			}
-			printf_P(_N("%d: %d\n"), i, fan_speed[1]);
-		}
-	}break;
 
 	/**
 	* G80: Mesh-based Z probe, probes a grid and produces a
@@ -4368,6 +4333,7 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 	*/
 
 	case 80:
+
 #ifdef MK1BP
 		break;
 #endif //MK1BP
@@ -4406,14 +4372,21 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 				nMeasPoints = 3;
 			}
 		}
+		else {
+			nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
+		}
 
 		uint8_t nProbeRetry = 3;
 		if (code_seen('R')) {
 			nProbeRetry = code_value_uint8();
 			if (nProbeRetry > 10) {
-				nProbeRetry = 3;
+				nProbeRetry = 10;
 			}
 		}
+		else {
+			nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
+		}
+		bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
 		
 		bool temp_comp_start = true;
 #ifdef PINDA_THERMISTOR
@@ -4474,7 +4447,7 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 
 		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
 		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
-		bool has_z = (nMeasPoints == 3) && is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
 		#ifdef SUPPORT_VERBOSITY
 		if (verbosity_level >= 1) {
 			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
@@ -4486,27 +4459,37 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 			// Get coords of a measuring point.
 			uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
 			uint8_t iy = mesh_point / nMeasPoints;
+			/*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
+				printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
+				custom_message_state--;
+				mesh_point++;
+				continue; //skip
+			}*/
 			if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
+			if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
+			{
+				has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid(); 
+			}
 			float z0 = 0.f;
 			if (has_z && (mesh_point > 0)) {
-				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+				uint16_t z_offset_u = 0;
+				if (nMeasPoints == 7) {
+					z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
+				}
+				else {
+					z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+				}
 				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
-				//#if 0
 				#ifdef SUPPORT_VERBOSITY
 				if (verbosity_level >= 1) {
-					SERIAL_ECHOLNPGM("");
-					SERIAL_ECHOPGM("Bed leveling, point: ");
-					MYSERIAL.print(mesh_point);
-					SERIAL_ECHOPGM(", calibration z: ");
-					MYSERIAL.print(z0, 5);
-					SERIAL_ECHOLNPGM("");
+					printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
 				}
 				#endif // SUPPORT_VERBOSITY
-				//#endif
 			}
 
 			// Move Z up to MESH_HOME_Z_SEARCH.
-			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
 			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
 			st_synchronize();
 
@@ -4514,7 +4497,7 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 			current_position[X_AXIS] = BED_X(ix, nMeasPoints);
 			current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
 
