Browse Source

merging with upstream

PavelSindler 7 years ago
parent
commit
cdb4cb7864

+ 9 - 1
Firmware/Configuration.h

@@ -173,6 +173,10 @@
 //if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
 #define PREVENT_LENGTHY_EXTRUDE
 
+#ifdef DEBUG_DISABLE_PREVENT_EXTRUDER
+#undef PREVENT_DANGEROUS_EXTRUDE
+#undef PREVENT_LENGTHY_EXTRUDE
+#endif //DEBUG_DISABLE_PREVENT_EXTRUDER
 
 #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
 
@@ -282,9 +286,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
 #define Y_HOME_DIR -1
 #define Z_HOME_DIR -1
 
+#ifdef DEBUG_DISABLE_SWLIMITS
+#define min_software_endstops false
+#define max_software_endstops false
+#else
 #define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
 #define max_software_endstops true  // If true, axis won't move to coordinates greater than the defined lengths below.
-
+#endif //DEBUG_DISABLE_SWLIMITS
 
 
 #define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)

+ 44 - 19
Firmware/Configuration_adv.h

@@ -68,7 +68,11 @@
 // When first starting the main fan, run it at full speed for the
 // given number of milliseconds.  This gets the fan spinning reliably
 // before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
-#define FAN_KICKSTART_TIME 1000
+// RP: new implementation - long pulse at 100% when starting, short pulse  
+#define FAN_KICK_START_TIME 800  //when starting from zero (long kick time)
+#define FAN_KICK_RUN_MINPWM 25   //PWM treshold for short kicks
+#define FAN_KICK_IDLE_TIME  4000 //delay between short kicks
+#define FAN_KICK_RUN_TIME   50   //short kick time
 
 
 
@@ -312,24 +316,45 @@
   #endif
 #endif
 
-// extruder advance constant (s2/mm3)
-//
-// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
-//
-// Hooke's law says:		force = k * distance
-// Bernoulli's principle says:	v ^ 2 / 2 + g . h + pressure / density = constant
-// so: v ^ 2 is proportional to number of steps we advance the extruder
-//#define ADVANCE
-
-#ifdef ADVANCE
-  #define EXTRUDER_ADVANCE_K .006
-
-  #define D_FILAMENT 1.75
-  #define STEPS_MM_E 174.6
-  #define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
-  #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUSION_AREA)
-
-#endif // ADVANCE
+/**
+ * Implementation of linear pressure control
+ *
+ * Assumption: advance = k * (delta velocity)
+ * K=0 means advance disabled.
+ * See Marlin documentation for calibration instructions.
+ */
+//#define LIN_ADVANCE
+
+#ifdef LIN_ADVANCE
+  #define LIN_ADVANCE_K 0 //Try around 45 for PLA, around 25 for ABS.
+
+  /**
+   * Some Slicers produce Gcode with randomly jumping extrusion widths occasionally.
+   * For example within a 0.4mm perimeter it may produce a single segment of 0.05mm width.
+   * While this is harmless for normal printing (the fluid nature of the filament will
+   * close this very, very tiny gap), it throws off the LIN_ADVANCE pressure adaption.
+   *
+   * For this case LIN_ADVANCE_E_D_RATIO can be used to set the extrusion:distance ratio
+   * to a fixed value. Note that using a fixed ratio will lead to wrong nozzle pressures
+   * if the slicer is using variable widths or layer heights within one print!
+   *
+   * This option sets the default E:D ratio at startup. Use `M900` to override this value.
+   *
+   * Example: `M900 W0.4 H0.2 D1.75`, where:
+   *   - W is the extrusion width in mm
+   *   - H is the layer height in mm
+   *   - D is the filament diameter in mm
+   *
+   * Example: `M900 R0.0458` to set the ratio directly.
+   *
+   * Set to 0 to auto-detect the ratio based on given Gcode G1 print moves.
+   *
+   * Slic3r (including Prusa Slic3r) produces Gcode compatible with the automatic mode.
+   * Cura (as of this writing) may produce Gcode incompatible with the automatic mode.
+   */
+  #define LIN_ADVANCE_E_D_RATIO 0 // The calculated ratio (or 0) according to the formula W * H / ((D / 2) ^ 2 * PI)
+                                  // Example: 0.4 * 0.2 / ((1.75 / 2) ^ 2 * PI) = 0.033260135
+#endif
 
 // Arc interpretation settings:
 #define MM_PER_ARC_SEGMENT 1

+ 2 - 1
Firmware/Marlin.h

@@ -96,6 +96,7 @@ void serial_echopair_P(const char *s_P, float v);
 void serial_echopair_P(const char *s_P, double v);
 void serial_echopair_P(const char *s_P, unsigned long v);
 
+extern int selectedSerialPort;
 
 //Things to write to serial from Program memory. Saves 400 to 2k of RAM.
 FORCE_INLINE void serialprintPGM(const char *str)
@@ -349,4 +350,4 @@ float temp_comp_interpolation(float temperature);
 void temp_compensation_apply();
 void temp_compensation_start();
 void wait_for_heater(long codenum);
-void serialecho_temperatures();
+void serialecho_temperatures();

+ 41 - 2
Firmware/MarlinSerial.cpp

@@ -64,6 +64,23 @@ FORCE_INLINE void store_char(unsigned char c)
           store_char(c);
       }
   }
+  
+  SIGNAL(USART2_RX_vect)
+  {
+      if (selectedSerialPort == 1) {
+        // Test for a framing error.
+        if (UCSR2A & (1<<FE2)) {
+            // Characters received with the framing errors will be ignored.
+            // The temporary variable "c" was made volatile, so the compiler does not optimize this out.
+            volatile unsigned char c = UDR2;
+        } else {
+            // Read the input register.
+            unsigned char c = UDR2;
+            store_char(c);
+            
+        }
+      }
+  }
 #endif
 
 // Constructors ////////////////////////////////////////////////////////////////
@@ -88,7 +105,7 @@ void MarlinSerial::begin(long baud)
     useU2X = false;
   }
 #endif
-  
+// set up the first (original serial port)
   if (useU2X) {
     M_UCSRxA = 1 << M_U2Xx;
     baud_setting = (F_CPU / 4 / baud - 1) / 2;
@@ -104,13 +121,35 @@ void MarlinSerial::begin(long baud)
   sbi(M_UCSRxB, M_RXENx);
   sbi(M_UCSRxB, M_TXENx);
   sbi(M_UCSRxB, M_RXCIEx);
+  
+  
+// set up the second serial port
+  if (useU2X) {
+        UCSR2A = 1 << U2X2;
+        baud_setting = (F_CPU / 4 / baud - 1) / 2;
+    } else {
+        UCSR2A = 0;
+        baud_setting = (F_CPU / 8 / baud - 1) / 2;
+    }
+
+    // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
+    UBRR2H = baud_setting >> 8;
+    UBRR2L = baud_setting;
+
+    sbi(UCSR2B, RXEN2);
+    sbi(UCSR2B, TXEN2);
+    sbi(UCSR2B, RXCIE2);
 }
 
 void MarlinSerial::end()
 {
   cbi(M_UCSRxB, M_RXENx);
   cbi(M_UCSRxB, M_TXENx);
-  cbi(M_UCSRxB, M_RXCIEx);  
+  cbi(M_UCSRxB, M_RXCIEx);
+  
+  cbi(UCSR2B, RXEN2);
+  cbi(UCSR2B, TXEN2);
+  cbi(UCSR2B, RXCIE2); 
 }
 
 

+ 42 - 17
Firmware/MarlinSerial.h

@@ -73,6 +73,7 @@
 // is the index of the location from which to read.
 #define RX_BUFFER_SIZE 128
 
+extern int selectedSerialPort;
 
 struct ring_buffer
 {
@@ -110,24 +111,48 @@ class MarlinSerial //: public Stream
     }
     
     
-    FORCE_INLINE void checkRx(void)
+    void checkRx(void)
     {
-        if((M_UCSRxA & (1<<M_RXCx)) != 0) {
-            // Test for a framing error.
-            if (M_UCSRxA & (1<<M_FEx)) {
-                // Characters received with the framing errors will be ignored.
-                // The temporary variable "c" was made volatile, so the compiler does not optimize this out.
-                volatile unsigned char c = M_UDRx;
-            } else {
-                unsigned char c  =  M_UDRx;
-                int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
-                // if we should be storing the received character into the location
-                // just before the tail (meaning that the head would advance to the
-                // current location of the tail), we're about to overflow the buffer
-                // and so we don't write the character or advance the head.
-                if (i != rx_buffer.tail) {
-                    rx_buffer.buffer[rx_buffer.head] = c;
-                    rx_buffer.head = i;
+        if (selectedSerialPort == 0) {
+            if((M_UCSRxA & (1<<M_RXCx)) != 0) {
+                // Test for a framing error.
+                if (M_UCSRxA & (1<<M_FEx)) {
+                    // Characters received with the framing errors will be ignored.
+                    // The temporary variable "c" was made volatile, so the compiler does not optimize this out.
+                    volatile unsigned char c = M_UDRx;
+                } else {
+                    unsigned char c  =  M_UDRx;
+                    int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
+                    // if we should be storing the received character into the location
+                    // just before the tail (meaning that the head would advance to the
+                    // current location of the tail), we're about to overflow the buffer
+                    // and so we don't write the character or advance the head.
+                    if (i != rx_buffer.tail) {
+                        rx_buffer.buffer[rx_buffer.head] = c;
+                        rx_buffer.head = i;
+                    }
+                    selectedSerialPort = 0;
+                }
+            }
+        } else if(selectedSerialPort == 1) {
+            if((UCSR2A & (1<<RXC2)) != 0) {
+                // Test for a framing error.
+                if (UCSR2A & (1<<FE2)) {
+                    // Characters received with the framing errors will be ignored.
+                    // The temporary variable "c" was made volatile, so the compiler does not optimize this out.
+                    volatile unsigned char c = UDR2;
+                } else {
+                    unsigned char c  =  UDR2;
+                    int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
+                    // if we should be storing the received character into the location
+                    // just before the tail (meaning that the head would advance to the
+                    // current location of the tail), we're about to overflow the buffer
+                    // and so we don't write the character or advance the head.
+                    if (i != rx_buffer.tail) {
+                        rx_buffer.buffer[rx_buffer.head] = c;
+                        rx_buffer.head = i;
+                    }
+                    selectedSerialPort = 1;
                 }
             }
         }

+ 6779 - 6615
Firmware/Marlin_main.cpp

@@ -1,6616 +1,6780 @@
-/* -*- c++ -*- */
-
-/*
-    Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
-
-/*
- This firmware is a mashup between Sprinter and grbl.
-  (https://github.com/kliment/Sprinter)
-  (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
-    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- */
-
-#include "Marlin.h"
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#include "vector_3.h"
-  #ifdef AUTO_BED_LEVELING_GRID
-    #include "qr_solve.h"
-  #endif
-#endif // ENABLE_AUTO_BED_LEVELING
-
-#ifdef MESH_BED_LEVELING
-  #include "mesh_bed_leveling.h"
-  #include "mesh_bed_calibration.h"
-#endif
-
-#include "ultralcd.h"
-#include "Configuration_prusa.h"
-#include "planner.h"
-#include "stepper.h"
-#include "temperature.h"
-#include "motion_control.h"
-#include "cardreader.h"
-#include "watchdog.h"
-#include "ConfigurationStore.h"
-#include "language.h"
-#include "pins_arduino.h"
-#include "math.h"
-#include "util.h"
-
-
-#ifdef BLINKM
-#include "BlinkM.h"
-#include "Wire.h"
-#endif
-
-#ifdef ULTRALCD
-#include "ultralcd.h"
-#endif
-
-#if NUM_SERVOS > 0
-#include "Servo.h"
-#endif
-
-#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-#include <SPI.h>
-#endif
-
-#define VERSION_STRING  "1.0.2"
-
-
-#include "ultralcd.h"
-
-// Macros for bit masks
-#define BIT(b) (1<<(b))
-#define TEST(n,b) (((n)&BIT(b))!=0)
-#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
-
-// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-
-// PRUSA CODES
-// P F - Returns FW versions
-// P R - Returns revision of printer
-
-// G0  -> G1
-// G1  - Coordinated Movement X Y Z E
-// G2  - CW ARC
-// G3  - CCW ARC
-// G4  - Dwell S<seconds> or P<milliseconds>
-// G10 - retract filament according to settings of M207
-// G11 - retract recover filament according to settings of M208
-// G28 - Home all Axis
-// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
-// G30 - Single Z Probe, probes bed at current XY location.
-// G31 - Dock sled (Z_PROBE_SLED only)
-// G32 - Undock sled (Z_PROBE_SLED only)
-// G80 - Automatic mesh bed leveling
-// G81 - Print bed profile
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to coordinates given
-
-// M Codes
-// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
-// M1   - Same as M0
-// M17  - Enable/Power all stepper motors
-// M18  - Disable all stepper motors; same as M84
-// M20  - List SD card
-// M21  - Init SD card
-// M22  - Release SD card
-// M23  - Select SD file (M23 filename.g)
-// M24  - Start/resume SD print
-// M25  - Pause SD print
-// M26  - Set SD position in bytes (M26 S12345)
-// M27  - Report SD print status
-// M28  - Start SD write (M28 filename.g)
-// M29  - Stop SD write
-// M30  - Delete file from SD (M30 filename.g)
-// M31  - Output time since last M109 or SD card start to serial
-// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
-//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
-//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
-//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
-// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
-// M80  - Turn on Power Supply
-// M81  - Turn off Power Supply
-// M82  - Set E codes absolute (default)
-// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84  - Disable steppers until next move,
-//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
-// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
-// M92  - Set axis_steps_per_unit - same syntax as G92
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
-//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
-//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
-// M112 - Emergency stop
-// M114 - Output current position to serial port
-// M115 - Capabilities string
-// M117 - display message
-// M119 - Output Endstop status to serial port
-// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
-// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
-// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
-// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
-// M140 - Set bed target temp
-// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
-// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
-//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
-// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
-// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
-// M206 - set additional homing offset
-// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
-// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
-// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
-// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
-// M220 S<factor in percent>- set speed factor override percentage
-// M221 S<factor in percent>- set extrude factor override percentage
-// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
-// M240 - Trigger a camera to take a photograph
-// M250 - Set LCD contrast C<contrast value> (value 0..63)
-// M280 - set servo position absolute. P: servo index, S: angle or microseconds
-// M300 - Play beep sound S<frequency Hz> P<duration ms>
-// M301 - Set PID parameters P I and D
-// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
-// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
-// M304 - Set bed PID parameters P I and D
-// M400 - Finish all moves
-// M401 - Lower z-probe if present
-// M402 - Raise z-probe if present
-// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
-// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
-// M406 - Turn off Filament Sensor extrusion control 
-// M407 - Displays measured filament diameter 
-// M500 - stores parameters in EEPROM
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
-// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
-// M503 - print the current settings (from memory not from EEPROM)
-// M509 - force language selection on next restart
-// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
-// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
-// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
-// M907 - Set digital trimpot motor current using axis codes.
-// M908 - Control digital trimpot directly.
-// M350 - Set microstepping mode.
-// M351 - Toggle MS1 MS2 pins directly.
-
-// M928 - Start SD logging (M928 filename.g) - ended by M29
-// M999 - Restart after being stopped by error
-
-//Stepper Movement Variables
-
-//===========================================================================
-//=============================imported variables============================
-//===========================================================================
-
-
-//===========================================================================
-//=============================public variables=============================
-//===========================================================================
-#ifdef SDSUPPORT
-CardReader card;
-#endif
-
-unsigned long TimeSent = millis();
-unsigned long TimeNow = millis();
-unsigned long PingTime = millis();
-union Data
-{
-byte b[2];
-int value;
-};
-
-float homing_feedrate[] = HOMING_FEEDRATE;
-// Currently only the extruder axis may be switched to a relative mode.
-// Other axes are always absolute or relative based on the common relative_mode flag.
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-int feedmultiply=100; //100->1 200->2
-int saved_feedmultiply;
-int extrudemultiply=100; //100->1 200->2
-int extruder_multiply[EXTRUDERS] = {100
-  #if EXTRUDERS > 1
-    , 100
-    #if EXTRUDERS > 2
-      , 100
-    #endif
-  #endif
-};
-
-int bowden_length[4];
-
-bool is_usb_printing = false;
-bool homing_flag = false;
-
-bool temp_cal_active = false;
-
-unsigned long kicktime = millis()+100000;
-
-unsigned int  usb_printing_counter;
-
-int lcd_change_fil_state = 0;
-
-int feedmultiplyBckp = 100;
-float HotendTempBckp = 0;
-int fanSpeedBckp = 0;
-float pause_lastpos[4];
-unsigned long pause_time = 0;
-unsigned long start_pause_print = millis();
-
-unsigned long load_filament_time;
-
-bool mesh_bed_leveling_flag = false;
-bool mesh_bed_run_from_menu = false;
-
-unsigned char lang_selected = 0;
-int8_t FarmMode = 0;
-
-bool prusa_sd_card_upload = false;
-
-unsigned int status_number = 0;
-
-unsigned long total_filament_used;
-unsigned int heating_status;
-unsigned int heating_status_counter;
-bool custom_message;
-bool loading_flag = false;
-unsigned int custom_message_type;
-unsigned int custom_message_state;
-char snmm_filaments_used = 0;
-
-float distance_from_min[3];
-
-bool sortAlpha = false;
-
-bool volumetric_enabled = false;
-float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
-  #if EXTRUDERS > 1
-      , DEFAULT_NOMINAL_FILAMENT_DIA
-    #if EXTRUDERS > 2
-       , DEFAULT_NOMINAL_FILAMENT_DIA
-    #endif
-  #endif
-};
-float volumetric_multiplier[EXTRUDERS] = {1.0
-  #if EXTRUDERS > 1
-    , 1.0
-    #if EXTRUDERS > 2
-      , 1.0
-    #endif
-  #endif
-};
-float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
-float add_homing[3]={0,0,0};
-
-float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
-float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
-bool axis_known_position[3] = {false, false, false};
-float zprobe_zoffset;
-
-// Extruder offset
-#if EXTRUDERS > 1
-  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
-float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
-#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
-  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
-#endif
-};
-#endif
-
-uint8_t active_extruder = 0;
-int fanSpeed=0;
-
-#ifdef FWRETRACT
-  bool autoretract_enabled=false;
-  bool retracted[EXTRUDERS]={false
-    #if EXTRUDERS > 1
-    , false
-     #if EXTRUDERS > 2
-      , false
-     #endif
-  #endif
-  };
-  bool retracted_swap[EXTRUDERS]={false
-    #if EXTRUDERS > 1
-    , false
-     #if EXTRUDERS > 2
-      , false
-     #endif
-  #endif
-  };
-
-  float retract_length = RETRACT_LENGTH;
-  float retract_length_swap = RETRACT_LENGTH_SWAP;
-  float retract_feedrate = RETRACT_FEEDRATE;
-  float retract_zlift = RETRACT_ZLIFT;
-  float retract_recover_length = RETRACT_RECOVER_LENGTH;
-  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
-  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
-#endif
-
-#ifdef ULTIPANEL
-  #ifdef PS_DEFAULT_OFF
-    bool powersupply = false;
-  #else
-	  bool powersupply = true;
-  #endif
-#endif
-
-bool cancel_heatup = false ;
-
-#ifdef FILAMENT_SENSOR
-  //Variables for Filament Sensor input 
-  float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
-  bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
-  float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
-  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
-  int delay_index1=0;  //index into ring buffer
-  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
-  float delay_dist=0; //delay distance counter  
-  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
-#endif
-
-const char errormagic[] PROGMEM = "Error:";
-const char echomagic[] PROGMEM = "echo:";
-
-//===========================================================================
-//=============================Private Variables=============================
-//===========================================================================
-const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
-float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};
-
-static float delta[3] = {0.0, 0.0, 0.0};
-
-// For tracing an arc
-static float offset[3] = {0.0, 0.0, 0.0};
-static bool home_all_axis = true;
-static float feedrate = 1500.0, next_feedrate, saved_feedrate;
-static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
-
-// Determines Absolute or Relative Coordinates.
-// Also there is bool axis_relative_modes[] per axis flag.
-static bool relative_mode = false;  
-
-// String circular buffer. Commands may be pushed to the buffer from both sides:
-// Chained commands will be pushed to the front, interactive (from LCD menu) 
-// and printing commands (from serial line or from SD card) are pushed to the tail.
-// First character of each entry indicates the type of the entry: 
-#define CMDBUFFER_CURRENT_TYPE_UNKNOWN  0
-// Command in cmdbuffer was sent over USB.
-#define CMDBUFFER_CURRENT_TYPE_USB      1
-// Command in cmdbuffer was read from SDCARD.
-#define CMDBUFFER_CURRENT_TYPE_SDCARD   2
-// Command in cmdbuffer was generated by the UI.
-#define CMDBUFFER_CURRENT_TYPE_UI       3
-// Command in cmdbuffer was generated by another G-code.
-#define CMDBUFFER_CURRENT_TYPE_CHAINED  4
-
-// How much space to reserve for the chained commands
-// of type CMDBUFFER_CURRENT_TYPE_CHAINED,
-// which are pushed to the front of the queue?
-// Maximum 5 commands of max length 20 + null terminator.
-#define CMDBUFFER_RESERVE_FRONT       (5*21)
-// Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
-static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
-// Head of the circular buffer, where to read.
-static int bufindr = 0;
-// Tail of the buffer, where to write.
-static int bufindw = 0;
-// Number of lines in cmdbuffer.
-static int buflen = 0;
-// Flag for processing the current command inside the main Arduino loop().
-// If a new command was pushed to the front of a command buffer while
-// processing another command, this replaces the command on the top.
-// Therefore don't remove the command from the queue in the loop() function.
-static bool cmdbuffer_front_already_processed = false;
-
-// Type of a command, which is to be executed right now.
-#define CMDBUFFER_CURRENT_TYPE   (cmdbuffer[bufindr])
-// String of a command, which is to be executed right now.
-#define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
-
-// Enable debugging of the command buffer.
-// Debugging information will be sent to serial line.
-// #define CMDBUFFER_DEBUG
-
-static int serial_count = 0;  //index of character read from serial line
-static boolean comment_mode = false;
-static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
-
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
-
-//static float tt = 0;
-//static float bt = 0;
-
-//Inactivity shutdown variables
-static unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
-
-unsigned long starttime=0;
-unsigned long stoptime=0;
-unsigned long _usb_timer = 0;
-
-static uint8_t tmp_extruder;
-
-
-bool Stopped=false;
-
-#if NUM_SERVOS > 0
-  Servo servos[NUM_SERVOS];
-#endif
-
-bool CooldownNoWait = true;
-bool target_direction;
-
-//Insert variables if CHDK is defined
-#ifdef CHDK
-unsigned long chdkHigh = 0;
-boolean chdkActive = false;
-#endif
-
-//===========================================================================
-//=============================Routines======================================
-//===========================================================================
-
-void get_arc_coordinates();
-bool setTargetedHotend(int code);
-
-void serial_echopair_P(const char *s_P, float v)
-    { serialprintPGM(s_P); SERIAL_ECHO(v); }
-void serial_echopair_P(const char *s_P, double v)
-    { serialprintPGM(s_P); SERIAL_ECHO(v); }
-void serial_echopair_P(const char *s_P, unsigned long v)
-    { serialprintPGM(s_P); SERIAL_ECHO(v); }
-
-#ifdef SDSUPPORT
-  #include "SdFatUtil.h"
-  int freeMemory() { return SdFatUtil::FreeRam(); }
-#else
-  extern "C" {
-    extern unsigned int __bss_end;
-    extern unsigned int __heap_start;
-    extern void *__brkval;
-
-    int freeMemory() {
-      int free_memory;
-
-      if ((int)__brkval == 0)
-        free_memory = ((int)&free_memory) - ((int)&__bss_end);
-      else
-        free_memory = ((int)&free_memory) - ((int)__brkval);
-
-      return free_memory;
-    }
-  }
-#endif //!SDSUPPORT
-
-// Pop the currently processed command from the queue.
-// It is expected, that there is at least one command in the queue.
-bool cmdqueue_pop_front()
-{
-    if (buflen > 0) {
-#ifdef CMDBUFFER_DEBUG
-        SERIAL_ECHOPGM("Dequeing ");
-        SERIAL_ECHO(cmdbuffer+bufindr+1);
-        SERIAL_ECHOLNPGM("");
-        SERIAL_ECHOPGM("Old indices: buflen ");
-        SERIAL_ECHO(buflen);
-        SERIAL_ECHOPGM(", bufindr ");
-        SERIAL_ECHO(bufindr);
-        SERIAL_ECHOPGM(", bufindw ");
-        SERIAL_ECHO(bufindw);
-        SERIAL_ECHOPGM(", serial_count ");
-        SERIAL_ECHO(serial_count);
-        SERIAL_ECHOPGM(", bufsize ");
-        SERIAL_ECHO(sizeof(cmdbuffer));
-        SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-        if (-- buflen == 0) {
-            // Empty buffer.
-            if (serial_count == 0)
-                // No serial communication is pending. Reset both pointers to zero.
-                bufindw = 0;
-            bufindr = bufindw;
-        } else {
-            // There is at least one ready line in the buffer.
-            // First skip the current command ID and iterate up to the end of the string.
-            for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
-            // Second, skip the end of string null character and iterate until a nonzero command ID is found.
-            for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
-            // If the end of the buffer was empty,
-            if (bufindr == sizeof(cmdbuffer)) {
-                // skip to the start and find the nonzero command.
-                for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
-            }
-#ifdef CMDBUFFER_DEBUG
-            SERIAL_ECHOPGM("New indices: buflen ");
-            SERIAL_ECHO(buflen);
-            SERIAL_ECHOPGM(", bufindr ");
-            SERIAL_ECHO(bufindr);
-            SERIAL_ECHOPGM(", bufindw ");
-            SERIAL_ECHO(bufindw);
-            SERIAL_ECHOPGM(", serial_count ");
-            SERIAL_ECHO(serial_count);
-            SERIAL_ECHOPGM(" new command on the top: ");
-            SERIAL_ECHO(cmdbuffer+bufindr+1);
-            SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-        }
-        return true;
-    }
-    return false;
-}
-
-void cmdqueue_reset()
-{
-    while (cmdqueue_pop_front()) ;
-}
-
-// How long a string could be pushed to the front of the command queue?
-// If yes, adjust bufindr to the new position, where the new command could be enqued.
-// len_asked does not contain the zero terminator size.
-bool cmdqueue_could_enqueue_front(int len_asked)
-{
-    // MAX_CMD_SIZE has to accommodate the zero terminator.
-    if (len_asked >= MAX_CMD_SIZE)
-        return false;
-    // Remove the currently processed command from the queue.
-    if (! cmdbuffer_front_already_processed) {
-        cmdqueue_pop_front();
-        cmdbuffer_front_already_processed = true;
-    }
-	if (bufindr == bufindw && buflen > 0)
-		// Full buffer.
-        return false;
-    // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
-    int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
-    if (bufindw < bufindr) {
-        int bufindr_new = bufindr - len_asked - 2;
-        // Simple case. There is a contiguous space between the write buffer and the read buffer.
-        if (endw <= bufindr_new) {
-            bufindr = bufindr_new;
-            return true;
-        }
-    } else {
-        // Otherwise the free space is split between the start and end.
-        if (len_asked + 2 <= bufindr) {
-            // Could fit at the start.
-            bufindr -= len_asked + 2;
-            return true;
-        }
-        int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
-        if (endw <= bufindr_new) {
-            memset(cmdbuffer, 0, bufindr);
-            bufindr = bufindr_new;
-            return true;
-        }
-    }
-    return false;
-}
-
-// Could one enqueue a command of lenthg len_asked into the buffer,
-// while leaving CMDBUFFER_RESERVE_FRONT at the start?
-// If yes, adjust bufindw to the new position, where the new command could be enqued.
-// len_asked does not contain the zero terminator size.
-bool cmdqueue_could_enqueue_back(int len_asked)
-{
-    // MAX_CMD_SIZE has to accommodate the zero terminator.
-    if (len_asked >= MAX_CMD_SIZE)
-        return false;
-
-	if (bufindr == bufindw && buflen > 0)
-		// Full buffer.
-		return false;
-
-    if (serial_count > 0) {
-        // If there is some data stored starting at bufindw, len_asked is certainly smaller than
-        // the allocated data buffer. Try to reserve a new buffer and to move the already received
-        // serial data.
-        // How much memory to reserve for the commands pushed to the front?
-        // End of the queue, when pushing to the end.
-        int endw = bufindw + len_asked + 2;
-        if (bufindw < bufindr)
-            // Simple case. There is a contiguous space between the write buffer and the read buffer.
-            return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
-        // Otherwise the free space is split between the start and end.
-        if (// Could one fit to the end, including the reserve?
-            endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
-            // Could one fit to the end, and the reserve to the start?
-            (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
-            return true;
-        // Could one fit both to the start?
-        if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
-            // Mark the rest of the buffer as used.
-            memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
-            // and point to the start.
-            bufindw = 0;
-            return true;
-        }
-    } else {
-        // How much memory to reserve for the commands pushed to the front?
-        // End of the queue, when pushing to the end.
-        int endw = bufindw + len_asked + 2;
-        if (bufindw < bufindr)
-            // Simple case. There is a contiguous space between the write buffer and the read buffer.
-            return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
-        // Otherwise the free space is split between the start and end.
-        if (// Could one fit to the end, including the reserve?
-            endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
-            // Could one fit to the end, and the reserve to the start?
-            (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
-            return true;
-        // Could one fit both to the start?
-        if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
-            // Mark the rest of the buffer as used.
-            memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
-            // and point to the start.
-            bufindw = 0;
-            return true;
-        }
-    }
-    return false;
-}
-
-#ifdef CMDBUFFER_DEBUG
-static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
-{
-    SERIAL_ECHOPGM("Entry nr: ");
-    SERIAL_ECHO(nr);
-    SERIAL_ECHOPGM(", type: ");
-    SERIAL_ECHO(int(*p));
-    SERIAL_ECHOPGM(", cmd: ");
-    SERIAL_ECHO(p+1);  
-    SERIAL_ECHOLNPGM("");
-}
-
-static void cmdqueue_dump_to_serial()
-{
-    if (buflen == 0) {
-        SERIAL_ECHOLNPGM("The command buffer is empty.");
-    } else {
-        SERIAL_ECHOPGM("Content of the buffer: entries ");
-        SERIAL_ECHO(buflen);
-        SERIAL_ECHOPGM(", indr ");
-        SERIAL_ECHO(bufindr);
-        SERIAL_ECHOPGM(", indw ");
-        SERIAL_ECHO(bufindw);
-        SERIAL_ECHOLNPGM("");
-        int nr = 0;
-        if (bufindr < bufindw) {
-            for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
-                cmdqueue_dump_to_serial_single_line(nr, p);
-                // Skip the command.
-                for (++p; *p != 0; ++ p);
-                // Skip the gaps.
-                for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
-            }
-        } else {
-            for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
-                cmdqueue_dump_to_serial_single_line(nr, p);
-                // Skip the command.
-                for (++p; *p != 0; ++ p);
-                // Skip the gaps.
-                for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
-            }
-            for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
-                cmdqueue_dump_to_serial_single_line(nr, p);
-                // Skip the command.
-                for (++p; *p != 0; ++ p);
-                // Skip the gaps.
-                for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
-            }
-        }
-        SERIAL_ECHOLNPGM("End of the buffer.");
-    }
-}
-#endif /* CMDBUFFER_DEBUG */
-
-//adds an command to the main command buffer
-//thats really done in a non-safe way.
-//needs overworking someday
-// Currently the maximum length of a command piped through this function is around 20 characters
-void enquecommand(const char *cmd, bool from_progmem)
-{
-    int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
-    // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
-    // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
-    if (cmdqueue_could_enqueue_back(len)) {
-        // This is dangerous if a mixing of serial and this happens
-        // This may easily be tested: If serial_count > 0, we have a problem.
-        cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
-        if (from_progmem)
-            strcpy_P(cmdbuffer + bufindw + 1, cmd);
-        else
-            strcpy(cmdbuffer + bufindw + 1, cmd);
-        SERIAL_ECHO_START;
-        SERIAL_ECHORPGM(MSG_Enqueing);
-        SERIAL_ECHO(cmdbuffer + bufindw + 1);
-        SERIAL_ECHOLNPGM("\"");
-        bufindw += len + 2;
-        if (bufindw == sizeof(cmdbuffer))
-            bufindw = 0;
-        ++ buflen;
-#ifdef CMDBUFFER_DEBUG
-        cmdqueue_dump_to_serial();
-#endif /* CMDBUFFER_DEBUG */
-    } else {
-        SERIAL_ERROR_START;
-        SERIAL_ECHORPGM(MSG_Enqueing);
-        if (from_progmem)
-            SERIAL_PROTOCOLRPGM(cmd);
-        else
-            SERIAL_ECHO(cmd);
-        SERIAL_ECHOLNPGM("\" failed: Buffer full!");
-#ifdef CMDBUFFER_DEBUG
-        cmdqueue_dump_to_serial();
-#endif /* CMDBUFFER_DEBUG */
-    }
-}
-
-void enquecommand_front(const char *cmd, bool from_progmem)
-{
-    int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
-    // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
-    if (cmdqueue_could_enqueue_front(len)) {
-        cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
-        if (from_progmem)
-            strcpy_P(cmdbuffer + bufindr + 1, cmd);
-        else
-            strcpy(cmdbuffer + bufindr + 1, cmd);
-        ++ buflen;
-        SERIAL_ECHO_START;
-        SERIAL_ECHOPGM("Enqueing to the front: \"");
-        SERIAL_ECHO(cmdbuffer + bufindr + 1);
-        SERIAL_ECHOLNPGM("\"");
-#ifdef CMDBUFFER_DEBUG
-        cmdqueue_dump_to_serial();
-#endif /* CMDBUFFER_DEBUG */
-    } else {
-        SERIAL_ERROR_START;
-        SERIAL_ECHOPGM("Enqueing to the front: \"");
-        if (from_progmem)
-            SERIAL_PROTOCOLRPGM(cmd);
-        else
-            SERIAL_ECHO(cmd);
-        SERIAL_ECHOLNPGM("\" failed: Buffer full!");
-#ifdef CMDBUFFER_DEBUG
-        cmdqueue_dump_to_serial();
-#endif /* CMDBUFFER_DEBUG */
-    }
-}
-
-// Mark the command at the top of the command queue as new.
-// Therefore it will not be removed from the queue.
-void repeatcommand_front()
-{
-    cmdbuffer_front_already_processed = true;
-} 
-
-bool is_buffer_empty()
-{
-	if (buflen == 0) return true;
-	else return false;
-}
-
-void setup_killpin()
-{
-  #if defined(KILL_PIN) && KILL_PIN > -1
-    SET_INPUT(KILL_PIN);
-    WRITE(KILL_PIN,HIGH);
-  #endif
-}
-
-// Set home pin
-void setup_homepin(void)
-{
-#if defined(HOME_PIN) && HOME_PIN > -1
-   SET_INPUT(HOME_PIN);
-   WRITE(HOME_PIN,HIGH);
-#endif
-}
-
-void setup_photpin()
-{
-  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
-    SET_OUTPUT(PHOTOGRAPH_PIN);
-    WRITE(PHOTOGRAPH_PIN, LOW);
-  #endif
-}
-
-void setup_powerhold()
-{
-  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
-    SET_OUTPUT(SUICIDE_PIN);
-    WRITE(SUICIDE_PIN, HIGH);
-  #endif
-  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
-    SET_OUTPUT(PS_ON_PIN);
-	#if defined(PS_DEFAULT_OFF)
-	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
-    #else
-	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
-	#endif
-  #endif
-}
-
-void suicide()
-{
-  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
-    SET_OUTPUT(SUICIDE_PIN);
-    WRITE(SUICIDE_PIN, LOW);
-  #endif
-}
-
-void servo_init()
-{
-  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
-    servos[0].attach(SERVO0_PIN);
-  #endif
-  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
-    servos[1].attach(SERVO1_PIN);
-  #endif
-  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
-    servos[2].attach(SERVO2_PIN);
-  #endif
-  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
-    servos[3].attach(SERVO3_PIN);
-  #endif
-  #if (NUM_SERVOS >= 5)
-    #error "TODO: enter initalisation code for more servos"
-  #endif
-}
-
-static void lcd_language_menu();
-
-
-#ifdef MESH_BED_LEVELING
-   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
-#endif
-
-
-// Factory reset function
-// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
-// Level input parameter sets depth of reset
-// Quiet parameter masks all waitings for user interact.
-int  er_progress = 0;
-void factory_reset(char level, bool quiet)
-{	
-	lcd_implementation_clear();
-	int cursor_pos = 0;
-    switch (level) {
-                   
-        // Level 0: Language reset
-        case 0:
-            WRITE(BEEPER, HIGH);
-            _delay_ms(100);
-            WRITE(BEEPER, LOW);
-            
-            lcd_force_language_selection();
-            break;
-         
-		//Level 1: Reset statistics
-		case 1:
-			WRITE(BEEPER, HIGH);
-			_delay_ms(100);
-			WRITE(BEEPER, LOW);
-			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
-			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
-			lcd_menu_statistics();
-            
-			break;
-
-        // Level 2: Prepare for shipping
-        case 2:
-			//lcd_printPGM(PSTR("Factory RESET"));
-            //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
-            
-            // Force language selection at the next boot up.
-            lcd_force_language_selection();
-            // Force the "Follow calibration flow" message at the next boot up.
-            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
-            farm_no = 0;
-			farm_mode == false;
-			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
-            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
-                       
-            WRITE(BEEPER, HIGH);
-            _delay_ms(100);
-            WRITE(BEEPER, LOW);
-			//_delay_ms(2000);
-            break;
-
-			// Level 3: erase everything, whole EEPROM will be set to 0xFF
-
-		case 3:
-			lcd_printPGM(PSTR("Factory RESET"));
-			lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
-
-			WRITE(BEEPER, HIGH);
-			_delay_ms(100);
-			WRITE(BEEPER, LOW);
-
-			er_progress = 0;
-			lcd_print_at_PGM(3, 3, PSTR("      "));
-			lcd_implementation_print_at(3, 3, er_progress);
-
-			// Erase EEPROM
-			for (int i = 0; i < 4096; i++) {
-				eeprom_write_byte((uint8_t*)i, 0xFF);
-
-				if (i % 41 == 0) {
-					er_progress++;
-					lcd_print_at_PGM(3, 3, PSTR("      "));
-					lcd_implementation_print_at(3, 3, er_progress);
-					lcd_printPGM(PSTR("%"));
-				}
-
-			}
-
-
-			break;
-		case 4:
-			bowden_menu();
-			break;
-        
-        default:
-            break;
-    }
-    
-
-}
-
-
-// "Setup" function is called by the Arduino framework on startup.
-// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code 
-// are initialized by the main() routine provided by the Arduino framework.
-void setup()
-{
-	setup_killpin();
-	setup_powerhold();
-	MYSERIAL.begin(BAUDRATE);
-	SERIAL_PROTOCOLLNPGM("start");
-	SERIAL_ECHO_START;
-
-#if 0
-	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
-	for (int i = 0; i < 4096; ++i) {
-		int b = eeprom_read_byte((unsigned char*)i);
-		if (b != 255) {
-			SERIAL_ECHO(i);
-			SERIAL_ECHO(":");
-			SERIAL_ECHO(b);
-			SERIAL_ECHOLN("");
-		}
-	}
-	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
-#endif
-
-	// Check startup - does nothing if bootloader sets MCUSR to 0
-	byte mcu = MCUSR;
-	if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
-	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
-	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
-	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
-	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
-	MCUSR = 0;
-
-	//SERIAL_ECHORPGM(MSG_MARLIN);
-	//SERIAL_ECHOLNRPGM(VERSION_STRING);
-
-#ifdef STRING_VERSION_CONFIG_H
-#ifdef STRING_CONFIG_H_AUTHOR
-	SERIAL_ECHO_START;
-	SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
-	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
-	SERIAL_ECHORPGM(MSG_AUTHOR);
-	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
-	SERIAL_ECHOPGM("Compiled: ");
-	SERIAL_ECHOLNPGM(__DATE__);
-#endif
-#endif
-
-	SERIAL_ECHO_START;
-	SERIAL_ECHORPGM(MSG_FREE_MEMORY);
-	SERIAL_ECHO(freeMemory());
-	SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
-	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
-	lcd_update_enable(false);
-	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
-	bool previous_settings_retrieved = Config_RetrieveSettings();
-	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
-	tp_init();    // Initialize temperature loop
-	plan_init();  // Initialize planner;
-	watchdog_init();
-	st_init();    // Initialize stepper, this enables interrupts!
-	setup_photpin();
-	servo_init();
-	// Reset the machine correction matrix.
-	// It does not make sense to load the correction matrix until the machine is homed.
-	world2machine_reset();
-
-	lcd_init();
-	if (!READ(BTN_ENC))
-	{
-		_delay_ms(1000);
-		if (!READ(BTN_ENC))
-		{
-			lcd_implementation_clear();
-
-
-			lcd_printPGM(PSTR("Factory RESET"));
-
-
-			SET_OUTPUT(BEEPER);
-			WRITE(BEEPER, HIGH);
-
-			while (!READ(BTN_ENC));
-
-			WRITE(BEEPER, LOW);
-
-
-
-			_delay_ms(2000);
-
-			char level = reset_menu();
-			factory_reset(level, false);
-
-			switch (level) {
-			case 0: _delay_ms(0); break;
-			case 1: _delay_ms(0); break;
-			case 2: _delay_ms(0); break;
-			case 3: _delay_ms(0); break;
-			}
-			// _delay_ms(100);
-  /*
-  #ifdef MESH_BED_LEVELING
-			_delay_ms(2000);
-
-			if (!READ(BTN_ENC))
-			{
-				WRITE(BEEPER, HIGH);
-				_delay_ms(100);
-				WRITE(BEEPER, LOW);
-				_delay_ms(200);
-				WRITE(BEEPER, HIGH);
-				_delay_ms(100);
-				WRITE(BEEPER, LOW);
-
-				int _z = 0;
-				calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-				EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
-				EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
-				EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
-			}
-			else
-			{
-
-				WRITE(BEEPER, HIGH);
-				_delay_ms(100);
-				WRITE(BEEPER, LOW);
-			}
-  #endif // mesh */
-
-		}
-	}
-	else
-	{
-		_delay_ms(1000);  // wait 1sec to display the splash screen
-	}
-
-
-
-#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
-	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
-#endif
-
-#ifdef DIGIPOT_I2C
-	digipot_i2c_init();
-#endif
-	setup_homepin();
-
-#if defined(Z_AXIS_ALWAYS_ON)
-	enable_z();
-#endif
-	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
-	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
-	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
-	if (farm_no == 0xFFFF) farm_no = 0;
-	if (farm_mode)
-	{
-		prusa_statistics(8);
-	}
-
-	// Enable Toshiba FlashAir SD card / WiFi enahanced card.
-	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
-	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 
-	// but this times out if a blocking dialog is shown in setup().
-	card.initsd();
-
-	if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
-		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
-		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
-		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
-		// where all the EEPROM entries are set to 0x0ff.
-		// Once a firmware boots up, it forces at least a language selection, which changes
-		// EEPROM_LANG to number lower than 0x0ff.
-		// 1) Set a high power mode.
-		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
-	}
-#ifdef SNMM
-	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
-	  int _z = BOWDEN_LENGTH;
-	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
-	}
-#endif
-
-  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
-  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
-  // is being written into the EEPROM, so the update procedure will be triggered only once.
-    lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
-    if (lang_selected >= LANG_NUM){
-      lcd_mylang();
-    }
-	
-	if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
-		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
-		temp_cal_active = false;
-	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
-
-	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
-		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
-	}
-	if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
-		eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
-	}
-
-	check_babystep(); //checking if Z babystep is in allowed range
-	
-  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
-      calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
-      // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
-      eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-      // Show the message.
-      lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
-  } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
-      // Show the message.
-      lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
-      lcd_update_enable(true);
-  } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
-	  lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
-	  lcd_update_enable(true);
-  } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
-      // Show the message.
-      lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
-  }
-  for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
-  
-  //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
-  if (!previous_settings_retrieved) {
-	  lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
-  }
-  
-  lcd_update_enable(true);
-
-  // Store the currently running firmware into an eeprom,
-  // so the next time the firmware gets updated, it will know from which version it has been updated.
-  update_current_firmware_version_to_eeprom();
-}
-
-void trace();
-
-#define CHUNK_SIZE 64 // bytes
-#define SAFETY_MARGIN 1
-char chunk[CHUNK_SIZE+SAFETY_MARGIN];
-int chunkHead = 0;
-
-int serial_read_stream() {
-
-    setTargetHotend(0, 0);
-    setTargetBed(0);
-
-    lcd_implementation_clear();
-    lcd_printPGM(PSTR(" Upload in progress"));
-
-    // first wait for how many bytes we will receive
-    uint32_t bytesToReceive;
-
-    // receive the four bytes
-    char bytesToReceiveBuffer[4];
-    for (int i=0; i<4; i++) {
-        int data;
-        while ((data = MYSERIAL.read()) == -1) {};
-        bytesToReceiveBuffer[i] = data;
-
-    }
-
-    // make it a uint32
-    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
-
-    // we're ready, notify the sender
-    MYSERIAL.write('+');
-
-    // lock in the routine
-    uint32_t receivedBytes = 0;
-    while (prusa_sd_card_upload) {
-        int i;
-        for (i=0; i<CHUNK_SIZE; i++) {
-            int data;
-
-            // check if we're not done
-            if (receivedBytes == bytesToReceive) {
-                break;
-            }
-
-            // read the next byte
-            while ((data = MYSERIAL.read()) == -1) {};
-            receivedBytes++;
-
-            // save it to the chunk
-            chunk[i] = data;
-        }
-
-        // write the chunk to SD
-        card.write_command_no_newline(&chunk[0]);
-
-        // notify the sender we're ready for more data
-        MYSERIAL.write('+');
-
-        // for safety
-        manage_heater();
-
-        // check if we're done
-        if(receivedBytes == bytesToReceive) {
-            trace(); // beep
-            card.closefile();
-            prusa_sd_card_upload = false;
-            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
-            return 0;
-        }
-
-    }
-}
-
-// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
-// Before loop(), the setup() function is called by the main() routine.
-void loop()
-{
-	bool stack_integrity = true;
-
-	if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
-	{
-		is_usb_printing = true;
-		usb_printing_counter--;
-		_usb_timer = millis();
-	}
-	if (usb_printing_counter == 0)
-	{
-		is_usb_printing = false;
-	}
-
-    if (prusa_sd_card_upload)
-    {
-        //we read byte-by byte
-        serial_read_stream();
-    } else 
-    {
-
-        get_command();
-
-  #ifdef SDSUPPORT
-  card.checkautostart(false);
-  #endif
-  if(buflen)
-  {
-    #ifdef SDSUPPORT
-      if(card.saving)
-      {
-        // Saving a G-code file onto an SD-card is in progress.
-        // Saving starts with M28, saving until M29 is seen.
-        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
-          card.write_command(CMDBUFFER_CURRENT_STRING);
-          if(card.logging)
-            process_commands();
-          else
-           SERIAL_PROTOCOLLNRPGM(MSG_OK);
-        } else {
-          card.closefile();
-          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
-        }
-      } else {
-        process_commands();
-      }
-    #else
-      process_commands();
-    #endif //SDSUPPORT
-      if (! cmdbuffer_front_already_processed)
-          cmdqueue_pop_front();
-      cmdbuffer_front_already_processed = false;
-  }
-}
-  //check heater every n milliseconds
-  manage_heater();
-  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
-  checkHitEndstops();
-  lcd_update();
-}
-
-void get_command()
-{
-    // Test and reserve space for the new command string.
-	if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1)) 
-		return;
-	
-	bool rx_buffer_full = false; //flag that serial rx buffer is full
-
-  while (MYSERIAL.available() > 0) {
-	  if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
-		  SERIAL_ECHOLNPGM("Full RX Buffer");   //if buffer was full, there is danger that reading of last gcode will not be completed
-		  rx_buffer_full = true;				//sets flag that buffer was full	
-	  }
-    char serial_char = MYSERIAL.read();
-      TimeSent = millis();
-      TimeNow = millis();
-
-    if (serial_char < 0)
-        // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
-        // and Marlin does not support such file names anyway.
-        // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
-        // to a hang-up of the print process from an SD card.
-        continue;
-    if(serial_char == '\n' ||
-       serial_char == '\r' ||
-		(serial_char == ':' && comment_mode == false) ||
-       serial_count >= (MAX_CMD_SIZE - 1) )
-    {
-      if(!serial_count) { //if empty line
-        comment_mode = false; //for new command
-        return;
-      }
-      cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
-      if(!comment_mode){
-		if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
-            if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
-            {
-            // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
-            // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
-            gcode_N = (strtol(strchr_pointer+1, NULL, 10));
-            if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
-                // M110 - set current line number.
-                // Line numbers not sent in succession.
-                SERIAL_ERROR_START;
-                SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
-                SERIAL_ERRORLN(gcode_LastN);
-                //Serial.println(gcode_N);
-                FlushSerialRequestResend();
-                serial_count = 0;
-                return;
-            }
-
-            if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
-            {
-                byte checksum = 0;
-                char *p = cmdbuffer+bufindw+1;
-                while (p != strchr_pointer)
-                    checksum = checksum^(*p++);
-                if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
-                SERIAL_ERROR_START;
-                SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
-                SERIAL_ERRORLN(gcode_LastN);
-                FlushSerialRequestResend();
-                serial_count = 0;
-                return;
-                }
-                // If no errors, remove the checksum and continue parsing.
-                *strchr_pointer = 0;
-            }
-            else
-            {
-                SERIAL_ERROR_START;
-                SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
-                SERIAL_ERRORLN(gcode_LastN);
-                FlushSerialRequestResend();
-                serial_count = 0;
-                return;
-            }
-
-            gcode_LastN = gcode_N;
-            //if no errors, continue parsing
-            } // end of 'N' command
-        }
-        else  // if we don't receive 'N' but still see '*'
-        {
-          if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
-          {
-            SERIAL_ERROR_START;
-            SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
-            SERIAL_ERRORLN(gcode_LastN);
-            serial_count = 0;
-            return;
-          }
-        } // end of '*' command
-        if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
-      		  if (! IS_SD_PRINTING) {
-        			  usb_printing_counter = 10;
-        			  is_usb_printing = true;
-      		  }
-            if (Stopped == true) {
-                int gcode = strtol(strchr_pointer+1, NULL, 10);
-                if (gcode >= 0 && gcode <= 3) {
-                    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
-                    LCD_MESSAGERPGM(MSG_STOPPED);
-                }
-            }
-        } // end of 'G' command
-
-        //If command was e-stop process now
-        if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
-          kill();
-        
-        // Store the current line into buffer, move to the next line.
-        cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
-#ifdef CMDBUFFER_DEBUG
-        SERIAL_ECHO_START;
-        SERIAL_ECHOPGM("Storing a command line to buffer: ");
-        SERIAL_ECHO(cmdbuffer+bufindw+1);
-        SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-        bufindw += strlen(cmdbuffer+bufindw+1) + 2;
-        if (bufindw == sizeof(cmdbuffer))
-            bufindw = 0;
-        ++ buflen;
-#ifdef CMDBUFFER_DEBUG
-        SERIAL_ECHOPGM("Number of commands in the buffer: ");
-        SERIAL_ECHO(buflen);
-        SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-      } // end of 'not comment mode'
-      serial_count = 0; //clear buffer
-      // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
-      // in the queue, as this function will reserve the memory.
-      if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
-          return;
-    } // end of "end of line" processing
-    else {
-      // Not an "end of line" symbol. Store the new character into a buffer.
-      if(serial_char == ';') comment_mode = true;
-      if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
-    }
-  } // end of serial line processing loop
-
-    if(farm_mode){
-        TimeNow = millis();
-        if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
-            cmdbuffer[bufindw+serial_count+1] = 0;
-            
-            bufindw += strlen(cmdbuffer+bufindw+1) + 2;
-            if (bufindw == sizeof(cmdbuffer))
-                bufindw = 0;
-            ++ buflen;
-            
-            serial_count = 0;
-            
-            SERIAL_ECHOPGM("TIMEOUT:");
-            //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
-            return;
-        }
-    }
-
-	//add comment
-	if (rx_buffer_full == true && serial_count > 0) {   //if rx buffer was full and string was not properly terminated
-		rx_buffer_full = false;
-		bufindw = bufindw - serial_count;				//adjust tail of the buffer to prepare buffer for writing new command
-		serial_count = 0;
-	}
-
-  #ifdef SDSUPPORT
-  if(!card.sdprinting || serial_count!=0){
-    // If there is a half filled buffer from serial line, wait until return before
-    // continuing with the serial line.
-     return;
-  }
-
-  //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
-  // if it occurs, stop_buffering is triggered and the buffer is ran dry.
-  // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
-
-  static bool stop_buffering=false;
-  if(buflen==0) stop_buffering=false;
-
-  // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
-  while( !card.eof() && !stop_buffering) {
-    int16_t n=card.get();
-    char serial_char = (char)n;
-    if(serial_char == '\n' ||
-       serial_char == '\r' ||
-       (serial_char == '#' && comment_mode == false) ||
-       (serial_char == ':' && comment_mode == false) ||
-       serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
-    {
-      if(card.eof()){
-        SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
-        stoptime=millis();
-        char time[30];
-        unsigned long t=(stoptime-starttime-pause_time)/1000;
-		pause_time = 0;
-        int hours, minutes;
-        minutes=(t/60)%60;
-        hours=t/60/60;
-		save_statistics(total_filament_used, t);
-		sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
-        SERIAL_ECHO_START;
-        SERIAL_ECHOLN(time);
-        lcd_setstatus(time);
-        card.printingHasFinished();
-        card.checkautostart(true);
-
-		if (farm_mode)
-		{
-			prusa_statistics(6);
-			lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
-		}
-
-      }
-      if(serial_char=='#')
-        stop_buffering=true;
-
-      if(!serial_count)
-      {
-        comment_mode = false; //for new command
-        return; //if empty line
-      }
-      cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
-      cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
-      ++ buflen;
-      bufindw += strlen(cmdbuffer+bufindw+1) + 2;
-      if (bufindw == sizeof(cmdbuffer))
-          bufindw = 0;
-      comment_mode = false; //for new command
-      serial_count = 0; //clear buffer
-      // The following line will reserve buffer space if available.
-      if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
-          return;
-    }
-    else
-    {
-      if(serial_char == ';') comment_mode = true;
-      if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
-    }
-  }
-
-  #endif //SDSUPPORT
-}
-
-
-// Return True if a character was found
-static inline bool    code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
-static inline bool    code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
-static inline float   code_value()      { return strtod(strchr_pointer+1, NULL);}