-
+			//printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
 
 			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
 			#ifdef SUPPORT_VERBOSITY
@@ -4531,15 +4514,26 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 			// Go down until endstop is hit
 			const float Z_CALIBRATION_THRESHOLD = 1.f;
 			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
-				kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
+				printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
 				break;
 			}
-			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
-				kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
-				break;
+			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
+
+				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+				st_synchronize();
+
+				if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+					printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
+					break;
+				}
+				if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
+					printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.\n"));
+					break;
+				}
 			}
 			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
-				kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
+				printf_P(PSTR("Bed leveling failed. Sensor triggered too high. Waiting for reset.\n"));
 				break;
 			}
 			#ifdef SUPPORT_VERBOSITY
@@ -4693,8 +4687,43 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 		}
 //		SERIAL_ECHOLNPGM("Bed leveling correction finished");
 		if (nMeasPoints == 3) {
-			mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+			mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+		}
+/*
+		        SERIAL_PROTOCOLPGM("Num X,Y: ");
+                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+                SERIAL_PROTOCOLPGM(",");
+                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+                SERIAL_PROTOCOLPGM("\nZ search height: ");
+                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+                        SERIAL_PROTOCOLPGM("  ");
+                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+                    }
+                    SERIAL_PROTOCOLPGM("\n");
+                }
+*/
+		if (nMeasPoints == 7 && magnet_elimination) {
+			mbl_interpolation(nMeasPoints);
 		}
+/*
+		        SERIAL_PROTOCOLPGM("Num X,Y: ");
+                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+                SERIAL_PROTOCOLPGM(",");
+                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+                SERIAL_PROTOCOLPGM("\nZ search height: ");
+                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+                        SERIAL_PROTOCOLPGM("  ");
+                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+                    }
+                    SERIAL_PROTOCOLPGM("\n");
+                }
+*/
 //		SERIAL_ECHOLNPGM("Upsample finished");
 		mbl.active = 1; //activate mesh bed leveling
 //		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
@@ -5812,7 +5841,6 @@ Sigma_Exit:
       if (code_seen('N'))
 	    gcode_LastN = code_value_long();
     break;
-#ifdef HOST_KEEPALIVE_FEATURE
 	case 113: // M113 - Get or set Host Keepalive interval
 		if (code_seen('S')) {
 			host_keepalive_interval = (uint8_t)code_value_short();
@@ -5824,7 +5852,6 @@ Sigma_Exit:
 			SERIAL_PROTOCOLLN("");
 		}
 		break;
-#endif
     case 115: // M115
       if (code_seen('V')) {
           // Report the Prusa version number.
@@ -7158,7 +7185,66 @@ if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
 		dcode_9(); break;
 	case 10: //! D10 - XYZ calibration = OK
 		dcode_10(); break;
-    
+#endif //DEBUG_DCODES
+#ifdef HEATBED_ANALYSIS
+	case 80:
+	{
+		float dimension_x = 40;
+		float dimension_y = 40;
+		int points_x = 40;
+		int points_y = 40;
+		float offset_x = 74;
+		float offset_y = 33;
+
+		if (code_seen('E')) dimension_x = code_value();
+		if (code_seen('F')) dimension_y = code_value();
+		if (code_seen('G')) {points_x = code_value(); }
+		if (code_seen('H')) {points_y = code_value(); }
+		if (code_seen('I')) {offset_x = code_value(); }
+		if (code_seen('J')) {offset_y = code_value(); }
+		printf_P(PSTR("DIM X: %f\n"), dimension_x);
+		printf_P(PSTR("DIM Y: %f\n"), dimension_y);
+		printf_P(PSTR("POINTS X: %d\n"), points_x);
+		printf_P(PSTR("POINTS Y: %d\n"), points_y);
+		printf_P(PSTR("OFFSET X: %f\n"), offset_x);
+		printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
+ 		bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+	}break;
+
+	case 81:
+	{
+		float dimension_x = 40;
+		float dimension_y = 40;
+		int points_x = 40;
+		int points_y = 40;
+		float offset_x = 74;
+		float offset_y = 33;
+
+		if (code_seen('E')) dimension_x = code_value();
+		if (code_seen('F')) dimension_y = code_value();
+		if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
+		if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
+		if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
+		if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
+		
+		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+		
+	} break;
+	
+#endif //HEATBED_ANALYSIS
+#ifdef DEBUG_DCODES
+	case 106: //D106 print measured fan speed for different pwm values
+	{
+		for (int i = 255; i > 0; i = i - 5) {
+			fanSpeed = i;
+			//delay_keep_alive(2000);
+			for (int j = 0; j < 100; j++) {
+				delay_keep_alive(100);
+
+			}
+			printf_P(_N("%d: %d\n"), i, fan_speed[1]);
+		}
+	}break;
 
 #ifdef TMC2130
 	case 2130: //! D2130 - TMC2130
@@ -7961,7 +8047,7 @@ void check_babystep()
 		lcd_update_enable(true);		
 	}	
 }
-#ifdef DIS
+#ifdef HEATBED_ANALYSIS
 void d_setup()
 {	
 	pinMode(D_DATACLOCK, INPUT_PULLUP);
@@ -8011,6 +8097,199 @@ float d_ReadData()
 