-static inline long    code_value_long()    { return strtol(strchr_pointer+1, NULL, 10); }
-static inline int16_t code_value_short()   { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
-static inline uint8_t code_value_uint8()   { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
-
-#define DEFINE_PGM_READ_ANY(type, reader)       \
-    static inline type pgm_read_any(const type *p)  \
-    { return pgm_read_##reader##_near(p); }
-
-DEFINE_PGM_READ_ANY(float,       float);
-DEFINE_PGM_READ_ANY(signed char, byte);
-
-#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
-static const PROGMEM type array##_P[3] =        \
-    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
-static inline type array(int axis)              \
-    { return pgm_read_any(&array##_P[axis]); }  \
-type array##_ext(int axis)                      \
-    { return pgm_read_any(&array##_P[axis]); }
-
-XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
-XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
-XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
-XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
-XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
-XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
-
-static void axis_is_at_home(int axis) {
-  current_position[axis] = base_home_pos(axis) + add_homing[axis];
-  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
-  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
-}
-
-
-inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
-inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
-
-
-static void setup_for_endstop_move(bool enable_endstops_now = true) {
-    saved_feedrate = feedrate;
-    saved_feedmultiply = feedmultiply;
-    feedmultiply = 100;
-    previous_millis_cmd = millis();
-    
-    enable_endstops(enable_endstops_now);
-}
-
-static void clean_up_after_endstop_move() {
-#ifdef ENDSTOPS_ONLY_FOR_HOMING
-    enable_endstops(false);
-#endif
-    
-    feedrate = saved_feedrate;
-    feedmultiply = saved_feedmultiply;
-    previous_millis_cmd = millis();
-}
-
-
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#ifdef AUTO_BED_LEVELING_GRID
-static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
-{
-    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
-    planeNormal.debug("planeNormal");
-    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
-    //bedLevel.debug("bedLevel");
-
-    //plan_bed_level_matrix.debug("bed level before");
-    //vector_3 uncorrected_position = plan_get_position_mm();
-    //uncorrected_position.debug("position before");
-
-    vector_3 corrected_position = plan_get_position();
-//    corrected_position.debug("position after");
-    current_position[X_AXIS] = corrected_position.x;
-    current_position[Y_AXIS] = corrected_position.y;
-    current_position[Z_AXIS] = corrected_position.z;
-
-    // put the bed at 0 so we don't go below it.
-    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
-
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-}
-
-#else // not AUTO_BED_LEVELING_GRID
-
-static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
-
-    plan_bed_level_matrix.set_to_identity();
-
-    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
-    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
-    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
-
-    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
-    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
-    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
-    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
-
-    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
-
-    vector_3 corrected_position = plan_get_position();
-    current_position[X_AXIS] = corrected_position.x;
-    current_position[Y_AXIS] = corrected_position.y;
-    current_position[Z_AXIS] = corrected_position.z;
-
-    // put the bed at 0 so we don't go below it.
-    current_position[Z_AXIS] = zprobe_zoffset;
-
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-}
-
-#endif // AUTO_BED_LEVELING_GRID
-
-static void run_z_probe() {
-    plan_bed_level_matrix.set_to_identity();
-    feedrate = homing_feedrate[Z_AXIS];
-
-    // move down until you find the bed
-    float zPosition = -10;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-        // we have to let the planner know where we are right now as it is not where we said to go.
-    zPosition = st_get_position_mm(Z_AXIS);
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
-
-    // move up the retract distance
-    zPosition += home_retract_mm(Z_AXIS);
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    // move back down slowly to find bed
-    feedrate = homing_feedrate[Z_AXIS]/4;
-    zPosition -= home_retract_mm(Z_AXIS) * 2;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
-    // make sure the planner knows where we are as it may be a bit different than we last said to move to
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-}
-
-static void do_blocking_move_to(float x, float y, float z) {
-    float oldFeedRate = feedrate;
-
-    feedrate = homing_feedrate[Z_AXIS];
-
-    current_position[Z_AXIS] = z;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    feedrate = XY_TRAVEL_SPEED;
-
-    current_position[X_AXIS] = x;
-    current_position[Y_AXIS] = y;
-    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    feedrate = oldFeedRate;
-}
-
-static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
-    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
-}
-
-
-/// Probe bed height at position (x,y), returns the measured z value
-static float probe_pt(float x, float y, float z_before) {
-  // move to right place
-  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
-  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
-
-  run_z_probe();
-  float measured_z = current_position[Z_AXIS];
-
-  SERIAL_PROTOCOLRPGM(MSG_BED);
-  SERIAL_PROTOCOLPGM(" x: ");
-  SERIAL_PROTOCOL(x);
-  SERIAL_PROTOCOLPGM(" y: ");
-  SERIAL_PROTOCOL(y);
-  SERIAL_PROTOCOLPGM(" z: ");
-  SERIAL_PROTOCOL(measured_z);
-  SERIAL_PROTOCOLPGM("\n");
-  return measured_z;
-}
-
-#endif // #ifdef ENABLE_AUTO_BED_LEVELING
-
-void homeaxis(int axis) {
-#define HOMEAXIS_DO(LETTER) \
-  ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
-
-  if (axis==X_AXIS ? HOMEAXIS_DO(X) :
-      axis==Y_AXIS ? HOMEAXIS_DO(Y) :
-      axis==Z_AXIS ? HOMEAXIS_DO(Z) :
-      0) {
-    int axis_home_dir = home_dir(axis);
-
-    current_position[axis] = 0;
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-    destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
-    feedrate = homing_feedrate[axis];
-    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    current_position[axis] = 0;
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-    destination[axis] = -home_retract_mm(axis) * axis_home_dir;
-    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-
-    destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
-    feedrate = homing_feedrate[axis]/2 ;
-    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-    st_synchronize();
-    axis_is_at_home(axis);
-    destination[axis] = current_position[axis];
-    feedrate = 0.0;
-    endstops_hit_on_purpose();
-    axis_known_position[axis] = true;
-  }
-}
-
-void home_xy()
-{
-    set_destination_to_current();
-    homeaxis(X_AXIS);
-    homeaxis(Y_AXIS);
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-    endstops_hit_on_purpose();
-}
-
-void refresh_cmd_timeout(void)
-{
-  previous_millis_cmd = millis();
-}
-
-#ifdef FWRETRACT
-  void retract(bool retracting, bool swapretract = false) {
-    if(retracting && !retracted[active_extruder]) {
-      destination[X_AXIS]=current_position[X_AXIS];
-      destination[Y_AXIS]=current_position[Y_AXIS];
-      destination[Z_AXIS]=current_position[Z_AXIS];
-      destination[E_AXIS]=current_position[E_AXIS];
-      if (swapretract) {
-        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
-      } else {
-        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
-      }
-      plan_set_e_position(current_position[E_AXIS]);
-      float oldFeedrate = feedrate;
-      feedrate=retract_feedrate*60;
-      retracted[active_extruder]=true;
-      prepare_move();
-      current_position[Z_AXIS]-=retract_zlift;
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-      prepare_move();
-      feedrate = oldFeedrate;
-    } else if(!retracting && retracted[active_extruder]) {
-      destination[X_AXIS]=current_position[X_AXIS];
-      destination[Y_AXIS]=current_position[Y_AXIS];
-      destination[Z_AXIS]=current_position[Z_AXIS];
-      destination[E_AXIS]=current_position[E_AXIS];
-      current_position[Z_AXIS]+=retract_zlift;
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-      //prepare_move();
-      if (swapretract) {
-        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
-      } else {
-        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
-      }
-      plan_set_e_position(current_position[E_AXIS]);
-      float oldFeedrate = feedrate;
-      feedrate=retract_recover_feedrate*60;
-      retracted[active_extruder]=false;
-      prepare_move();
-      feedrate = oldFeedrate;
-    }
-  } //retract
-#endif //FWRETRACT
-
-void trace() {
-    tone(BEEPER, 440);
-    delay(25);
-    noTone(BEEPER);
-    delay(20);
-}
-/*
-void ramming() {
-//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;
-	if (current_temperature[0] < 230) {
-		//PLA
-
-		max_feedrate[E_AXIS] = 50;
-		//current_position[E_AXIS] -= 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		//current_position[E_AXIS] += 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		current_position[E_AXIS] += 5.4;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
-		current_position[E_AXIS] += 3.2;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		current_position[E_AXIS] += 3;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
-		st_synchronize();
-		max_feedrate[E_AXIS] = 80;
-		current_position[E_AXIS] -= 82;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
-		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
-		current_position[E_AXIS] -= 20;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 10;
-		st_synchronize();
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] += 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		current_position[E_AXIS] += 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		current_position[E_AXIS] -= 10;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		st_synchronize();
-	}
-	else {
-		//ABS
-		max_feedrate[E_AXIS] = 50;
-		//current_position[E_AXIS] -= 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		//current_position[E_AXIS] += 8;
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
-		current_position[E_AXIS] += 3.1;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
-		current_position[E_AXIS] += 3.1;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
-		current_position[E_AXIS] += 4;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		st_synchronize();
-		//current_position[X_AXIS] += 23; //delay
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
-		//current_position[X_AXIS] -= 23; //delay
-		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
-		delay(4700);
-		max_feedrate[E_AXIS] = 80;
-		current_position[E_AXIS] -= 92;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
-		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		st_synchronize();
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] += 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		current_position[E_AXIS] -= 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
-		st_synchronize();
-
-	}
-  }
-*/
-void process_commands()
-{
-  #ifdef FILAMENT_RUNOUT_SUPPORT
-    SET_INPUT(FR_SENS);
-  #endif
-
-#ifdef CMDBUFFER_DEBUG
-  SERIAL_ECHOPGM("Processing a GCODE command: ");
-  SERIAL_ECHO(cmdbuffer+bufindr+1);
-  SERIAL_ECHOLNPGM("");
-  SERIAL_ECHOPGM("In cmdqueue: ");
-  SERIAL_ECHO(buflen);
-  SERIAL_ECHOLNPGM("");
-#endif /* CMDBUFFER_DEBUG */
-  
-  unsigned long codenum; //throw away variable
-  char *starpos = NULL;
-#ifdef ENABLE_AUTO_BED_LEVELING
-  float x_tmp, y_tmp, z_tmp, real_z;
-#endif
-
-  // PRUSA GCODES
-
-#ifdef SNMM
-  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
-  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
-  int8_t SilentMode;
-#endif
-  if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
-	  starpos = (strchr(strchr_pointer + 5, '*'));
-	  if (starpos != NULL)
-		  *(starpos) = '\0';
-	  lcd_setstatus(strchr_pointer + 5);
-  }
-  else if(code_seen("PRUSA")){
-		if (code_seen("Ping")) {  //PRUSA Ping
-			if (farm_mode) {
-				PingTime = millis();
-				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
-			}	  
-		}
-		else if (code_seen("PRN")) {
-		  MYSERIAL.println(status_number);
-
-		}else if (code_seen("fn")) {
-		  if (farm_mode) {
-			  MYSERIAL.println(farm_no);
-		  }
-		  else {
-			  MYSERIAL.println("Not in farm mode.");
-		  }
-		  
-		}else if (code_seen("fv")) {
-        // get file version
-        #ifdef SDSUPPORT
-        card.openFile(strchr_pointer + 3,true);
-        while (true) {
-            uint16_t readByte = card.get();
-            MYSERIAL.write(readByte);
-            if (readByte=='\n') {
-                break;
-            }
-        }
-        card.closefile();
-
-        #endif // SDSUPPORT
-
-    } else if (code_seen("M28")) {
-        trace();
-        prusa_sd_card_upload = true;
-        card.openFile(strchr_pointer+4,false);
-    } else if(code_seen("Fir")){
-
-      SERIAL_PROTOCOLLN(FW_version);
-
-    } else if(code_seen("Rev")){
-
-      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
-
-    } else if(code_seen("Lang")) {
-      lcd_force_language_selection();
-    } else if(code_seen("Lz")) {
-      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
-      
-    } else if (code_seen("SERIAL LOW")) {
-        MYSERIAL.println("SERIAL LOW");
-        MYSERIAL.begin(BAUDRATE);
-        return;
-    } else if (code_seen("SERIAL HIGH")) {
-        MYSERIAL.println("SERIAL HIGH");
-        MYSERIAL.begin(1152000);
-        return;
-    } else if(code_seen("Beat")) {
-        // Kick farm link timer
-        kicktime = millis();
-
-    } else if(code_seen("FR")) {
-        // Factory full reset
-        factory_reset(0,true);        
-    }
-    //else if (code_seen('Cal')) {
-		//  lcd_calibration();
-	  // }
-
-  }  
-  else if (code_seen('^')) {
-    // nothing, this is a version line
-  } else if(code_seen('G'))
-  {
-    switch((int)code_value())
-    {
-    case 0: // G0 -> G1
-    case 1: // G1
-      if(Stopped == false) {
-
-        #ifdef FILAMENT_RUNOUT_SUPPORT
-            
-            if(READ(FR_SENS)){
-
-                        feedmultiplyBckp=feedmultiply;
-                        float target[4];
-                        float lastpos[4];
-                        target[X_AXIS]=current_position[X_AXIS];
-                        target[Y_AXIS]=current_position[Y_AXIS];
-                        target[Z_AXIS]=current_position[Z_AXIS];
-                        target[E_AXIS]=current_position[E_AXIS];
-                        lastpos[X_AXIS]=current_position[X_AXIS];
-                        lastpos[Y_AXIS]=current_position[Y_AXIS];
-                        lastpos[Z_AXIS]=current_position[Z_AXIS];
-                        lastpos[E_AXIS]=current_position[E_AXIS];
-                        //retract by E
-                        
-                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
-                        
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-
-
-                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
-
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
-
-                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
-                        
-                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
-                         
-                 
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
-
-                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
-                          
-
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
-
-                        //finish moves
-                        st_synchronize();
-                        //disable extruder steppers so filament can be removed
-                        disable_e0();
-                        disable_e1();
-                        disable_e2();
-                        delay(100);
-                        
-                        //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
-                        uint8_t cnt=0;
-                        int counterBeep = 0;
-                        lcd_wait_interact();
-                        while(!lcd_clicked()){
-                          cnt++;
-                          manage_heater();
-                          manage_inactivity(true);
-                          //lcd_update();
-                          if(cnt==0)
-                          {
-                          #if BEEPER > 0
-                          
-                            if (counterBeep== 500){
-                              counterBeep = 0;
-                              
-                            }
-                          
-                            
-                            SET_OUTPUT(BEEPER);
-                            if (counterBeep== 0){
-                              WRITE(BEEPER,HIGH);
-                            }
-                            
-                            if (counterBeep== 20){
-                              WRITE(BEEPER,LOW);
-                            }
-                            
-                            
-                            
-                          
-                            counterBeep++;
-                          #else
-                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
-                              lcd_buzz(1000/6,100);
-                      #else
-                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
-                      #endif
-                          #endif
-                          }
-                        }
-                        
-                        WRITE(BEEPER,LOW);
-                        
-                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
-                        
-                        
-                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                        
-                 
-                        
-                        
-                        
-                        lcd_change_fil_state = 0;
-                        lcd_loading_filament();
-                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
-                        
-                          lcd_change_fil_state = 0;
-                          lcd_alright();
-                          switch(lcd_change_fil_state){
-                          
-                             case 2:
-                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
-                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
-                        
-                        
-                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                                      
-                                     
-                                     lcd_loading_filament();
-                                     break;
-                             case 3:
-                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                                     lcd_loading_color();
-                                     break;
-                                          
-                             default:
-                                     lcd_change_success();
-                                     break;
-                          }
-                          
-                        }
-                        
-
-                        
-                      target[E_AXIS]+= 5;
-                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
-                        
-                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
-                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-                        
-
-                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
-                        //plan_set_e_position(current_position[E_AXIS]);
-                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
-                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
-                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
-                        
-                        
-                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
-                        
-                      
-                             
-                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
-                        
-                        
-                        plan_set_e_position(lastpos[E_AXIS]);
-                        
-                        feedmultiply=feedmultiplyBckp;
-                        
-                     
-                        
-                        char cmd[9];
-
-                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
-                        enquecommand(cmd);
-
-            }
-
-
-
-        #endif
-
-
-        get_coordinates(); // For X Y Z E F
-		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
-			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
-		}
-          #ifdef FWRETRACT
-            if(autoretract_enabled)
-            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
-              float echange=destination[E_AXIS]-current_position[E_AXIS];
-
-              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
-                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
-                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
-                  retract(!retracted);
-                  return;
-              }
-
-
-            }
-          #endif //FWRETRACT
-        prepare_move();
-        //ClearToSend();
-      }
-      break;
-    case 2: // G2  - CW ARC
-      if(Stopped == false) {
-        get_arc_coordinates();
-        prepare_arc_move(true);
-      }
-      break;
-    case 3: // G3  - CCW ARC
-      if(Stopped == false) {
-        get_arc_coordinates();
-        prepare_arc_move(false);
-      }
-      break;
-    case 4: // G4 dwell      
-      codenum = 0;
-      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
-      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
-	  if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
-      st_synchronize();
-      codenum += millis();  // keep track of when we started waiting
-      previous_millis_cmd = millis();
-      while(millis() < codenum) {
-        manage_heater();
-        manage_inactivity();
-        lcd_update();
-      }
-      break;
-      #ifdef FWRETRACT
-      case 10: // G10 retract
-       #if EXTRUDERS > 1
-        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
-        retract(true,retracted_swap[active_extruder]);
-       #else
-        retract(true);
-       #endif
-      break;
-      case 11: // G11 retract_recover
-       #if EXTRUDERS > 1
-        retract(false,retracted_swap[active_extruder]);
-       #else
-        retract(false);
-       #endif 
-      break;
-      #endif //FWRETRACT
-    case 28: //G28 Home all Axis one at a time
-		homing_flag = true;
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
-#endif //ENABLE_AUTO_BED_LEVELING
-            
-	      
-        // For mesh bed leveling deactivate the matrix temporarily
-        #ifdef MESH_BED_LEVELING
-            mbl.active = 0;
-        #endif
-
-      // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-      // the planner will not perform any adjustments in the XY plane. 
-      // Wait for the motors to stop and update the current position with the absolute values.
-      world2machine_revert_to_uncorrected();
-
-      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
-      // consumed during the first movements following this statement.
-      babystep_undo();
-
-      saved_feedrate = feedrate;
-      saved_feedmultiply = feedmultiply;
-      feedmultiply = 100;
-      previous_millis_cmd = millis();
-
-      enable_endstops(true);
-
-      for(int8_t i=0; i < NUM_AXIS; i++)
-          destination[i] = current_position[i];
-      feedrate = 0.0;
-
-      home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
-
-      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
-      if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
-        homeaxis(Z_AXIS);
-      }
-      #endif
-
-      #ifdef QUICK_HOME
-      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
-      if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) )  //first diagonal move
-      {
-        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
-
-        int x_axis_home_dir = home_dir(X_AXIS);
-
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
-        feedrate = homing_feedrate[X_AXIS];
-        if(homing_feedrate[Y_AXIS]<feedrate)
-          feedrate = homing_feedrate[Y_AXIS];
-        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
-          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
-        } else {
-          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
-        }
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        st_synchronize();
-
-        axis_is_at_home(X_AXIS);
-        axis_is_at_home(Y_AXIS);
-        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        destination[X_AXIS] = current_position[X_AXIS];
-        destination[Y_AXIS] = current_position[Y_AXIS];
-        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-        feedrate = 0.0;
-        st_synchronize();
-        endstops_hit_on_purpose();
-
-        current_position[X_AXIS] = destination[X_AXIS];
-        current_position[Y_AXIS] = destination[Y_AXIS];
-        current_position[Z_AXIS] = destination[Z_AXIS];
-      }
-      #endif /* QUICK_HOME */
-
-	 
-      if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
-        homeaxis(X_AXIS);
-
-      if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
-        homeaxis(Y_AXIS);
-
-      if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
-        current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
-
-      if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
-		    current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
-
-      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
-        #ifndef Z_SAFE_HOMING
-          if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
-            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
-              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
-              feedrate = max_feedrate[Z_AXIS];
-              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-              st_synchronize();
-            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
-            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, moxve X&Y to safe position for home
-      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) 
-      			  {
-                homeaxis(X_AXIS);
-                homeaxis(Y_AXIS);
-      			  } 
-              // 1st mesh bed leveling measurement point, corrected.
-              world2machine_initialize();
-              world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
-              world2machine_reset();
-              if (destination[Y_AXIS] < Y_MIN_POS)
-                  destination[Y_AXIS] = Y_MIN_POS;
-              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed
-              feedrate = homing_feedrate[Z_AXIS]/10;
-              current_position[Z_AXIS] = 0;
-              enable_endstops(false);
-              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-              st_synchronize();
-              current_position[X_AXIS] = destination[X_AXIS];
-              current_position[Y_AXIS] = destination[Y_AXIS];
-              enable_endstops(true);
-              endstops_hit_on_purpose();
-              homeaxis(Z_AXIS);
-            #else // MESH_BED_LEVELING
-              homeaxis(Z_AXIS);
-            #endif // MESH_BED_LEVELING
-          }
-        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
-          if(home_all_axis) {
-            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
-            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
-            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
-            feedrate = XY_TRAVEL_SPEED/60;
-            current_position[Z_AXIS] = 0;
-
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-            st_synchronize();
-            current_position[X_AXIS] = destination[X_AXIS];
-            current_position[Y_AXIS] = destination[Y_AXIS];
-
-            homeaxis(Z_AXIS);
-          }
-                                                // Let's see if X and Y are homed and probe is inside bed area.
-          if(code_seen(axis_codes[Z_AXIS])) {
-            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
-              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
-              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
-              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
-              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
-
-              current_position[Z_AXIS] = 0;
-              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
-              feedrate = max_feedrate[Z_AXIS];
-              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
-              st_synchronize();
-
-              homeaxis(Z_AXIS);
-            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
-                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
-                SERIAL_ECHO_START;
-                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
-            } else {
-                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
-                SERIAL_ECHO_START;
-                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
-            }
-          }
-        #endif // Z_SAFE_HOMING
-      #endif // Z_HOME_DIR < 0
-
-      if(code_seen(axis_codes[Z_AXIS])) {
-        if(code_value_long() != 0) {
-          current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
-        }
-      }
-      #ifdef ENABLE_AUTO_BED_LEVELING
-        if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
-          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
-        }
-      #endif
-  
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-      #ifdef ENDSTOPS_ONLY_FOR_HOMING
-        enable_endstops(false);
-      #endif
-
-      feedrate = saved_feedrate;
-      feedmultiply = saved_feedmultiply;
-      previous_millis_cmd = millis();
-      endstops_hit_on_purpose();
-#ifndef MESH_BED_LEVELING
-      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
-      // Offer the user to load the baby step value, which has been adjusted at the previous print session.
-      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
-          lcd_adjust_z();
-#endif
-
-    // Load the machine correction matrix
-    world2machine_initialize();
-    // and correct the current_position to match the transformed coordinate system.
-    world2machine_update_current();
-
-#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
-	if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
-		{
-		}
-	else
-		{
-			st_synchronize();
-			homing_flag = false;
-			// Push the commands to the front of the message queue in the reverse order!
-			// There shall be always enough space reserved for these commands.
-			// enquecommand_front_P((PSTR("G80")));
-			goto case_G80;
-	  }
-#endif
-
-	  if (farm_mode) { prusa_statistics(20); };
-
-	  homing_flag = false;
-
-      break;
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
-        {
-            #if Z_MIN_PIN == -1
-            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
-            #endif
-
-            // Prevent user from running a G29 without first homing in X and Y
-            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
-            {
-                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
-                SERIAL_ECHO_START;
-                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
-                break; // abort G29, since we don't know where we are
-            }
-
-            st_synchronize();
-            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
-            //vector_3 corrected_position = plan_get_position_mm();
-            //corrected_position.debug("position before G29");
-            plan_bed_level_matrix.set_to_identity();
-            vector_3 uncorrected_position = plan_get_position();
-            //uncorrected_position.debug("position durring G29");
-            current_position[X_AXIS] = uncorrected_position.x;
-            current_position[Y_AXIS] = uncorrected_position.y;
-            current_position[Z_AXIS] = uncorrected_position.z;
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-            setup_for_endstop_move();
-
-            feedrate = homing_feedrate[Z_AXIS];
-#ifdef AUTO_BED_LEVELING_GRID
-            // probe at the points of a lattice grid
-
-            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
-            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
-
-
-            // solve the plane equation ax + by + d = z
-            // A is the matrix with rows [x y 1] for all the probed points
-            // B is the vector of the Z positions
-            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
-            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
-
-            // "A" matrix of the linear system of equations
-            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
-            // "B" vector of Z points
-            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
-
-
-            int probePointCounter = 0;
-            bool zig = true;
-
-            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
-            {
-              int xProbe, xInc;
-              if (zig)
-              {
-                xProbe = LEFT_PROBE_BED_POSITION;
-                //xEnd = RIGHT_PROBE_BED_POSITION;
-                xInc = xGridSpacing;
-                zig = false;
-              } else // zag
-              {
-                xProbe = RIGHT_PROBE_BED_POSITION;
-                //xEnd = LEFT_PROBE_BED_POSITION;
-                xInc = -xGridSpacing;
-                zig = true;
-              }
-
-              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
-              {
-                float z_before;
-                if (probePointCounter == 0)
-                {
-                  // raise before probing
-                  z_before = Z_RAISE_BEFORE_PROBING;
-                } else
-                {
-                  // raise extruder
-                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
-                }
-
-                float measured_z = probe_pt(xProbe, yProbe, z_before);
-
-                eqnBVector[probePointCounter] = measured_z;
-
-                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
-                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
-                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
-                probePointCounter++;
-                xProbe += xInc;
-              }
-            }
-            clean_up_after_endstop_move();
-
-            // solve lsq problem
-            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
-
-            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
-            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
-            SERIAL_PROTOCOLPGM(" b: ");
-            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
-            SERIAL_PROTOCOLPGM(" d: ");
-            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
-
-
-            set_bed_level_equation_lsq(plane_equation_coefficients);
-
-            free(plane_equation_coefficients);
-
-#else // AUTO_BED_LEVELING_GRID not defined
-
-            // Probe at 3 arbitrary points
-            // probe 1
-            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
-
-            // probe 2
-            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
-
-            // probe 3
-            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
-
-            clean_up_after_endstop_move();
-
-            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
-
-
-#endif // AUTO_BED_LEVELING_GRID
-            st_synchronize();
-
-            // The following code correct the Z height difference from z-probe position and hotend tip position.
-            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
-            // When the bed is uneven, this height must be corrected.
-            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
-            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
-            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
-            z_tmp = current_position[Z_AXIS];
-
-            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
-            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-        }
-        break;
-#ifndef Z_PROBE_SLED
-    case 30: // G30 Single Z Probe
-        {
-            st_synchronize();
-            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
-            setup_for_endstop_move();
-
-            feedrate = homing_feedrate[Z_AXIS];
-
-            run_z_probe();
-            SERIAL_PROTOCOLPGM(MSG_BED);
-            SERIAL_PROTOCOLPGM(" X: ");
-            SERIAL_PROTOCOL(current_position[X_AXIS]);
-            SERIAL_PROTOCOLPGM(" Y: ");
-            SERIAL_PROTOCOL(current_position[Y_AXIS]);
-            SERIAL_PROTOCOLPGM(" Z: ");
-            SERIAL_PROTOCOL(current_position[Z_AXIS]);
-            SERIAL_PROTOCOLPGM("\n");
-
-            clean_up_after_endstop_move();
-        }
-        break;
-#else
-    case 31: // dock the sled
-        dock_sled(true);
-        break;
-    case 32: // undock the sled
-        dock_sled(false);
-        break;
-#endif // Z_PROBE_SLED
-#endif // ENABLE_AUTO_BED_LEVELING
-            
-#ifdef MESH_BED_LEVELING
-    case 30: // G30 Single Z Probe
-        {
-            st_synchronize();
-            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
-            setup_for_endstop_move();
-
-            feedrate = homing_feedrate[Z_AXIS];
-
-            find_bed_induction_sensor_point_z(-10.f, 3);
-            SERIAL_PROTOCOLRPGM(MSG_BED);
-            SERIAL_PROTOCOLPGM(" X: ");
-            MYSERIAL.print(current_position[X_AXIS], 5);
-            SERIAL_PROTOCOLPGM(" Y: ");
-            MYSERIAL.print(current_position[Y_AXIS], 5);
-            SERIAL_PROTOCOLPGM(" Z: ");
-            MYSERIAL.print(current_position[Z_AXIS], 5);
-            SERIAL_PROTOCOLPGM("\n");
-            clean_up_after_endstop_move();
-        }
-        break;
-	
-
-	case 75:
-	{
-		for (int i = 40; i <= 110; i++) {
-			MYSERIAL.print(i);
-			MYSERIAL.print("  ");
-			MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
-		}
-	}
-	break;
-
-	case 76: //PINDA probe temperature calibration
-	{
-		setTargetBed(PINDA_MIN_T);
-		float zero_z;
-		int z_shift = 0; //unit: steps
-		int t_c; // temperature
-
-		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-			// We don't know where we are! HOME!
-			// Push the commands to the front of the message queue in the reverse order!
-			// There shall be always enough space reserved for these commands.
-			repeatcommand_front(); // repeat G76 with all its parameters
-			enquecommand_front_P((PSTR("G28 W0")));
-			break;
-		}
-		SERIAL_ECHOLNPGM("PINDA probe calibration start");
-		custom_message = true;
-		custom_message_type = 4;
-		custom_message_state = 1;
-		custom_message = MSG_TEMP_CALIBRATION;
-		current_position[X_AXIS] = PINDA_PREHEAT_X;
-		current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-		current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		st_synchronize();
-		
-		while (abs(degBed() - PINDA_MIN_T) > 1) {
-			delay_keep_alive(1000);
-			serialecho_temperatures();
-		}
-		
-		//enquecommand_P(PSTR("M190 S50"));
-		for (int i = 0; i < PINDA_HEAT_T; i++) {
-			delay_keep_alive(1000);
-			serialecho_temperatures();
-		}
-		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
-
-		current_position[Z_AXIS] = 5;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-
-		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-		st_synchronize();
-		
-		find_bed_induction_sensor_point_z(-1.f);
-		zero_z = current_position[Z_AXIS];
-
-		//current_position[Z_AXIS]
-		SERIAL_ECHOLNPGM("");
-		SERIAL_ECHOPGM("ZERO: ");
-		MYSERIAL.print(current_position[Z_AXIS]);
-		SERIAL_ECHOLNPGM("");
-
-		for (int i = 0; i<5; i++) {
-			SERIAL_ECHOPGM("Step: ");
-			MYSERIAL.print(i+2);
-			SERIAL_ECHOLNPGM("/6");
-			custom_message_state = i + 2;
-			t_c = 60 + i * 10;
-
-			setTargetBed(t_c);
-			current_position[X_AXIS] = PINDA_PREHEAT_X;
-			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			st_synchronize();
-			while (degBed() < t_c) {
-				delay_keep_alive(1000);
-				serialecho_temperatures();
-			}
-			for (int i = 0; i < PINDA_HEAT_T; i++) {
-				delay_keep_alive(1000);
-				serialecho_temperatures();
-			}
-			current_position[Z_AXIS] = 5;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			st_synchronize();
-			find_bed_induction_sensor_point_z(-1.f);
-			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
-
-			SERIAL_ECHOLNPGM("");
-			SERIAL_ECHOPGM("Temperature: ");
-			MYSERIAL.print(t_c);
-			SERIAL_ECHOPGM(" Z shift (mm):");
-			MYSERIAL.print(current_position[Z_AXIS] - zero_z);
-			SERIAL_ECHOLNPGM("");
-
-			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
-			
-		
-		}
-		custom_message_type = 0;
-		custom_message = false;
-
-		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
-		SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
-			disable_x();
-			disable_y();
-			disable_z();
-			disable_e0();
-			disable_e1();
-			disable_e2();
-			setTargetBed(0); //set bed target temperature back to 0
-		lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
-		lcd_update_enable(true);
-		lcd_update(2);		
-
-		
-
-	}
-	break;
-
-#ifdef DIS
-	case 77:
-	{
-		//G77 X200 Y150 XP100 YP15 XO10 Y015
-
-		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
-
-
-		//G77 X232 Y218 XP116 YP109 XO-11 YO0 
-
-		float dimension_x = 40;
-		float dimension_y = 40;
-		int points_x = 40;
-		int points_y = 40;
-		float offset_x = 74;
-		float offset_y = 33;
-
-		if (code_seen('X')) dimension_x = code_value();
-		if (code_seen('Y')) dimension_y = code_value();
-		if (code_seen('XP')) points_x = code_value();
-		if (code_seen('YP')) points_y = code_value();
-		if (code_seen('XO')) offset_x = code_value();
-		if (code_seen('YO')) offset_y = code_value();
-		
-		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
-		
-	} break;
-	
-#endif
-
-	/**
-	* G80: Mesh-based Z probe, probes a grid and produces a
-	*      mesh to compensate for variable bed height
-	*
-	* The S0 report the points as below
-	*
-	*  +----> X-axis
-	*  |
-	*  |
-	*  v Y-axis
-	*
-	*/
-
-	case 80:
-#ifdef MK1BP
-		break;
-#endif //MK1BP
-	case_G80:
-	{
-		mesh_bed_leveling_flag = true;
-		int8_t verbosity_level = 0;
-		static bool run = false;
-
-		if (code_seen('V')) {
-			// Just 'V' without a number counts as V1.
-			char c = strchr_pointer[1];
-			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
-		}
-		// Firstly check if we know where we are
-		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-			// We don't know where we are! HOME!
-			// Push the commands to the front of the message queue in the reverse order!
-			// There shall be always enough space reserved for these commands.
-			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
-				repeatcommand_front(); // repeat G80 with all its parameters
-				enquecommand_front_P((PSTR("G28 W0")));
-			}
-			else {
-				mesh_bed_leveling_flag = false;
-			}
-			break;
-		} 
-		
-		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
-			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
-				temp_compensation_start();
-				run = true;
-				repeatcommand_front(); // repeat G80 with all its parameters
-				enquecommand_front_P((PSTR("G28 W0")));
-			}
-			else {
-				mesh_bed_leveling_flag = false;
-			}
-			break;
-		}
-		run = false;
-		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
-			mesh_bed_leveling_flag = false;
-			break;
-		}
-		// Save custom message state, set a new custom message state to display: Calibrating point 9.
-		bool custom_message_old = custom_message;
-		unsigned int custom_message_type_old = custom_message_type;
-		unsigned int custom_message_state_old = custom_message_state;
-		custom_message = true;
-		custom_message_type = 1;
-		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
-		lcd_update(1);
-
-		mbl.reset(); //reset mesh bed leveling
-
-					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
-					 // consumed during the first movements following this statement.
-		babystep_undo();
-
-		// Cycle through all points and probe them
-		// First move up. During this first movement, the babystepping will be reverted.
-		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
-		// The move to the first calibration point.
-		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
-		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
-		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-
-		if (verbosity_level >= 1) {
-			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
-		}
-		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
-		// Wait until the move is finished.
-		st_synchronize();
-
-		int mesh_point = 0; //index number of calibration point
-
-		int ix = 0;
-		int iy = 0;
-
-		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
-		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
-		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
-		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
-		if (verbosity_level >= 1) {
-			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
-		}
-		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
-		const char *kill_message = NULL;
-		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
-			if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
-			// Get coords of a measuring point.
-			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
-			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
-			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
-			float z0 = 0.f;
-			if (has_z && mesh_point > 0) {
-				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
-				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
-				//#if 0
-				if (verbosity_level >= 1) {
-					SERIAL_ECHOPGM("Bed leveling, point: ");
-					MYSERIAL.print(mesh_point);
-					SERIAL_ECHOPGM(", calibration z: ");
-					MYSERIAL.print(z0, 5);
-					SERIAL_ECHOLNPGM("");
-				}
-				//#endif
-			}
-
-			// Move Z up to MESH_HOME_Z_SEARCH.
-			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
-			st_synchronize();
-
-			// Move to XY position of the sensor point.
-			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
-			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
-
-
-
-			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-			if (verbosity_level >= 1) {
-
-				SERIAL_PROTOCOL(mesh_point);
-				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
-			}
-
-
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
-			st_synchronize();
-
-			// Go down until endstop is hit
-			const float Z_CALIBRATION_THRESHOLD = 1.f;
-			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
-				kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
-				break;
-			}
-			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
-				kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
-				break;
-			}
-			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
-				kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
-				break;
-			}
-
-			if (verbosity_level >= 10) {
-				SERIAL_ECHOPGM("X: ");
-				MYSERIAL.print(current_position[X_AXIS], 5);
-				SERIAL_ECHOLNPGM("");
-				SERIAL_ECHOPGM("Y: ");
-				MYSERIAL.print(current_position[Y_AXIS], 5);
-				SERIAL_PROTOCOLPGM("\n");
-			}
-
-			if (verbosity_level >= 1) {
-				SERIAL_ECHOPGM("mesh bed leveling: ");
-				MYSERIAL.print(current_position[Z_AXIS], 5);
-				SERIAL_ECHOLNPGM("");
-			}
-			mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
-
-			custom_message_state--;
-			mesh_point++;
-			lcd_update(1);
-		}
-		if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
-		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-		if (verbosity_level >= 20) {
-			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
-			MYSERIAL.print(current_position[Z_AXIS], 5);
-		}
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
-		st_synchronize();
-		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
-			kill(kill_message);
-			SERIAL_ECHOLNPGM("killed");
-		}
-		clean_up_after_endstop_move();
-		SERIAL_ECHOLNPGM("clean up finished ");
-		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
-		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
-		SERIAL_ECHOLNPGM("babystep applied");
-		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
-
-		if (verbosity_level >= 1) {
-			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
-		}
-
-		for (uint8_t i = 0; i < 4; ++i) {
-			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
-			long correction = 0;
-			if (code_seen(codes[i]))
-				correction = code_value_long();
-			else if (eeprom_bed_correction_valid) {
-				unsigned char *addr = (i < 2) ?
-					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
-					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
-				correction = eeprom_read_int8(addr);
-			}
-			if (correction == 0)
-				continue;
-			float offset = float(correction) * 0.001f;
-			if (fabs(offset) > 0.101f) {
-				SERIAL_ERROR_START;
-				SERIAL_ECHOPGM("Excessive bed leveling correction: ");
-				SERIAL_ECHO(offset);
-				SERIAL_ECHOLNPGM(" microns");
-			}
-			else {
-				switch (i) {
-				case 0:
-					for (uint8_t row = 0; row < 3; ++row) {
-						mbl.z_values[row][1] += 0.5f * offset;
-						mbl.z_values[row][0] += offset;
-					}
-					break;
-				case 1:
-					for (uint8_t row = 0; row < 3; ++row) {
-						mbl.z_values[row][1] += 0.5f * offset;
-						mbl.z_values[row][2] += offset;
-					}
-					break;
-				case 2:
-					for (uint8_t col = 0; col < 3; ++col) {
-						mbl.z_values[1][col] += 0.5f * offset;
-						mbl.z_values[0][col] += offset;
-					}
-					break;
-				case 3:
-					for (uint8_t col = 0; col < 3; ++col) {
-						mbl.z_values[1][col] += 0.5f * offset;
-						mbl.z_values[2][col] += offset;
-					}
-					break;
-				}
-			}
-		}
-		SERIAL_ECHOLNPGM("Bed leveling correction finished");
-		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
-		SERIAL_ECHOLNPGM("Upsample finished");
-		mbl.active = 1; //activate mesh bed leveling
-		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
-		go_home_with_z_lift();
-		SERIAL_ECHOLNPGM("Go home finished");
-		//unretract (after PINDA preheat retraction)
-		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
-			current_position[E_AXIS] += DEFAULT_RETRACTION;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-		}
-		// Restore custom message state
-		custom_message = custom_message_old;
-		custom_message_type = custom_message_type_old;
-		custom_message_state = custom_message_state_old;
-		mesh_bed_leveling_flag = false;
-		mesh_bed_run_from_menu = false;
-		lcd_update(2);
-		
-	}
-	break;
-
-        /**
-         * G81: Print mesh bed leveling status and bed profile if activated
-         */
-        case 81:
-            if (mbl.active) {
-                SERIAL_PROTOCOLPGM("Num X,Y: ");
-                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
-                SERIAL_PROTOCOLPGM(",");
-                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
-                SERIAL_PROTOCOLPGM("\nZ search height: ");
-                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
-                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
-                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
-                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
-                        SERIAL_PROTOCOLPGM("  ");
-                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
-                    }
-                    SERIAL_PROTOCOLPGM("\n");
-                }
-            }
-            else
-                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
-            break;
-            
-#if 0
-        /**
-         * G82: Single Z probe at current location
-         *
-         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
-         *
-         */
-        case 82:
-            SERIAL_PROTOCOLLNPGM("Finding bed ");
-            setup_for_endstop_move();
-            find_bed_induction_sensor_point_z();
-            clean_up_after_endstop_move();
-            SERIAL_PROTOCOLPGM("Bed found at: ");
-            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
-            SERIAL_PROTOCOLPGM("\n");
-            break;
-
-            /**
-             * G83: Prusa3D specific: Babystep in Z and store to EEPROM
-             */
-        case 83:
-        {
-            int babystepz = code_seen('S') ? code_value() : 0;
-            int BabyPosition = code_seen('P') ? code_value() : 0;
-            
-            if (babystepz != 0) {
-                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
-                // Is the axis indexed starting with zero or one?
-                if (BabyPosition > 4) {
-                    SERIAL_PROTOCOLLNPGM("Index out of bounds");
-                }else{
-                    // Save it to the eeprom
-                    babystepLoadZ = babystepz;
-                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
-                    // adjust the Z
-                    babystepsTodoZadd(babystepLoadZ);
-                }
-            
-            }
-            
-        }
-        break;
-            /**
-             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
-             */
-        case 84:
-            babystepsTodoZsubtract(babystepLoadZ);
-            // babystepLoadZ = 0;
-            break;
-            
-            /**
-             * G85: Prusa3D specific: Pick best babystep
-             */
-        case 85:
-            lcd_pick_babystep();
-            break;
-#endif
-            
-            /**
-             * G86: Prusa3D specific: Disable babystep correction after home.
-             * This G-code will be performed at the start of a calibration script.
-             */
-        case 86:
-            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
-            break;
-            /**
-             * G87: Prusa3D specific: Enable babystep correction after home
-             * This G-code will be performed at the end of a calibration script.
-             */
-        case 87:
-			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-            break;
-
-            /**
-             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
-             */
-		    case 88:
-			      break;
-
-
-#endif  // ENABLE_MESH_BED_LEVELING
-            
-            
-    case 90: // G90
-      relative_mode = false;
-      break;
-    case 91: // G91
-      relative_mode = true;
-      break;
-    case 92: // G92
-      if(!code_seen(axis_codes[E_AXIS]))
-        st_synchronize();
-      for(int8_t i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) {
-           if(i == E_AXIS) {
-             current_position[i] = code_value();
-             plan_set_e_position(current_position[E_AXIS]);
-           }
-           else {
-		current_position[i] = code_value()+add_homing[i];
-            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-           }
-        }
-      }
-      break;
-
-	case 98: //activate farm mode
-		farm_mode = 1;
-		PingTime = millis();
-		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
-		break;
-
-	case 99: //deactivate farm mode
-		farm_mode = 0;
-		lcd_printer_connected();
-		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
-		lcd_update(2);
-		break;
-
-
-
-
-
-
-
-    }
-  } // end if(code_seen('G'))
-
-  else if(code_seen('M'))
-  {
-	  int index;
-	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
-	   
-	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
-	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
-		  SERIAL_ECHOLNPGM("Invalid M code");
-	  } else
-    switch((int)code_value())
-    {
-#ifdef ULTIPANEL
-
-    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
-    case 1: // M1 - Conditional stop - Wait for user button press on LCD
-    {
-      char *src = strchr_pointer + 2;
-
-      codenum = 0;
-
-      bool hasP = false, hasS = false;
-      if (code_seen('P')) {
-        codenum = code_value(); // milliseconds to wait
-        hasP = codenum > 0;
-      }
-      if (code_seen('S')) {
-        codenum = code_value() * 1000; // seconds to wait
-        hasS = codenum > 0;
-      }
-      starpos = strchr(src, '*');
-      if (starpos != NULL) *(starpos) = '\0';
-      while (*src == ' ') ++src;
-      if (!hasP && !hasS && *src != '\0') {
-        lcd_setstatus(src);
-      } else {
-        LCD_MESSAGERPGM(MSG_USERWAIT);
-      }
-
-      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???
-      st_synchronize();
-      previous_millis_cmd = millis();
-      if (codenum > 0){
-        codenum += millis();  // keep track of when we started waiting
-        while(millis() < codenum && !lcd_clicked()){
-          manage_heater();
-          manage_inactivity(true);
-          lcd_update();
-        }
-        lcd_ignore_click(false);
-      }else{
-          if (!lcd_detected())
-            break;
-        while(!lcd_clicked()){
-          manage_heater();
-          manage_inactivity(true);
-          lcd_update();
-        }
-      }
-      if (IS_SD_PRINTING)
-        LCD_MESSAGERPGM(MSG_RESUMING);
-      else
-        LCD_MESSAGERPGM(WELCOME_MSG);
-    }
-    break;
-#endif
-    case 17:
-        LCD_MESSAGERPGM(MSG_NO_MOVE);
-        enable_x();
-        enable_y();
-        enable_z();
-        enable_e0();
-        enable_e1();
-        enable_e2();
-      break;
-
-#ifdef SDSUPPORT
-    case 20: // M20 - list SD card
-      SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
-      card.ls();
-      SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
-      break;
-    case 21: // M21 - init SD card
-
-      card.initsd();
-
-      break;
-    case 22: //M22 - release SD card
-      card.release();
-
-      break;
-    case 23: //M23 - Select file
-      starpos = (strchr(strchr_pointer + 4,'*'));
-      if(starpos!=NULL)
-        *(starpos)='\0';
-      card.openFile(strchr_pointer + 4,true);
-      break;
-    case 24: //M24 - Start SD print
-      card.startFileprint();
-      starttime=millis();
-	  break;
-    case 25: //M25 - Pause SD print
-      card.pauseSDPrint();
-      break;
-    case 26: //M26 - Set SD index
-      if(card.cardOK && code_seen('S')) {
-        card.setIndex(code_value_long());
-      }
-      break;
-    case 27: //M27 - Get SD status
-      card.getStatus();
-      break;
-    case 28: //M28 - Start SD write
-      starpos = (strchr(strchr_pointer + 4,'*'));
-      if(starpos != NULL){
-        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
-        strchr_pointer = strchr(npos,' ') + 1;
-        *(starpos) = '\0';
-      }
-      card.openFile(strchr_pointer+4,false);
-      break;
-    case 29: //M29 - Stop SD write
-      //processed in write to file routine above
-      //card,saving = false;
-      break;
-    case 30: //M30 <filename> Delete File
-      if (card.cardOK){
-        card.closefile();
-        starpos = (strchr(strchr_pointer + 4,'*'));
-        if(starpos != NULL){
-          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
-          strchr_pointer = strchr(npos,' ') + 1;
-          *(starpos) = '\0';
-        }
-        card.removeFile(strchr_pointer + 4);
-      }
-      break;
-    case 32: //M32 - Select file and start SD print
-    {
-      if(card.sdprinting) {
-        st_synchronize();
-
-      }
-      starpos = (strchr(strchr_pointer + 4,'*'));
-
-      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
-      if(namestartpos==NULL)
-      {
-        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
-      }
-      else
-        namestartpos++; //to skip the '!'
-
-      if(starpos!=NULL)
-        *(starpos)='\0';
-
-      bool call_procedure=(code_seen('P'));
-
-      if(strchr_pointer>namestartpos)
-        call_procedure=false;  //false alert, 'P' found within filename
-
-      if( card.cardOK )
-      {
-        card.openFile(namestartpos,true,!call_procedure);
-        if(code_seen('S'))
-          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
-            card.setIndex(code_value_long());
-        card.startFileprint();
-        if(!call_procedure)
-          starttime=millis(); //procedure calls count as normal print time.
-      }
-    } break;
-    case 928: //M928 - Start SD write
-      starpos = (strchr(strchr_pointer + 5,'*'));
-      if(starpos != NULL){
-        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
-        strchr_pointer = strchr(npos,' ') + 1;
-        *(starpos) = '\0';
-      }
-      card.openLogFile(strchr_pointer+5);
-      break;
-
-#endif //SDSUPPORT
-
-    case 31: //M31 take time since the start of the SD print or an M109 command
-      {
-      stoptime=millis();
-      char time[30];
-      unsigned long t=(stoptime-starttime)/1000;
-      int sec,min;
-      min=t/60;
-      sec=t%60;
-      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
-      SERIAL_ECHO_START;
-      SERIAL_ECHOLN(time);
-      lcd_setstatus(time);
-      autotempShutdown();
-      }
-      break;
-    case 42: //M42 -Change pin status via gcode
-      if (code_seen('S'))
-      {
-        int pin_status = code_value();
-        int pin_number = LED_PIN;
-        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
-          pin_number = code_value();
-        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
-        {
-          if (sensitive_pins[i] == pin_number)
-          {
-            pin_number = -1;
-            break;
-          }
-        }
-      #if defined(FAN_PIN) && FAN_PIN > -1
-        if (pin_number == FAN_PIN)
-          fanSpeed = pin_status;
-      #endif
-        if (pin_number > -1)
-        {
-          pinMode(pin_number, OUTPUT);
-          digitalWrite(pin_number, pin_status);
-          analogWrite(pin_number, pin_status);
-        }
-      }
-     break;
-
-    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
-
-		// Reset the baby step value and the baby step applied flag.
-		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
-		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-
-        // Reset the skew and offset in both RAM and EEPROM.
-        reset_bed_offset_and_skew();
-        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-        // the planner will not perform any adjustments in the XY plane. 
-        // Wait for the motors to stop and update the current position with the absolute values.
-        world2machine_revert_to_uncorrected();
-        break;
-
-    case 45: // M45: Prusa3D: bed skew and offset with manual Z up
-    {
-		// Only Z calibration?
-		bool onlyZ = code_seen('Z');
-
-		if (!onlyZ) {
-			setTargetBed(0);
-			setTargetHotend(0, 0);
-			setTargetHotend(0, 1);
-			setTargetHotend(0, 2);
-			adjust_bed_reset(); //reset bed level correction
-		}
-		
-        // Disable the default update procedure of the display. We will do a modal dialog.
-        lcd_update_enable(false);
-        // Let the planner use the uncorrected coordinates.
-        mbl.reset();
-        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-        // the planner will not perform any adjustments in the XY plane. 
-        // Wait for the motors to stop and update the current position with the absolute values.
-        world2machine_revert_to_uncorrected();
-        // Reset the baby step value applied without moving the axes.
-        babystep_reset();
-        // Mark all axes as in a need for homing.
-        memset(axis_known_position, 0, sizeof(axis_known_position));
-                
-        // Let the user move the Z axes up to the end stoppers.
-        if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
-            refresh_cmd_timeout();
-			if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
-				lcd_wait_for_cool_down();
-				lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
-				lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
-				lcd_implementation_print_at(0, 2, 1);
-				lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
-			}
-
-            // Move the print head close to the bed.
-            current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-            plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-            st_synchronize();
-
-            // Home in the XY plane.
-            set_destination_to_current();
-            setup_for_endstop_move();
-            home_xy();
-
-            int8_t verbosity_level = 0;
-            if (code_seen('V')) {
-                // Just 'V' without a number counts as V1.
-                char c = strchr_pointer[1];
-                verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
-            }
-            
-            if (onlyZ) {
-                clean_up_after_endstop_move();
-                // Z only calibration.
-                // Load the machine correction matrix
-                world2machine_initialize();
-                // and correct the current_position to match the transformed coordinate system.
-                world2machine_update_current();
-                //FIXME
-                bool result = sample_mesh_and_store_reference();
-                if (result) {
-                    if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
-                        // Shipped, the nozzle height has been set already. The user can start printing now.
-                        calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-                    // babystep_apply();
-                }
-            } else {
-                // Reset the baby step value and the baby step applied flag.
-                calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
-                eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
-                // Complete XYZ calibration.
-				uint8_t point_too_far_mask = 0;
-                BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
-				clean_up_after_endstop_move();
-                // Print head up.
-                current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-                plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-                st_synchronize();
-                if (result >= 0) {
-					point_too_far_mask = 0;
-                    // Second half: The fine adjustment.
-                    // Let the planner use the uncorrected coordinates.
-                    mbl.reset();
-                    world2machine_reset();
-                    // Home in the XY plane.
-                    setup_for_endstop_move();
-                    home_xy();
-                    result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
-                    clean_up_after_endstop_move();
-                    // Print head up.
-                    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-                    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-                    st_synchronize();
-                    // if (result >= 0) babystep_apply();
-                }
-                lcd_bed_calibration_show_result(result, point_too_far_mask);
-                if (result >= 0) {
-                    // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
-                    calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
-                    lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
-                }
-            }
-        } else {
-            // Timeouted.
-        }
-        lcd_update_enable(true);
-        break;
-    }
-
-    /*
-    case 46:
-    {
-        // M46: Prusa3D: Show the assigned IP address.
-        uint8_t ip[4];
-        bool hasIP = card.ToshibaFlashAir_GetIP(ip);
-        if (hasIP) {
-            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
-            SERIAL_ECHO(int(ip[0]));
-            SERIAL_ECHOPGM(".");
-            SERIAL_ECHO(int(ip[1]));
-            SERIAL_ECHOPGM(".");
-            SERIAL_ECHO(int(ip[2]));
-            SERIAL_ECHOPGM(".");
-            SERIAL_ECHO(int(ip[3]));
-            SERIAL_ECHOLNPGM("");
-        } else {
-            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");          
-        }
-        break;
-    }
-    */
-
-    case 47:
-        // M47: Prusa3D: Show end stops dialog on the display.
-        lcd_diag_show_end_stops();
-        break;
-
-#if 0
-    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
-    {
-        // Disable the default update procedure of the display. We will do a modal dialog.
-        lcd_update_enable(false);
-        // Let the planner use the uncorrected coordinates.
-        mbl.reset();
-        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
-        // the planner will not perform any adjustments in the XY plane. 
-        // Wait for the motors to stop and update the current position with the absolute values.
-        world2machine_revert_to_uncorrected();
-        // Move the print head close to the bed.
-        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-        st_synchronize();
-        // Home in the XY plane.
-        set_destination_to_current();
-        setup_for_endstop_move();
-        home_xy();
-        int8_t verbosity_level = 0;
-        if (code_seen('V')) {
-            // Just 'V' without a number counts as V1.
-            char c = strchr_pointer[1];
-            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
-        }
-        bool success = scan_bed_induction_points(verbosity_level);
-        clean_up_after_endstop_move();
-        // Print head up.
-        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
-        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
-        st_synchronize();
-        lcd_update_enable(true);
-        break;
-    }
-#endif
-
-// M48 Z-Probe repeatability measurement function.
-//
-// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
-//	
-// This function assumes the bed has been homed.  Specificaly, that a G28 command
-// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
-// Any information generated by a prior G29 Bed leveling command will be lost and need to be
-// regenerated.
-//
-// The number of samples will default to 10 if not specified.  You can use upper or lower case
-// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
-// N for its communication protocol and will get horribly confused if you send it a capital N.
-//
-
-#ifdef ENABLE_AUTO_BED_LEVELING
-#ifdef Z_PROBE_REPEATABILITY_TEST 
-
-    case 48: // M48 Z-Probe repeatability
-        {
-            #if Z_MIN_PIN == -1
-            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
-            #endif
-
-	double sum=0.0; 
-	double mean=0.0; 
-	double sigma=0.0;
-	double sample_set[50];
-	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
-	double X_current, Y_current, Z_current;
-	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
-	
-	if (code_seen('V') || code_seen('v')) {
-        	verbose_level = code_value();
-		if (verbose_level<0 || verbose_level>4 ) {
-			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	if (verbose_level > 0)   {
-		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
-		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
-	}
-
-	if (code_seen('n')) {
-        	n_samples = code_value();
-		if (n_samples<4 || n_samples>50 ) {
-			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	X_current = X_probe_location = st_get_position_mm(X_AXIS);
-	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
-	Z_current = st_get_position_mm(Z_AXIS);
-	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
-	ext_position	 = st_get_position_mm(E_AXIS);
-
-	if (code_seen('X') || code_seen('x') ) {
-        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
-		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
-			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	if (code_seen('Y') || code_seen('y') ) {
-        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
-		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
-			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-	if (code_seen('L') || code_seen('l') ) {
-        	n_legs = code_value();
-		if ( n_legs==1 ) 
-			n_legs = 2;
-		if ( n_legs<0 || n_legs>15 ) {
-			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
-			goto Sigma_Exit;
-		}
-	}
-
-//
-// Do all the preliminary setup work.   First raise the probe.
-//
-
-        st_synchronize();
-        plan_bed_level_matrix.set_to_identity();
-	plan_buffer_line( X_current, Y_current, Z_start_location,
-			ext_position,
-    			homing_feedrate[Z_AXIS]/60,
-			active_extruder);
-        st_synchronize();
-
-//
-// Now get everything to the specified probe point So we can safely do a probe to
-// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
-// use that as a starting point for each probe.
-//
-	if (verbose_level > 2) 
-		SERIAL_PROTOCOL("Positioning probe for the test.\n");
-
-	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
-			ext_position,
-    			homing_feedrate[X_AXIS]/60,
-			active_extruder);
-        st_synchronize();
-
-	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
-	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
-	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
-
-// 
-// OK, do the inital probe to get us close to the bed.
-// Then retrace the right amount and use that in subsequent probes
-//
-
-	setup_for_endstop_move();
-	run_z_probe();
-
-	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
-
-	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
-			ext_position,
-    			homing_feedrate[X_AXIS]/60,
-			active_extruder);
-        st_synchronize();
-	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
-
-        for( n=0; n<n_samples; n++) {
-
-		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
-
-		if ( n_legs)  {
-		double radius=0.0, theta=0.0, x_sweep, y_sweep;
-		int rotational_direction, l;
-
-			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
-			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
-			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians
-
-//SERIAL_ECHOPAIR("starting radius: ",radius);
-//SERIAL_ECHOPAIR("   theta: ",theta);
-//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
-//SERIAL_PROTOCOLLNPGM("");
-
-			for( l=0; l<n_legs-1; l++) {
-				if (rotational_direction==1)
-					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
-				else
-					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
-
-				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
-				if ( radius<0.0 )
-					radius = -radius;
-
-				X_current = X_probe_location + cos(theta) * radius;
-				Y_current = Y_probe_location + sin(theta) * radius;
-
-				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
-					 X_current = X_MIN_POS;
-				if ( X_current>X_MAX_POS)
-					 X_current = X_MAX_POS;
-
-				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
-					 Y_current = Y_MIN_POS;
-				if ( Y_current>Y_MAX_POS)
-					 Y_current = Y_MAX_POS;
-
-				if (verbose_level>3 ) {
-					SERIAL_ECHOPAIR("x: ", X_current);
-					SERIAL_ECHOPAIR("y: ", Y_current);
-					SERIAL_PROTOCOLLNPGM("");
-				}
-
-				do_blocking_move_to( X_current, Y_current, Z_current );
-			}
-			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
-		}
-
-		setup_for_endstop_move();
-                run_z_probe();
-
-		sample_set[n] = current_position[Z_AXIS];
-
-//
-// Get the current mean for the data points we have so far
-//
-		sum=0.0; 
-		for( j=0; j<=n; j++) {
-			sum = sum + sample_set[j];
-		}
-		mean = sum / (double (n+1));
-//
-// Now, use that mean to calculate the standard deviation for the
-// data points we have so far
-//
-
-		sum=0.0; 
-		for( j=0; j<=n; j++) {
-			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
-		}
-		sigma = sqrt( sum / (double (n+1)) );
-
-		if (verbose_level > 1) {
-			SERIAL_PROTOCOL(n+1);
-			SERIAL_PROTOCOL(" of ");
-			SERIAL_PROTOCOL(n_samples);
-			SERIAL_PROTOCOLPGM("   z: ");
-			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
-		}
-
-		if (verbose_level > 2) {
-			SERIAL_PROTOCOL(" mean: ");
-			SERIAL_PROTOCOL_F(mean,6);
-
-			SERIAL_PROTOCOL("   sigma: ");
-			SERIAL_PROTOCOL_F(sigma,6);
-		}
-
-		if (verbose_level > 0) 
-			SERIAL_PROTOCOLPGM("\n");
-
-		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
-				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
-        	st_synchronize();
-
-	}
-
-	delay(1000);
-
-        clean_up_after_endstop_move();
-
-//      enable_endstops(true);
-
-	if (verbose_level > 0) {
-		SERIAL_PROTOCOLPGM("Mean: ");
-		SERIAL_PROTOCOL_F(mean, 6);
-		SERIAL_PROTOCOLPGM("\n");
-	}
-
-SERIAL_PROTOCOLPGM("Standard Deviation: ");
-SERIAL_PROTOCOL_F(sigma, 6);
-SERIAL_PROTOCOLPGM("\n\n");
-
-Sigma_Exit:
-        break;
-	}
-#endif		// Z_PROBE_REPEATABILITY_TEST 
-#endif		// ENABLE_AUTO_BED_LEVELING
-
-    case 104: // M104
-      if(setTargetedHotend(104)){
-        break;
-      }
-      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
-      setWatch();
-      break;
-    case 112: //  M112 -Emergency Stop
-      kill();
-      break;
-    case 140: // M140 set bed temp
-      if (code_seen('S')) setTargetBed(code_value());
-      break;
-    case 105 : // M105
-      if(setTargetedHotend(105)){
-        break;
-        }
-      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
-        SERIAL_PROTOCOLPGM("ok T:");
-        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
-        SERIAL_PROTOCOLPGM(" /");
-        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
-        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-          SERIAL_PROTOCOLPGM(" B:");
-          SERIAL_PROTOCOL_F(degBed(),1);
-          SERIAL_PROTOCOLPGM(" /");
-          SERIAL_PROTOCOL_F(degTargetBed(),1);
-        #endif //TEMP_BED_PIN
-        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
-          SERIAL_PROTOCOLPGM(" T");
-          SERIAL_PROTOCOL(cur_extruder);
-          SERIAL_PROTOCOLPGM(":");
-          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
-          SERIAL_PROTOCOLPGM(" /");
-          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
-        }
-      #else
-        SERIAL_ERROR_START;
-        SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
-      #endif
-
-        SERIAL_PROTOCOLPGM(" @:");
-      #ifdef EXTRUDER_WATTS
-        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
-        SERIAL_PROTOCOLPGM("W");
-      #else
-        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
-      #endif
-
-        SERIAL_PROTOCOLPGM(" B@:");
-      #ifdef BED_WATTS
-        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
-        SERIAL_PROTOCOLPGM("W");
-      #else
-        SERIAL_PROTOCOL(getHeaterPower(-1));
-      #endif
-
-        #ifdef SHOW_TEMP_ADC_VALUES
-          {float raw = 0.0;
-
-          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-            SERIAL_PROTOCOLPGM("    ADC B:");
-            SERIAL_PROTOCOL_F(degBed(),1);
-            SERIAL_PROTOCOLPGM("C->");
-            raw = rawBedTemp();
-            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
-            SERIAL_PROTOCOLPGM(" Rb->");
-            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
-            SERIAL_PROTOCOLPGM(" Rxb->");
-            SERIAL_PROTOCOL_F(raw, 5);
-          #endif
-          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
-            SERIAL_PROTOCOLPGM("  T");
-            SERIAL_PROTOCOL(cur_extruder);
-            SERIAL_PROTOCOLPGM(":");
-            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
-            SERIAL_PROTOCOLPGM("C->");
-            raw = rawHotendTemp(cur_extruder);
-            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
-            SERIAL_PROTOCOLPGM(" Rt");
-            SERIAL_PROTOCOL(cur_extruder);
-            SERIAL_PROTOCOLPGM("->");
-            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
-            SERIAL_PROTOCOLPGM(" Rx");
-            SERIAL_PROTOCOL(cur_extruder);
-            SERIAL_PROTOCOLPGM("->");
-            SERIAL_PROTOCOL_F(raw, 5);
-          }}
-        #endif
-		SERIAL_PROTOCOLLN("");
-      return;
-      break;
-    case 109:
-    {// M109 - Wait for extruder heater to reach target.
-      if(setTargetedHotend(109)){
-        break;
-      }
-      LCD_MESSAGERPGM(MSG_HEATING);
-	  heating_status = 1;
-	  if (farm_mode) { prusa_statistics(1); };
-
-#ifdef AUTOTEMP
-        autotemp_enabled=false;
-      #endif
-      if (code_seen('S')) {
-        setTargetHotend(code_value(), tmp_extruder);
-              CooldownNoWait = true;
-            } else if (code_seen('R')) {
-              setTargetHotend(code_value(), tmp_extruder);
-        CooldownNoWait = false;
-      }
-      #ifdef AUTOTEMP
-        if (code_seen('S')) autotemp_min=code_value();
-        if (code_seen('B')) autotemp_max=code_value();
-        if (code_seen('F'))
-        {
-          autotemp_factor=code_value();
-          autotemp_enabled=true;
-        }
-      #endif
-
-      setWatch();
-      codenum = millis();
-
-      /* See if we are heating up or cooling down */
-      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
-
-      cancel_heatup = false;
-
-	  wait_for_heater(codenum); //loops until target temperature is reached
-
-        LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
-		heating_status = 2;
-		if (farm_mode) { prusa_statistics(2); };
-        
-        //starttime=millis();
-        previous_millis_cmd = millis();
-      }
-      break;
-    case 190: // M190 - Wait for bed heater to reach target.
-    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-        LCD_MESSAGERPGM(MSG_BED_HEATING);
-		heating_status = 3;
-		if (farm_mode) { prusa_statistics(1); };
-        if (code_seen('S')) 
-		{
-          setTargetBed(code_value());
-          CooldownNoWait = true;
-        } 
-		else if (code_seen('R')) 
-		{
-          setTargetBed(code_value());
-          CooldownNoWait = false;
-        }
-        codenum = millis();
-        
-        cancel_heatup = false;
-        target_direction = isHeatingBed(); // true if heating, false if cooling
-
-        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
-        {
-          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
-          {
-			  if (!farm_mode) {
-				  float tt = degHotend(active_extruder);
-				  SERIAL_PROTOCOLPGM("T:");
-				  SERIAL_PROTOCOL(tt);
-				  SERIAL_PROTOCOLPGM(" E:");
-				  SERIAL_PROTOCOL((int)active_extruder);
-				  SERIAL_PROTOCOLPGM(" B:");
-				  SERIAL_PROTOCOL_F(degBed(), 1);
-				  SERIAL_PROTOCOLLN("");
-			  }
-				  codenum = millis();
-			  
-          }
-          manage_heater();
-          manage_inactivity();
-          lcd_update();
-        }
-        LCD_MESSAGERPGM(MSG_BED_DONE);
-		heating_status = 4;
-
-        previous_millis_cmd = millis();
-    #endif
-        break;
-
-    #if defined(FAN_PIN) && FAN_PIN > -1
-      case 106: //M106 Fan On
-        if (code_seen('S')){
-           fanSpeed=constrain(code_value(),0,255);
-        }
-        else {
-          fanSpeed=255;
-        }
-        break;
-      case 107: //M107 Fan Off
-        fanSpeed = 0;
-        break;
-    #endif //FAN_PIN
-
-    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
-      case 80: // M80 - Turn on Power Supply
-        SET_OUTPUT(PS_ON_PIN); //GND
-        WRITE(PS_ON_PIN, PS_ON_AWAKE);
-
-        // If you have a switch on suicide pin, this is useful
-        // if you want to start another print with suicide feature after
-        // a print without suicide...
-        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
-            SET_OUTPUT(SUICIDE_PIN);
-            WRITE(SUICIDE_PIN, HIGH);
-        #endif
-
-        #ifdef ULTIPANEL
-          powersupply = true;
-          LCD_MESSAGERPGM(WELCOME_MSG);
-          lcd_update();
-        #endif
-        break;
-      #endif
-
-      case 81: // M81 - Turn off Power Supply
-        disable_heater();
-        st_synchronize();
-        disable_e0();
-        disable_e1();
-        disable_e2();
-        finishAndDisableSteppers();
-        fanSpeed = 0;
-        delay(1000); // Wait a little before to switch off
-      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
-        st_synchronize();
-        suicide();
-      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
-        SET_OUTPUT(PS_ON_PIN);
-        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
-      #endif
-      #ifdef ULTIPANEL
-        powersupply = false;
-        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
-        
-        /*
-        MACHNAME = "Prusa i3"
-        MSGOFF = "Vypnuto"
-        "Prusai3"" ""vypnuto""."
-        
-        "Prusa i3"" "MSG_ALL[lang_selected][50]"."
-        */
-        lcd_update();
-      #endif
-	  break;
-
-    case 82:
-      axis_relative_modes[3] = false;
-      break;
-    case 83:
-      axis_relative_modes[3] = true;
-      break;
-    case 18: //compatibility
-    case 84: // M84
-      if(code_seen('S')){
-        stepper_inactive_time = code_value() * 1000;
-      }
-      else
-      {
-        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
-        if(all_axis)
-        {
-          st_synchronize();
-          disable_e0();
-          disable_e1();
-          disable_e2();
-          finishAndDisableSteppers();
-        }
-        else
-        {
-          st_synchronize();
-		  if (code_seen('X')) disable_x();
-		  if (code_seen('Y')) disable_y();
-		  if (code_seen('Z')) disable_z();
-#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
-		  if (code_seen('E')) {
-			  disable_e0();
-			  disable_e1();
-			  disable_e2();
-            }
-          #endif
-        }
-      }
-	  snmm_filaments_used = 0;
-      break;
-    case 85: // M85
-      if(code_seen('S')) {
-        max_inactive_time = code_value() * 1000;
-      }
-      break;
-    case 92: // M92
-      for(int8_t i=0; i < NUM_AXIS; i++)
-      {
-        if(code_seen(axis_codes[i]))
-        {
-          if(i == 3) { // E
-            float value = code_value();
-            if(value < 20.0) {
-              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
-              max_jerk[E_AXIS] *= factor;
-              max_feedrate[i] *= factor;
-              axis_steps_per_sqr_second[i] *= factor;
-            }
-            axis_steps_per_unit[i] = value;
-          }
-          else {
-            axis_steps_per_unit[i] = code_value();
-          }
-        }
-      }
-	  break;
-	case 110:   // M110 - reset line pos
-		if (code_seen('N'))
-			gcode_LastN = code_value_long();
-		else
-			gcode_LastN = 0;
-		break;
-    case 115: // M115
-      if (code_seen('V')) {
-          // Report the Prusa version number.
-          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
-      } else if (code_seen('U')) {
-          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
-          // pause the print and ask the user to upgrade the firmware.
-          show_upgrade_dialog_if_version_newer(++ strchr_pointer);
-      } else {
-          SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
-      }
-      break;
-/*    case 117: // M117 display message
-      starpos = (strchr(strchr_pointer + 5,'*'));
-      if(starpos!=NULL)
-        *(starpos)='\0';
-      lcd_setstatus(strchr_pointer + 5);
-      break;*/
-    case 114: // M114
-      SERIAL_PROTOCOLPGM("X:");
-      SERIAL_PROTOCOL(current_position[X_AXIS]);
-      SERIAL_PROTOCOLPGM(" Y:");
-      SERIAL_PROTOCOL(current_position[Y_AXIS]);
-      SERIAL_PROTOCOLPGM(" Z:");
-      SERIAL_PROTOCOL(current_position[Z_AXIS]);
-      SERIAL_PROTOCOLPGM(" E:");
-      SERIAL_PROTOCOL(current_position[E_AXIS]);
-
-      SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
-      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
-      SERIAL_PROTOCOLPGM(" Y:");
-      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
-      SERIAL_PROTOCOLPGM(" Z:");
-      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
-
-      SERIAL_PROTOCOLLN("");
-      break;
-    case 120: // M120
-      enable_endstops(false) ;
-      break;
-    case 121: // M121
-      enable_endstops(true) ;
-      break;
-    case 119: // M119
-    SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
-    SERIAL_PROTOCOLLN("");
-      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_X_MIN);
-        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_X_MAX);
-        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
-        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
-        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
-        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
-        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
-        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
-        }else{
-          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
-        }
-        SERIAL_PROTOCOLLN("");
-      #endif
-      break;
-      //TODO: update for all axis, use for loop
-    #ifdef BLINKM
-    case 150: // M150
-      {
-        byte red;
-        byte grn;
-        byte blu;
-
-        if(code_seen('R')) red = code_value();
-        if(code_seen('U')) grn = code_value();
-        if(code_seen('B')) blu = code_value();
-
-        SendColors(red,grn,blu);
-      }
-      break;
-    #endif //BLINKM
-    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
-      {
-
-        tmp_extruder = active_extruder;
-        if(code_seen('T')) {
-          tmp_extruder = code_value();
-		  if(tmp_extruder >= EXTRUDERS) {
-            SERIAL_ECHO_START;
-            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
-            break;
-          }
-        }
-
-        float area = .0;
-        if(code_seen('D')) {
-		  float diameter = (float)code_value();
-		  if (diameter == 0.0) {
-			// setting any extruder filament size disables volumetric on the assumption that
-			// slicers either generate in extruder values as cubic mm or as as filament feeds
-			// for all extruders
-		    volumetric_enabled = false;
-		  } else {
-            filament_size[tmp_extruder] = (float)code_value();
-			// make sure all extruders have some sane value for the filament size
-			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
-            #if EXTRUDERS > 1
-			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
-            #if EXTRUDERS > 2
-			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
-            #endif
-            #endif
-			volumetric_enabled = true;
-		  }
-        } else {
-          //reserved for setting filament diameter via UFID or filament measuring device
-          break;
-        }
-		calculate_volumetric_multipliers();
-      }
-      break;
-    case 201: // M201
-      for(int8_t i=0; i < NUM_AXIS; i++)
-      {
-        if(code_seen(axis_codes[i]))
-        {
-          max_acceleration_units_per_sq_second[i] = code_value();
-        }
-      }
-      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
-      reset_acceleration_rates();
-      break;
-    #if 0 // Not used for Sprinter/grbl gen6
-    case 202: // M202
-      for(int8_t i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
-      }
-      break;
-    #endif
-    case 203: // M203 max feedrate mm/sec
-      for(int8_t i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
-      }
-      break;
-    case 204: // M204 acclereration S normal moves T filmanent only moves
-      {
-        if(code_seen('S')) acceleration = code_value() ;
-        if(code_seen('T')) retract_acceleration = code_value() ;
-      }
-      break;
-    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
-    {
-      if(code_seen('S')) minimumfeedrate = code_value();
-      if(code_seen('T')) mintravelfeedrate = code_value();
-      if(code_seen('B')) minsegmenttime = code_value() ;
-      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
-      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
-      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
-      if(code_seen('E')) max_jerk[E_AXIS] = code_value();
-    }
-    break;
-    case 206: // M206 additional homing offset
-      for(int8_t i=0; i < 3; i++)
-      {
-        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
-      }
-      break;
-    #ifdef FWRETRACT
-    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
-    {
-      if(code_seen('S'))
-      {
-        retract_length = code_value() ;
-      }
-      if(code_seen('F'))
-      {
-        retract_feedrate = code_value()/60 ;
-      }
-      if(code_seen('Z'))
-      {
-        retract_zlift = code_value() ;
-      }
-    }break;
-    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
-    {
-      if(code_seen('S'))
-      {
-        retract_recover_length = code_value() ;
-      }
-      if(code_seen('F'))
-      {
-        retract_recover_feedrate = code_value()/60 ;
-      }
-    }break;
-    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
-    {
-      if(code_seen('S'))
-      {
-        int t= code_value() ;
-        switch(t)
-        {
-          case 0: 
-          {
-            autoretract_enabled=false;
-            retracted[0]=false;
-            #if EXTRUDERS > 1
-              retracted[1]=false;
-            #endif
-            #if EXTRUDERS > 2
-              retracted[2]=false;
-            #endif
-          }break;
-          case 1: 
-          {
-            autoretract_enabled=true;
-            retracted[0]=false;
-            #if EXTRUDERS > 1
-              retracted[1]=false;
-            #endif
-            #if EXTRUDERS > 2
-              retracted[2]=false;
-            #endif
-          }break;
-          default:
-            SERIAL_ECHO_START;
-            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
-            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
-            SERIAL_ECHOLNPGM("\"");
-        }
-      }
-
-    }break;
-    #endif // FWRETRACT
-    #if EXTRUDERS > 1
-    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
-    {
-      if(setTargetedHotend(218)){
-        break;
-      }
-      if(code_seen('X'))
-      {
-        extruder_offset[X_AXIS][tmp_extruder] = code_value();
-      }
-      if(code_seen('Y'))
-      {
-        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
-      }
-      SERIAL_ECHO_START;
-      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
-      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
-      {
-         SERIAL_ECHO(" ");
-         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
-         SERIAL_ECHO(",");
-         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
-      }
-      SERIAL_ECHOLN("");
-    }break;
-    #endif
-    case 220: // M220 S<factor in percent>- set speed factor override percentage
-    {
-      if(code_seen('S'))
-      {
-        feedmultiply = code_value() ;
-      }
-    }
-    break;
-    case 221: // M221 S<factor in percent>- set extrude factor override percentage
-    {
-      if(code_seen('S'))
-      {
-        int tmp_code = code_value();
-        if (code_seen('T'))
-        {
-          if(setTargetedHotend(221)){
-            break;
-          }
-          extruder_multiply[tmp_extruder] = tmp_code;
-        }
-        else
-        {
-          extrudemultiply = tmp_code ;
-        }
-      }
-    }
-    break;
-
-	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
-	{
-      if(code_seen('P')){
-        int pin_number = code_value(); // pin number
-        int pin_state = -1; // required pin state - default is inverted
-
-        if(code_seen('S')) pin_state = code_value(); // required pin state
-
-        if(pin_state >= -1 && pin_state <= 1){
-
-          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
-          {
-            if (sensitive_pins[i] == pin_number)
-            {
-              pin_number = -1;
-              break;
-            }
-          }
-
-          if (pin_number > -1)
-          {
-            int target = LOW;
-
-            st_synchronize();
-
-            pinMode(pin_number, INPUT);
-
-            switch(pin_state){
-            case 1:
-              target = HIGH;
-              break;
-
-            case 0:
-              target = LOW;
-              break;
-
-            case -1:
-              target = !digitalRead(pin_number);
-              break;
-            }
-
-            while(digitalRead(pin_number) != target){
-              manage_heater();
-              manage_inactivity();
-              lcd_update();
-            }
-          }
-        }
-      }
-    }
-    break;
-
-    #if NUM_SERVOS > 0
-    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
-      {
-        int servo_index = -1;
-        int servo_position = 0;
-        if (code_seen('P'))
-          servo_index = code_value();
-        if (code_seen('S')) {
-          servo_position = code_value();
-          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
-		      servos[servo_index].attach(0);
-#endif
-            servos[servo_index].write(servo_position);
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
-              delay(PROBE_SERVO_DEACTIVATION_DELAY);
-              servos[servo_index].detach();
-#endif
-          }
-          else {
-            SERIAL_ECHO_START;
-            SERIAL_ECHO("Servo ");
-            SERIAL_ECHO(servo_index);
-            SERIAL_ECHOLN(" out of range");
-          }
-        }
-        else if (servo_index >= 0) {
-          SERIAL_PROTOCOL(MSG_OK);
-          SERIAL_PROTOCOL(" Servo ");
-          SERIAL_PROTOCOL(servo_index);
-          SERIAL_PROTOCOL(": ");
-          SERIAL_PROTOCOL(servos[servo_index].read());
-          SERIAL_PROTOCOLLN("");
-        }
-      }
-      break;
-    #endif // NUM_SERVOS > 0
-
-    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
-    case 300: // M300
-    {
-      int beepS = code_seen('S') ? code_value() : 110;
-      int beepP = code_seen('P') ? code_value() : 1000;
-      if (beepS > 0)
-      {
-        #if BEEPER > 0
-          tone(BEEPER, beepS);
-          delay(beepP);
-          noTone(BEEPER);
-        #elif defined(ULTRALCD)
-		  lcd_buzz(beepS, beepP);
-		#elif defined(LCD_USE_I2C_BUZZER)
-		  lcd_buzz(beepP, beepS);
-        #endif
-      }
-      else
-      {
-        delay(beepP);
-      }
-    }
-    break;
-    #endif // M300
-
-    #ifdef PIDTEMP
-    case 301: // M301
-      {
-        if(code_seen('P')) Kp = code_value();
-        if(code_seen('I')) Ki = scalePID_i(code_value());
-        if(code_seen('D')) Kd = scalePID_d(code_value());
-
-        #ifdef PID_ADD_EXTRUSION_RATE
-        if(code_seen('C')) Kc = code_value();
-        #endif
-
-        updatePID();
-        SERIAL_PROTOCOLRPGM(MSG_OK);
-        SERIAL_PROTOCOL(" p:");
-        SERIAL_PROTOCOL(Kp);
-        SERIAL_PROTOCOL(" i:");
-        SERIAL_PROTOCOL(unscalePID_i(Ki));
-        SERIAL_PROTOCOL(" d:");
-        SERIAL_PROTOCOL(unscalePID_d(Kd));
-        #ifdef PID_ADD_EXTRUSION_RATE
-        SERIAL_PROTOCOL(" c:");
-        //Kc does not have scaling applied above, or in resetting defaults
-        SERIAL_PROTOCOL(Kc);
-        #endif
-        SERIAL_PROTOCOLLN("");
-      }
-      break;
-    #endif //PIDTEMP
-    #ifdef PIDTEMPBED
-    case 304: // M304
-      {
-        if(code_seen('P')) bedKp = code_value();
-        if(code_seen('I')) bedKi = scalePID_i(code_value());
-        if(code_seen('D')) bedKd = scalePID_d(code_value());
-
-        updatePID();
-       	SERIAL_PROTOCOLRPGM(MSG_OK);
-        SERIAL_PROTOCOL(" p:");
-        SERIAL_PROTOCOL(bedKp);
-        SERIAL_PROTOCOL(" i:");
-        SERIAL_PROTOCOL(unscalePID_i(bedKi));
-        SERIAL_PROTOCOL(" d:");
-        SERIAL_PROTOCOL(unscalePID_d(bedKd));
-        SERIAL_PROTOCOLLN("");
-      }
-      break;
-    #endif //PIDTEMP
-    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
-     {
-     	#ifdef CHDK
-       
-         SET_OUTPUT(CHDK);
-         WRITE(CHDK, HIGH);
-         chdkHigh = millis();
-         chdkActive = true;
-       
-       #else
-     	
-      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
-	const uint8_t NUM_PULSES=16;
-	const float PULSE_LENGTH=0.01524;
-	for(int i=0; i < NUM_PULSES; i++) {
-        WRITE(PHOTOGRAPH_PIN, HIGH);
-        _delay_ms(PULSE_LENGTH);
-        WRITE(PHOTOGRAPH_PIN, LOW);
-        _delay_ms(PULSE_LENGTH);
-        }
-        delay(7.33);
-        for(int i=0; i < NUM_PULSES; i++) {
-        WRITE(PHOTOGRAPH_PIN, HIGH);
-        _delay_ms(PULSE_LENGTH);
-        WRITE(PHOTOGRAPH_PIN, LOW);
-        _delay_ms(PULSE_LENGTH);
-        }
-      	#endif
-      #endif //chdk end if
-     }
-    break;
-#ifdef DOGLCD
-    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
-     {
-	  if (code_seen('C')) {
-	   lcd_setcontrast( ((int)code_value())&63 );
-          }