 }
 
+void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
+	int t1 = 0;
+	int t_delay = 0;
+	int digit[13];
+	int m;
+	char str[3];
+	//String mergeOutput;
+	char mergeOutput[15];
+	float output;
+
+	int mesh_point = 0; //index number of calibration point
+	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
+	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
+
+	float mesh_home_z_search = 4;
+	float measure_z_heigth = 0.2f;
+	float row[x_points_num];
+	int ix = 0;
+	int iy = 0;
+
+	const char* filename_wldsd = "mesh.txt";
+	char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null 
+	char numb_wldsd[8]; // (" -A.BCD" + null)
+#ifdef MICROMETER_LOGGING
+	d_setup();
+#endif //MICROMETER_LOGGING
+
+	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+
+	unsigned int custom_message_type_old = custom_message_type;
+	unsigned int custom_message_state_old = custom_message_state;
+	custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
+	custom_message_state = (x_points_num * y_points_num) + 10;
+	lcd_update(1);
+
+	//mbl.reset();
+	babystep_undo();
+
+	card.openFile(filename_wldsd, false);
+
+	/*destination[Z_AXIS] = mesh_home_z_search;
+	//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+
+	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+	for(int8_t i=0; i < NUM_AXIS; i++) {
+		current_position[i] = destination[i];
+	}
+	st_synchronize();
+	*/
+		destination[Z_AXIS] = measure_z_heigth;
+		plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		for(int8_t i=0; i < NUM_AXIS; i++) {
+			current_position[i] = destination[i];
+		}
+		st_synchronize();
+	/*int l_feedmultiply = */setup_for_endstop_move(false);
+
+	SERIAL_PROTOCOLPGM("Num X,Y: ");
+	SERIAL_PROTOCOL(x_points_num);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_points_num);
+	SERIAL_PROTOCOLPGM("\nZ search height: ");
+	SERIAL_PROTOCOL(mesh_home_z_search);
+	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
+	SERIAL_PROTOCOL(x_dimension);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_dimension);
+	SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+
+	while (mesh_point != x_points_num * y_points_num) {
+		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
+		iy = mesh_point / x_points_num;
+		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
+		float z0 = 0.f;
+		/*destination[Z_AXIS] = mesh_home_z_search;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+
+		plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		for(int8_t i=0; i < NUM_AXIS; i++) {
+			current_position[i] = destination[i];
+		}
+		st_synchronize();*/
+
+
+		//current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
+		//current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
+
+		destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
+		destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
+
+		mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
+		for(int8_t i=0; i < NUM_AXIS; i++) {
+			current_position[i] = destination[i];
+		}
+		st_synchronize();
+
+	//	printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
+
+		delay_keep_alive(1000);
+#ifdef MICROMETER_LOGGING
+
+		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
+		//strcat(data_wldsd, numb_wldsd);
+
+
+		
+		//MYSERIAL.println(data_wldsd);
+		//delay(1000);
+		//delay(3000);
+		//t1 = millis();
+		
+		//while (digitalRead(D_DATACLOCK) == LOW) {}
+		//while (digitalRead(D_DATACLOCK) == HIGH) {}
+		memset(digit, 0, sizeof(digit));
+		//cli();
+		digitalWrite(D_REQUIRE, LOW);	
+		
+		for (int i = 0; i<13; i++)
+		{
+			//t1 = millis();
+			for (int j = 0; j < 4; j++)
+			{
+				while (digitalRead(D_DATACLOCK) == LOW) {}				
+				while (digitalRead(D_DATACLOCK) == HIGH) {}
+				//printf_P(PSTR("Done %d\n"), j);
+				bitWrite(digit[i], j, digitalRead(D_DATA));
+			}
+			//t_delay = (millis() - t1);
+			//SERIAL_PROTOCOLPGM(" ");
+			//SERIAL_PROTOCOL_F(t_delay, 5);
+			//SERIAL_PROTOCOLPGM(" ");
+
+		}
+		//sei();
+		digitalWrite(D_REQUIRE, HIGH);
+		mergeOutput[0] = '\0';
+		output = 0;
+		for (int r = 5; r <= 10; r++) //Merge digits
+		{			
+			sprintf(str, "%d", digit[r]);
+			strcat(mergeOutput, str);
+		}
+		
+		output = atof(mergeOutput);
+
+		if (digit[4] == 8) //Handle sign
+		{
+			output *= -1;
+		}
+
+		for (int i = digit[11]; i > 0; i--) //Handle floating point
+		{
+			output *= 0.1;
+		}
+		
+
+		//output = d_ReadData();
+
+		//row[ix] = current_position[Z_AXIS];
+
+
+		
+		//row[ix] = d_ReadData();
+		
+		row[ix] = output;
+
+		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
+			memset(data_wldsd, 0, sizeof(data_wldsd));
+			for (int i = 0; i < x_points_num; i++) {
+				SERIAL_PROTOCOLPGM(" ");
+				SERIAL_PROTOCOL_F(row[i], 5);
+				memset(numb_wldsd, 0, sizeof(numb_wldsd));
+				dtostrf(row[i], 7, 3, numb_wldsd);
+				strcat(data_wldsd, numb_wldsd);
+			}
+			card.write_command(data_wldsd);
+			SERIAL_PROTOCOLPGM("\n");
+
+		}
+
+		custom_message_state--;
+		mesh_point++;
+		lcd_update(1);
+
+	}
+	#endif //MICROMETER_LOGGING
+	card.closefile();
+	//clean_up_after_endstop_move(l_feedmultiply);
+
+}
+
 void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
 	int t1 = 0;
 	int t_delay = 0;
@@ -8194,7 +8473,7 @@ void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_
 	card.closefile();
 	clean_up_after_endstop_move(l_feedmultiply);
 }
-#endif
+#endif //HEATBED_ANALYSIS
 
 void temp_compensation_start() {
 	

+ 5 - 1
Firmware/eeprom.h

@@ -155,7 +155,11 @@
 #define EEPROM_MMU_LOAD_FAIL (EEPROM_MMU_LOAD_FAIL_TOT - 1) //uint8_t
 #define EEPROM_MMU_CUTTER_ENABLED (EEPROM_MMU_LOAD_FAIL - 1)
 #define EEPROM_UVLO_MESH_BED_LEVELING_FULL     (EEPROM_MMU_CUTTER_ENABLED - 12*12*2) //allow 12 calibration points for future expansion
-
+#define EEPROM_MBL_TYPE	(EEPROM_UVLO_MESH_BED_LEVELING_FULL-1) //uint8_t for mesh bed leveling precision
+#define EEPROM_MBL_MAGNET_ELIMINATION (EEPROM_MBL_TYPE -1)  
+#define EEPROM_MBL_POINTS_NR (EEPROM_MBL_MAGNET_ELIMINATION -1) //uint8_t number of points in one exis for mesh bed leveling
+#define EEPROM_MBL_PROBE_NR (EEPROM_MBL_POINTS_NR-1) //number of measurements for each point
+#define EEPROM_MMU_STEALTH (EEPROM_MBL_PROBE_NR-1)
 // !!!!!
 // !!!!! this is end of EEPROM section ... all updates MUST BE inserted before this mark !!!!!
 // !!!!!