-          SERIAL_PROTOCOLPGM("lcd contrast value: ");
-          SERIAL_PROTOCOL(lcd_contrast);
-          SERIAL_PROTOCOLLN("");
-     }
-    break;
-#endif
-    #ifdef PREVENT_DANGEROUS_EXTRUDE
-    case 302: // allow cold extrudes, or set the minimum extrude temperature
-    {
-	  float temp = .0;
-	  if (code_seen('S')) temp=code_value();
-      set_extrude_min_temp(temp);
-    }
-    break;
-	#endif
-    case 303: // M303 PID autotune
-    {
-      float temp = 150.0;
-      int e=0;
-      int c=5;
-      if (code_seen('E')) e=code_value();
-        if (e<0)
-          temp=70;
-      if (code_seen('S')) temp=code_value();
-      if (code_seen('C')) c=code_value();
-      PID_autotune(temp, e, c);
-    }
-    break;
-    case 400: // M400 finish all moves
-    {
-      st_synchronize();
-    }
-    break;
-
-#ifdef FILAMENT_SENSOR
-case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width 
-    {
-    #if (FILWIDTH_PIN > -1) 
-    if(code_seen('N')) filament_width_nominal=code_value();
-    else{
-    SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); 
-    SERIAL_PROTOCOLLN(filament_width_nominal); 
-    }
-    #endif
-    }
-    break; 
-    
-    case 405:  //M405 Turn on filament sensor for control 
-    {
-    
-    
-    if(code_seen('D')) meas_delay_cm=code_value();
-       
-       if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
-       	meas_delay_cm = MAX_MEASUREMENT_DELAY;
-    
-       if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup
-    	   {
-    	   int temp_ratio = widthFil_to_size_ratio(); 
-       	    
-       	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
-       	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte
-       	        }
-       	    delay_index1=0;
-       	    delay_index2=0;	
-    	   }
-    
-    filament_sensor = true ; 
-    
-    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
-    //SERIAL_PROTOCOL(filament_width_meas); 
-    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); 
-    //SERIAL_PROTOCOL(extrudemultiply); 
-    } 
-    break; 
-    
-    case 406:  //M406 Turn off filament sensor for control 
-    {      
-    filament_sensor = false ; 
-    } 
-    break; 
-  
-    case 407:   //M407 Display measured filament diameter 
-    { 
-     
-    
-    
-    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
-    SERIAL_PROTOCOLLN(filament_width_meas);   
-    } 
-    break; 
-    #endif
-
-    case 500: // M500 Store settings in EEPROM
-    {
-        Config_StoreSettings();
-    }
-    break;
-    case 501: // M501 Read settings from EEPROM
-    {
-        Config_RetrieveSettings();
-    }
-    break;
-    case 502: // M502 Revert to default settings
-    {
-        Config_ResetDefault();
-    }
-    break;
-    case 503: // M503 print settings currently in memory
-    {
-        Config_PrintSettings();
-    }
-    break;
-    case 509: //M509 Force language selection
-    {
-        lcd_force_language_selection();
-        SERIAL_ECHO_START;
-        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
-    }
-    break;
-    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
-    case 540:
-    {
-        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
-    }
-    break;
-    #endif
-
-    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
-    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
-    {
-      float value;
-      if (code_seen('Z'))
-      {
-        value = code_value();
-        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
-        {
-          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
-          SERIAL_PROTOCOLLN("");
-        }
-        else
-        {
-          SERIAL_ECHO_START;
-          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
-          SERIAL_ECHORPGM(MSG_Z_MIN);
-          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
-          SERIAL_ECHORPGM(MSG_Z_MAX);
-          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
-          SERIAL_PROTOCOLLN("");
-        }
-      }
-      else
-      {
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
-          SERIAL_ECHO(-zprobe_zoffset);
-          SERIAL_PROTOCOLLN("");
-      }
-      break;
-    }
-    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
-
-    #ifdef FILAMENTCHANGEENABLE
-    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
-    {
-
-		st_synchronize();
-		float target[4];
-		float lastpos[4];
-
-        if (farm_mode)
-            
-        {
-            
-            prusa_statistics(22);
-            
-        }
-        
-        feedmultiplyBckp=feedmultiply;
-        int8_t TooLowZ = 0;
-
-        target[X_AXIS]=current_position[X_AXIS];
-        target[Y_AXIS]=current_position[Y_AXIS];
-        target[Z_AXIS]=current_position[Z_AXIS];
-        target[E_AXIS]=current_position[E_AXIS];
-        lastpos[X_AXIS]=current_position[X_AXIS];
-        lastpos[Y_AXIS]=current_position[Y_AXIS];
-        lastpos[Z_AXIS]=current_position[Z_AXIS];
-        lastpos[E_AXIS]=current_position[E_AXIS];
-
-        //Retract extruder
-        if(code_seen('E'))
-        {
-          target[E_AXIS]+= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_FIRSTRETRACT
-            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
-          #endif
-        }
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-
-        //Lift Z
-        if(code_seen('Z'))
-        {
-          target[Z_AXIS]+= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_ZADD
-            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
-            if(target[Z_AXIS] < 10){
-              target[Z_AXIS]+= 10 ;
-              TooLowZ = 1;
-            }else{
-              TooLowZ = 0;
-            }
-          #endif
-     
-          
-        }
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
-
-        //Move XY to side
-        if(code_seen('X'))
-        {
-          target[X_AXIS]+= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_XPOS
-            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
-          #endif
-        }
-        if(code_seen('Y'))
-        {
-          target[Y_AXIS]= code_value();
-        }
-        else
-        {
-          #ifdef FILAMENTCHANGE_YPOS
-            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
-          #endif
-        }
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
-		st_synchronize();
-		custom_message = true;
-		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
-
-        // Unload filament
-        if(code_seen('L'))
-        {
-          target[E_AXIS]+= code_value();
-        }
-        else
-        {
-			#ifdef SNMM
-
-			#else
-				#ifdef FILAMENTCHANGE_FINALRETRACT
-							target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
-				#endif
-			#endif // SNMM
-        }
-
-#ifdef SNMM
-		target[E_AXIS] += 12;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
-		target[E_AXIS] += 6;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
-		target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
-		st_synchronize();
-		target[E_AXIS] += (FIL_COOLING);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-		target[E_AXIS] += (FIL_COOLING*-1);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-		target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
-		st_synchronize();
-
-#else
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-#endif // SNMM
-		     
-
-        //finish moves
-        st_synchronize();
-        //disable extruder steppers so filament can be removed
-        disable_e0();
-        disable_e1();
-        disable_e2();
-        delay(100);
-        
-        //Wait for user to insert filament
-        uint8_t cnt=0;
-        int counterBeep = 0;
-        lcd_wait_interact();
-		load_filament_time = millis();
-        while(!lcd_clicked()){
-
-		  cnt++;
-          manage_heater();
-          manage_inactivity(true);
-
-/*#ifdef SNMM
-		  target[E_AXIS] += 0.002;
-		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-
-#endif // SNMM*/
-
-          if(cnt==0)
-          {
-          #if BEEPER > 0
-            if (counterBeep== 500){
-              counterBeep = 0;  
-            }
-            SET_OUTPUT(BEEPER);
-            if (counterBeep== 0){
-              WRITE(BEEPER,HIGH);
-            }			
-            if (counterBeep== 20){
-              WRITE(BEEPER,LOW);
-            }
-            counterBeep++;
-          #else
-			   #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
-              lcd_buzz(1000/6,100);
-			   #else
-			     lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
-			   #endif
-          #endif
-          }
-
-        }
-		WRITE(BEEPER, LOW);
-#ifdef SNMM
-		display_loading();
-		do {
-			target[E_AXIS] += 0.002;
-			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-			delay_keep_alive(2);
-		} while (!lcd_clicked());		
-		/*if (millis() - load_filament_time > 2) {
-			load_filament_time = millis();
-			target[E_AXIS] += 0.001;
-			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
-		}*/
-#endif
-        //Filament inserted
-        
-        
-
-		//Feed the filament to the end of nozzle quickly        
-#ifdef SNMM
-		
-		st_synchronize();
-		target[E_AXIS] += bowden_length[snmm_extruder];
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
-		target[E_AXIS] += FIL_LOAD_LENGTH - 60;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
-		target[E_AXIS] += 40;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-		target[E_AXIS] += 10;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-#else
-		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
-		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
-#endif // SNMM
-        
-        //Extrude some filament
-        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
-        
- 
-
-        
-        //Wait for user to check the state
-        lcd_change_fil_state = 0;
-        lcd_loading_filament();
-        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
-          lcd_change_fil_state = 0;
-          lcd_alright();
-          switch(lcd_change_fil_state){
-            
-             // Filament failed to load so load it again
-             case 2:
-#ifdef SNMM
-				 display_loading();
-				 do {
-					 target[E_AXIS] += 0.002;
-					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
-					 delay_keep_alive(2);
-				 } while (!lcd_clicked());
-
-				 st_synchronize();
-				 target[E_AXIS] += bowden_length[snmm_extruder];
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
-				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
-				 target[E_AXIS] += 40;
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
-				 target[E_AXIS] += 10;
-				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
-
-#else
-                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
-                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
-#endif                
-                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
-
-                     lcd_loading_filament();
-
-                     break;
-
-             // Filament loaded properly but color is not clear
-             case 3:
-                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
-                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
-                     lcd_loading_color();
-                     break;
-                 
-             // Everything good             
-             default:
-                     lcd_change_success();
-					 lcd_update_enable(true);
-                     break;
-          }
-          
-        }
-        
-
-      //Not let's go back to print
-
-      //Feed a little of filament to stabilize pressure
-      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
-      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
-        
-      //Retract
-      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
-      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-        
-
-        
-      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
-      
-      //Move XY back
-      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
-      
-      //Move Z back
-      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
-        
-        
-      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
-        
-      //Unretract       
-      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
-        
-      //Set E position to original  
-      plan_set_e_position(lastpos[E_AXIS]);
-       
-      //Recover feed rate 
-      feedmultiply=feedmultiplyBckp;
-      char cmd[9];
-      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
-      enquecommand(cmd);
-      
-	  lcd_setstatuspgm(WELCOME_MSG);
-	  custom_message = false;
-	  custom_message_type = 0;
-        
-    }
-    break;
-    #endif //FILAMENTCHANGEENABLE
-	case 601: {
-		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
-	}
-	break;
-
-	case 602: {
-		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
-	}
-	break;
-
-    case 907: // M907 Set digital trimpot motor current using axis codes.
-    {
-      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
-        if(code_seen('B')) digipot_current(4,code_value());
-        if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
-      #endif
-      #ifdef MOTOR_CURRENT_PWM_XY_PIN
-        if(code_seen('X')) digipot_current(0, code_value());
-      #endif
-      #ifdef MOTOR_CURRENT_PWM_Z_PIN
-        if(code_seen('Z')) digipot_current(1, code_value());
-      #endif
-      #ifdef MOTOR_CURRENT_PWM_E_PIN
-        if(code_seen('E')) digipot_current(2, code_value());
-      #endif
-      #ifdef DIGIPOT_I2C
-        // this one uses actual amps in floating point
-        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
-        // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
-        for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
-      #endif
-    }
-    break;
-    case 908: // M908 Control digital trimpot directly.
-    {
-      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
-        uint8_t channel,current;
-        if(code_seen('P')) channel=code_value();
-        if(code_seen('S')) current=code_value();
-        digitalPotWrite(channel, current);
-      #endif
-    }
-    break;
-    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
-    {
-      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
-        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
-        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
-        if(code_seen('B')) microstep_mode(4,code_value());
-        microstep_readings();
-      #endif
-    }
-    break;
-    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
-    {
-      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
-      if(code_seen('S')) switch((int)code_value())
-      {
-        case 1:
-          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
-          if(code_seen('B')) microstep_ms(4,code_value(),-1);
-          break;
-        case 2:
-          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
-          if(code_seen('B')) microstep_ms(4,-1,code_value());
-          break;
-      }
-      microstep_readings();
-      #endif
-    }
-    break;
-	case 701: //M701: load filament
-	{
-		enable_z();
-		custom_message = true;
-		custom_message_type = 2;
-		
-		lcd_setstatuspgm(MSG_LOADING_FILAMENT);
-		current_position[E_AXIS] += 70;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
-
-		current_position[E_AXIS] += 25;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
-		st_synchronize();
-
-		if (!farm_mode && loading_flag) {
-			bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
-
-			while (!clean) {
-				lcd_update_enable(true);
-				lcd_update(2);
-				current_position[E_AXIS] += 25;
-				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
-				st_synchronize();
-				clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
-			}
-		}
-		lcd_update_enable(true);
-		lcd_update(2);
-		lcd_setstatuspgm(WELCOME_MSG);
-		disable_z();
-		loading_flag = false;
-		custom_message = false;
-		custom_message_type = 0;
-	}
-	break;
-	case 702:
-	{
-#ifdef SNMM
-		if (code_seen('U')) {
-			extr_unload_used(); //unload all filaments which were used in current print
-		}
-		else if (code_seen('C')) {
-			extr_unload(); //unload just current filament 
-		}
-		else {
-			extr_unload_all(); //unload all filaments
-		}
-#else
-		custom_message = true;
-		custom_message_type = 2;
-		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); 
-		current_position[E_AXIS] -= 80;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
-		st_synchronize();
-		lcd_setstatuspgm(WELCOME_MSG);
-		custom_message = false;
-		custom_message_type = 0;
-#endif	
-	}
-	break;
-
-    case 999: // M999: Restart after being stopped
-      Stopped = false;
-      lcd_reset_alert_level();
-      gcode_LastN = Stopped_gcode_LastN;
-      FlushSerialRequestResend();
-    break;
-	default: SERIAL_ECHOLNPGM("Invalid M code.");
-    }
-	
-  } // end if(code_seen('M')) (end of M codes)
-
-  else if(code_seen('T'))
-  {
-	  int index;
-	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
-	   
-	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
-		  SERIAL_ECHOLNPGM("Invalid T code.");
-	  }
-	  else {
-		  if (*(strchr_pointer + index) == '?') {
-			  tmp_extruder = choose_extruder_menu();
-		  }
-		  else {
-			  tmp_extruder = code_value();
-		  }
-		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print
-#ifdef SNMM
-		  snmm_extruder = tmp_extruder;
-
-		  st_synchronize();
-		  delay(100);
-
-		  disable_e0();
-		  disable_e1();
-		  disable_e2();
-
-		  pinMode(E_MUX0_PIN, OUTPUT);
-		  pinMode(E_MUX1_PIN, OUTPUT);
-		  pinMode(E_MUX2_PIN, OUTPUT);
-
-		  delay(100);
-		  SERIAL_ECHO_START;
-		  SERIAL_ECHO("T:");
-		  SERIAL_ECHOLN((int)tmp_extruder);
-		  switch (tmp_extruder) {
-		  case 1:
-			  WRITE(E_MUX0_PIN, HIGH);
-			  WRITE(E_MUX1_PIN, LOW);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  case 2:
-			  WRITE(E_MUX0_PIN, LOW);
-			  WRITE(E_MUX1_PIN, HIGH);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  case 3:
-			  WRITE(E_MUX0_PIN, HIGH);
-			  WRITE(E_MUX1_PIN, HIGH);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  default:
-			  WRITE(E_MUX0_PIN, LOW);
-			  WRITE(E_MUX1_PIN, LOW);
-			  WRITE(E_MUX2_PIN, LOW);
-
-			  break;
-		  }
-		  delay(100);
-
-#else
-		  if (tmp_extruder >= EXTRUDERS) {
-			  SERIAL_ECHO_START;
-			  SERIAL_ECHOPGM("T");
-			  SERIAL_PROTOCOLLN((int)tmp_extruder);
-			  SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
-		  }
-		  else {
-			  boolean make_move = false;
-			  if (code_seen('F')) {
-				  make_move = true;
-				  next_feedrate = code_value();
-				  if (next_feedrate > 0.0) {
-					  feedrate = next_feedrate;
-				  }
-			  }
-#if EXTRUDERS > 1
-			  if (tmp_extruder != active_extruder) {
-				  // Save current position to return to after applying extruder offset
-				  memcpy(destination, current_position, sizeof(destination));
-				  // Offset extruder (only by XY)
-				  int i;
-				  for (i = 0; i < 2; i++) {
-					  current_position[i] = current_position[i] -
-						  extruder_offset[i][active_extruder] +
-						  extruder_offset[i][tmp_extruder];
-				  }
-				  // Set the new active extruder and position
-				  active_extruder = tmp_extruder;
-				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-				  // Move to the old position if 'F' was in the parameters
-				  if (make_move && Stopped == false) {
-					  prepare_move();
-				  }
-			  }
-#endif
-			  SERIAL_ECHO_START;
-			  SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
-			  SERIAL_PROTOCOLLN((int)active_extruder);
-		  }
-
-#endif
-	  }
-  } // end if(code_seen('T')) (end of T codes)
-
-  else
-  {
-    SERIAL_ECHO_START;
-    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
-    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
-    SERIAL_ECHOLNPGM("\"");
-  }
-
-  ClearToSend();
-}
-
-void FlushSerialRequestResend()
-{
-  //char cmdbuffer[bufindr][100]="Resend:";
-  MYSERIAL.flush();
-  SERIAL_PROTOCOLRPGM(MSG_RESEND);
-  SERIAL_PROTOCOLLN(gcode_LastN + 1);
-  ClearToSend();
-}
-
-// Confirm the execution of a command, if sent from a serial line.
-// Execution of a command from a SD card will not be confirmed.
-void ClearToSend()
-{
-    previous_millis_cmd = millis();
-    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
-        SERIAL_PROTOCOLLNRPGM(MSG_OK);
-}
-
-void get_coordinates()
-{
-  bool seen[4]={false,false,false,false};
-  for(int8_t i=0; i < NUM_AXIS; i++) {
-    if(code_seen(axis_codes[i]))
-    {
-      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
-      seen[i]=true;
-    }
-    else destination[i] = current_position[i]; //Are these else lines really needed?
-  }
-  if(code_seen('F')) {
-    next_feedrate = code_value();
-    if(next_feedrate > 0.0) feedrate = next_feedrate;
-  }
-}
-
-void get_arc_coordinates()
-{
-#ifdef SF_ARC_FIX
-   bool relative_mode_backup = relative_mode;
-   relative_mode = true;
-#endif
-   get_coordinates();
-#ifdef SF_ARC_FIX
-   relative_mode=relative_mode_backup;
-#endif
-
-   if(code_seen('I')) {
-     offset[0] = code_value();
-   }
-   else {
-     offset[0] = 0.0;
-   }
-   if(code_seen('J')) {
-     offset[1] = code_value();
-   }
-   else {
-     offset[1] = 0.0;
-   }
-}
-
-void clamp_to_software_endstops(float target[3])
-{
-    world2machine_clamp(target[0], target[1]);
-
-    // Clamp the Z coordinate.
-    if (min_software_endstops) {
-        float negative_z_offset = 0;
-        #ifdef ENABLE_AUTO_BED_LEVELING
-            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
-            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
-        #endif
-        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
-    }
-    if (max_software_endstops) {
-        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
-    }
-}
-
-#ifdef MESH_BED_LEVELING
-    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
-        float dx = x - current_position[X_AXIS];
-        float dy = y - current_position[Y_AXIS];
-        float dz = z - current_position[Z_AXIS];
-        int n_segments = 0;
-		
-        if (mbl.active) {
-            float len = abs(dx) + abs(dy);
-            if (len > 0)
-                // Split to 3cm segments or shorter.
-                n_segments = int(ceil(len / 30.f));
-        }
-        
-        if (n_segments > 1) {
-            float de = e - current_position[E_AXIS];
-            for (int i = 1; i < n_segments; ++ i) {
-                float t = float(i) / float(n_segments);
-                plan_buffer_line(
-                                 current_position[X_AXIS] + t * dx,
-                                 current_position[Y_AXIS] + t * dy,
-                                 current_position[Z_AXIS] + t * dz,
-                                 current_position[E_AXIS] + t * de,
-                                 feed_rate, extruder);
-            }
-        }
-        // The rest of the path.
-        plan_buffer_line(x, y, z, e, feed_rate, extruder);
-        current_position[X_AXIS] = x;
-        current_position[Y_AXIS] = y;
-        current_position[Z_AXIS] = z;
-        current_position[E_AXIS] = e;
-    }
-#endif  // MESH_BED_LEVELING
-    
-void prepare_move()
-{
-  clamp_to_software_endstops(destination);
-  previous_millis_cmd = millis();
-
-  // Do not use feedmultiply for E or Z only moves
-  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
-      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-  }
-  else {
-#ifdef MESH_BED_LEVELING
-    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
-#else
-     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
-#endif
-  }
-
-  for(int8_t i=0; i < NUM_AXIS; i++) {
-    current_position[i] = destination[i];
-  }
-}
-
-void prepare_arc_move(char isclockwise) {
-  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
-
-  // Trace the arc
-  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
-
-  // As far as the parser is concerned, the position is now == target. In reality the
-  // motion control system might still be processing the action and the real tool position
-  // in any intermediate location.
-  for(int8_t i=0; i < NUM_AXIS; i++) {
-    current_position[i] = destination[i];
-  }
-  previous_millis_cmd = millis();
-}
-
-#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
-
-#if defined(FAN_PIN)
-  #if CONTROLLERFAN_PIN == FAN_PIN
-    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
-  #endif
-#endif
-
-unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
-unsigned long lastMotorCheck = 0;
-
-void controllerFan()
-{
-  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
-  {
-    lastMotorCheck = millis();
-
-    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
-    #if EXTRUDERS > 2
-       || !READ(E2_ENABLE_PIN)
-    #endif
-    #if EXTRUDER > 1
-      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
-       || !READ(X2_ENABLE_PIN)
-      #endif
-       || !READ(E1_ENABLE_PIN)
-    #endif
-       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
-    {
-      lastMotor = millis(); //... set time to NOW so the fan will turn on
-    }
-
-    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
-    {
-        digitalWrite(CONTROLLERFAN_PIN, 0);
-        analogWrite(CONTROLLERFAN_PIN, 0);
-    }
-    else
-    {
-        // allows digital or PWM fan output to be used (see M42 handling)
-        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
-        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
-    }
-  }
-}
-#endif
-
-#ifdef TEMP_STAT_LEDS
-static bool blue_led = false;
-static bool red_led = false;
-static uint32_t stat_update = 0;
-
-void handle_status_leds(void) {
-  float max_temp = 0.0;
-  if(millis() > stat_update) {
-    stat_update += 500; // Update every 0.5s
-    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
-       max_temp = max(max_temp, degHotend(cur_extruder));
-       max_temp = max(max_temp, degTargetHotend(cur_extruder));
-    }
-    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
-      max_temp = max(max_temp, degTargetBed());
-      max_temp = max(max_temp, degBed());
-    #endif
-    if((max_temp > 55.0) && (red_led == false)) {
-      digitalWrite(STAT_LED_RED, 1);
-      digitalWrite(STAT_LED_BLUE, 0);
-      red_led = true;
-      blue_led = false;
-    }
-    if((max_temp < 54.0) && (blue_led == false)) {
-      digitalWrite(STAT_LED_RED, 0);
-      digitalWrite(STAT_LED_BLUE, 1);
-      red_led = false;
-      blue_led = true;
-    }
-  }
-}
-#endif
-
-void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
-{
-	
-#if defined(KILL_PIN) && KILL_PIN > -1
-	static int killCount = 0;   // make the inactivity button a bit less responsive
-   const int KILL_DELAY = 10000;
-#endif
-	
-    if(buflen < (BUFSIZE-1)){
-        get_command();
-    }
-
-  if( (millis() - previous_millis_cmd) >  max_inactive_time )
-    if(max_inactive_time)
-      kill();
-  if(stepper_inactive_time)  {
-    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
-    {
-      if(blocks_queued() == false && ignore_stepper_queue == false) {
-        disable_x();
-//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
-        disable_y();
-        disable_z();
-        disable_e0();
-        disable_e1();
-        disable_e2();
-      }
-    }
-  }
-  
-  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
-    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
-    {
-      chdkActive = false;
-      WRITE(CHDK, LOW);
-    }
-  #endif
-  
-  #if defined(KILL_PIN) && KILL_PIN > -1
-    
-    // Check if the kill button was pressed and wait just in case it was an accidental
-    // key kill key press
-    // -------------------------------------------------------------------------------
-    if( 0 == READ(KILL_PIN) )
-    {
-       killCount++;
-    }
-    else if (killCount > 0)
-    {
-       killCount--;
-    }
-    // Exceeded threshold and we can confirm that it was not accidental
-    // KILL the machine
-    // ----------------------------------------------------------------
-    if ( killCount >= KILL_DELAY)
-    {
-       kill();
-    }
-  #endif
-    
-  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
-    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
-  #endif
-  #ifdef EXTRUDER_RUNOUT_PREVENT
-    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
-    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
-    {
-     bool oldstatus=READ(E0_ENABLE_PIN);
-     enable_e0();
-     float oldepos=current_position[E_AXIS];
-     float oldedes=destination[E_AXIS];
-     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
-                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
-                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
-     current_position[E_AXIS]=oldepos;
-     destination[E_AXIS]=oldedes;
-     plan_set_e_position(oldepos);
-     previous_millis_cmd=millis();
-     st_synchronize();
-     WRITE(E0_ENABLE_PIN,oldstatus);
-    }
-  #endif
-  #ifdef TEMP_STAT_LEDS
-      handle_status_leds();
-  #endif
-  check_axes_activity();
-}
-
-void kill(const char *full_screen_message)
-{
-  cli(); // Stop interrupts
-  disable_heater();
-
-  disable_x();
-//  SERIAL_ECHOLNPGM("kill - disable Y");
-  disable_y();
-  disable_z();
-  disable_e0();
-  disable_e1();
-  disable_e2();
-
-#if defined(PS_ON_PIN) && PS_ON_PIN > -1
-  pinMode(PS_ON_PIN,INPUT);
-#endif
-  SERIAL_ERROR_START;
-  SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
-  if (full_screen_message != NULL) {
-      SERIAL_ERRORLNRPGM(full_screen_message);
-      lcd_display_message_fullscreen_P(full_screen_message);
-  } else {
-      LCD_ALERTMESSAGERPGM(MSG_KILLED);
-  }
-
-  // FMC small patch to update the LCD before ending
-  sei();   // enable interrupts
-  for ( int i=5; i--; lcd_update())
-  {
-     delay(200);	
-  }
-  cli();   // disable interrupts
-  suicide();
-  while(1) { /* Intentionally left empty */ } // Wait for reset
-}
-
-void Stop()
-{
-  disable_heater();
-  if(Stopped == false) {
-    Stopped = true;
-    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
-    SERIAL_ERROR_START;
-    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
-    LCD_MESSAGERPGM(MSG_STOPPED);
-  }
-}
-
-bool IsStopped() { return Stopped; };
-
-#ifdef FAST_PWM_FAN
-void setPwmFrequency(uint8_t pin, int val)
-{
-  val &= 0x07;
-  switch(digitalPinToTimer(pin))
-  {
-
-    #if defined(TCCR0A)
-    case TIMER0A:
-    case TIMER0B:
-//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
-//         TCCR0B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR1A)
-    case TIMER1A:
-    case TIMER1B:
-//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
-//         TCCR1B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR2)
-    case TIMER2:
-    case TIMER2:
-         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
-         TCCR2 |= val;
-         break;
-    #endif
-
-    #if defined(TCCR2A)
-    case TIMER2A:
-    case TIMER2B:
-         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
-         TCCR2B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR3A)
-    case TIMER3A:
-    case TIMER3B:
-    case TIMER3C:
-         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
-         TCCR3B |= val;
-         break;
-    #endif
-
-    #if defined(TCCR4A)
-    case TIMER4A:
-    case TIMER4B:
-    case TIMER4C:
-         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
-         TCCR4B |= val;
-         break;
-   #endif
-
-    #if defined(TCCR5A)
-    case TIMER5A:
-    case TIMER5B:
-    case TIMER5C:
-         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
-         TCCR5B |= val;
-         break;
-   #endif
-
-  }
-}
-#endif //FAST_PWM_FAN
-
-bool setTargetedHotend(int code){
-  tmp_extruder = active_extruder;
-  if(code_seen('T')) {
-    tmp_extruder = code_value();
-    if(tmp_extruder >= EXTRUDERS) {
-      SERIAL_ECHO_START;
-      switch(code){
-        case 104:
-          SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
-          break;
-        case 105:
-          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
-          break;
-        case 109:
-          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
-          break;
-        case 218:
-          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
-          break;
-        case 221:
-          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
-          break;
-      }
-      SERIAL_PROTOCOLLN((int)tmp_extruder);
-      return true;
-    }
-  }
-  return false;
-}
-
-void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
-{
-	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
-	{
-		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
-		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
-	}
-
-	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
-	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
-
-	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
-	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
-
-	total_filament_used = 0;
-
-}
-
-float calculate_volumetric_multiplier(float diameter) {
-	float area = .0;
-	float radius = .0;
-
-	radius = diameter * .5;
-	if (! volumetric_enabled || radius == 0) {
-		area = 1;
-	}
-	else {
-		area = M_PI * pow(radius, 2);
-	}
-
-	return 1.0 / area;
-}
-
-void calculate_volumetric_multipliers() {
-	volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
-#if EXTRUDERS > 1
-	volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
-#if EXTRUDERS > 2
-	volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
-#endif
-#endif
-}
-
-void delay_keep_alive(unsigned int ms)
-{
-    for (;;) {
-        manage_heater();
-        // Manage inactivity, but don't disable steppers on timeout.
-        manage_inactivity(true);
-        lcd_update();
-        if (ms == 0)
-            break;
-        else if (ms >= 50) {
-            delay(50);
-            ms -= 50;
-        } else {
-            delay(ms);
-            ms = 0;
-        }
-    }
-}
-
-void wait_for_heater(long codenum) {
-
-#ifdef TEMP_RESIDENCY_TIME
-	long residencyStart;
-	residencyStart = -1;
-	/* continue to loop until we have reached the target temp
-	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
-	while ((!cancel_heatup) && ((residencyStart == -1) ||
-		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
-#else
-	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
-#endif //TEMP_RESIDENCY_TIME
-		if ((millis() - codenum) > 1000UL)
-		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
-			if (!farm_mode) {
-				SERIAL_PROTOCOLPGM("T:");
-				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
-				SERIAL_PROTOCOLPGM(" E:");
-				SERIAL_PROTOCOL((int)tmp_extruder);
-
-#ifdef TEMP_RESIDENCY_TIME
-				SERIAL_PROTOCOLPGM(" W:");
-				if (residencyStart > -1)
-				{
-					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
-					SERIAL_PROTOCOLLN(codenum);
-				}
-				else
-				{
-					SERIAL_PROTOCOLLN("?");
-				}
-			}
-#else
-				SERIAL_PROTOCOLLN("");
-#endif
-				codenum = millis();
-		}
-			manage_heater();
-			manage_inactivity();
-			lcd_update();
-#ifdef TEMP_RESIDENCY_TIME
-			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
-			or when current temp falls outside the hysteresis after target temp was reached */
-			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
-				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
-				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
-			{
-				residencyStart = millis();
-			}
-#endif //TEMP_RESIDENCY_TIME
-	}
-}
-
-void check_babystep() {
-	int babystep_z;
-	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
-	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
-		babystep_z = 0; //if babystep value is out of min max range, set it to 0
-		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
-		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
-		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
-		lcd_update_enable(true);		
-	}	
-}
-#ifdef DIS
-void d_setup()
-{	
-	pinMode(D_DATACLOCK, INPUT_PULLUP);
-	pinMode(D_DATA, INPUT_PULLUP);
-	pinMode(D_REQUIRE, OUTPUT);
-	digitalWrite(D_REQUIRE, HIGH);
-}
-
-
-float d_ReadData()
-{
-	int digit[13];
-	String mergeOutput;
-	float output;
-
-	digitalWrite(D_REQUIRE, HIGH);
-	for (int i = 0; i<13; i++)
-	{
-		for (int j = 0; j < 4; j++)
-		{
-			while (digitalRead(D_DATACLOCK) == LOW) {}
-			while (digitalRead(D_DATACLOCK) == HIGH) {}
-			bitWrite(digit[i], j, digitalRead(D_DATA));
-		}
-	}
-
-	digitalWrite(D_REQUIRE, LOW);
-	mergeOutput = "";
-	output = 0;
-	for (int r = 5; r <= 10; r++) //Merge digits
-	{
-		mergeOutput += digit[r];
-	}
-	output = mergeOutput.toFloat();
-
-	if (digit[4] == 8) //Handle sign
-	{
-		output *= -1;
-	}
-
-	for (int i = digit[11]; i > 0; i--) //Handle floating point
-	{
-		output /= 10;
-	}
-
-	return output;
-
-}
-
-void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
-	int t1 = 0;
-	int t_delay = 0;
-	int digit[13];
-	int m;
-	char str[3];
-	//String mergeOutput;
-	char mergeOutput[15];
-	float output;
-
-	int mesh_point = 0; //index number of calibration point
-	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
-	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
-
-	float mesh_home_z_search = 4;
-	float row[x_points_num];
-	int ix = 0;
-	int iy = 0;
-
-	char* filename_wldsd = "wldsd.txt";
-	char data_wldsd[70];
-	char numb_wldsd[10];
-
-	d_setup();
-
-	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
-		// We don't know where we are! HOME!
-		// Push the commands to the front of the message queue in the reverse order!
-		// There shall be always enough space reserved for these commands.
-		repeatcommand_front(); // repeat G80 with all its parameters
-		
-		enquecommand_front_P((PSTR("G28 W0")));
-		enquecommand_front_P((PSTR("G1 Z5")));
-		return;
-	}
-	bool custom_message_old = custom_message;
-	unsigned int custom_message_type_old = custom_message_type;
-	unsigned int custom_message_state_old = custom_message_state;
-	custom_message = true;
-	custom_message_type = 1;
-	custom_message_state = (x_points_num * y_points_num) + 10;
-	lcd_update(1);
-
-	mbl.reset();
-	babystep_undo();
-
-	card.openFile(filename_wldsd, false);
-
-	current_position[Z_AXIS] = mesh_home_z_search;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
-
-	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
-	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
-	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
-
-	setup_for_endstop_move(false);
-
-	SERIAL_PROTOCOLPGM("Num X,Y: ");
-	SERIAL_PROTOCOL(x_points_num);
-	SERIAL_PROTOCOLPGM(",");
-	SERIAL_PROTOCOL(y_points_num);
-	SERIAL_PROTOCOLPGM("\nZ search height: ");
-	SERIAL_PROTOCOL(mesh_home_z_search);
-	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
-	SERIAL_PROTOCOL(x_dimension);
-	SERIAL_PROTOCOLPGM(",");
-	SERIAL_PROTOCOL(y_dimension);
-	SERIAL_PROTOCOLLNPGM("\nMeasured points:");
-
-	while (mesh_point != x_points_num * y_points_num) {
-		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
-		iy = mesh_point / x_points_num;
-		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
-		float z0 = 0.f;
-		current_position[Z_AXIS] = mesh_home_z_search;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
-		st_synchronize();
-
-
-		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
-		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
-
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
-		st_synchronize();
-
-		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
-			break;
-			card.closefile();
-		}
-
-
-		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
-		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
-		//strcat(data_wldsd, numb_wldsd);
-
-
-		
-		//MYSERIAL.println(data_wldsd);
-		//delay(1000);
-		//delay(3000);
-		//t1 = millis();
-		
-		//while (digitalRead(D_DATACLOCK) == LOW) {}
-		//while (digitalRead(D_DATACLOCK) == HIGH) {}
-		memset(digit, 0, sizeof(digit));
-		//cli();
-		digitalWrite(D_REQUIRE, LOW);	
-		
-		for (int i = 0; i<13; i++)
-		{
-			//t1 = millis();
-			for (int j = 0; j < 4; j++)
-			{
-				while (digitalRead(D_DATACLOCK) == LOW) {}				
-				while (digitalRead(D_DATACLOCK) == HIGH) {}
-				bitWrite(digit[i], j, digitalRead(D_DATA));
-			}
-			//t_delay = (millis() - t1);
-			//SERIAL_PROTOCOLPGM(" ");
-			//SERIAL_PROTOCOL_F(t_delay, 5);
-			//SERIAL_PROTOCOLPGM(" ");
-		}
-		//sei();
-		digitalWrite(D_REQUIRE, HIGH);
-		mergeOutput[0] = '\0';
-		output = 0;
-		for (int r = 5; r <= 10; r++) //Merge digits
-		{			
-			sprintf(str, "%d", digit[r]);
-			strcat(mergeOutput, str);
-		}
-		
-		output = atof(mergeOutput);
-
-		if (digit[4] == 8) //Handle sign
-		{
-			output *= -1;
-		}
-
-		for (int i = digit[11]; i > 0; i--) //Handle floating point
-		{
-			output *= 0.1;
-		}
-		
-
-		//output = d_ReadData();
-
-		//row[ix] = current_position[Z_AXIS];
-
-		memset(data_wldsd, 0, sizeof(data_wldsd));
-
-		for (int i = 0; i <3; i++) {
-			memset(numb_wldsd, 0, sizeof(numb_wldsd));
-			dtostrf(current_position[i], 8, 5, numb_wldsd);
-			strcat(data_wldsd, numb_wldsd);
-			strcat(data_wldsd, ";");
-
-		}
-		memset(numb_wldsd, 0, sizeof(numb_wldsd));
-		dtostrf(output, 8, 5, numb_wldsd);
-		strcat(data_wldsd, numb_wldsd);
-		//strcat(data_wldsd, ";");
-		card.write_command(data_wldsd);
-
-		
-		//row[ix] = d_ReadData();
-		
-		row[ix] = output; // current_position[Z_AXIS];
-
-		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
-			for (int i = 0; i < x_points_num; i++) {
-				SERIAL_PROTOCOLPGM(" ");
-				SERIAL_PROTOCOL_F(row[i], 5);
-
-
-			}
-			SERIAL_PROTOCOLPGM("\n");
-		}
-		custom_message_state--;
-		mesh_point++;
-		lcd_update(1);
-
-	}
-	card.closefile();
-
-}
-#endif
-
-void temp_compensation_start() {
-	
-	custom_message = true;
-	custom_message_type = 5;
-	custom_message_state = PINDA_HEAT_T + 1;
-	lcd_update(2);
-	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
-		current_position[E_AXIS] -= DEFAULT_RETRACTION;
-	}
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-	
-	current_position[X_AXIS] = PINDA_PREHEAT_X;
-	current_position[Y_AXIS] = PINDA_PREHEAT_Y;
-	current_position[Z_AXIS] = PINDA_PREHEAT_Z;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-	st_synchronize();
-	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
-
-	for (int i = 0; i < PINDA_HEAT_T; i++) {
-		delay_keep_alive(1000);
-		custom_message_state = PINDA_HEAT_T - i;
-		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
-		else lcd_update(1);
-	}	
-	custom_message_type = 0;
-	custom_message_state = 0;
-	custom_message = false;
-}
-
-void temp_compensation_apply() {
-	int i_add;
-	int compensation_value;
-	int z_shift = 0;
-	float z_shift_mm;
-
-	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
-		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
-			i_add = (target_temperature_bed - 60) / 10;
-			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
-			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
-		}else {
-			//interpolation
-			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
-		}
-		SERIAL_PROTOCOLPGM("\n");
-		SERIAL_PROTOCOLPGM("Z shift applied:");
-		MYSERIAL.print(z_shift_mm);
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
-		st_synchronize();
-		plan_set_z_position(current_position[Z_AXIS]);
-	}
-	else {		
-		//we have no temp compensation data
-	}
-}
-
-float temp_comp_interpolation(float inp_temperature) {
-
-	//cubic spline interpolation
-
-	int n, i, j, k;
-	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
-	int shift[10];
-	int temp_C[10];
-
-	n = 6; //number of measured points
-
-	shift[0] = 0;
-	for (i = 0; i < n; i++) {
-		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
-		temp_C[i] = 50 + i * 10; //temperature in C
-		
-		x[i] = (float)temp_C[i];
-		f[i] = (float)shift[i];
-	}
-	if (inp_temperature < x[0]) return 0;
-
-
-	for (i = n - 1; i>0; i--) {
-		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
-		h[i - 1] = x[i] - x[i - 1];
-	}
-	//*********** formation of h, s , f matrix **************
-	for (i = 1; i<n - 1; i++) {
-		m[i][i] = 2 * (h[i - 1] + h[i]);
-		if (i != 1) {
-			m[i][i - 1] = h[i - 1];
-			m[i - 1][i] = h[i - 1];
-		}
-		m[i][n - 1] = 6 * (F[i + 1] - F[i]);
-	}
-	//*********** forward elimination **************
-	for (i = 1; i<n - 2; i++) {
-		temp = (m[i + 1][i] / m[i][i]);
-		for (j = 1; j <= n - 1; j++)
-			m[i + 1][j] -= temp*m[i][j];
-	}
-	//*********** backward substitution *********
-	for (i = n - 2; i>0; i--) {
-		sum = 0;
-		for (j = i; j <= n - 2; j++)
-			sum += m[i][j] * s[j];
-		s[i] = (m[i][n - 1] - sum) / m[i][i];
-	}
-
-		for (i = 0; i<n - 1; i++)
-			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
-				a = (s[i + 1] - s[i]) / (6 * h[i]);
-				b = s[i] / 2;
-				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
-				d = f[i];
-				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
-			}
-
-		return sum;
-
-}
-
-void long_pause() //long pause print
-{
-	st_synchronize();
-	
-	//save currently set parameters to global variables
-	saved_feedmultiply = feedmultiply; 
-	HotendTempBckp = degTargetHotend(active_extruder);
-	fanSpeedBckp = fanSpeed;
-	start_pause_print = millis();
-		
-
-	//save position
-	pause_lastpos[X_AXIS] = current_position[X_AXIS];
-	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
-	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
-	pause_lastpos[E_AXIS] = current_position[E_AXIS];
-
-	//retract
-	current_position[E_AXIS] -= DEFAULT_RETRACTION;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
-
-	//lift z
-	current_position[Z_AXIS] += Z_PAUSE_LIFT;
-	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
-
-	//set nozzle target temperature to 0
-	setTargetHotend(0, 0);
-	setTargetHotend(0, 1);
-	setTargetHotend(0, 2);
-
-	//Move XY to side
-	current_position[X_AXIS] = X_PAUSE_POS;
-	current_position[Y_AXIS] = Y_PAUSE_POS;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
-
-	// Turn off the print fan
-	fanSpeed = 0;
-
-	st_synchronize();
-}
-
-void serialecho_temperatures() {
-	float tt = degHotend(active_extruder);
-	SERIAL_PROTOCOLPGM("T:");
-	SERIAL_PROTOCOL(tt);
-	SERIAL_PROTOCOLPGM(" E:");
-	SERIAL_PROTOCOL((int)active_extruder);
-	SERIAL_PROTOCOLPGM(" B:");
-	SERIAL_PROTOCOL_F(degBed(), 1);
-	SERIAL_PROTOCOLLN("");
+/* -*- c++ -*- */
+
+/*
+    Reprap firmware based on Sprinter and grbl.
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+  (https://github.com/kliment/Sprinter)
+  (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ */
+
+#include "Marlin.h"
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#include "vector_3.h"
+  #ifdef AUTO_BED_LEVELING_GRID
+    #include "qr_solve.h"
+  #endif
+#endif // ENABLE_AUTO_BED_LEVELING
+
+#ifdef MESH_BED_LEVELING
+  #include "mesh_bed_leveling.h"
+  #include "mesh_bed_calibration.h"
+#endif
+
+#include "ultralcd.h"
+#include "Configuration_prusa.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+#include "cardreader.h"
+#include "watchdog.h"
+#include "ConfigurationStore.h"
+#include "language.h"
+#include "pins_arduino.h"
+#include "math.h"
+#include "util.h"
+
+#include <avr/wdt.h>
+
+#ifdef BLINKM
+#include "BlinkM.h"
+#include "Wire.h"
+#endif
+
+#ifdef ULTRALCD
+#include "ultralcd.h"
+#endif
+
+#if NUM_SERVOS > 0
+#include "Servo.h"
+#endif
+
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+#include <SPI.h>
+#endif
+
+#define VERSION_STRING  "1.0.2"
+
+
+#include "ultralcd.h"
+
+// Macros for bit masks
+#define BIT(b) (1<<(b))
+#define TEST(n,b) (((n)&BIT(b))!=0)
+#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
+
+// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+
+// PRUSA CODES
+// P F - Returns FW versions
+// P R - Returns revision of printer
+
+// G0  -> G1
+// G1  - Coordinated Movement X Y Z E
+// G2  - CW ARC
+// G3  - CCW ARC
+// G4  - Dwell S<seconds> or P<milliseconds>
+// G10 - retract filament according to settings of M207
+// G11 - retract recover filament according to settings of M208
+// G28 - Home all Axis
+// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
+// G30 - Single Z Probe, probes bed at current XY location.
+// G31 - Dock sled (Z_PROBE_SLED only)
+// G32 - Undock sled (Z_PROBE_SLED only)
+// G80 - Automatic mesh bed leveling
+// G81 - Print bed profile
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to coordinates given
+
+// M Codes
+// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
+// M1   - Same as M0
+// M17  - Enable/Power all stepper motors
+// M18  - Disable all stepper motors; same as M84
+// M20  - List SD card
+// M21  - Init SD card
+// M22  - Release SD card
+// M23  - Select SD file (M23 filename.g)
+// M24  - Start/resume SD print
+// M25  - Pause SD print
+// M26  - Set SD position in bytes (M26 S12345)
+// M27  - Report SD print status
+// M28  - Start SD write (M28 filename.g)
+// M29  - Stop SD write
+// M30  - Delete file from SD (M30 filename.g)
+// M31  - Output time since last M109 or SD card start to serial
+// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
+//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
+//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
+//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
+// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
+// M80  - Turn on Power Supply
+// M81  - Turn off Power Supply
+// M82  - Set E codes absolute (default)
+// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84  - Disable steppers until next move,
+//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
+// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
+// M92  - Set axis_steps_per_unit - same syntax as G92
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
+//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
+//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
+// M112 - Emergency stop
+// M114 - Output current position to serial port
+// M115 - Capabilities string
+// M117 - display message
+// M119 - Output Endstop status to serial port
+// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
+// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
+// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
+// M140 - Set bed target temp
+// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
+// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
+//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
+// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
+// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
+// M206 - set additional homing offset
+// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
+// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
+// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
+// M220 S<factor in percent>- set speed factor override percentage
+// M221 S<factor in percent>- set extrude factor override percentage
+// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
+// M240 - Trigger a camera to take a photograph
+// M250 - Set LCD contrast C<contrast value> (value 0..63)
+// M280 - set servo position absolute. P: servo index, S: angle or microseconds
+// M300 - Play beep sound S<frequency Hz> P<duration ms>
+// M301 - Set PID parameters P I and D
+// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
+// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
+// M304 - Set bed PID parameters P I and D
+// M400 - Finish all moves
+// M401 - Lower z-probe if present
+// M402 - Raise z-probe if present
+// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
+// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
+// M406 - Turn off Filament Sensor extrusion control 
+// M407 - Displays measured filament diameter 
+// M500 - stores parameters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
+// M503 - print the current settings (from memory not from EEPROM)
+// M509 - force language selection on next restart
+// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
+// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
+// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
+// M907 - Set digital trimpot motor current using axis codes.
+// M908 - Control digital trimpot directly.
+// M350 - Set microstepping mode.
+// M351 - Toggle MS1 MS2 pins directly.
+
+// M928 - Start SD logging (M928 filename.g) - ended by M29
+// M999 - Restart after being stopped by error
+
+//Stepper Movement Variables
+
+//===========================================================================
+//=============================imported variables============================
+//===========================================================================
+
+
+//===========================================================================
+//=============================public variables=============================
+//===========================================================================
+#ifdef SDSUPPORT
+CardReader card;
+#endif
+
+unsigned long TimeSent = millis();
+unsigned long TimeNow = millis();
+unsigned long PingTime = millis();
+union Data
+{
+byte b[2];
+int value;
+};
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+// Currently only the extruder axis may be switched to a relative mode.
+// Other axes are always absolute or relative based on the common relative_mode flag.
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+int extrudemultiply=100; //100->1 200->2
+int extruder_multiply[EXTRUDERS] = {100
+  #if EXTRUDERS > 1
+    , 100
+    #if EXTRUDERS > 2
+      , 100
+    #endif
+  #endif
+};
+
+int bowden_length[4];
+
+bool is_usb_printing = false;
+bool homing_flag = false;
+
+bool temp_cal_active = false;
+
+unsigned long kicktime = millis()+100000;
+
+unsigned int  usb_printing_counter;
+
+int lcd_change_fil_state = 0;
+
+int feedmultiplyBckp = 100;
+float HotendTempBckp = 0;
+int fanSpeedBckp = 0;
+float pause_lastpos[4];
+unsigned long pause_time = 0;
+unsigned long start_pause_print = millis();
+
+unsigned long load_filament_time;
+
+bool mesh_bed_leveling_flag = false;
+bool mesh_bed_run_from_menu = false;
+
+unsigned char lang_selected = 0;
+int8_t FarmMode = 0;
+
+bool prusa_sd_card_upload = false;
+
+unsigned int status_number = 0;
+
+unsigned long total_filament_used;
+unsigned int heating_status;
+unsigned int heating_status_counter;
+bool custom_message;
+bool loading_flag = false;
+unsigned int custom_message_type;
+unsigned int custom_message_state;
+char snmm_filaments_used = 0;
+
+int selectedSerialPort;
+
+float distance_from_min[3];
+
+bool sortAlpha = false;
+
+bool volumetric_enabled = false;
+float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
+  #if EXTRUDERS > 1
+      , DEFAULT_NOMINAL_FILAMENT_DIA
+    #if EXTRUDERS > 2
+       , DEFAULT_NOMINAL_FILAMENT_DIA
+    #endif
+  #endif
+};
+float volumetric_multiplier[EXTRUDERS] = {1.0
+  #if EXTRUDERS > 1
+    , 1.0
+    #if EXTRUDERS > 2
+      , 1.0
+    #endif
+  #endif
+};
+float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
+float add_homing[3]={0,0,0};
+
+float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
+float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
+bool axis_known_position[3] = {false, false, false};
+float zprobe_zoffset;
+
+// Extruder offset
+#if EXTRUDERS > 1
+  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
+float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
+#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
+  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
+#endif
+};
+#endif
+
+uint8_t active_extruder = 0;
+int fanSpeed=0;
+
+#ifdef FWRETRACT
+  bool autoretract_enabled=false;
+  bool retracted[EXTRUDERS]={false
+    #if EXTRUDERS > 1
+    , false
+     #if EXTRUDERS > 2
+      , false
+     #endif
+  #endif
+  };
+  bool retracted_swap[EXTRUDERS]={false
+    #if EXTRUDERS > 1
+    , false
+     #if EXTRUDERS > 2
+      , false
+     #endif
+  #endif
+  };
+
+  float retract_length = RETRACT_LENGTH;
+  float retract_length_swap = RETRACT_LENGTH_SWAP;
+  float retract_feedrate = RETRACT_FEEDRATE;
+  float retract_zlift = RETRACT_ZLIFT;
+  float retract_recover_length = RETRACT_RECOVER_LENGTH;
+  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
+  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+#endif
+
+#ifdef ULTIPANEL
+  #ifdef PS_DEFAULT_OFF
+    bool powersupply = false;
+  #else
+	  bool powersupply = true;
+  #endif
+#endif
+
+bool cancel_heatup = false ;
+
+#ifdef FILAMENT_SENSOR
+  //Variables for Filament Sensor input 
+  float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
+  bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
+  float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
+  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
+  int delay_index1=0;  //index into ring buffer
+  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
+  float delay_dist=0; //delay distance counter  
+  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
+#endif
+
+const char errormagic[] PROGMEM = "Error:";
+const char echomagic[] PROGMEM = "echo:";
+
+//===========================================================================
+//=============================Private Variables=============================
+//===========================================================================
+const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};
+
+static float delta[3] = {0.0, 0.0, 0.0};
+
+// For tracing an arc
+static float offset[3] = {0.0, 0.0, 0.0};
+static bool home_all_axis = true;
+static float feedrate = 1500.0, next_feedrate, saved_feedrate;
+static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
+
+// Determines Absolute or Relative Coordinates.
+// Also there is bool axis_relative_modes[] per axis flag.
+static bool relative_mode = false;  
+
+// String circular buffer. Commands may be pushed to the buffer from both sides:
+// Chained commands will be pushed to the front, interactive (from LCD menu) 
+// and printing commands (from serial line or from SD card) are pushed to the tail.
+// First character of each entry indicates the type of the entry: 
+#define CMDBUFFER_CURRENT_TYPE_UNKNOWN  0
+// Command in cmdbuffer was sent over USB.
+#define CMDBUFFER_CURRENT_TYPE_USB      1
+// Command in cmdbuffer was read from SDCARD.
+#define CMDBUFFER_CURRENT_TYPE_SDCARD   2
+// Command in cmdbuffer was generated by the UI.
+#define CMDBUFFER_CURRENT_TYPE_UI       3
+// Command in cmdbuffer was generated by another G-code.
+#define CMDBUFFER_CURRENT_TYPE_CHAINED  4
+
+// How much space to reserve for the chained commands
+// of type CMDBUFFER_CURRENT_TYPE_CHAINED,
+// which are pushed to the front of the queue?
+// Maximum 5 commands of max length 20 + null terminator.
+#define CMDBUFFER_RESERVE_FRONT       (5*21)
+// Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
+static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
+// Head of the circular buffer, where to read.
+static int bufindr = 0;
+// Tail of the buffer, where to write.
+static int bufindw = 0;
+// Number of lines in cmdbuffer.
+static int buflen = 0;
+// Flag for processing the current command inside the main Arduino loop().
+// If a new command was pushed to the front of a command buffer while
+// processing another command, this replaces the command on the top.
+// Therefore don't remove the command from the queue in the loop() function.
+static bool cmdbuffer_front_already_processed = false;
+
+// Type of a command, which is to be executed right now.
+#define CMDBUFFER_CURRENT_TYPE   (cmdbuffer[bufindr])
+// String of a command, which is to be executed right now.
+#define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
+
+// Enable debugging of the command buffer.
+// Debugging information will be sent to serial line.
+// #define CMDBUFFER_DEBUG
+
+static int serial_count = 0;  //index of character read from serial line
+static boolean comment_mode = false;
+static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
+
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+
+//static float tt = 0;
+//static float bt = 0;
+
+//Inactivity shutdown variables
+static unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+unsigned long _usb_timer = 0;
+
+static uint8_t tmp_extruder;
+
+
+bool Stopped=false;
+
+#if NUM_SERVOS > 0
+  Servo servos[NUM_SERVOS];
+#endif
+
+bool CooldownNoWait = true;
+bool target_direction;
+
+//Insert variables if CHDK is defined
+#ifdef CHDK
+unsigned long chdkHigh = 0;
+boolean chdkActive = false;
+#endif
+
+//===========================================================================
+//=============================Routines======================================
+//===========================================================================
+
+void get_arc_coordinates();
+bool setTargetedHotend(int code);
+
+void serial_echopair_P(const char *s_P, float v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, double v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+void serial_echopair_P(const char *s_P, unsigned long v)
+    { serialprintPGM(s_P); SERIAL_ECHO(v); }
+
+#ifdef SDSUPPORT
+  #include "SdFatUtil.h"
+  int freeMemory() { return SdFatUtil::FreeRam(); }
+#else
+  extern "C" {
+    extern unsigned int __bss_end;
+    extern unsigned int __heap_start;
+    extern void *__brkval;
+
+    int freeMemory() {
+      int free_memory;
+
+      if ((int)__brkval == 0)
+        free_memory = ((int)&free_memory) - ((int)&__bss_end);
+      else
+        free_memory = ((int)&free_memory) - ((int)__brkval);
+
+      return free_memory;
+    }
+  }
+#endif //!SDSUPPORT
+
+// Pop the currently processed command from the queue.
+// It is expected, that there is at least one command in the queue.
+bool cmdqueue_pop_front()
+{
+    if (buflen > 0) {
+#ifdef CMDBUFFER_DEBUG
+        SERIAL_ECHOPGM("Dequeing ");
+        SERIAL_ECHO(cmdbuffer+bufindr+1);
+        SERIAL_ECHOLNPGM("");
+        SERIAL_ECHOPGM("Old indices: buflen ");
+        SERIAL_ECHO(buflen);
+        SERIAL_ECHOPGM(", bufindr ");
+        SERIAL_ECHO(bufindr);
+        SERIAL_ECHOPGM(", bufindw ");
+        SERIAL_ECHO(bufindw);
+        SERIAL_ECHOPGM(", serial_count ");
+        SERIAL_ECHO(serial_count);
+        SERIAL_ECHOPGM(", bufsize ");
+        SERIAL_ECHO(sizeof(cmdbuffer));
+        SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+        if (-- buflen == 0) {
+            // Empty buffer.
+            if (serial_count == 0)
+                // No serial communication is pending. Reset both pointers to zero.
+                bufindw = 0;
+            bufindr = bufindw;
+        } else {
+            // There is at least one ready line in the buffer.
+            // First skip the current command ID and iterate up to the end of the string.
+            for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
+            // Second, skip the end of string null character and iterate until a nonzero command ID is found.
+            for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
+            // If the end of the buffer was empty,
+            if (bufindr == sizeof(cmdbuffer)) {
+                // skip to the start and find the nonzero command.
+                for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
+            }
+#ifdef CMDBUFFER_DEBUG
+            SERIAL_ECHOPGM("New indices: buflen ");
+            SERIAL_ECHO(buflen);
+            SERIAL_ECHOPGM(", bufindr ");
+            SERIAL_ECHO(bufindr);
+            SERIAL_ECHOPGM(", bufindw ");
+            SERIAL_ECHO(bufindw);
+            SERIAL_ECHOPGM(", serial_count ");
+            SERIAL_ECHO(serial_count);
+            SERIAL_ECHOPGM(" new command on the top: ");
+            SERIAL_ECHO(cmdbuffer+bufindr+1);
+            SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+        }
+        return true;
+    }
+    return false;
+}
+
+void cmdqueue_reset()
+{
+    while (cmdqueue_pop_front()) ;
+}
+
+// How long a string could be pushed to the front of the command queue?
+// If yes, adjust bufindr to the new position, where the new command could be enqued.
+// len_asked does not contain the zero terminator size.
+bool cmdqueue_could_enqueue_front(int len_asked)
+{
+    // MAX_CMD_SIZE has to accommodate the zero terminator.
+    if (len_asked >= MAX_CMD_SIZE)
+        return false;
+    // Remove the currently processed command from the queue.
+    if (! cmdbuffer_front_already_processed) {
+        cmdqueue_pop_front();
+        cmdbuffer_front_already_processed = true;
+    }
+	if (bufindr == bufindw && buflen > 0)
+		// Full buffer.
+        return false;
+    // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
+    int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
+    if (bufindw < bufindr) {
+        int bufindr_new = bufindr - len_asked - 2;
+        // Simple case. There is a contiguous space between the write buffer and the read buffer.
+        if (endw <= bufindr_new) {
+            bufindr = bufindr_new;
+            return true;
+        }
+    } else {
+        // Otherwise the free space is split between the start and end.
+        if (len_asked + 2 <= bufindr) {
+            // Could fit at the start.
+            bufindr -= len_asked + 2;
+            return true;
+        }
+        int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
+        if (endw <= bufindr_new) {
+            memset(cmdbuffer, 0, bufindr);
+            bufindr = bufindr_new;
+            return true;
+        }
+    }
+    return false;
+}
+
+// Could one enqueue a command of lenthg len_asked into the buffer,
+// while leaving CMDBUFFER_RESERVE_FRONT at the start?
+// If yes, adjust bufindw to the new position, where the new command could be enqued.
+// len_asked does not contain the zero terminator size.
+bool cmdqueue_could_enqueue_back(int len_asked)
+{
+    // MAX_CMD_SIZE has to accommodate the zero terminator.
+    if (len_asked >= MAX_CMD_SIZE)
+        return false;
+
+	if (bufindr == bufindw && buflen > 0)
+		// Full buffer.
+		return false;
+
+    if (serial_count > 0) {
+        // If there is some data stored starting at bufindw, len_asked is certainly smaller than
+        // the allocated data buffer. Try to reserve a new buffer and to move the already received
+        // serial data.
+        // How much memory to reserve for the commands pushed to the front?
+        // End of the queue, when pushing to the end.
+        int endw = bufindw + len_asked + 2;
+        if (bufindw < bufindr)
+            // Simple case. There is a contiguous space between the write buffer and the read buffer.
+            return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
+        // Otherwise the free space is split between the start and end.
+        if (// Could one fit to the end, including the reserve?
+            endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
+            // Could one fit to the end, and the reserve to the start?
+            (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
+            return true;
+        // Could one fit both to the start?
+        if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
+            // Mark the rest of the buffer as used.
+            memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
+            // and point to the start.
+            bufindw = 0;
+            return true;
+        }
+    } else {
+        // How much memory to reserve for the commands pushed to the front?
+        // End of the queue, when pushing to the end.
+        int endw = bufindw + len_asked + 2;
+        if (bufindw < bufindr)
+            // Simple case. There is a contiguous space between the write buffer and the read buffer.
+            return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
+        // Otherwise the free space is split between the start and end.
+        if (// Could one fit to the end, including the reserve?
+            endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
+            // Could one fit to the end, and the reserve to the start?
+            (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
+            return true;
+        // Could one fit both to the start?
+        if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
+            // Mark the rest of the buffer as used.
+            memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
+            // and point to the start.
+            bufindw = 0;
+            return true;
+        }
+    }
+    return false;
+}
+
+#ifdef CMDBUFFER_DEBUG
+static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
+{
+    SERIAL_ECHOPGM("Entry nr: ");
+    SERIAL_ECHO(nr);
+    SERIAL_ECHOPGM(", type: ");
+    SERIAL_ECHO(int(*p));
+    SERIAL_ECHOPGM(", cmd: ");
+    SERIAL_ECHO(p+1);  
+    SERIAL_ECHOLNPGM("");
+}
+
+static void cmdqueue_dump_to_serial()
+{
+    if (buflen == 0) {
+        SERIAL_ECHOLNPGM("The command buffer is empty.");
+    } else {
+        SERIAL_ECHOPGM("Content of the buffer: entries ");
+        SERIAL_ECHO(buflen);
+        SERIAL_ECHOPGM(", indr ");
+        SERIAL_ECHO(bufindr);
+        SERIAL_ECHOPGM(", indw ");
+        SERIAL_ECHO(bufindw);
+        SERIAL_ECHOLNPGM("");
+        int nr = 0;
+        if (bufindr < bufindw) {
+            for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
+                cmdqueue_dump_to_serial_single_line(nr, p);
+                // Skip the command.
+                for (++p; *p != 0; ++ p);
+                // Skip the gaps.
+                for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
+            }
+        } else {
+            for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
+                cmdqueue_dump_to_serial_single_line(nr, p);
+                // Skip the command.
+                for (++p; *p != 0; ++ p);
+                // Skip the gaps.
+                for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
+            }
+            for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
+                cmdqueue_dump_to_serial_single_line(nr, p);
+                // Skip the command.
+                for (++p; *p != 0; ++ p);
+                // Skip the gaps.
+                for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
+            }
+        }
+        SERIAL_ECHOLNPGM("End of the buffer.");
+    }
+}
+#endif /* CMDBUFFER_DEBUG */
+
+//adds an command to the main command buffer
+//thats really done in a non-safe way.
+//needs overworking someday
+// Currently the maximum length of a command piped through this function is around 20 characters
+void enquecommand(const char *cmd, bool from_progmem)
+{
+    int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
+    // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
+    // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
+    if (cmdqueue_could_enqueue_back(len)) {
+        // This is dangerous if a mixing of serial and this happens
+        // This may easily be tested: If serial_count > 0, we have a problem.
+        cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
+        if (from_progmem)
+            strcpy_P(cmdbuffer + bufindw + 1, cmd);
+        else
+            strcpy(cmdbuffer + bufindw + 1, cmd);
+        SERIAL_ECHO_START;
+        SERIAL_ECHORPGM(MSG_Enqueing);
+        SERIAL_ECHO(cmdbuffer + bufindw + 1);
+        SERIAL_ECHOLNPGM("\"");
+        bufindw += len + 2;
+        if (bufindw == sizeof(cmdbuffer))
+            bufindw = 0;
+        ++ buflen;
+#ifdef CMDBUFFER_DEBUG
+        cmdqueue_dump_to_serial();
+#endif /* CMDBUFFER_DEBUG */
+    } else {
+        SERIAL_ERROR_START;
+        SERIAL_ECHORPGM(MSG_Enqueing);
+        if (from_progmem)
+            SERIAL_PROTOCOLRPGM(cmd);
+        else
+            SERIAL_ECHO(cmd);
+        SERIAL_ECHOLNPGM("\" failed: Buffer full!");
+#ifdef CMDBUFFER_DEBUG
+        cmdqueue_dump_to_serial();
+#endif /* CMDBUFFER_DEBUG */
+    }
+}
+
+void enquecommand_front(const char *cmd, bool from_progmem)
+{
+    int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
+    // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
+    if (cmdqueue_could_enqueue_front(len)) {
+        cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
+        if (from_progmem)
+            strcpy_P(cmdbuffer + bufindr + 1, cmd);
+        else
+            strcpy(cmdbuffer + bufindr + 1, cmd);
+        ++ buflen;
+        SERIAL_ECHO_START;
+        SERIAL_ECHOPGM("Enqueing to the front: \"");
+        SERIAL_ECHO(cmdbuffer + bufindr + 1);
+        SERIAL_ECHOLNPGM("\"");
+#ifdef CMDBUFFER_DEBUG
+        cmdqueue_dump_to_serial();
+#endif /* CMDBUFFER_DEBUG */
+    } else {
+        SERIAL_ERROR_START;
+        SERIAL_ECHOPGM("Enqueing to the front: \"");
+        if (from_progmem)
+            SERIAL_PROTOCOLRPGM(cmd);
+        else
+            SERIAL_ECHO(cmd);
+        SERIAL_ECHOLNPGM("\" failed: Buffer full!");
+#ifdef CMDBUFFER_DEBUG
+        cmdqueue_dump_to_serial();
+#endif /* CMDBUFFER_DEBUG */
+    }
+}
+
+// Mark the command at the top of the command queue as new.
+// Therefore it will not be removed from the queue.
+void repeatcommand_front()
+{
+    cmdbuffer_front_already_processed = true;
+} 
+
+bool is_buffer_empty()
+{
+	if (buflen == 0) return true;
+	else return false;
+}
+
+void setup_killpin()
+{
+  #if defined(KILL_PIN) && KILL_PIN > -1
+    SET_INPUT(KILL_PIN);
+    WRITE(KILL_PIN,HIGH);
+  #endif
+}
+
+// Set home pin
+void setup_homepin(void)
+{
+#if defined(HOME_PIN) && HOME_PIN > -1
+   SET_INPUT(HOME_PIN);
+   WRITE(HOME_PIN,HIGH);
+#endif
+}
+
+void setup_photpin()
+{
+  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+    SET_OUTPUT(PHOTOGRAPH_PIN);
+    WRITE(PHOTOGRAPH_PIN, LOW);
+  #endif
+}
+
+void setup_powerhold()
+{
+  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+    SET_OUTPUT(SUICIDE_PIN);
+    WRITE(SUICIDE_PIN, HIGH);
+  #endif
+  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+    SET_OUTPUT(PS_ON_PIN);
+	#if defined(PS_DEFAULT_OFF)
+	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+    #else
+	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
+	#endif
+  #endif
+}
+
+void suicide()
+{
+  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+    SET_OUTPUT(SUICIDE_PIN);
+    WRITE(SUICIDE_PIN, LOW);
+  #endif
+}
+
+void servo_init()
+{
+  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
+    servos[0].attach(SERVO0_PIN);
+  #endif
+  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
+    servos[1].attach(SERVO1_PIN);
+  #endif
+  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
+    servos[2].attach(SERVO2_PIN);
+  #endif
+  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
+    servos[3].attach(SERVO3_PIN);
+  #endif
+  #if (NUM_SERVOS >= 5)
+    #error "TODO: enter initalisation code for more servos"
+  #endif
+}
+
+static void lcd_language_menu();
+
+
+#ifdef MESH_BED_LEVELING
+   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
+#endif
+
+
+// Factory reset function
+// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
+// Level input parameter sets depth of reset
+// Quiet parameter masks all waitings for user interact.
+int  er_progress = 0;
+void factory_reset(char level, bool quiet)
+{	
+	lcd_implementation_clear();
+	int cursor_pos = 0;
+    switch (level) {
+                   
+        // Level 0: Language reset
+        case 0:
+            WRITE(BEEPER, HIGH);
+            _delay_ms(100);
+            WRITE(BEEPER, LOW);
+            
+            lcd_force_language_selection();
+            break;
+         
+		//Level 1: Reset statistics
+		case 1:
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+			lcd_menu_statistics();
+            
+			break;
+
+        // Level 2: Prepare for shipping
+        case 2:
+			//lcd_printPGM(PSTR("Factory RESET"));
+            //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
+            
+            // Force language selection at the next boot up.
+            lcd_force_language_selection();
+            // Force the "Follow calibration flow" message at the next boot up.
+            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
+            farm_no = 0;
+			farm_mode == false;
+			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
+            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
+                       
+            WRITE(BEEPER, HIGH);
+            _delay_ms(100);
+            WRITE(BEEPER, LOW);
+			//_delay_ms(2000);
+            break;
+
+			// Level 3: erase everything, whole EEPROM will be set to 0xFF
+
+		case 3:
+			lcd_printPGM(PSTR("Factory RESET"));
+			lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
+
+			WRITE(BEEPER, HIGH);
+			_delay_ms(100);
+			WRITE(BEEPER, LOW);
+
+			er_progress = 0;
+			lcd_print_at_PGM(3, 3, PSTR("      "));
+			lcd_implementation_print_at(3, 3, er_progress);
+
+			// Erase EEPROM
+			for (int i = 0; i < 4096; i++) {
+				eeprom_write_byte((uint8_t*)i, 0xFF);
+
+				if (i % 41 == 0) {
+					er_progress++;
+					lcd_print_at_PGM(3, 3, PSTR("      "));
+					lcd_implementation_print_at(3, 3, er_progress);
+					lcd_printPGM(PSTR("%"));
+				}
+
+			}
+
+
+			break;
+		case 4:
+			bowden_menu();
+			break;
+        
+        default:
+            break;
+    }
+    
+
+}
+
+
+// "Setup" function is called by the Arduino framework on startup.
+// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code 
+// are initialized by the main() routine provided by the Arduino framework.
+void setup()
+{
+	lcd_init();
+    lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   "));
+    lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    "));
+	setup_killpin();
+	setup_powerhold();
+    farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+	//if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
+	if (farm_no == 0xFFFF) farm_no = 0;
+	if (farm_mode)
+	{
+		prusa_statistics(8);
+        selectedSerialPort = 1;
+	} else {
+        selectedSerialPort = 0;
+    }
+	MYSERIAL.begin(BAUDRATE);
+	SERIAL_PROTOCOLLNPGM("start");
+	SERIAL_ECHO_START;
+
+#if 0
+	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
+	for (int i = 0; i < 4096; ++i) {
+		int b = eeprom_read_byte((unsigned char*)i);
+		if (b != 255) {
+			SERIAL_ECHO(i);
+			SERIAL_ECHO(":");
+			SERIAL_ECHO(b);
+			SERIAL_ECHOLN("");
+		}
+	}
+	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
+#endif
+
+	// Check startup - does nothing if bootloader sets MCUSR to 0
+	byte mcu = MCUSR;
+	if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
+	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
+	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
+	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
+	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
+	MCUSR = 0;
+
+	//SERIAL_ECHORPGM(MSG_MARLIN);
+	//SERIAL_ECHOLNRPGM(VERSION_STRING);
+
+#ifdef STRING_VERSION_CONFIG_H
+#ifdef STRING_CONFIG_H_AUTHOR
+	SERIAL_ECHO_START;
+	SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
+	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
+	SERIAL_ECHORPGM(MSG_AUTHOR);
+	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
+	SERIAL_ECHOPGM("Compiled: ");
+	SERIAL_ECHOLNPGM(__DATE__);
+#endif
+#endif
+
+	SERIAL_ECHO_START;
+	SERIAL_ECHORPGM(MSG_FREE_MEMORY);
+	SERIAL_ECHO(freeMemory());
+	SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
+	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+	lcd_update_enable(false);
+	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
+	bool previous_settings_retrieved = Config_RetrieveSettings();
+	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
+	tp_init();    // Initialize temperature loop
+	plan_init();  // Initialize planner;
+	watchdog_init();
+    lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   ")); // we need to do this again for some reason, no time to research
+    lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    "));
+	st_init();    // Initialize stepper, this enables interrupts!
+	setup_photpin();
+	servo_init();
+	// Reset the machine correction matrix.
+	// It does not make sense to load the correction matrix until the machine is homed.
+	world2machine_reset();
+
+	lcd_init();
+	if (!READ(BTN_ENC))
+	{
+		_delay_ms(1000);
+		if (!READ(BTN_ENC))
+		{
+			lcd_implementation_clear();
+
+
+			lcd_printPGM(PSTR("Factory RESET"));
+
+
+			SET_OUTPUT(BEEPER);
+			WRITE(BEEPER, HIGH);
+
+			while (!READ(BTN_ENC));
+
+			WRITE(BEEPER, LOW);
+
+
+
+			_delay_ms(2000);
+
+			char level = reset_menu();
+			factory_reset(level, false);
+
+			switch (level) {
+			case 0: _delay_ms(0); break;
+			case 1: _delay_ms(0); break;
+			case 2: _delay_ms(0); break;
+			case 3: _delay_ms(0); break;
+			}
+			// _delay_ms(100);
+  /*
+  #ifdef MESH_BED_LEVELING
+			_delay_ms(2000);
+
+			if (!READ(BTN_ENC))
+			{
+				WRITE(BEEPER, HIGH);
+				_delay_ms(100);
+				WRITE(BEEPER, LOW);
+				_delay_ms(200);
+				WRITE(BEEPER, HIGH);
+				_delay_ms(100);
+				WRITE(BEEPER, LOW);
+
+				int _z = 0;
+				calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+				EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
+				EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
+				EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
+			}
+			else
+			{
+
+				WRITE(BEEPER, HIGH);
+				_delay_ms(100);
+				WRITE(BEEPER, LOW);
+			}
+  #endif // mesh */
+
+		}
+	}
+	else
+	{
+		//_delay_ms(1000);  // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
+	}
+
+
+
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
+#endif
+
+#ifdef DIGIPOT_I2C
+	digipot_i2c_init();
+#endif
+	setup_homepin();
+
+#if defined(Z_AXIS_ALWAYS_ON)
+	enable_z();
+#endif
+	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
+	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
+	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 
+	if (farm_no == 0xFFFF) farm_no = 0;
+	if (farm_mode)
+	{
+		prusa_statistics(8);
+	}
+
+	// Enable Toshiba FlashAir SD card / WiFi enahanced card.
+	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
+	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 
+	// but this times out if a blocking dialog is shown in setup().
+	card.initsd();
+
+	if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
+		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
+		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
+		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
+		// where all the EEPROM entries are set to 0x0ff.
+		// Once a firmware boots up, it forces at least a language selection, which changes
+		// EEPROM_LANG to number lower than 0x0ff.
+		// 1) Set a high power mode.
+		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
+	}
+#ifdef SNMM
+	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
+	  int _z = BOWDEN_LENGTH;
+	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
+	}
+#endif
+
+  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
+  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
+  // is being written into the EEPROM, so the update procedure will be triggered only once.
+    lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
+    if (lang_selected >= LANG_NUM){
+      lcd_mylang();
+    }
+	
+	if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
+		temp_cal_active = false;
+	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
+
+	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
+	}
+	if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
+		eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
+	}
+
+#ifndef DEBUG_DISABLE_STARTMSGS
+	check_babystep(); //checking if Z babystep is in allowed range
+	
+  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
+      calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
+      // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
+      eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+      // Show the message.
+      lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
+  } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
+      // Show the message.
+      lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
+      lcd_update_enable(true);
+  } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
+	  lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
+	  lcd_update_enable(true);
+  } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
+      // Show the message.
+      lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
+  }
+  for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
+  
+  //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
+  if (!previous_settings_retrieved) {
+	  lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
+  }
+  
+#endif //DEBUG_DISABLE_STARTMSGS
+  lcd_update_enable(true);
+
+  // Store the currently running firmware into an eeprom,
+  // so the next time the firmware gets updated, it will know from which version it has been updated.
+  update_current_firmware_version_to_eeprom();
+}
+
+void trace();
+
+#define CHUNK_SIZE 64 // bytes
+#define SAFETY_MARGIN 1
+char chunk[CHUNK_SIZE+SAFETY_MARGIN];
+int chunkHead = 0;
+
+int serial_read_stream() {
+
+    setTargetHotend(0, 0);
+    setTargetBed(0);
+
+    lcd_implementation_clear();
+    lcd_printPGM(PSTR(" Upload in progress"));
+
+    // first wait for how many bytes we will receive
+    uint32_t bytesToReceive;
+
+    // receive the four bytes
+    char bytesToReceiveBuffer[4];
+    for (int i=0; i<4; i++) {
+        int data;
+        while ((data = MYSERIAL.read()) == -1) {};
+        bytesToReceiveBuffer[i] = data;
+
+    }
+
+    // make it a uint32
+    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
+
+    // we're ready, notify the sender
+    MYSERIAL.write('+');
+
+    // lock in the routine
+    uint32_t receivedBytes = 0;
+    while (prusa_sd_card_upload) {
+        int i;
+        for (i=0; i<CHUNK_SIZE; i++) {
+            int data;
+
+            // check if we're not done
+            if (receivedBytes == bytesToReceive) {
+                break;
+            }
+
+            // read the next byte
+            while ((data = MYSERIAL.read()) == -1) {};
+            receivedBytes++;
+
+            // save it to the chunk
+            chunk[i] = data;
+        }
+
+        // write the chunk to SD
+        card.write_command_no_newline(&chunk[0]);
+
+        // notify the sender we're ready for more data
+        MYSERIAL.write('+');
+
+        // for safety
+        manage_heater();
+
+        // check if we're done
+        if(receivedBytes == bytesToReceive) {
+            trace(); // beep
+            card.closefile();
+            prusa_sd_card_upload = false;
+            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+            return 0;
+        }
+
+    }
+}
+
+// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
+// Before loop(), the setup() function is called by the main() routine.
+void loop()
+{
+	bool stack_integrity = true;
+
+	if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
+	{
+		is_usb_printing = true;
+		usb_printing_counter--;
+		_usb_timer = millis();
+	}
+	if (usb_printing_counter == 0)
+	{
+		is_usb_printing = false;
+	}
+
+    if (prusa_sd_card_upload)
+    {
+        //we read byte-by byte
+        serial_read_stream();
+    } else 
+    {
+
+        get_command();
+
+  #ifdef SDSUPPORT
+  card.checkautostart(false);
+  #endif
+  if(buflen)
+  {
+    #ifdef SDSUPPORT
+      if(card.saving)
+      {
+        // Saving a G-code file onto an SD-card is in progress.
+        // Saving starts with M28, saving until M29 is seen.
+        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
+          card.write_command(CMDBUFFER_CURRENT_STRING);
+          if(card.logging)
+            process_commands();
+          else
+           SERIAL_PROTOCOLLNRPGM(MSG_OK);
+        } else {
+          card.closefile();
+          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
+        }
+      } else {
+        process_commands();
+      }
+    #else
+      process_commands();
+    #endif //SDSUPPORT
+      if (! cmdbuffer_front_already_processed)
+          cmdqueue_pop_front();
+      cmdbuffer_front_already_processed = false;
+  }
+}
+  //check heater every n milliseconds
+  manage_heater();
+  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
+  checkHitEndstops();
+  lcd_update();
+}
+
+void get_command()
+{
+    // Test and reserve space for the new command string.
+	if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1)) 
+		return;
+	
+	bool rx_buffer_full = false; //flag that serial rx buffer is full
+
+  while (MYSERIAL.available() > 0) {
+	  if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
+		  SERIAL_ECHOLNPGM("Full RX Buffer");   //if buffer was full, there is danger that reading of last gcode will not be completed
+		  rx_buffer_full = true;				//sets flag that buffer was full	
+	  }
+    char serial_char = MYSERIAL.read();
+    if (selectedSerialPort == 1) {
+        selectedSerialPort = 0;
+        MYSERIAL.write(serial_char);
+        selectedSerialPort = 1;
+    }
+      TimeSent = millis();
+      TimeNow = millis();
+
+    if (serial_char < 0)
+        // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
+        // and Marlin does not support such file names anyway.
+        // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
+        // to a hang-up of the print process from an SD card.
+        continue;
+    if(serial_char == '\n' ||
+       serial_char == '\r' ||
+		(serial_char == ':' && comment_mode == false) ||
+       serial_count >= (MAX_CMD_SIZE - 1) )
+    {
+      if(!serial_count) { //if empty line
+        comment_mode = false; //for new command
+        return;
+      }
+      cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
+      if(!comment_mode){
+		if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
+            if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
+            {
+            // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
+            // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
+            gcode_N = (strtol(strchr_pointer+1, NULL, 10));
+            if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
+                // M110 - set current line number.
+                // Line numbers not sent in succession.
+                SERIAL_ERROR_START;
+                SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
+                SERIAL_ERRORLN(gcode_LastN);
+                //Serial.println(gcode_N);
+                FlushSerialRequestResend();
+                serial_count = 0;
+                return;
+            }
+
+            if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
+            {
+                byte checksum = 0;
+                char *p = cmdbuffer+bufindw+1;
+                while (p != strchr_pointer)
+                    checksum = checksum^(*p++);
+                if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
+                SERIAL_ERROR_START;
+                SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
+                SERIAL_ERRORLN(gcode_LastN);
+                FlushSerialRequestResend();
+                serial_count = 0;
+                return;
+                }
+                // If no errors, remove the checksum and continue parsing.
+                *strchr_pointer = 0;
+            }
+            else
+            {
+                SERIAL_ERROR_START;
+                SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
+                SERIAL_ERRORLN(gcode_LastN);
+                FlushSerialRequestResend();
+                serial_count = 0;
+                return;
+            }
+
+            gcode_LastN = gcode_N;
+            //if no errors, continue parsing
+            } // end of 'N' command
+        }
+        else  // if we don't receive 'N' but still see '*'
+        {
+          if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
+          {
+            SERIAL_ERROR_START;
+            SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
+            SERIAL_ERRORLN(gcode_LastN);
+            serial_count = 0;
+            return;
+          }
+        } // end of '*' command
+        if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
+      		  if (! IS_SD_PRINTING) {
+        			  usb_printing_counter = 10;
+        			  is_usb_printing = true;
+      		  }
+            if (Stopped == true) {
+                int gcode = strtol(strchr_pointer+1, NULL, 10);
+                if (gcode >= 0 && gcode <= 3) {
+                    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
+                    LCD_MESSAGERPGM(MSG_STOPPED);
+                }
+            }
+        } // end of 'G' command
+
+        //If command was e-stop process now
+        if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
+          kill();
+        
+        // Store the current line into buffer, move to the next line.
+        cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
+#ifdef CMDBUFFER_DEBUG
+        SERIAL_ECHO_START;
+        SERIAL_ECHOPGM("Storing a command line to buffer: ");
+        SERIAL_ECHO(cmdbuffer+bufindw+1);
+        SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+        bufindw += strlen(cmdbuffer+bufindw+1) + 2;
+        if (bufindw == sizeof(cmdbuffer))
+            bufindw = 0;
+        ++ buflen;
+#ifdef CMDBUFFER_DEBUG
+        SERIAL_ECHOPGM("Number of commands in the buffer: ");
+        SERIAL_ECHO(buflen);
+        SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+      } // end of 'not comment mode'
+      serial_count = 0; //clear buffer
+      // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
+      // in the queue, as this function will reserve the memory.
+      if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
+          return;
+    } // end of "end of line" processing
+    else {
+      // Not an "end of line" symbol. Store the new character into a buffer.
+      if(serial_char == ';') comment_mode = true;
+      if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
+    }
+  } // end of serial line processing loop
+
+    if(farm_mode){
+        TimeNow = millis();
+        if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
+            cmdbuffer[bufindw+serial_count+1] = 0;
+            
+            bufindw += strlen(cmdbuffer+bufindw+1) + 2;
+            if (bufindw == sizeof(cmdbuffer))
+                bufindw = 0;
+            ++ buflen;
+            
+            serial_count = 0;
+            
+            SERIAL_ECHOPGM("TIMEOUT:");
+            //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
+            return;
+        }
+    }
+
+	//add comment
+	if (rx_buffer_full == true && serial_count > 0) {   //if rx buffer was full and string was not properly terminated
+		rx_buffer_full = false;
+		bufindw = bufindw - serial_count;				//adjust tail of the buffer to prepare buffer for writing new command
+		serial_count = 0;
+	}
+
+  #ifdef SDSUPPORT
+  if(!card.sdprinting || serial_count!=0){
+    // If there is a half filled buffer from serial line, wait until return before
+    // continuing with the serial line.
+     return;
+  }
+
+  //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
+  // if it occurs, stop_buffering is triggered and the buffer is ran dry.
+  // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
+
+  static bool stop_buffering=false;
+  if(buflen==0) stop_buffering=false;
+
+  // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
+  while( !card.eof() && !stop_buffering) {
+    int16_t n=card.get();
+    char serial_char = (char)n;
+    if(serial_char == '\n' ||
+       serial_char == '\r' ||
+       (serial_char == '#' && comment_mode == false) ||
+       (serial_char == ':' && comment_mode == false) ||
+       serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
+    {
+      if(card.eof()){
+        SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
+        stoptime=millis();
+        char time[30];
+        unsigned long t=(stoptime-starttime-pause_time)/1000;
+		pause_time = 0;
+        int hours, minutes;
+        minutes=(t/60)%60;
+        hours=t/60/60;
+		save_statistics(total_filament_used, t);
+		sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
+        SERIAL_ECHO_START;
+        SERIAL_ECHOLN(time);
+        lcd_setstatus(time);
+        card.printingHasFinished();
+        card.checkautostart(true);
+
+		if (farm_mode)
+		{
+			prusa_statistics(6);
+			lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
+		}
+
+      }
+      if(serial_char=='#')
+        stop_buffering=true;
+
+      if(!serial_count)
+      {
+        comment_mode = false; //for new command
+        return; //if empty line
+      }
+      cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
+      cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
+      ++ buflen;
+      bufindw += strlen(cmdbuffer+bufindw+1) + 2;
+      if (bufindw == sizeof(cmdbuffer))
+          bufindw = 0;
+      comment_mode = false; //for new command
+      serial_count = 0; //clear buffer
+      // The following line will reserve buffer space if available.
+      if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
+          return;
+    }
+    else
+    {
+      if(serial_char == ';') comment_mode = true;
+      if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
+    }
+  }
+
+  #endif //SDSUPPORT
+}
+
+
+// Return True if a character was found
+static inline bool    code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
+static inline bool    code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
+static inline float   code_value()      { return strtod(strchr_pointer+1, NULL);}
+static inline long    code_value_long()    { return strtol(strchr_pointer+1, NULL, 10); }
+static inline int16_t code_value_short()   { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
+static inline uint8_t code_value_uint8()   { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
+
+static inline float code_value_float() {
+  char* e = strchr(strchr_pointer, 'E');
+  if (!e) return strtod(strchr_pointer + 1, NULL);
+  *e = 0;
+  float ret = strtod(strchr_pointer + 1, NULL);
+  *e = 'E';
+  return ret;
+}
+
+#define DEFINE_PGM_READ_ANY(type, reader)       \
+    static inline type pgm_read_any(const type *p)  \
+    { return pgm_read_##reader##_near(p); }
+
+DEFINE_PGM_READ_ANY(float,       float);
+DEFINE_PGM_READ_ANY(signed char, byte);
+
+#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
+static const PROGMEM type array##_P[3] =        \
+    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
+static inline type array(int axis)              \
+    { return pgm_read_any(&array##_P[axis]); }  \
+type array##_ext(int axis)                      \
+    { return pgm_read_any(&array##_P[axis]); }
+
+XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
+XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
+XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
+XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
+XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
+
+static void axis_is_at_home(int axis) {
+  current_position[axis] = base_home_pos(axis) + add_homing[axis];
+  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
+  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
+}
+
+
+inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
+inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
+
+
+static void setup_for_endstop_move(bool enable_endstops_now = true) {
+    saved_feedrate = feedrate;
+    saved_feedmultiply = feedmultiply;
+    feedmultiply = 100;
+    previous_millis_cmd = millis();
+    
+    enable_endstops(enable_endstops_now);
+}
+
+static void clean_up_after_endstop_move() {
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+    enable_endstops(false);
+#endif
+    
+    feedrate = saved_feedrate;
+    feedmultiply = saved_feedmultiply;
+    previous_millis_cmd = millis();
+}
+
+
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef AUTO_BED_LEVELING_GRID
+static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
+{
+    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
+    planeNormal.debug("planeNormal");
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+    //bedLevel.debug("bedLevel");
+
+    //plan_bed_level_matrix.debug("bed level before");
+    //vector_3 uncorrected_position = plan_get_position_mm();
+    //uncorrected_position.debug("position before");
+
+    vector_3 corrected_position = plan_get_position();
+//    corrected_position.debug("position after");
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = corrected_position.z;
+
+    // put the bed at 0 so we don't go below it.
+    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
+
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+#else // not AUTO_BED_LEVELING_GRID
+
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
+
+    plan_bed_level_matrix.set_to_identity();
+
+    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
+    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
+    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
+
+    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
+    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
+    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
+    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
+
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+
+    vector_3 corrected_position = plan_get_position();
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = corrected_position.z;
+
+    // put the bed at 0 so we don't go below it.
+    current_position[Z_AXIS] = zprobe_zoffset;
+
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+}
+
+#endif // AUTO_BED_LEVELING_GRID
+
+static void run_z_probe() {
+    plan_bed_level_matrix.set_to_identity();
+    feedrate = homing_feedrate[Z_AXIS];
+
+    // move down until you find the bed
+    float zPosition = -10;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+        // we have to let the planner know where we are right now as it is not where we said to go.
+    zPosition = st_get_position_mm(Z_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+
+    // move up the retract distance
+    zPosition += home_retract_mm(Z_AXIS);
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    // move back down slowly to find bed