+ 109 - 7
Firmware/mesh_bed_calibration.cpp

@@ -936,6 +936,7 @@ static inline void update_current_position_z()
 }
 
 // At the current position, find the Z stop.
+
 inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int
 #ifdef SUPPORT_VERBOSITY
     verbosity_level
@@ -966,15 +967,29 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
 #endif //TMC2130
     for (uint8_t i = 0; i < n_iter; ++ i)
 	{
-        // Move up the retract distance.
-        current_position[Z_AXIS] += .5f;
-        go_to_current(homing_feedrate[Z_AXIS]/60);
-        // Move back down slowly to find bed.
+		
+		current_position[Z_AXIS] += 0.2;
+		float z_bckp = current_position[Z_AXIS];
+		go_to_current(homing_feedrate[Z_AXIS]/60);
+		// Move back down slowly to find bed.
         current_position[Z_AXIS] = minimum_z;
         go_to_current(homing_feedrate[Z_AXIS]/(4*60));
         // we have to let the planner know where we are right now as it is not where we said to go.
         update_current_position_z();
-        if (! endstop_z_hit_on_purpose())
+		//printf_P(PSTR("Zs: %f, Z: %f, delta Z: %f"), z_bckp, current_position[Z_AXIS], (z_bckp - current_position[Z_AXIS]));
+		if (abs(current_position[Z_AXIS] - z_bckp) < 0.025) {
+			//printf_P(PSTR("PINDA triggered immediately, move Z higher and repeat measurement\n")); 
+			current_position[Z_AXIS] += 0.5;
+			go_to_current(homing_feedrate[Z_AXIS]/60);
+			current_position[Z_AXIS] = minimum_z;
+            go_to_current(homing_feedrate[Z_AXIS]/(4*60));
+            // we have to let the planner know where we are right now as it is not where we said to go.
+			update_current_position_z();
+		}
+
+
+
+		if (! endstop_z_hit_on_purpose())
             goto error;
 #ifdef TMC2130
 		if (READ(Z_TMC2130_DIAG) != 0) goto error; //crash Z detected
@@ -984,7 +999,7 @@ inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, i
 //        SERIAL_ECHOLNPGM("");
 		float dz = i?abs(current_position[Z_AXIS] - (z / i)):0;
         z += current_position[Z_AXIS];
-//		printf_P(PSTR(" Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
+		//printf_P(PSTR("Z[%d] = %d, dz=%d\n"), i, (int)(current_position[Z_AXIS] * 1000), (int)(dz * 1000));
 		if (dz > 0.05) goto error;//deviation > 50um
     }
     current_position[Z_AXIS] = z;
@@ -2747,7 +2762,7 @@ void go_home_with_z_lift()
     current_position[Y_AXIS] = Y_MIN_POS+0.2;
     // Clamp to the physical coordinates.
     world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-    go_to_current(homing_feedrate[X_AXIS]/60);
+	go_to_current(homing_feedrate[X_AXIS]/20);
     // Third move up to a safe height.
     current_position[Z_AXIS] = Z_MIN_POS;
     go_to_current(homing_feedrate[Z_AXIS]/60);    
@@ -3047,4 +3062,91 @@ void count_xyz_details(float (&distanceMin)[2]) {
 		distanceMin[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
 	}
 }
+/*
+e_MBL_TYPE e_mbl_type = e_MBL_OPTIMAL;
+
+void mbl_mode_set() {
+	switch (e_mbl_type) {
+		case e_MBL_OPTIMAL: e_mbl_type = e_MBL_PREC; break;
+		case e_MBL_PREC: e_mbl_type = e_MBL_FAST; break;
+		case e_MBL_FAST: e_mbl_type = e_MBL_OPTIMAL; break;
+		default: e_mbl_type = e_MBL_OPTIMAL; break;
+	}
+	eeprom_update_byte((uint8_t*)EEPROM_MBL_TYPE,(uint8_t)e_mbl_type);
+}
+
+void mbl_mode_init() {
+	uint8_t mbl_type = eeprom_read_byte((uint8_t*)EEPROM_MBL_TYPE);
+	if (mbl_type == 0xFF) e_mbl_type = e_MBL_OPTIMAL;
+	else e_mbl_type = mbl_type;
+}
+*/
 