+    feedrate = homing_feedrate[Z_AXIS]/4;
+    zPosition -= home_retract_mm(Z_AXIS) * 2;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+    // make sure the planner knows where we are as it may be a bit different than we last said to move to
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+}
+
+static void do_blocking_move_to(float x, float y, float z) {
+    float oldFeedRate = feedrate;
+
+    feedrate = homing_feedrate[Z_AXIS];
+
+    current_position[Z_AXIS] = z;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    feedrate = XY_TRAVEL_SPEED;
+
+    current_position[X_AXIS] = x;
+    current_position[Y_AXIS] = y;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    feedrate = oldFeedRate;
+}
+
+static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
+    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
+}
+
+
+/// Probe bed height at position (x,y), returns the measured z value
+static float probe_pt(float x, float y, float z_before) {
+  // move to right place
+  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
+  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
+
+  run_z_probe();
+  float measured_z = current_position[Z_AXIS];
+
+  SERIAL_PROTOCOLRPGM(MSG_BED);
+  SERIAL_PROTOCOLPGM(" x: ");
+  SERIAL_PROTOCOL(x);
+  SERIAL_PROTOCOLPGM(" y: ");
+  SERIAL_PROTOCOL(y);
+  SERIAL_PROTOCOLPGM(" z: ");
+  SERIAL_PROTOCOL(measured_z);
+  SERIAL_PROTOCOLPGM("\n");
+  return measured_z;
+}
+
+#endif // #ifdef ENABLE_AUTO_BED_LEVELING
+
+#ifdef LIN_ADVANCE
+  /**
+   * M900: Set and/or Get advance K factor and WH/D ratio
+   *
+   *  K<factor>                  Set advance K factor
+   *  R<ratio>                   Set ratio directly (overrides WH/D)
+   *  W<width> H<height> D<diam> Set ratio from WH/D
+   */
+  inline void gcode_M900() {
+    st_synchronize();
+
+    const float newK = code_seen('K') ? code_value_float() : -1;
+    if (newK >= 0) extruder_advance_k = newK;
+
+    float newR = code_seen('R') ? code_value_float() : -1;
+    if (newR < 0) {
+      const float newD = code_seen('D') ? code_value_float() : -1,
+                  newW = code_seen('W') ? code_value_float() : -1,
+                  newH = code_seen('H') ? code_value_float() : -1;
+      if (newD >= 0 && newW >= 0 && newH >= 0)
+        newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
+    }
+    if (newR >= 0) advance_ed_ratio = newR;
+
+    SERIAL_ECHO_START;
+    SERIAL_ECHOPGM("Advance K=");
+    SERIAL_ECHOLN(extruder_advance_k);
+    SERIAL_ECHOPGM(" E/D=");
+    const float ratio = advance_ed_ratio;
+    if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
+  }
+#endif // LIN_ADVANCE
+
+void homeaxis(int axis) {
+#define HOMEAXIS_DO(LETTER) \
+  ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
+
+  if (axis==X_AXIS ? HOMEAXIS_DO(X) :
+      axis==Y_AXIS ? HOMEAXIS_DO(Y) :
+      axis==Z_AXIS ? HOMEAXIS_DO(Z) :
+      0) {
+    int axis_home_dir = home_dir(axis);
+
+    current_position[axis] = 0;
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+    destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
+    feedrate = homing_feedrate[axis];
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    current_position[axis] = 0;
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+    destination[axis] = -home_retract_mm(axis) * axis_home_dir;
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+
+    destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
+    feedrate = homing_feedrate[axis]/2 ;
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+    axis_is_at_home(axis);
+    destination[axis] = current_position[axis];
+    feedrate = 0.0;
+    endstops_hit_on_purpose();
+    axis_known_position[axis] = true;
+  }
+}
+
+void home_xy()
+{
+    set_destination_to_current();
+    homeaxis(X_AXIS);
+    homeaxis(Y_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+    endstops_hit_on_purpose();
+}
+
+void refresh_cmd_timeout(void)
+{
+  previous_millis_cmd = millis();
+}
+
+#ifdef FWRETRACT
+  void retract(bool retracting, bool swapretract = false) {
+    if(retracting && !retracted[active_extruder]) {
+      destination[X_AXIS]=current_position[X_AXIS];
+      destination[Y_AXIS]=current_position[Y_AXIS];
+      destination[Z_AXIS]=current_position[Z_AXIS];
+      destination[E_AXIS]=current_position[E_AXIS];
+      if (swapretract) {
+        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
+      } else {
+        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
+      }
+      plan_set_e_position(current_position[E_AXIS]);
+      float oldFeedrate = feedrate;
+      feedrate=retract_feedrate*60;
+      retracted[active_extruder]=true;
+      prepare_move();
+      current_position[Z_AXIS]-=retract_zlift;
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      prepare_move();
+      feedrate = oldFeedrate;
+    } else if(!retracting && retracted[active_extruder]) {
+      destination[X_AXIS]=current_position[X_AXIS];
+      destination[Y_AXIS]=current_position[Y_AXIS];
+      destination[Z_AXIS]=current_position[Z_AXIS];
+      destination[E_AXIS]=current_position[E_AXIS];
+      current_position[Z_AXIS]+=retract_zlift;
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      //prepare_move();
+      if (swapretract) {
+        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
+      } else {
+        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
+      }
+      plan_set_e_position(current_position[E_AXIS]);
+      float oldFeedrate = feedrate;
+      feedrate=retract_recover_feedrate*60;
+      retracted[active_extruder]=false;
+      prepare_move();
+      feedrate = oldFeedrate;
+    }
+  } //retract
+#endif //FWRETRACT
+
+void trace() {
+    tone(BEEPER, 440);
+    delay(25);
+    noTone(BEEPER);
+    delay(20);
+}
+/*
+void ramming() {
+//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;
+	if (current_temperature[0] < 230) {
+		//PLA
+
+		max_feedrate[E_AXIS] = 50;
+		//current_position[E_AXIS] -= 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		//current_position[E_AXIS] += 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		current_position[E_AXIS] += 5.4;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
+		current_position[E_AXIS] += 3.2;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		current_position[E_AXIS] += 3;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
+		st_synchronize();
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= 82;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
+		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+		current_position[E_AXIS] -= 20;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		st_synchronize();
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] += 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] += 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] -= 10;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		st_synchronize();
+	}
+	else {
+		//ABS
+		max_feedrate[E_AXIS] = 50;
+		//current_position[E_AXIS] -= 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		//current_position[E_AXIS] += 8;
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
+		current_position[E_AXIS] += 3.1;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
+		current_position[E_AXIS] += 3.1;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
+		current_position[E_AXIS] += 4;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		//current_position[X_AXIS] += 23; //delay
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+		//current_position[X_AXIS] -= 23; //delay
+		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
+		delay(4700);
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= 92;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
+		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		st_synchronize();
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] += 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		current_position[E_AXIS] -= 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
+		st_synchronize();
+
+	}
+  }
+*/
+void process_commands()
+{
+  #ifdef FILAMENT_RUNOUT_SUPPORT
+    SET_INPUT(FR_SENS);
+  #endif
+
+#ifdef CMDBUFFER_DEBUG
+  SERIAL_ECHOPGM("Processing a GCODE command: ");
+  SERIAL_ECHO(cmdbuffer+bufindr+1);
+  SERIAL_ECHOLNPGM("");
+  SERIAL_ECHOPGM("In cmdqueue: ");
+  SERIAL_ECHO(buflen);
+  SERIAL_ECHOLNPGM("");
+#endif /* CMDBUFFER_DEBUG */
+  
+  unsigned long codenum; //throw away variable
+  char *starpos = NULL;
+#ifdef ENABLE_AUTO_BED_LEVELING
+  float x_tmp, y_tmp, z_tmp, real_z;
+#endif
+
+  // PRUSA GCODES
+
+#ifdef SNMM
+  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+  int8_t SilentMode;
+#endif
+  if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
+	  starpos = (strchr(strchr_pointer + 5, '*'));
+	  if (starpos != NULL)
+		  *(starpos) = '\0';
+	  lcd_setstatus(strchr_pointer + 5);
+  }
+  else if(code_seen("PRUSA")){
+		if (code_seen("Ping")) {  //PRUSA Ping
+			if (farm_mode) {
+				PingTime = millis();
+				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
+			}	  
+		}
+		else if (code_seen("PRN")) {
+		  MYSERIAL.println(status_number);
+
+		}else if (code_seen("fn")) {
+		  if (farm_mode) {
+			  MYSERIAL.println(farm_no);
+		  }
+		  else {
+			  MYSERIAL.println("Not in farm mode.");
+		  }
+		  
+		}else if (code_seen("fv")) {
+        // get file version
+        #ifdef SDSUPPORT
+        card.openFile(strchr_pointer + 3,true);
+        while (true) {
+            uint16_t readByte = card.get();
+            MYSERIAL.write(readByte);
+            if (readByte=='\n') {
+                break;
+            }
+        }
+        card.closefile();
+
+        #endif // SDSUPPORT
+
+    } else if (code_seen("M28")) {
+        trace();
+        prusa_sd_card_upload = true;
+        card.openFile(strchr_pointer+4,false);
+    } else if (code_seen("SN")) {
+        if (farm_mode) {
+            selectedSerialPort = 0;
+            MSerial.write(";S");
+            // S/N is:CZPX0917X003XC13518
+            int numbersRead = 0;
+
+            while (numbersRead < 19) {
+                while (MSerial.available() > 0) {
+                    uint8_t serial_char = MSerial.read();
+                    selectedSerialPort = 1;
+                    MSerial.write(serial_char);
+                    numbersRead++;
+                    selectedSerialPort = 0;
+                }
+            }
+            selectedSerialPort = 1;
+            MSerial.write('\n');
+            /*for (int b = 0; b < 3; b++) {
+                tone(BEEPER, 110);
+                delay(50);
+                noTone(BEEPER);
+                delay(50);
+            }*/
+        } else {
+            MYSERIAL.println("Not in farm mode.");
+        }
+    } else if(code_seen("Fir")){
+
+      SERIAL_PROTOCOLLN(FW_version);
+
+    } else if(code_seen("Rev")){
+
+      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
+
+    } else if(code_seen("Lang")) {
+      lcd_force_language_selection();
+    } else if(code_seen("Lz")) {
+      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
+      
+    } else if (code_seen("SERIAL LOW")) {
+        MYSERIAL.println("SERIAL LOW");
+        MYSERIAL.begin(BAUDRATE);
+        return;
+    } else if (code_seen("SERIAL HIGH")) {
+        MYSERIAL.println("SERIAL HIGH");
+        MYSERIAL.begin(1152000);
+        return;
+    } else if(code_seen("Beat")) {
+        // Kick farm link timer
+        kicktime = millis();
+
+    } else if(code_seen("FR")) {
+        // Factory full reset
+        factory_reset(0,true);        
+    }
+    //else if (code_seen('Cal')) {
+		//  lcd_calibration();
+	  // }
+
+  }  
+  else if (code_seen('^')) {
+    // nothing, this is a version line
+  } else if(code_seen('G'))
+  {
+    switch((int)code_value())
+    {
+    case 0: // G0 -> G1
+    case 1: // G1
+      if(Stopped == false) {
+
+        #ifdef FILAMENT_RUNOUT_SUPPORT
+            
+            if(READ(FR_SENS)){
+
+                        feedmultiplyBckp=feedmultiply;
+                        float target[4];
+                        float lastpos[4];
+                        target[X_AXIS]=current_position[X_AXIS];
+                        target[Y_AXIS]=current_position[Y_AXIS];
+                        target[Z_AXIS]=current_position[Z_AXIS];
+                        target[E_AXIS]=current_position[E_AXIS];
+                        lastpos[X_AXIS]=current_position[X_AXIS];
+                        lastpos[Y_AXIS]=current_position[Y_AXIS];
+                        lastpos[Z_AXIS]=current_position[Z_AXIS];
+                        lastpos[E_AXIS]=current_position[E_AXIS];
+                        //retract by E
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+                        
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+
+
+                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
+
+                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+                        
+                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+                         
+                 
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
+
+                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
+                          
+
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
+
+                        //finish moves
+                        st_synchronize();
+                        //disable extruder steppers so filament can be removed
+                        disable_e0();
+                        disable_e1();
+                        disable_e2();
+                        delay(100);
+                        
+                        //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
+                        uint8_t cnt=0;
+                        int counterBeep = 0;
+                        lcd_wait_interact();
+                        while(!lcd_clicked()){
+                          cnt++;
+                          manage_heater();
+                          manage_inactivity(true);
+                          //lcd_update();
+                          if(cnt==0)
+                          {
+                          #if BEEPER > 0
+                          
+                            if (counterBeep== 500){
+                              counterBeep = 0;
+                              
+                            }
+                          
+                            
+                            SET_OUTPUT(BEEPER);
+                            if (counterBeep== 0){
+                              WRITE(BEEPER,HIGH);
+                            }
+                            
+                            if (counterBeep== 20){
+                              WRITE(BEEPER,LOW);
+                            }
+                            
+                            
+                            
+                          
+                            counterBeep++;
+                          #else
+                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
+                              lcd_buzz(1000/6,100);
+                      #else
+                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
+                      #endif
+                          #endif
+                          }
+                        }
+                        
+                        WRITE(BEEPER,LOW);
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
+                        
+                        
+                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                        
+                 
+                        
+                        
+                        
+                        lcd_change_fil_state = 0;
+                        lcd_loading_filament();
+                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+                        
+                          lcd_change_fil_state = 0;
+                          lcd_alright();
+                          switch(lcd_change_fil_state){
+                          
+                             case 2:
+                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
+                        
+                        
+                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                                      
+                                     
+                                     lcd_loading_filament();
+                                     break;
+                             case 3:
+                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                                     lcd_loading_color();
+                                     break;
+                                          
+                             default:
+                                     lcd_change_success();
+                                     break;
+                          }
+                          
+                        }
+                        
+
+                        
+                      target[E_AXIS]+= 5;
+                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
+                        
+                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+                        
+
+                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
+                        //plan_set_e_position(current_position[E_AXIS]);
+                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
+                        
+                        
+                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+                        
+                      
+                             
+                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
+                        
+                        
+                        plan_set_e_position(lastpos[E_AXIS]);
+                        
+                        feedmultiply=feedmultiplyBckp;
+                        
+                     
+                        
+                        char cmd[9];
+
+                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+                        enquecommand(cmd);
+
+            }
+
+
+
+        #endif
+
+
+        get_coordinates(); // For X Y Z E F
+		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
+			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
+		}
+          #ifdef FWRETRACT
+            if(autoretract_enabled)
+            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
+              float echange=destination[E_AXIS]-current_position[E_AXIS];
+
+              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
+                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
+                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
+                  retract(!retracted);
+                  return;
+              }
+
+
+            }
+          #endif //FWRETRACT
+        prepare_move();
+        //ClearToSend();
+      }
+      break;
+    case 2: // G2  - CW ARC
+      if(Stopped == false) {
+        get_arc_coordinates();
+        prepare_arc_move(true);
+      }
+      break;
+    case 3: // G3  - CCW ARC
+      if(Stopped == false) {
+        get_arc_coordinates();
+        prepare_arc_move(false);
+      }
+      break;
+    case 4: // G4 dwell      
+      codenum = 0;
+      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+	  if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
+      st_synchronize();
+      codenum += millis();  // keep track of when we started waiting
+      previous_millis_cmd = millis();
+      while(millis() < codenum) {
+        manage_heater();
+        manage_inactivity();
+        lcd_update();
+      }
+      break;
+      #ifdef FWRETRACT
+      case 10: // G10 retract
+       #if EXTRUDERS > 1
+        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
+        retract(true,retracted_swap[active_extruder]);
+       #else
+        retract(true);
+       #endif
+      break;
+      case 11: // G11 retract_recover
+       #if EXTRUDERS > 1
+        retract(false,retracted_swap[active_extruder]);
+       #else
+        retract(false);
+       #endif 
+      break;
+      #endif //FWRETRACT
+    case 28: //G28 Home all Axis one at a time
+		homing_flag = true;
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
+#endif //ENABLE_AUTO_BED_LEVELING
+            
+	      
+        // For mesh bed leveling deactivate the matrix temporarily
+        #ifdef MESH_BED_LEVELING
+            mbl.active = 0;
+        #endif
+
+      // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+      // the planner will not perform any adjustments in the XY plane. 
+      // Wait for the motors to stop and update the current position with the absolute values.
+      world2machine_revert_to_uncorrected();
+
+      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+      // consumed during the first movements following this statement.
+      babystep_undo();
+
+      saved_feedrate = feedrate;
+      saved_feedmultiply = feedmultiply;
+      feedmultiply = 100;
+      previous_millis_cmd = millis();
+
+      enable_endstops(true);
+
+      for(int8_t i=0; i < NUM_AXIS; i++)
+          destination[i] = current_position[i];
+      feedrate = 0.0;
+
+      home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
+
+      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
+      if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
+        homeaxis(Z_AXIS);
+      }
+      #endif
+
+      #ifdef QUICK_HOME
+      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
+      if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) )  //first diagonal move
+      {
+        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
+
+        int x_axis_home_dir = home_dir(X_AXIS);
+
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
+        feedrate = homing_feedrate[X_AXIS];
+        if(homing_feedrate[Y_AXIS]<feedrate)
+          feedrate = homing_feedrate[Y_AXIS];
+        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
+          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
+        } else {
+          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
+        }
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        st_synchronize();
+
+        axis_is_at_home(X_AXIS);
+        axis_is_at_home(Y_AXIS);
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        destination[X_AXIS] = current_position[X_AXIS];
+        destination[Y_AXIS] = current_position[Y_AXIS];
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+        feedrate = 0.0;
+        st_synchronize();
+        endstops_hit_on_purpose();
+
+        current_position[X_AXIS] = destination[X_AXIS];
+        current_position[Y_AXIS] = destination[Y_AXIS];
+        current_position[Z_AXIS] = destination[Z_AXIS];
+      }
+      #endif /* QUICK_HOME */
+
+	 
+      if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
+        homeaxis(X_AXIS);
+
+      if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
+        homeaxis(Y_AXIS);
+
+      if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
+        current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
+
+      if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
+		    current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
+
+      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
+        #ifndef Z_SAFE_HOMING
+          if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
+            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+              feedrate = max_feedrate[Z_AXIS];
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
+            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, moxve X&Y to safe position for home
+      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) 
+      			  {
+                homeaxis(X_AXIS);
+                homeaxis(Y_AXIS);
+      			  } 
+              // 1st mesh bed leveling measurement point, corrected.
+              world2machine_initialize();
+              world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
+              world2machine_reset();
+              if (destination[Y_AXIS] < Y_MIN_POS)
+                  destination[Y_AXIS] = Y_MIN_POS;
+              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed
+              feedrate = homing_feedrate[Z_AXIS]/10;
+              current_position[Z_AXIS] = 0;
+              enable_endstops(false);
+              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+              current_position[X_AXIS] = destination[X_AXIS];
+              current_position[Y_AXIS] = destination[Y_AXIS];
+              enable_endstops(true);
+              endstops_hit_on_purpose();
+              homeaxis(Z_AXIS);
+            #else // MESH_BED_LEVELING
+              homeaxis(Z_AXIS);
+            #endif // MESH_BED_LEVELING
+          }
+        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
+          if(home_all_axis) {
+            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
+            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
+            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+            feedrate = XY_TRAVEL_SPEED/60;
+            current_position[Z_AXIS] = 0;
+
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+            st_synchronize();
+            current_position[X_AXIS] = destination[X_AXIS];
+            current_position[Y_AXIS] = destination[Y_AXIS];
+
+            homeaxis(Z_AXIS);
+          }
+                                                // Let's see if X and Y are homed and probe is inside bed area.
+          if(code_seen(axis_codes[Z_AXIS])) {
+            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
+              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
+              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
+              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
+              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
+
+              current_position[Z_AXIS] = 0;
+              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
+              feedrate = max_feedrate[Z_AXIS];
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
+              st_synchronize();
+
+              homeaxis(Z_AXIS);
+            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
+                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+            } else {
+                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
+            }
+          }
+        #endif // Z_SAFE_HOMING
+      #endif // Z_HOME_DIR < 0
+
+      if(code_seen(axis_codes[Z_AXIS])) {
+        if(code_value_long() != 0) {
+          current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
+        }
+      }
+      #ifdef ENABLE_AUTO_BED_LEVELING
+        if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
+          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
+        }
+      #endif
+  
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+      #ifdef ENDSTOPS_ONLY_FOR_HOMING
+        enable_endstops(false);
+      #endif
+
+      feedrate = saved_feedrate;
+      feedmultiply = saved_feedmultiply;
+      previous_millis_cmd = millis();
+      endstops_hit_on_purpose();
+#ifndef MESH_BED_LEVELING
+      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
+      // Offer the user to load the baby step value, which has been adjusted at the previous print session.
+      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
+          lcd_adjust_z();
+#endif
+
+    // Load the machine correction matrix
+    world2machine_initialize();
+    // and correct the current_position to match the transformed coordinate system.
+    world2machine_update_current();
+
+#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
+	if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
+		{
+		}
+	else
+		{
+			st_synchronize();
+			homing_flag = false;
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			// enquecommand_front_P((PSTR("G80")));
+			goto case_G80;
+	  }
+#endif
+
+	  if (farm_mode) { prusa_statistics(20); };
+
+	  homing_flag = false;
+
+      break;
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+        {
+            #if Z_MIN_PIN == -1
+            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
+            #endif
+
+            // Prevent user from running a G29 without first homing in X and Y
+            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
+            {
+                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
+                SERIAL_ECHO_START;
+                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
+                break; // abort G29, since we don't know where we are
+            }
+
+            st_synchronize();
+            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
+            //vector_3 corrected_position = plan_get_position_mm();
+            //corrected_position.debug("position before G29");
+            plan_bed_level_matrix.set_to_identity();
+            vector_3 uncorrected_position = plan_get_position();
+            //uncorrected_position.debug("position durring G29");
+            current_position[X_AXIS] = uncorrected_position.x;
+            current_position[Y_AXIS] = uncorrected_position.y;
+            current_position[Z_AXIS] = uncorrected_position.z;
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+#ifdef AUTO_BED_LEVELING_GRID
+            // probe at the points of a lattice grid
+
+            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
+
+
+            // solve the plane equation ax + by + d = z
+            // A is the matrix with rows [x y 1] for all the probed points
+            // B is the vector of the Z positions
+            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+
+            // "A" matrix of the linear system of equations
+            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
+            // "B" vector of Z points
+            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
+
+
+            int probePointCounter = 0;
+            bool zig = true;
+
+            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
+            {
+              int xProbe, xInc;
+              if (zig)
+              {
+                xProbe = LEFT_PROBE_BED_POSITION;
+                //xEnd = RIGHT_PROBE_BED_POSITION;
+                xInc = xGridSpacing;
+                zig = false;
+              } else // zag
+              {
+                xProbe = RIGHT_PROBE_BED_POSITION;
+                //xEnd = LEFT_PROBE_BED_POSITION;
+                xInc = -xGridSpacing;
+                zig = true;
+              }
+
+              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
+              {
+                float z_before;
+                if (probePointCounter == 0)
+                {
+                  // raise before probing
+                  z_before = Z_RAISE_BEFORE_PROBING;
+                } else
+                {
+                  // raise extruder
+                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
+                }
+
+                float measured_z = probe_pt(xProbe, yProbe, z_before);
+
+                eqnBVector[probePointCounter] = measured_z;
+
+                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
+                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
+                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
+                probePointCounter++;
+                xProbe += xInc;
+              }
+            }
+            clean_up_after_endstop_move();
+
+            // solve lsq problem
+            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
+
+            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
+            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
+            SERIAL_PROTOCOLPGM(" b: ");
+            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
+            SERIAL_PROTOCOLPGM(" d: ");
+            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
+
+
+            set_bed_level_equation_lsq(plane_equation_coefficients);
+
+            free(plane_equation_coefficients);
+
+#else // AUTO_BED_LEVELING_GRID not defined
+
+            // Probe at 3 arbitrary points
+            // probe 1
+            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
+
+            // probe 2
+            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+            // probe 3
+            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
+
+            clean_up_after_endstop_move();
+
+            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
+
+
+#endif // AUTO_BED_LEVELING_GRID
+            st_synchronize();
+
+            // The following code correct the Z height difference from z-probe position and hotend tip position.
+            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
+            // When the bed is uneven, this height must be corrected.
+            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
+            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
+            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+            z_tmp = current_position[Z_AXIS];
+
+            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
+            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+        }
+        break;
+#ifndef Z_PROBE_SLED
+    case 30: // G30 Single Z Probe
+        {
+            st_synchronize();
+            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+
+            run_z_probe();
+            SERIAL_PROTOCOLPGM(MSG_BED);
+            SERIAL_PROTOCOLPGM(" X: ");
+            SERIAL_PROTOCOL(current_position[X_AXIS]);
+            SERIAL_PROTOCOLPGM(" Y: ");
+            SERIAL_PROTOCOL(current_position[Y_AXIS]);
+            SERIAL_PROTOCOLPGM(" Z: ");
+            SERIAL_PROTOCOL(current_position[Z_AXIS]);
+            SERIAL_PROTOCOLPGM("\n");
+
+            clean_up_after_endstop_move();
+        }
+        break;
+#else
+    case 31: // dock the sled
+        dock_sled(true);
+        break;
+    case 32: // undock the sled
+        dock_sled(false);
+        break;
+#endif // Z_PROBE_SLED
+#endif // ENABLE_AUTO_BED_LEVELING
+            
+#ifdef MESH_BED_LEVELING
+    case 30: // G30 Single Z Probe
+        {
+            st_synchronize();
+            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
+            setup_for_endstop_move();
+
+            feedrate = homing_feedrate[Z_AXIS];
+
+            find_bed_induction_sensor_point_z(-10.f, 3);
+            SERIAL_PROTOCOLRPGM(MSG_BED);
+            SERIAL_PROTOCOLPGM(" X: ");
+            MYSERIAL.print(current_position[X_AXIS], 5);
+            SERIAL_PROTOCOLPGM(" Y: ");
+            MYSERIAL.print(current_position[Y_AXIS], 5);
+            SERIAL_PROTOCOLPGM(" Z: ");
+            MYSERIAL.print(current_position[Z_AXIS], 5);
+            SERIAL_PROTOCOLPGM("\n");
+            clean_up_after_endstop_move();
+        }
+        break;
+	
+
+	case 75:
+	{
+		for (int i = 40; i <= 110; i++) {
+			MYSERIAL.print(i);
+			MYSERIAL.print("  ");
+			MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
+		}
+	}
+	break;
+
+	case 76: //PINDA probe temperature calibration
+	{
+		setTargetBed(PINDA_MIN_T);
+		float zero_z;
+		int z_shift = 0; //unit: steps
+		int t_c; // temperature
+
+		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+			// We don't know where we are! HOME!
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			repeatcommand_front(); // repeat G76 with all its parameters
+			enquecommand_front_P((PSTR("G28 W0")));
+			break;
+		}
+		SERIAL_ECHOLNPGM("PINDA probe calibration start");
+		custom_message = true;
+		custom_message_type = 4;
+		custom_message_state = 1;
+		custom_message = MSG_TEMP_CALIBRATION;
+		current_position[X_AXIS] = PINDA_PREHEAT_X;
+		current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+		current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		
+		while (abs(degBed() - PINDA_MIN_T) > 1) {
+			delay_keep_alive(1000);
+			serialecho_temperatures();
+		}
+		
+		//enquecommand_P(PSTR("M190 S50"));
+		for (int i = 0; i < PINDA_HEAT_T; i++) {
+			delay_keep_alive(1000);
+			serialecho_temperatures();
+		}
+		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 
+
+		current_position[Z_AXIS] = 5;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+
+		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+		st_synchronize();
+		
+		find_bed_induction_sensor_point_z(-1.f);
+		zero_z = current_position[Z_AXIS];
+
+		//current_position[Z_AXIS]
+		SERIAL_ECHOLNPGM("");
+		SERIAL_ECHOPGM("ZERO: ");
+		MYSERIAL.print(current_position[Z_AXIS]);
+		SERIAL_ECHOLNPGM("");
+
+		for (int i = 0; i<5; i++) {
+			SERIAL_ECHOPGM("Step: ");
+			MYSERIAL.print(i+2);
+			SERIAL_ECHOLNPGM("/6");
+			custom_message_state = i + 2;
+			t_c = 60 + i * 10;
+
+			setTargetBed(t_c);
+			current_position[X_AXIS] = PINDA_PREHEAT_X;
+			current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+			current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+			while (degBed() < t_c) {
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+			for (int i = 0; i < PINDA_HEAT_T; i++) {
+				delay_keep_alive(1000);
+				serialecho_temperatures();
+			}
+			current_position[Z_AXIS] = 5;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			st_synchronize();
+			find_bed_induction_sensor_point_z(-1.f);
+			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
+
+			SERIAL_ECHOLNPGM("");
+			SERIAL_ECHOPGM("Temperature: ");
+			MYSERIAL.print(t_c);
+			SERIAL_ECHOPGM(" Z shift (mm):");
+			MYSERIAL.print(current_position[Z_AXIS] - zero_z);
+			SERIAL_ECHOLNPGM("");
+
+			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
+			
+		
+		}
+		custom_message_type = 0;
+		custom_message = false;
+
+		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
+		SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
+			disable_x();
+			disable_y();
+			disable_z();
+			disable_e0();
+			disable_e1();
+			disable_e2();
+			setTargetBed(0); //set bed target temperature back to 0
+		lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
+		lcd_update_enable(true);
+		lcd_update(2);		
+
+		
+
+	}
+	break;
+
+#ifdef DIS
+	case 77:
+	{
+		//G77 X200 Y150 XP100 YP15 XO10 Y015
+
+		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
+
+
+		//G77 X232 Y218 XP116 YP109 XO-11 YO0 
+
+		float dimension_x = 40;
+		float dimension_y = 40;
+		int points_x = 40;
+		int points_y = 40;
+		float offset_x = 74;
+		float offset_y = 33;
+
+		if (code_seen('X')) dimension_x = code_value();
+		if (code_seen('Y')) dimension_y = code_value();
+		if (code_seen('XP')) points_x = code_value();
+		if (code_seen('YP')) points_y = code_value();
+		if (code_seen('XO')) offset_x = code_value();
+		if (code_seen('YO')) offset_y = code_value();
+		
+		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
+		
+	} break;
+	
+#endif
+
+	/**
+	* G80: Mesh-based Z probe, probes a grid and produces a
+	*      mesh to compensate for variable bed height
+	*
+	* The S0 report the points as below
+	*
+	*  +----> X-axis
+	*  |
+	*  |
+	*  v Y-axis
+	*
+	*/
+
+	case 80:
+#ifdef MK1BP
+		break;
+#endif //MK1BP
+	case_G80:
+	{
+		mesh_bed_leveling_flag = true;
+		int8_t verbosity_level = 0;
+		static bool run = false;
+
+		if (code_seen('V')) {
+			// Just 'V' without a number counts as V1.
+			char c = strchr_pointer[1];
+			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+		}
+		// Firstly check if we know where we are
+		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+			// We don't know where we are! HOME!
+			// Push the commands to the front of the message queue in the reverse order!
+			// There shall be always enough space reserved for these commands.
+			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+				repeatcommand_front(); // repeat G80 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+			}
+			else {
+				mesh_bed_leveling_flag = false;
+			}
+			break;
+		} 
+		
+		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
+				temp_compensation_start();
+				run = true;
+				repeatcommand_front(); // repeat G80 with all its parameters
+				enquecommand_front_P((PSTR("G28 W0")));
+			}
+			else {
+				mesh_bed_leveling_flag = false;
+			}
+			break;
+		}
+		run = false;
+		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
+			mesh_bed_leveling_flag = false;
+			break;
+		}
+		// Save custom message state, set a new custom message state to display: Calibrating point 9.
+		bool custom_message_old = custom_message;
+		unsigned int custom_message_type_old = custom_message_type;
+		unsigned int custom_message_state_old = custom_message_state;
+		custom_message = true;
+		custom_message_type = 1;
+		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
+		lcd_update(1);
+
+		mbl.reset(); //reset mesh bed leveling
+
+					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
+					 // consumed during the first movements following this statement.
+		babystep_undo();
+
+		// Cycle through all points and probe them
+		// First move up. During this first movement, the babystepping will be reverted.
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+		// The move to the first calibration point.
+		current_position[X_AXIS] = pgm_read_float(bed_ref_points);
+		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
+		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+
+		if (verbosity_level >= 1) {
+			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
+		}
+		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
+		// Wait until the move is finished.
+		st_synchronize();
+
+		int mesh_point = 0; //index number of calibration point
+
+		int ix = 0;
+		int iy = 0;
+
+		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+		if (verbosity_level >= 1) {
+			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
+		}
+		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
+		const char *kill_message = NULL;
+		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+			if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
+			// Get coords of a measuring point.
+			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
+			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
+			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
+			float z0 = 0.f;
+			if (has_z && mesh_point > 0) {
+				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
+				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
+				//#if 0
+				if (verbosity_level >= 1) {
+					SERIAL_ECHOPGM("Bed leveling, point: ");
+					MYSERIAL.print(mesh_point);
+					SERIAL_ECHOPGM(", calibration z: ");
+					MYSERIAL.print(z0, 5);
+					SERIAL_ECHOLNPGM("");
+				}
+				//#endif
+			}
+
+			// Move Z up to MESH_HOME_Z_SEARCH.
+			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+			st_synchronize();
+
+			// Move to XY position of the sensor point.
+			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
+			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
+
+
+
+			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+			if (verbosity_level >= 1) {
+
+				SERIAL_PROTOCOL(mesh_point);
+				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
+			}
+
+
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+			st_synchronize();
+
+			// Go down until endstop is hit
+			const float Z_CALIBRATION_THRESHOLD = 1.f;
+			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+				kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
+				break;
+			}
+			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
+				kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
+				break;
+			}
+			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
+				kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
+				break;
+			}
+
+			if (verbosity_level >= 10) {
+				SERIAL_ECHOPGM("X: ");
+				MYSERIAL.print(current_position[X_AXIS], 5);
+				SERIAL_ECHOLNPGM("");
+				SERIAL_ECHOPGM("Y: ");
+				MYSERIAL.print(current_position[Y_AXIS], 5);
+				SERIAL_PROTOCOLPGM("\n");
+			}
+
+			if (verbosity_level >= 1) {
+				SERIAL_ECHOPGM("mesh bed leveling: ");
+				MYSERIAL.print(current_position[Z_AXIS], 5);
+				SERIAL_ECHOLNPGM("");
+			}
+			mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
+
+			custom_message_state--;
+			mesh_point++;
+			lcd_update(1);
+		}
+		if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
+		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+		if (verbosity_level >= 20) {
+			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
+			MYSERIAL.print(current_position[Z_AXIS], 5);
+		}
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		st_synchronize();
+		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+			kill(kill_message);
+			SERIAL_ECHOLNPGM("killed");
+		}
+		clean_up_after_endstop_move();
+		SERIAL_ECHOLNPGM("clean up finished ");
+		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
+		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
+		SERIAL_ECHOLNPGM("babystep applied");
+		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
+
+		if (verbosity_level >= 1) {
+			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
+		}
+
+		for (uint8_t i = 0; i < 4; ++i) {
+			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
+			long correction = 0;
+			if (code_seen(codes[i]))
+				correction = code_value_long();
+			else if (eeprom_bed_correction_valid) {
+				unsigned char *addr = (i < 2) ?
+					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
+					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
+				correction = eeprom_read_int8(addr);
+			}
+			if (correction == 0)
+				continue;
+			float offset = float(correction) * 0.001f;
+			if (fabs(offset) > 0.101f) {
+				SERIAL_ERROR_START;
+				SERIAL_ECHOPGM("Excessive bed leveling correction: ");
+				SERIAL_ECHO(offset);
+				SERIAL_ECHOLNPGM(" microns");
+			}
+			else {
+				switch (i) {
+				case 0:
+					for (uint8_t row = 0; row < 3; ++row) {
+						mbl.z_values[row][1] += 0.5f * offset;
+						mbl.z_values[row][0] += offset;
+					}
+					break;
+				case 1:
+					for (uint8_t row = 0; row < 3; ++row) {
+						mbl.z_values[row][1] += 0.5f * offset;
+						mbl.z_values[row][2] += offset;
+					}
+					break;
+				case 2:
+					for (uint8_t col = 0; col < 3; ++col) {
+						mbl.z_values[1][col] += 0.5f * offset;
+						mbl.z_values[0][col] += offset;
+					}
+					break;
+				case 3:
+					for (uint8_t col = 0; col < 3; ++col) {
+						mbl.z_values[1][col] += 0.5f * offset;
+						mbl.z_values[2][col] += offset;
+					}
+					break;
+				}
+			}
+		}
+		SERIAL_ECHOLNPGM("Bed leveling correction finished");
+		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
+		SERIAL_ECHOLNPGM("Upsample finished");
+		mbl.active = 1; //activate mesh bed leveling
+		SERIAL_ECHOLNPGM("Mesh bed leveling activated");
+		go_home_with_z_lift();
+		SERIAL_ECHOLNPGM("Go home finished");
+		//unretract (after PINDA preheat retraction)
+		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
+			current_position[E_AXIS] += DEFAULT_RETRACTION;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+		}
+		// Restore custom message state
+		custom_message = custom_message_old;
+		custom_message_type = custom_message_type_old;
+		custom_message_state = custom_message_state_old;
+		mesh_bed_leveling_flag = false;
+		mesh_bed_run_from_menu = false;
+		lcd_update(2);
+		
+	}
+	break;
+
+        /**
+         * G81: Print mesh bed leveling status and bed profile if activated
+         */
+        case 81:
+            if (mbl.active) {
+                SERIAL_PROTOCOLPGM("Num X,Y: ");
+                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
+                SERIAL_PROTOCOLPGM(",");
+                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
+                SERIAL_PROTOCOLPGM("\nZ search height: ");
+                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
+                SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
+                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
+                        SERIAL_PROTOCOLPGM("  ");
+                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
+                    }
+                    SERIAL_PROTOCOLPGM("\n");
+                }
+            }
+            else
+                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
+            break;
+            
+#if 0
+        /**
+         * G82: Single Z probe at current location
+         *
+         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
+         *
+         */
+        case 82:
+            SERIAL_PROTOCOLLNPGM("Finding bed ");
+            setup_for_endstop_move();
+            find_bed_induction_sensor_point_z();
+            clean_up_after_endstop_move();
+            SERIAL_PROTOCOLPGM("Bed found at: ");
+            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
+            SERIAL_PROTOCOLPGM("\n");
+            break;
+
+            /**
+             * G83: Prusa3D specific: Babystep in Z and store to EEPROM
+             */
+        case 83:
+        {
+            int babystepz = code_seen('S') ? code_value() : 0;
+            int BabyPosition = code_seen('P') ? code_value() : 0;
+            
+            if (babystepz != 0) {
+                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
+                // Is the axis indexed starting with zero or one?
+                if (BabyPosition > 4) {
+                    SERIAL_PROTOCOLLNPGM("Index out of bounds");
+                }else{
+                    // Save it to the eeprom
+                    babystepLoadZ = babystepz;
+                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
+                    // adjust the Z
+                    babystepsTodoZadd(babystepLoadZ);
+                }
+            
+            }
+            
+        }
+        break;
+            /**
+             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
+             */
+        case 84:
+            babystepsTodoZsubtract(babystepLoadZ);
+            // babystepLoadZ = 0;
+            break;
+            
+            /**
+             * G85: Prusa3D specific: Pick best babystep
+             */
+        case 85:
+            lcd_pick_babystep();
+            break;
+#endif
+            
+            /**
+             * G86: Prusa3D specific: Disable babystep correction after home.
+             * This G-code will be performed at the start of a calibration script.
+             */
+        case 86:
+            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+            break;
+            /**
+             * G87: Prusa3D specific: Enable babystep correction after home
+             * This G-code will be performed at the end of a calibration script.
+             */
+        case 87:
+			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+            break;
+
+            /**
+             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
+             */