+void mbl_settings_init() {
+//3x3 mesh; 3 Z-probes on each point, magnet elimination on
+//magnet elimination: use aaproximate Z-coordinate instead of measured values for points which are near magnets
+	if (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) == 0xFF) {
+		eeprom_update_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION, 1);
+	}
+	if (eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR) == 0xFF) {
+		eeprom_update_byte((uint8_t*)EEPROM_MBL_POINTS_NR, 3);
+	}
+	mbl_z_probe_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
+	if (mbl_z_probe_nr == 0xFF) {
+		mbl_z_probe_nr = 3;
+		eeprom_update_byte((uint8_t*)EEPROM_MBL_PROBE_NR, mbl_z_probe_nr);
+	}
+}
+
+bool mbl_point_measurement_valid(uint8_t ix, uint8_t iy, uint8_t meas_points, bool zigzag) {
+	    //"human readable" heatbed plan
+		//magnet proximity influence Z coordinate measurements significantly (40 - 100 um)
+		//0 - measurement point is above magnet and Z coordinate can be influenced negatively
+		//1 - we should be in safe distance from magnets, measurement should be accurate
+		if ((ix >= meas_points) || (iy >= meas_points)) return false;
+
+		uint8_t valid_points_mask[7] = {
+					//[X_MAX,Y_MAX]
+			0b1111111,
+			0b1111111,
+			0b1110111,
+			0b1111011,
+			0b1110111,
+			0b1111111,
+			0b1111111,
+		//[0,0]
+		};
+		if (meas_points == 3) {
+			ix *= 3;
+			iy *= 3;
+		}
+		if (zigzag) {
+			if ((iy % 2) == 0)	return (valid_points_mask[6 - iy] & (1 << (6 - ix)));
+			else return (valid_points_mask[6 - iy] & (1 << ix));
+		}
+		else {
+			return (valid_points_mask[6 - iy] & (1 << (6 - ix)));
+		}
+}
+
+void mbl_single_point_interpolation(uint8_t x, uint8_t y, uint8_t meas_points) {
+	//printf_P(PSTR("x = %d; y = %d \n"), x, y);
+		uint8_t count = 0;
+		float z = 0;
+		if (mbl_point_measurement_valid(x, y + 1, meas_points, false)) { z += mbl.z_values[y + 1][x]; /*printf_P(PSTR("x; y+1: Z = %f \n"), mbl.z_values[y + 1][x]);*/ count++; }
+		if (mbl_point_measurement_valid(x, y - 1, meas_points, false)) { z += mbl.z_values[y - 1][x]; /*printf_P(PSTR("x; y-1: Z = %f \n"), mbl.z_values[y - 1][x]);*/ count++; }
+		if (mbl_point_measurement_valid(x + 1, y, meas_points, false)) { z += mbl.z_values[y][x + 1]; /*printf_P(PSTR("x+1; y: Z = %f \n"), mbl.z_values[y][x + 1]);*/ count++; }
+		if (mbl_point_measurement_valid(x - 1, y, meas_points, false)) { z += mbl.z_values[y][x - 1]; /*printf_P(PSTR("x-1; y: Z = %f \n"), mbl.z_values[y][x - 1]);*/ count++; }
+		if(count != 0) mbl.z_values[y][x] = z / count; //if we have at least one valid point in surrounding area use average value, otherwise use inaccurately measured Z-coordinate
+		//printf_P(PSTR("result: Z = %f \n\n"), mbl.z_values[y][x]);
+}
+
+void mbl_interpolation(uint8_t meas_points) {
+	for (uint8_t x = 0; x < meas_points; x++) {
+		for (uint8_t y = 0; y < meas_points; y++) {
+			if (!mbl_point_measurement_valid(x, y, meas_points, false)) {
+				mbl_single_point_interpolation(x, y, meas_points);
+			}
+		}
+	}
+}

+ 17 - 5
Firmware/mesh_bed_calibration.h

@@ -6,10 +6,10 @@
 
 #ifdef HEATBED_V2
 
-#define BED_X0 (13.f - BED_ZERO_REF_X)
-#define BED_Y0 (10.4f - BED_ZERO_REF_Y)
-#define BED_Xn (216.f - BED_ZERO_REF_X)
-#define BED_Yn (202.4f - BED_ZERO_REF_Y)
+#define BED_X0 (2.f - BED_ZERO_REF_X) //1
+#define BED_Y0 (9.4f - BED_ZERO_REF_Y) //1
+#define BED_Xn (206.f - BED_ZERO_REF_X) //205
+#define BED_Yn (213.4f - BED_ZERO_REF_Y) //205
 
 #else
 
@@ -200,5 +200,17 @@ extern void babystep_reset();
 
 extern void count_xyz_details(float (&distanceMin)[2]);
 extern bool sample_z();
-
+/*
+typedef enum
+{
+	e_MBL_FAST, e_MBL_OPTIMAL, e_MBL_PREC
+} e_MBL_TYPE;
+*/
+//extern e_MBL_TYPE e_mbl_type;
+//extern void mbl_mode_set();
+//extern void mbl_mode_init();
+extern void mbl_settings_init();
+
+extern bool mbl_point_measurement_valid(uint8_t ix, uint8_t iy, uint8_t meas_points, bool zigzag);
+extern void mbl_interpolation(uint8_t meas_points);
 #endif /* MESH_BED_CALIBRATION_H */

+ 22 - 5
Firmware/mmu.cpp

@@ -45,6 +45,7 @@ namespace
         WaitCmd, //!< wait for command response
         Pause,
         GetDrvError, //!< get power failures count
+		SwitchMode //switch mmu between stealth and normal mode 
     };
 }
 
@@ -183,12 +184,10 @@ bool check_for_ir_sensor()
 
 static bool activate_stealth_mode()
 {
-#if defined (MMU_FORCE_STEALTH_MODE)
+#ifdef MMU_FORCE_STEALTH_MODE
 	return true;
-#elif defined (SILENT_MODE_STEALTH)
-	return (eeprom_read_byte((uint8_t*)EEPROM_SILENT) == SILENT_MODE_STEALTH);
 #else
-	return false;
+	return (eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH) == 1);
 #endif
 }
 
@@ -337,6 +336,11 @@ void mmu_loop(void)
 			mmu_last_cmd = mmu_cmd;
 			mmu_cmd = MmuCmd::None;
 		}
+		else if ((eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH) != SilentModeMenu_MMU) && mmu_ready) {
+				DEBUG_PRINTF_P(PSTR("MMU <= 'M%d'\n"), SilentModeMenu_MMU);
+				mmu_printf_P(PSTR("M%d\n"), SilentModeMenu_MMU);
+				mmu_state = S::SwitchMode;
+		}
 		else if ((mmu_last_response + 300) < _millis()) //request every 300ms
 		{
 #ifndef IR_SENSOR
@@ -452,9 +456,22 @@ void mmu_loop(void)
 			mmu_state = S::Idle;
 		}
 		else if ((mmu_last_request + MMU_CMD_TIMEOUT) < _millis())
-		{ //resend request after timeout (5 min)
+		{ //timeout 45 s
+			mmu_state = S::Idle;
+		}
+		return;
+	case S::SwitchMode:
+		if (mmu_rx_ok() > 0)
+		{
+			DEBUG_PRINTF_P(PSTR("MMU => 'ok'\n"));
+			eeprom_update_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
+			mmu_state = S::Idle;
+		}
+		else if ((mmu_last_request + MMU_CMD_TIMEOUT) < _millis())
+		{ //timeout 45 s
 			mmu_state = S::Idle;
 		}
+		return;		
 	}
 }
 

+ 6 - 0
Firmware/pins_Rambo_1_3.h

@@ -14,6 +14,12 @@
 #define SWI2C_SDA      20 //SDA on P3
 #define SWI2C_SCL      21 //SCL on P3
 
+#ifdef MICROMETER_LOGGING
+#define D_DATACLOCK		24	//Y_MAX (green)
+#define D_DATA			30	//X_MAX (blue)
+#define D_REQUIRE		23	//Z_MAX (white)
+#endif //MICROMETER_LOGGING
+
 
 
 #define X_STEP_PIN             37

+ 0 - 2
Firmware/temperature.cpp

@@ -888,9 +888,7 @@ void manage_heater()
 	  }
   #endif
   
-#ifdef HOST_KEEPALIVE_FEATURE
   host_keepalive();
-#endif
 }
 
 #define PGM_RD_W(x)   (short)pgm_read_word(&x)

+ 94 - 1
Firmware/ultralcd.cpp

@@ -47,11 +47,13 @@ char longFilenameOLD[LONG_FILENAME_LENGTH];
 
 
 static void lcd_sd_updir();
+static void lcd_mesh_bed_leveling_settings();
 
 int8_t ReInitLCD = 0;
 
 
 int8_t SilentModeMenu = SILENT_MODE_OFF;
+uint8_t SilentModeMenu_MMU = 1; //activate mmu unit stealth mode
 
 int8_t FSensorStateMenu = 1;
 
@@ -4520,6 +4522,14 @@ static void lcd_sound_state_set(void)
 Sound_CycleState();
 }
 
+#ifndef MMU_FORCE_STEALTH_MODE
+static void lcd_silent_mode_mmu_set() {
+	if (SilentModeMenu_MMU == 1) SilentModeMenu_MMU = 0;
+	else SilentModeMenu_MMU = 1;
+	//saving to eeprom is done in mmu_loop() after mmu actually switches state and confirms with "ok"
+}
+#endif //MMU_FORCE_STEALTH_MODE
+
 static void lcd_silent_mode_set() {
 	switch (SilentModeMenu) {
 #ifdef TMC2130
@@ -5303,6 +5313,21 @@ do\
 while (0)
 #endif //TMC2130
 
+#ifndef MMU_FORCE_STEALTH_MODE
+#define SETTINGS_MMU_MODE \
+do\
+{\
+	if (mmu_enabled)\
+	{\
+		if (SilentModeMenu_MMU == 0) MENU_ITEM_FUNCTION_P(_i("MMU Mode   [Fast]"), lcd_silent_mode_mmu_set); \
+		else MENU_ITEM_FUNCTION_P(_i("MMU Mode[Stealth]"), lcd_silent_mode_mmu_set); \
+	}\
+}\
+while (0) 
+#else //MMU_FORCE_STEALTH_MODE
+#define SETTINGS_MMU_MODE
+#endif //MMU_FORCE_STEALTH_MODE
+
 #ifdef SDCARD_SORT_ALPHA
 #define SETTINGS_SD \
 do\
@@ -5337,6 +5362,29 @@ do\
 while (0)
 #endif // SDCARD_SORT_ALPHA
 
+/*
+#define SETTINGS_MBL_MODE \
+do\
+{\
+    switch(e_mbl_type)\
+    {\
+    case e_MBL_FAST:\
+        MENU_ITEM_FUNCTION_P(_i("Mode    [Fast]"),mbl_mode_set);\ 
+         break; \
+    case e_MBL_OPTIMAL:\
+	    MENU_ITEM_FUNCTION_P(_i("Mode [Optimal]"), mbl_mode_set); \ 
+	     break; \
+    case e_MBL_PREC:\
+	     MENU_ITEM_FUNCTION_P(_i("Mode [Precise]"), mbl_mode_set); \
+	     break; \
+    default:\
+	     MENU_ITEM_FUNCTION_P(_i("Mode [Optimal]"), mbl_mode_set); \
+	     break; \
+    }\
+}\
+while (0)
+*/
+
 #define SETTINGS_SOUND \
 do\
 {\
@@ -5384,6 +5432,9 @@ static void lcd_settings_menu()
 		MENU_ITEM_FUNCTION_P(_i("Fans check  [off]"), lcd_set_fan_check);////MSG_FANS_CHECK_OFF c=17 r=1
 
 	SETTINGS_SILENT_MODE;
+	SETTINGS_MMU_MODE;
+
+	MENU_ITEM_SUBMENU_P(_i("Mesh bed leveling"), lcd_mesh_bed_leveling_settings);////MSG_MBL_SETTINGS c=18 r=1
 
 #if defined (TMC2130) && defined (LINEARITY_CORRECTION)
     MENU_ITEM_SUBMENU_P(_i("Lin. correction"), lcd_settings_linearity_correction_menu);
@@ -6602,7 +6653,7 @@ static void lcd_tune_menu()
 		}
 	}
 #endif //TMC2130
-
+	 SETTINGS_MMU_MODE;
      switch(eSoundMode)
           {
           case e_SOUND_MODE_LOUD:
@@ -6624,6 +6675,48 @@ static void lcd_tune_menu()
 	MENU_END();
 }
 
+static void mbl_magnets_elimination_set() {
+	bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
+	magnet_elimination = !magnet_elimination;
+	eeprom_update_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION, (uint8_t)magnet_elimination);
+}
+
+static void mbl_mesh_set() {
+	uint8_t mesh_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
+	if(mesh_nr == 3) mesh_nr = 7;
+	else mesh_nr = 3;
+	eeprom_update_byte((uint8_t*)EEPROM_MBL_POINTS_NR, mesh_nr);
+}
+
+static void lcd_mesh_bed_leveling_settings()
+{
+	
+	bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
+	uint8_t points_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
+
+	MENU_BEGIN();
+	// leaving menu - this condition must be immediately before MENU_ITEM_BACK_P
+	if (((menu_item == menu_line) && menu_clicked && (lcd_encoder == menu_item)) || menu_leaving)
+	{
+		eeprom_update_byte((uint8_t*)EEPROM_MBL_PROBE_NR, (uint8_t)mbl_z_probe_nr);
+	}
+	MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); 
+	if(points_nr == 3) MENU_ITEM_FUNCTION_P(_i("Mesh         [3x3]"), mbl_mesh_set);
+	else			   MENU_ITEM_FUNCTION_P(_i("Mesh         [7x7]"), mbl_mesh_set);
+	MENU_ITEM_EDIT_int3_P(_i("Z-probe nr."), &mbl_z_probe_nr, 1, 5);
+	if (points_nr == 7) {
+		if (magnet_elimination) MENU_ITEM_FUNCTION_P(_i("Magnets comp. [On]"), mbl_magnets_elimination_set);
+		else				    MENU_ITEM_FUNCTION_P(_i("Magnets comp.[Off]"), mbl_magnets_elimination_set);
+	}
+	else					        menu_item_text_P(_i("Magnets comp.[N/A]"));
+	MENU_END();
+	/*if(menu_leaving)
+	{
+	    eeprom_update_byte((uint8_t*)EEPROM_MBL_POINTS_NR, mbl_z_probe_nr);
+	}*/
+	//SETTINGS_MBL_MODE;
+}
+
 static void lcd_control_temperature_menu()
 {
 #ifdef PIDTEMP

+ 1 - 0
Firmware/ultralcd.h

@@ -118,6 +118,7 @@ extern int farm_status;
 #endif
 
 extern int8_t SilentModeMenu;
+extern uint8_t SilentModeMenu_MMU;
 
 extern bool cancel_heatup;
 extern bool isPrintPaused;

+ 3 - 3
Firmware/variants/1_75mm_MK25-RAMBo10a-E3Dv6full.h

@@ -290,10 +290,10 @@
 #define MBL_Z_STEP 0.01
 
 // Mesh definitions
-#define MESH_MIN_X 35
-#define MESH_MAX_X 238
+#define MESH_MIN_X 24
+#define MESH_MAX_X 228
 #define MESH_MIN_Y 6
-#define MESH_MAX_Y 202
+#define MESH_MAX_Y 210
 
 // Mesh upsample definition
 #define MESH_NUM_X_POINTS 7

+ 6 - 3
Firmware/variants/1_75mm_MK25-RAMBo13a-E3Dv6full.h

@@ -291,10 +291,10 @@
 #define MBL_Z_STEP 0.01
 
 // Mesh definitions
-#define MESH_MIN_X 35
-#define MESH_MAX_X 238
+#define MESH_MIN_X 24
+#define MESH_MAX_X 228
 #define MESH_MIN_Y 6
-#define MESH_MAX_Y 202
+#define MESH_MAX_Y 210
 
 // Mesh upsample definition
 #define MESH_NUM_X_POINTS 7
@@ -505,4 +505,7 @@
 
 #define MMU_IDLER_SENSOR_ATTEMPTS_NR 21 //max. number of attempts to load filament if first load failed; value for max bowden length and case when loading fails right at the beginning
 
+//#define HEATBED_ANALYSIS //for meash bed leveling and heatbed analysis D-codes D80 and D81
+//#define MICROMETER_LOGGING //related to D-codes D80 and D81, currently works on MK2.5 only (MK3 board pin definitions missing)
+
 #endif //__CONFIGURATION_PRUSA_H

+ 3 - 3
Firmware/variants/1_75mm_MK25S-RAMBo10a-E3Dv6full.h

@@ -290,10 +290,10 @@
 #define MBL_Z_STEP 0.01
 
 // Mesh definitions
-#define MESH_MIN_X 35
-#define MESH_MAX_X 238
+#define MESH_MIN_X 24
+#define MESH_MAX_X 228
 #define MESH_MIN_Y 6
-#define MESH_MAX_Y 202
+#define MESH_MAX_Y 210
 
 // Mesh upsample definition
 #define MESH_NUM_X_POINTS 7

+ 3 - 3
Firmware/variants/1_75mm_MK25S-RAMBo13a-E3Dv6full.h

@@ -291,10 +291,10 @@
 #define MBL_Z_STEP 0.01
 
 // Mesh definitions
-#define MESH_MIN_X 35
-#define MESH_MAX_X 238
+#define MESH_MIN_X 24
+#define MESH_MAX_X 228
 #define MESH_MIN_Y 6
-#define MESH_MAX_Y 202
+#define MESH_MAX_Y 210
 
 // Mesh upsample definition
 #define MESH_NUM_X_POINTS 7

+ 3 - 3
Firmware/variants/1_75mm_MK3-EINSy10a-E3Dv6full.h

@@ -400,10 +400,10 @@
 #define MBL_Z_STEP 0.01
 
 // Mesh definitions
-#define MESH_MIN_X 35
-#define MESH_MAX_X 238
+#define MESH_MIN_X 24
+#define MESH_MAX_X 228
 #define MESH_MIN_Y 6
-#define MESH_MAX_Y 202
+#define MESH_MAX_Y 210
 
 // Mesh upsample definition
 #define MESH_NUM_X_POINTS 7

+ 3 - 3
Firmware/variants/1_75mm_MK3S-EINSy10a-E3Dv6full.h

@@ -400,10 +400,10 @@
 #define MBL_Z_STEP 0.01
 
 // Mesh definitions
-#define MESH_MIN_X 35
-#define MESH_MAX_X 238
+#define MESH_MIN_X 24
+#define MESH_MAX_X 228
 #define MESH_MIN_Y 6
-#define MESH_MAX_Y 202
+#define MESH_MAX_Y 210
 
 // Mesh upsample definition
 #define MESH_NUM_X_POINTS 7