+		    case 88:
+			      break;
+
+
+#endif  // ENABLE_MESH_BED_LEVELING
+            
+            
+    case 90: // G90
+      relative_mode = false;
+      break;
+    case 91: // G91
+      relative_mode = true;
+      break;
+    case 92: // G92
+      if(!code_seen(axis_codes[E_AXIS]))
+        st_synchronize();
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) {
+           if(i == E_AXIS) {
+             current_position[i] = code_value();
+             plan_set_e_position(current_position[E_AXIS]);
+           }
+           else {
+		current_position[i] = code_value()+add_homing[i];
+            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+           }
+        }
+      }
+      break;
+
+	case 98: //activate farm mode
+		farm_mode = 1;
+		PingTime = millis();
+		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+		break;
+
+	case 99: //deactivate farm mode
+		farm_mode = 0;
+		lcd_printer_connected();
+		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
+		lcd_update(2);
+		break;
+
+
+
+
+
+
+
+    }
+  } // end if(code_seen('G'))
+
+  else if(code_seen('M'))
+  {
+	  int index;
+	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+	   
+	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
+	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
+		  SERIAL_ECHOLNPGM("Invalid M code");
+	  } else
+    switch((int)code_value())
+    {
+#ifdef ULTIPANEL
+
+    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
+    case 1: // M1 - Conditional stop - Wait for user button press on LCD
+    {
+      char *src = strchr_pointer + 2;
+
+      codenum = 0;
+
+      bool hasP = false, hasS = false;
+      if (code_seen('P')) {
+        codenum = code_value(); // milliseconds to wait
+        hasP = codenum > 0;
+      }
+      if (code_seen('S')) {
+        codenum = code_value() * 1000; // seconds to wait
+        hasS = codenum > 0;
+      }
+      starpos = strchr(src, '*');
+      if (starpos != NULL) *(starpos) = '\0';
+      while (*src == ' ') ++src;
+      if (!hasP && !hasS && *src != '\0') {
+        lcd_setstatus(src);
+      } else {
+        LCD_MESSAGERPGM(MSG_USERWAIT);
+      }
+
+      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???
+      st_synchronize();
+      previous_millis_cmd = millis();
+      if (codenum > 0){
+        codenum += millis();  // keep track of when we started waiting
+        while(millis() < codenum && !lcd_clicked()){
+          manage_heater();
+          manage_inactivity(true);
+          lcd_update();
+        }
+        lcd_ignore_click(false);
+      }else{
+          if (!lcd_detected())
+            break;
+        while(!lcd_clicked()){
+          manage_heater();
+          manage_inactivity(true);
+          lcd_update();
+        }
+      }
+      if (IS_SD_PRINTING)
+        LCD_MESSAGERPGM(MSG_RESUMING);
+      else
+        LCD_MESSAGERPGM(WELCOME_MSG);
+    }
+    break;
+#endif
+    case 17:
+        LCD_MESSAGERPGM(MSG_NO_MOVE);
+        enable_x();
+        enable_y();
+        enable_z();
+        enable_e0();
+        enable_e1();
+        enable_e2();
+      break;
+
+#ifdef SDSUPPORT
+    case 20: // M20 - list SD card
+      SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
+      card.ls();
+      SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
+      break;
+    case 21: // M21 - init SD card
+
+      card.initsd();
+
+      break;
+    case 22: //M22 - release SD card
+      card.release();
+
+      break;
+    case 23: //M23 - Select file
+      starpos = (strchr(strchr_pointer + 4,'*'));
+      if(starpos!=NULL)
+        *(starpos)='\0';
+      card.openFile(strchr_pointer + 4,true);
+      break;
+    case 24: //M24 - Start SD print
+      card.startFileprint();
+      starttime=millis();
+	  break;
+    case 25: //M25 - Pause SD print
+      card.pauseSDPrint();
+      break;
+    case 26: //M26 - Set SD index
+      if(card.cardOK && code_seen('S')) {
+        card.setIndex(code_value_long());
+      }
+      break;
+    case 27: //M27 - Get SD status
+      card.getStatus();
+      break;
+    case 28: //M28 - Start SD write
+      starpos = (strchr(strchr_pointer + 4,'*'));
+      if(starpos != NULL){
+        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+        strchr_pointer = strchr(npos,' ') + 1;
+        *(starpos) = '\0';
+      }
+      card.openFile(strchr_pointer+4,false);
+      break;
+    case 29: //M29 - Stop SD write
+      //processed in write to file routine above
+      //card,saving = false;
+      break;
+    case 30: //M30 <filename> Delete File
+      if (card.cardOK){
+        card.closefile();
+        starpos = (strchr(strchr_pointer + 4,'*'));
+        if(starpos != NULL){
+          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+          strchr_pointer = strchr(npos,' ') + 1;
+          *(starpos) = '\0';
+        }
+        card.removeFile(strchr_pointer + 4);
+      }
+      break;
+    case 32: //M32 - Select file and start SD print
+    {
+      if(card.sdprinting) {
+        st_synchronize();
+
+      }
+      starpos = (strchr(strchr_pointer + 4,'*'));
+
+      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
+      if(namestartpos==NULL)
+      {
+        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
+      }
+      else
+        namestartpos++; //to skip the '!'
+
+      if(starpos!=NULL)
+        *(starpos)='\0';
+
+      bool call_procedure=(code_seen('P'));
+
+      if(strchr_pointer>namestartpos)
+        call_procedure=false;  //false alert, 'P' found within filename
+
+      if( card.cardOK )
+      {
+        card.openFile(namestartpos,true,!call_procedure);
+        if(code_seen('S'))
+          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
+            card.setIndex(code_value_long());
+        card.startFileprint();
+        if(!call_procedure)
+          starttime=millis(); //procedure calls count as normal print time.
+      }
+    } break;
+    case 928: //M928 - Start SD write
+      starpos = (strchr(strchr_pointer + 5,'*'));
+      if(starpos != NULL){
+        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
+        strchr_pointer = strchr(npos,' ') + 1;
+        *(starpos) = '\0';
+      }
+      card.openLogFile(strchr_pointer+5);
+      break;
+
+#endif //SDSUPPORT
+
+    case 31: //M31 take time since the start of the SD print or an M109 command
+      {
+      stoptime=millis();
+      char time[30];
+      unsigned long t=(stoptime-starttime)/1000;
+      int sec,min;
+      min=t/60;
+      sec=t%60;
+      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
+      SERIAL_ECHO_START;
+      SERIAL_ECHOLN(time);
+      lcd_setstatus(time);
+      autotempShutdown();
+      }
+      break;
+    case 42: //M42 -Change pin status via gcode
+      if (code_seen('S'))
+      {
+        int pin_status = code_value();
+        int pin_number = LED_PIN;
+        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
+          pin_number = code_value();
+        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+        {
+          if (sensitive_pins[i] == pin_number)
+          {
+            pin_number = -1;
+            break;
+          }
+        }
+      #if defined(FAN_PIN) && FAN_PIN > -1
+        if (pin_number == FAN_PIN)
+          fanSpeed = pin_status;
+      #endif
+        if (pin_number > -1)
+        {
+          pinMode(pin_number, OUTPUT);
+          digitalWrite(pin_number, pin_status);
+          analogWrite(pin_number, pin_status);
+        }
+      }
+     break;
+
+    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
+
+		// Reset the baby step value and the baby step applied flag.
+		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+
+        // Reset the skew and offset in both RAM and EEPROM.
+        reset_bed_offset_and_skew();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        break;
+
+    case 45: // M45: Prusa3D: bed skew and offset with manual Z up
+    {
+		// Only Z calibration?
+		bool onlyZ = code_seen('Z');
+
+		if (!onlyZ) {
+			setTargetBed(0);
+			setTargetHotend(0, 0);
+			setTargetHotend(0, 1);
+			setTargetHotend(0, 2);
+			adjust_bed_reset(); //reset bed level correction
+		}
+		
+        // Disable the default update procedure of the display. We will do a modal dialog.
+        lcd_update_enable(false);
+        // Let the planner use the uncorrected coordinates.
+        mbl.reset();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        // Reset the baby step value applied without moving the axes.
+        babystep_reset();
+        // Mark all axes as in a need for homing.
+        memset(axis_known_position, 0, sizeof(axis_known_position));
+                
+        // Let the user move the Z axes up to the end stoppers.
+        if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
+            refresh_cmd_timeout();
+			if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
+				lcd_wait_for_cool_down();
+				lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
+				lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
+				lcd_implementation_print_at(0, 2, 1);
+				lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
+			}
+
+            // Move the print head close to the bed.
+            current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+            plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+            st_synchronize();
+
+            // Home in the XY plane.
+            set_destination_to_current();
+            setup_for_endstop_move();
+            home_xy();
+
+            int8_t verbosity_level = 0;
+            if (code_seen('V')) {
+                // Just 'V' without a number counts as V1.
+                char c = strchr_pointer[1];
+                verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+            }
+            
+            if (onlyZ) {
+                clean_up_after_endstop_move();
+                // Z only calibration.
+                // Load the machine correction matrix
+                world2machine_initialize();
+                // and correct the current_position to match the transformed coordinate system.
+                world2machine_update_current();
+                //FIXME
+                bool result = sample_mesh_and_store_reference();
+                if (result) {
+                    if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
+                        // Shipped, the nozzle height has been set already. The user can start printing now.
+                        calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+                    // babystep_apply();
+                }
+            } else {
+                // Reset the baby step value and the baby step applied flag.
+                calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
+                eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
+                // Complete XYZ calibration.
+				uint8_t point_too_far_mask = 0;
+                BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
+				clean_up_after_endstop_move();
+                // Print head up.
+                current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+                plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+                st_synchronize();
+                if (result >= 0) {
+					point_too_far_mask = 0;
+                    // Second half: The fine adjustment.
+                    // Let the planner use the uncorrected coordinates.
+                    mbl.reset();
+                    world2machine_reset();
+                    // Home in the XY plane.
+                    setup_for_endstop_move();
+                    home_xy();
+                    result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
+                    clean_up_after_endstop_move();
+                    // Print head up.
+                    current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+                    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+                    st_synchronize();
+                    // if (result >= 0) babystep_apply();
+                }
+                lcd_bed_calibration_show_result(result, point_too_far_mask);
+                if (result >= 0) {
+                    // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
+                    calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
+                    lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
+                }
+            }
+        } else {
+            // Timeouted.
+        }
+        lcd_update_enable(true);
+        break;
+    }
+
+    /*
+    case 46:
+    {
+        // M46: Prusa3D: Show the assigned IP address.
+        uint8_t ip[4];
+        bool hasIP = card.ToshibaFlashAir_GetIP(ip);
+        if (hasIP) {
+            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
+            SERIAL_ECHO(int(ip[0]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[1]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[2]));
+            SERIAL_ECHOPGM(".");
+            SERIAL_ECHO(int(ip[3]));
+            SERIAL_ECHOLNPGM("");
+        } else {
+            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");          
+        }
+        break;
+    }
+    */
+
+    case 47:
+        // M47: Prusa3D: Show end stops dialog on the display.
+        lcd_diag_show_end_stops();
+        break;
+
+#if 0
+    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
+    {
+        // Disable the default update procedure of the display. We will do a modal dialog.
+        lcd_update_enable(false);
+        // Let the planner use the uncorrected coordinates.
+        mbl.reset();
+        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
+        // the planner will not perform any adjustments in the XY plane. 
+        // Wait for the motors to stop and update the current position with the absolute values.
+        world2machine_revert_to_uncorrected();
+        // Move the print head close to the bed.
+        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+        st_synchronize();
+        // Home in the XY plane.
+        set_destination_to_current();
+        setup_for_endstop_move();
+        home_xy();
+        int8_t verbosity_level = 0;
+        if (code_seen('V')) {
+            // Just 'V' without a number counts as V1.
+            char c = strchr_pointer[1];
+            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
+        }
+        bool success = scan_bed_induction_points(verbosity_level);
+        clean_up_after_endstop_move();
+        // Print head up.
+        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
+        st_synchronize();
+        lcd_update_enable(true);
+        break;
+    }
+#endif
+
+// M48 Z-Probe repeatability measurement function.
+//
+// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
+//	
+// This function assumes the bed has been homed.  Specificaly, that a G28 command
+// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
+// Any information generated by a prior G29 Bed leveling command will be lost and need to be
+// regenerated.
+//
+// The number of samples will default to 10 if not specified.  You can use upper or lower case
+// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
+// N for its communication protocol and will get horribly confused if you send it a capital N.
+//
+
+#ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef Z_PROBE_REPEATABILITY_TEST 
+
+    case 48: // M48 Z-Probe repeatability
+        {
+            #if Z_MIN_PIN == -1
+            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
+            #endif
+
+	double sum=0.0; 
+	double mean=0.0; 
+	double sigma=0.0;
+	double sample_set[50];
+	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
+	double X_current, Y_current, Z_current;
+	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
+	
+	if (code_seen('V') || code_seen('v')) {
+        	verbose_level = code_value();
+		if (verbose_level<0 || verbose_level>4 ) {
+			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (verbose_level > 0)   {
+		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
+		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
+	}
+
+	if (code_seen('n')) {
+        	n_samples = code_value();
+		if (n_samples<4 || n_samples>50 ) {
+			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	X_current = X_probe_location = st_get_position_mm(X_AXIS);
+	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
+	Z_current = st_get_position_mm(Z_AXIS);
+	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+	ext_position	 = st_get_position_mm(E_AXIS);
+
+	if (code_seen('X') || code_seen('x') ) {
+        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
+		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
+			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (code_seen('Y') || code_seen('y') ) {
+        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
+		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
+			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+	if (code_seen('L') || code_seen('l') ) {
+        	n_legs = code_value();
+		if ( n_legs==1 ) 
+			n_legs = 2;
+		if ( n_legs<0 || n_legs>15 ) {
+			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
+			goto Sigma_Exit;
+		}
+	}
+
+//
+// Do all the preliminary setup work.   First raise the probe.
+//
+
+        st_synchronize();
+        plan_bed_level_matrix.set_to_identity();
+	plan_buffer_line( X_current, Y_current, Z_start_location,
+			ext_position,
+    			homing_feedrate[Z_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+
+//
+// Now get everything to the specified probe point So we can safely do a probe to
+// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
+// use that as a starting point for each probe.
+//
+	if (verbose_level > 2) 
+		SERIAL_PROTOCOL("Positioning probe for the test.\n");
+
+	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+			ext_position,
+    			homing_feedrate[X_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+
+	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
+	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
+
+// 
+// OK, do the inital probe to get us close to the bed.
+// Then retrace the right amount and use that in subsequent probes
+//
+
+	setup_for_endstop_move();
+	run_z_probe();
+
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
+
+	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
+			ext_position,
+    			homing_feedrate[X_AXIS]/60,
+			active_extruder);
+        st_synchronize();
+	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
+
+        for( n=0; n<n_samples; n++) {
+
+		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
+
+		if ( n_legs)  {
+		double radius=0.0, theta=0.0, x_sweep, y_sweep;
+		int rotational_direction, l;
+
+			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
+			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
+			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians
+
+//SERIAL_ECHOPAIR("starting radius: ",radius);
+//SERIAL_ECHOPAIR("   theta: ",theta);
+//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
+//SERIAL_PROTOCOLLNPGM("");
+
+			for( l=0; l<n_legs-1; l++) {
+				if (rotational_direction==1)
+					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
+				else
+					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
+
+				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
+				if ( radius<0.0 )
+					radius = -radius;
+
+				X_current = X_probe_location + cos(theta) * radius;
+				Y_current = Y_probe_location + sin(theta) * radius;
+
+				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
+					 X_current = X_MIN_POS;
+				if ( X_current>X_MAX_POS)
+					 X_current = X_MAX_POS;
+
+				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
+					 Y_current = Y_MIN_POS;
+				if ( Y_current>Y_MAX_POS)
+					 Y_current = Y_MAX_POS;
+
+				if (verbose_level>3 ) {
+					SERIAL_ECHOPAIR("x: ", X_current);
+					SERIAL_ECHOPAIR("y: ", Y_current);
+					SERIAL_PROTOCOLLNPGM("");
+				}
+
+				do_blocking_move_to( X_current, Y_current, Z_current );
+			}
+			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
+		}
+
+		setup_for_endstop_move();
+                run_z_probe();
+
+		sample_set[n] = current_position[Z_AXIS];
+
+//
+// Get the current mean for the data points we have so far
+//
+		sum=0.0; 
+		for( j=0; j<=n; j++) {
+			sum = sum + sample_set[j];
+		}
+		mean = sum / (double (n+1));
+//
+// Now, use that mean to calculate the standard deviation for the
+// data points we have so far
+//
+
+		sum=0.0; 
+		for( j=0; j<=n; j++) {
+			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
+		}
+		sigma = sqrt( sum / (double (n+1)) );
+
+		if (verbose_level > 1) {
+			SERIAL_PROTOCOL(n+1);
+			SERIAL_PROTOCOL(" of ");
+			SERIAL_PROTOCOL(n_samples);
+			SERIAL_PROTOCOLPGM("   z: ");
+			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
+		}
+
+		if (verbose_level > 2) {
+			SERIAL_PROTOCOL(" mean: ");
+			SERIAL_PROTOCOL_F(mean,6);
+
+			SERIAL_PROTOCOL("   sigma: ");
+			SERIAL_PROTOCOL_F(sigma,6);
+		}
+
+		if (verbose_level > 0) 
+			SERIAL_PROTOCOLPGM("\n");
+
+		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
+				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
+        	st_synchronize();
+
+	}
+
+	delay(1000);
+
+        clean_up_after_endstop_move();
+
+//      enable_endstops(true);
+
+	if (verbose_level > 0) {
+		SERIAL_PROTOCOLPGM("Mean: ");
+		SERIAL_PROTOCOL_F(mean, 6);
+		SERIAL_PROTOCOLPGM("\n");
+	}
+
+SERIAL_PROTOCOLPGM("Standard Deviation: ");
+SERIAL_PROTOCOL_F(sigma, 6);
+SERIAL_PROTOCOLPGM("\n\n");
+
+Sigma_Exit:
+        break;
+	}
+#endif		// Z_PROBE_REPEATABILITY_TEST 
+#endif		// ENABLE_AUTO_BED_LEVELING
+
+    case 104: // M104
+      if(setTargetedHotend(104)){
+        break;
+      }
+      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
+      setWatch();
+      break;
+    case 112: //  M112 -Emergency Stop
+      kill();
+      break;
+    case 140: // M140 set bed temp
+      if (code_seen('S')) setTargetBed(code_value());
+      break;
+    case 105 : // M105
+      if(setTargetedHotend(105)){
+        break;
+        }
+      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
+        SERIAL_PROTOCOLPGM("ok T:");
+        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
+        SERIAL_PROTOCOLPGM(" /");
+        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
+        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+          SERIAL_PROTOCOLPGM(" B:");
+          SERIAL_PROTOCOL_F(degBed(),1);
+          SERIAL_PROTOCOLPGM(" /");
+          SERIAL_PROTOCOL_F(degTargetBed(),1);
+        #endif //TEMP_BED_PIN
+        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+          SERIAL_PROTOCOLPGM(" T");
+          SERIAL_PROTOCOL(cur_extruder);
+          SERIAL_PROTOCOLPGM(":");
+          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+          SERIAL_PROTOCOLPGM(" /");
+          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
+        }
+      #else
+        SERIAL_ERROR_START;
+        SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
+      #endif
+
+        SERIAL_PROTOCOLPGM(" @:");
+      #ifdef EXTRUDER_WATTS
+        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
+        SERIAL_PROTOCOLPGM("W");
+      #else
+        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
+      #endif
+
+        SERIAL_PROTOCOLPGM(" B@:");
+      #ifdef BED_WATTS
+        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
+        SERIAL_PROTOCOLPGM("W");
+      #else
+        SERIAL_PROTOCOL(getHeaterPower(-1));
+      #endif
+
+        #ifdef SHOW_TEMP_ADC_VALUES
+          {float raw = 0.0;
+
+          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+            SERIAL_PROTOCOLPGM("    ADC B:");
+            SERIAL_PROTOCOL_F(degBed(),1);
+            SERIAL_PROTOCOLPGM("C->");
+            raw = rawBedTemp();
+            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+            SERIAL_PROTOCOLPGM(" Rb->");
+            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+            SERIAL_PROTOCOLPGM(" Rxb->");
+            SERIAL_PROTOCOL_F(raw, 5);
+          #endif
+          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+            SERIAL_PROTOCOLPGM("  T");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM(":");
+            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
+            SERIAL_PROTOCOLPGM("C->");
+            raw = rawHotendTemp(cur_extruder);
+            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
+            SERIAL_PROTOCOLPGM(" Rt");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM("->");
+            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
+            SERIAL_PROTOCOLPGM(" Rx");
+            SERIAL_PROTOCOL(cur_extruder);
+            SERIAL_PROTOCOLPGM("->");
+            SERIAL_PROTOCOL_F(raw, 5);
+          }}
+        #endif
+		SERIAL_PROTOCOLLN("");
+      return;
+      break;
+    case 109:
+    {// M109 - Wait for extruder heater to reach target.
+      if(setTargetedHotend(109)){
+        break;
+      }
+      LCD_MESSAGERPGM(MSG_HEATING);
+	  heating_status = 1;
+	  if (farm_mode) { prusa_statistics(1); };
+
+#ifdef AUTOTEMP
+        autotemp_enabled=false;
+      #endif
+      if (code_seen('S')) {
+        setTargetHotend(code_value(), tmp_extruder);
+              CooldownNoWait = true;
+            } else if (code_seen('R')) {
+              setTargetHotend(code_value(), tmp_extruder);
+        CooldownNoWait = false;
+      }
+      #ifdef AUTOTEMP
+        if (code_seen('S')) autotemp_min=code_value();
+        if (code_seen('B')) autotemp_max=code_value();
+        if (code_seen('F'))
+        {
+          autotemp_factor=code_value();
+          autotemp_enabled=true;
+        }
+      #endif
+
+      setWatch();
+      codenum = millis();
+
+      /* See if we are heating up or cooling down */
+      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
+
+      cancel_heatup = false;
+
+	  wait_for_heater(codenum); //loops until target temperature is reached
+
+        LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
+		heating_status = 2;
+		if (farm_mode) { prusa_statistics(2); };
+        
+        //starttime=millis();
+        previous_millis_cmd = millis();
+      }
+      break;
+    case 190: // M190 - Wait for bed heater to reach target.
+    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+        LCD_MESSAGERPGM(MSG_BED_HEATING);
+		heating_status = 3;
+		if (farm_mode) { prusa_statistics(1); };
+        if (code_seen('S')) 
+		{
+          setTargetBed(code_value());
+          CooldownNoWait = true;
+        } 
+		else if (code_seen('R')) 
+		{
+          setTargetBed(code_value());
+          CooldownNoWait = false;
+        }
+        codenum = millis();
+        
+        cancel_heatup = false;
+        target_direction = isHeatingBed(); // true if heating, false if cooling
+
+        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
+        {
+          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+          {
+			  if (!farm_mode) {
+				  float tt = degHotend(active_extruder);
+				  SERIAL_PROTOCOLPGM("T:");
+				  SERIAL_PROTOCOL(tt);
+				  SERIAL_PROTOCOLPGM(" E:");
+				  SERIAL_PROTOCOL((int)active_extruder);
+				  SERIAL_PROTOCOLPGM(" B:");
+				  SERIAL_PROTOCOL_F(degBed(), 1);
+				  SERIAL_PROTOCOLLN("");
+			  }
+				  codenum = millis();
+			  
+          }
+          manage_heater();
+          manage_inactivity();
+          lcd_update();
+        }
+        LCD_MESSAGERPGM(MSG_BED_DONE);
+		heating_status = 4;
+
+        previous_millis_cmd = millis();
+    #endif
+        break;
+
+    #if defined(FAN_PIN) && FAN_PIN > -1
+      case 106: //M106 Fan On
+        if (code_seen('S')){
+           fanSpeed=constrain(code_value(),0,255);
+        }
+        else {
+          fanSpeed=255;
+        }
+        break;
+      case 107: //M107 Fan Off
+        fanSpeed = 0;
+        break;
+    #endif //FAN_PIN
+
+    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
+      case 80: // M80 - Turn on Power Supply
+        SET_OUTPUT(PS_ON_PIN); //GND
+        WRITE(PS_ON_PIN, PS_ON_AWAKE);
+
+        // If you have a switch on suicide pin, this is useful
+        // if you want to start another print with suicide feature after
+        // a print without suicide...
+        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
+            SET_OUTPUT(SUICIDE_PIN);
+            WRITE(SUICIDE_PIN, HIGH);
+        #endif
+
+        #ifdef ULTIPANEL
+          powersupply = true;
+          LCD_MESSAGERPGM(WELCOME_MSG);
+          lcd_update();
+        #endif
+        break;
+      #endif
+
+      case 81: // M81 - Turn off Power Supply
+        disable_heater();
+        st_synchronize();
+        disable_e0();
+        disable_e1();
+        disable_e2();
+        finishAndDisableSteppers();
+        fanSpeed = 0;
+        delay(1000); // Wait a little before to switch off
+      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
+        st_synchronize();
+        suicide();
+      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
+        SET_OUTPUT(PS_ON_PIN);
+        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
+      #endif
+      #ifdef ULTIPANEL
+        powersupply = false;
+        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
+        
+        /*
+        MACHNAME = "Prusa i3"
+        MSGOFF = "Vypnuto"
+        "Prusai3"" ""vypnuto""."
+        
+        "Prusa i3"" "MSG_ALL[lang_selected][50]"."
+        */
+        lcd_update();
+      #endif
+	  break;
+
+    case 82:
+      axis_relative_modes[3] = false;
+      break;
+    case 83:
+      axis_relative_modes[3] = true;
+      break;
+    case 18: //compatibility
+    case 84: // M84
+      if(code_seen('S')){
+        stepper_inactive_time = code_value() * 1000;
+      }
+      else
+      {
+        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
+        if(all_axis)
+        {
+          st_synchronize();
+          disable_e0();
+          disable_e1();
+          disable_e2();
+          finishAndDisableSteppers();
+        }
+        else
+        {
+          st_synchronize();
+		  if (code_seen('X')) disable_x();
+		  if (code_seen('Y')) disable_y();
+		  if (code_seen('Z')) disable_z();
+#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
+		  if (code_seen('E')) {
+			  disable_e0();
+			  disable_e1();
+			  disable_e2();
+            }
+          #endif
+        }
+      }
+	  snmm_filaments_used = 0;
+      break;
+    case 85: // M85
+      if(code_seen('S')) {
+        max_inactive_time = code_value() * 1000;
+      }
+      break;
+    case 92: // M92
+      for(int8_t i=0; i < NUM_AXIS; i++)
+      {
+        if(code_seen(axis_codes[i]))
+        {
+          if(i == 3) { // E
+            float value = code_value();
+            if(value < 20.0) {
+              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
+              max_jerk[E_AXIS] *= factor;
+              max_feedrate[i] *= factor;
+              axis_steps_per_sqr_second[i] *= factor;
+            }
+            axis_steps_per_unit[i] = value;
+          }
+          else {
+            axis_steps_per_unit[i] = code_value();
+          }
+        }
+      }
+	  break;
+	case 110:   // M110 - reset line pos
+		if (code_seen('N'))
+			gcode_LastN = code_value_long();
+		else
+			gcode_LastN = 0;
+		break;
+    case 115: // M115
+      if (code_seen('V')) {
+          // Report the Prusa version number.
+          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
+      } else if (code_seen('U')) {
+          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
+          // pause the print and ask the user to upgrade the firmware.
+          show_upgrade_dialog_if_version_newer(++ strchr_pointer);
+      } else {
+          SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
+      }
+      break;
+/*    case 117: // M117 display message
+      starpos = (strchr(strchr_pointer + 5,'*'));
+      if(starpos!=NULL)
+        *(starpos)='\0';
+      lcd_setstatus(strchr_pointer + 5);
+      break;*/
+    case 114: // M114
+      SERIAL_PROTOCOLPGM("X:");
+      SERIAL_PROTOCOL(current_position[X_AXIS]);
+      SERIAL_PROTOCOLPGM(" Y:");
+      SERIAL_PROTOCOL(current_position[Y_AXIS]);
+      SERIAL_PROTOCOLPGM(" Z:");
+      SERIAL_PROTOCOL(current_position[Z_AXIS]);
+      SERIAL_PROTOCOLPGM(" E:");
+      SERIAL_PROTOCOL(current_position[E_AXIS]);
+
+      SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
+      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
+      SERIAL_PROTOCOLPGM(" Y:");
+      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
+      SERIAL_PROTOCOLPGM(" Z:");
+      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
+
+      SERIAL_PROTOCOLLN("");
+      break;
+    case 120: // M120
+      enable_endstops(false) ;
+      break;
+    case 121: // M121
+      enable_endstops(true) ;
+      break;
+    case 119: // M119
+    SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
+    SERIAL_PROTOCOLLN("");
+      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_X_MIN);
+        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_X_MAX);
+        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
+        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
+        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
+        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
+        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
+        }else{
+          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
+        }
+        SERIAL_PROTOCOLLN("");
+      #endif
+      break;
+      //TODO: update for all axis, use for loop
+    #ifdef BLINKM
+    case 150: // M150
+      {
+        byte red;
+        byte grn;
+        byte blu;
+
+        if(code_seen('R')) red = code_value();
+        if(code_seen('U')) grn = code_value();
+        if(code_seen('B')) blu = code_value();
+
+        SendColors(red,grn,blu);
+      }
+      break;
+    #endif //BLINKM
+    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
+      {
+
+        tmp_extruder = active_extruder;
+        if(code_seen('T')) {
+          tmp_extruder = code_value();
+		  if(tmp_extruder >= EXTRUDERS) {
+            SERIAL_ECHO_START;
+            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
+            break;
+          }
+        }
+
+        float area = .0;
+        if(code_seen('D')) {
+		  float diameter = (float)code_value();
+		  if (diameter == 0.0) {
+			// setting any extruder filament size disables volumetric on the assumption that
+			// slicers either generate in extruder values as cubic mm or as as filament feeds
+			// for all extruders
+		    volumetric_enabled = false;
+		  } else {
+            filament_size[tmp_extruder] = (float)code_value();
+			// make sure all extruders have some sane value for the filament size
+			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
+            #if EXTRUDERS > 1
+			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
+            #if EXTRUDERS > 2
+			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
+            #endif
+            #endif
+			volumetric_enabled = true;
+		  }
+        } else {
+          //reserved for setting filament diameter via UFID or filament measuring device
+          break;
+        }
+		calculate_volumetric_multipliers();
+      }
+      break;
+    case 201: // M201
+      for(int8_t i=0; i < NUM_AXIS; i++)
+      {
+        if(code_seen(axis_codes[i]))
+        {
+          max_acceleration_units_per_sq_second[i] = code_value();
+        }
+      }
+      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
+      reset_acceleration_rates();
+      break;
+    #if 0 // Not used for Sprinter/grbl gen6
+    case 202: // M202
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+      }
+      break;
+    #endif
+    case 203: // M203 max feedrate mm/sec
+      for(int8_t i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
+      }
+      break;
+    case 204: // M204 acclereration S normal moves T filmanent only moves
+      {
+        if(code_seen('S')) acceleration = code_value() ;
+        if(code_seen('T')) retract_acceleration = code_value() ;
+      }
+      break;
+    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+    {
+      if(code_seen('S')) minimumfeedrate = code_value();
+      if(code_seen('T')) mintravelfeedrate = code_value();
+      if(code_seen('B')) minsegmenttime = code_value() ;
+      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
+      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
+      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
+      if(code_seen('E')) max_jerk[E_AXIS] = code_value();
+    }
+    break;
+    case 206: // M206 additional homing offset
+      for(int8_t i=0; i < 3; i++)
+      {
+        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
+      }
+      break;
+    #ifdef FWRETRACT
+    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
+    {
+      if(code_seen('S'))
+      {
+        retract_length = code_value() ;
+      }
+      if(code_seen('F'))
+      {
+        retract_feedrate = code_value()/60 ;
+      }
+      if(code_seen('Z'))
+      {
+        retract_zlift = code_value() ;
+      }
+    }break;
+    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
+    {
+      if(code_seen('S'))
+      {
+        retract_recover_length = code_value() ;
+      }
+      if(code_seen('F'))
+      {
+        retract_recover_feedrate = code_value()/60 ;
+      }
+    }break;
+    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
+    {
+      if(code_seen('S'))
+      {
+        int t= code_value() ;
+        switch(t)
+        {
+          case 0: 
+          {
+            autoretract_enabled=false;
+            retracted[0]=false;
+            #if EXTRUDERS > 1
+              retracted[1]=false;
+            #endif
+            #if EXTRUDERS > 2
+              retracted[2]=false;
+            #endif
+          }break;
+          case 1: 
+          {
+            autoretract_enabled=true;
+            retracted[0]=false;
+            #if EXTRUDERS > 1
+              retracted[1]=false;
+            #endif
+            #if EXTRUDERS > 2
+              retracted[2]=false;
+            #endif
+          }break;
+          default:
+            SERIAL_ECHO_START;
+            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+            SERIAL_ECHOLNPGM("\"");
+        }
+      }
+
+    }break;
+    #endif // FWRETRACT
+    #if EXTRUDERS > 1
+    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
+    {
+      if(setTargetedHotend(218)){
+        break;
+      }
+      if(code_seen('X'))
+      {
+        extruder_offset[X_AXIS][tmp_extruder] = code_value();
+      }
+      if(code_seen('Y'))
+      {
+        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
+      }
+      SERIAL_ECHO_START;
+      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
+      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
+      {
+         SERIAL_ECHO(" ");
+         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
+         SERIAL_ECHO(",");
+         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
+      }
+      SERIAL_ECHOLN("");
+    }break;
+    #endif
+    case 220: // M220 S<factor in percent>- set speed factor override percentage
+    {
+      if(code_seen('S'))
+      {
+        feedmultiply = code_value() ;
+      }
+    }
+    break;
+    case 221: // M221 S<factor in percent>- set extrude factor override percentage
+    {
+      if(code_seen('S'))
+      {
+        int tmp_code = code_value();
+        if (code_seen('T'))
+        {
+          if(setTargetedHotend(221)){
+            break;
+          }
+          extruder_multiply[tmp_extruder] = tmp_code;
+        }
+        else
+        {
+          extrudemultiply = tmp_code ;
+        }
+      }
+    }
+    break;
+
+	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
+	{
+      if(code_seen('P')){
+        int pin_number = code_value(); // pin number
+        int pin_state = -1; // required pin state - default is inverted
+
+        if(code_seen('S')) pin_state = code_value(); // required pin state
+
+        if(pin_state >= -1 && pin_state <= 1){
+
+          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
+          {
+            if (sensitive_pins[i] == pin_number)
+            {
+              pin_number = -1;
+              break;
+            }
+          }
+
+          if (pin_number > -1)
+          {
+            int target = LOW;
+
+            st_synchronize();
+
+            pinMode(pin_number, INPUT);
+
+            switch(pin_state){
+            case 1:
+              target = HIGH;
+              break;
+
+            case 0:
+              target = LOW;
+              break;
+
+            case -1:
+              target = !digitalRead(pin_number);
+              break;
+            }
+
+            while(digitalRead(pin_number) != target){
+              manage_heater();
+              manage_inactivity();
+              lcd_update();
+            }
+          }
+        }
+      }
+    }
+    break;
+
+    #if NUM_SERVOS > 0
+    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
+      {
+        int servo_index = -1;
+        int servo_position = 0;
+        if (code_seen('P'))
+          servo_index = code_value();
+        if (code_seen('S')) {
+          servo_position = code_value();
+          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+		      servos[servo_index].attach(0);
+#endif
+            servos[servo_index].write(servo_position);
+#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
+              delay(PROBE_SERVO_DEACTIVATION_DELAY);
+              servos[servo_index].detach();
+#endif
+          }
+          else {
+            SERIAL_ECHO_START;
+            SERIAL_ECHO("Servo ");
+            SERIAL_ECHO(servo_index);
+            SERIAL_ECHOLN(" out of range");
+          }
+        }
+        else if (servo_index >= 0) {
+          SERIAL_PROTOCOL(MSG_OK);
+          SERIAL_PROTOCOL(" Servo ");
+          SERIAL_PROTOCOL(servo_index);
+          SERIAL_PROTOCOL(": ");
+          SERIAL_PROTOCOL(servos[servo_index].read());
+          SERIAL_PROTOCOLLN("");
+        }
+      }
+      break;
+    #endif // NUM_SERVOS > 0
+
+    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
+    case 300: // M300
+    {
+      int beepS = code_seen('S') ? code_value() : 110;
+      int beepP = code_seen('P') ? code_value() : 1000;
+      if (beepS > 0)
+      {
+        #if BEEPER > 0
+          tone(BEEPER, beepS);
+          delay(beepP);
+          noTone(BEEPER);
+        #elif defined(ULTRALCD)
+		  lcd_buzz(beepS, beepP);
+		#elif defined(LCD_USE_I2C_BUZZER)
+		  lcd_buzz(beepP, beepS);
+        #endif
+      }
+      else
+      {
+        delay(beepP);
+      }
+    }
+    break;
+    #endif // M300
+
+    #ifdef PIDTEMP
+    case 301: // M301
+      {
+        if(code_seen('P')) Kp = code_value();
+        if(code_seen('I')) Ki = scalePID_i(code_value());
+        if(code_seen('D')) Kd = scalePID_d(code_value());
+
+        #ifdef PID_ADD_EXTRUSION_RATE
+        if(code_seen('C')) Kc = code_value();
+        #endif
+
+        updatePID();
+        SERIAL_PROTOCOLRPGM(MSG_OK);
+        SERIAL_PROTOCOL(" p:");
+        SERIAL_PROTOCOL(Kp);
+        SERIAL_PROTOCOL(" i:");
+        SERIAL_PROTOCOL(unscalePID_i(Ki));
+        SERIAL_PROTOCOL(" d:");
+        SERIAL_PROTOCOL(unscalePID_d(Kd));
+        #ifdef PID_ADD_EXTRUSION_RATE
+        SERIAL_PROTOCOL(" c:");
+        //Kc does not have scaling applied above, or in resetting defaults
+        SERIAL_PROTOCOL(Kc);
+        #endif
+        SERIAL_PROTOCOLLN("");
+      }
+      break;
+    #endif //PIDTEMP
+    #ifdef PIDTEMPBED
+    case 304: // M304
+      {
+        if(code_seen('P')) bedKp = code_value();
+        if(code_seen('I')) bedKi = scalePID_i(code_value());
+        if(code_seen('D')) bedKd = scalePID_d(code_value());
+
+        updatePID();
+       	SERIAL_PROTOCOLRPGM(MSG_OK);
+        SERIAL_PROTOCOL(" p:");
+        SERIAL_PROTOCOL(bedKp);
+        SERIAL_PROTOCOL(" i:");
+        SERIAL_PROTOCOL(unscalePID_i(bedKi));
+        SERIAL_PROTOCOL(" d:");
+        SERIAL_PROTOCOL(unscalePID_d(bedKd));
+        SERIAL_PROTOCOLLN("");
+      }
+      break;
+    #endif //PIDTEMP
+    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
+     {
+     	#ifdef CHDK
+       
+         SET_OUTPUT(CHDK);
+         WRITE(CHDK, HIGH);
+         chdkHigh = millis();
+         chdkActive = true;
+       
+       #else
+     	
+      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
+	const uint8_t NUM_PULSES=16;
+	const float PULSE_LENGTH=0.01524;
+	for(int i=0; i < NUM_PULSES; i++) {
+        WRITE(PHOTOGRAPH_PIN, HIGH);
+        _delay_ms(PULSE_LENGTH);
+        WRITE(PHOTOGRAPH_PIN, LOW);
+        _delay_ms(PULSE_LENGTH);
+        }
+        delay(7.33);
+        for(int i=0; i < NUM_PULSES; i++) {
+        WRITE(PHOTOGRAPH_PIN, HIGH);
+        _delay_ms(PULSE_LENGTH);
+        WRITE(PHOTOGRAPH_PIN, LOW);
+        _delay_ms(PULSE_LENGTH);
+        }
+      	#endif
+      #endif //chdk end if
+     }
+    break;
+#ifdef DOGLCD
+    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
+     {
+	  if (code_seen('C')) {
+	   lcd_setcontrast( ((int)code_value())&63 );
+          }
+          SERIAL_PROTOCOLPGM("lcd contrast value: ");
+          SERIAL_PROTOCOL(lcd_contrast);
+          SERIAL_PROTOCOLLN("");
+     }
+    break;
+#endif
+    #ifdef PREVENT_DANGEROUS_EXTRUDE
+    case 302: // allow cold extrudes, or set the minimum extrude temperature
+    {
+	  float temp = .0;
+	  if (code_seen('S')) temp=code_value();
+      set_extrude_min_temp(temp);
+    }
+    break;
+	#endif
+    case 303: // M303 PID autotune
+    {
+      float temp = 150.0;
+      int e=0;
+      int c=5;
+      if (code_seen('E')) e=code_value();
+        if (e<0)
+          temp=70;
+      if (code_seen('S')) temp=code_value();
+      if (code_seen('C')) c=code_value();
+      PID_autotune(temp, e, c);
+    }
+    break;
+    case 400: // M400 finish all moves
+    {
+      st_synchronize();
+    }
+    break;
+
+#ifdef FILAMENT_SENSOR
+case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width 
+    {
+    #if (FILWIDTH_PIN > -1) 
+    if(code_seen('N')) filament_width_nominal=code_value();
+    else{
+    SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); 
+    SERIAL_PROTOCOLLN(filament_width_nominal); 
+    }
+    #endif
+    }
+    break; 
+    
+    case 405:  //M405 Turn on filament sensor for control 
+    {
+    
+    
+    if(code_seen('D')) meas_delay_cm=code_value();
+       
+       if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
+       	meas_delay_cm = MAX_MEASUREMENT_DELAY;
+    
+       if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup
+    	   {
+    	   int temp_ratio = widthFil_to_size_ratio(); 
+       	    
+       	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
+       	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte
+       	        }
+       	    delay_index1=0;
+       	    delay_index2=0;	
+    	   }
+    
+    filament_sensor = true ; 
+    
+    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
+    //SERIAL_PROTOCOL(filament_width_meas); 
+    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); 
+    //SERIAL_PROTOCOL(extrudemultiply); 
+    } 
+    break; 
+    
+    case 406:  //M406 Turn off filament sensor for control 
+    {      
+    filament_sensor = false ; 
+    } 
+    break; 
+  
+    case 407:   //M407 Display measured filament diameter 
+    { 
+     
+    
+    
+    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
+    SERIAL_PROTOCOLLN(filament_width_meas);   
+    } 
+    break; 
+    #endif
+
+    case 500: // M500 Store settings in EEPROM
+    {
+        Config_StoreSettings();
+    }
+    break;
+    case 501: // M501 Read settings from EEPROM
+    {
+        Config_RetrieveSettings();
+    }
+    break;
+    case 502: // M502 Revert to default settings
+    {
+        Config_ResetDefault();
+    }
+    break;
+    case 503: // M503 print settings currently in memory
+    {
+        Config_PrintSettings();
+    }
+    break;
+    case 509: //M509 Force language selection
+    {
+        lcd_force_language_selection();
+        SERIAL_ECHO_START;
+        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
+    }
+    break;
+    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
+    case 540:
+    {
+        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
+    }
+    break;
+    #endif
+
+    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
+    {
+      float value;
+      if (code_seen('Z'))
+      {
+        value = code_value();
+        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
+        {
+          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
+          SERIAL_PROTOCOLLN("");
+        }
+        else
+        {
+          SERIAL_ECHO_START;
+          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
+          SERIAL_ECHORPGM(MSG_Z_MIN);
+          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
+          SERIAL_ECHORPGM(MSG_Z_MAX);
+          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
+          SERIAL_PROTOCOLLN("");
+        }
+      }
+      else
+      {
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
+          SERIAL_ECHO(-zprobe_zoffset);
+          SERIAL_PROTOCOLLN("");
+      }
+      break;
+    }
+    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
+
+    #ifdef FILAMENTCHANGEENABLE
+    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
+    {
+
+		st_synchronize();
+		float target[4];
+		float lastpos[4];
+
+        if (farm_mode)
+            
+        {
+            
+            prusa_statistics(22);
+            
+        }
+        
+        feedmultiplyBckp=feedmultiply;
+        int8_t TooLowZ = 0;
+
+        target[X_AXIS]=current_position[X_AXIS];
+        target[Y_AXIS]=current_position[Y_AXIS];
+        target[Z_AXIS]=current_position[Z_AXIS];
+        target[E_AXIS]=current_position[E_AXIS];
+        lastpos[X_AXIS]=current_position[X_AXIS];
+        lastpos[Y_AXIS]=current_position[Y_AXIS];
+        lastpos[Z_AXIS]=current_position[Z_AXIS];
+        lastpos[E_AXIS]=current_position[E_AXIS];
+
+        //Retract extruder
+        if(code_seen('E'))
+        {
+          target[E_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_FIRSTRETRACT
+            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
+          #endif
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+
+        //Lift Z
+        if(code_seen('Z'))
+        {
+          target[Z_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_ZADD
+            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
+            if(target[Z_AXIS] < 10){
+              target[Z_AXIS]+= 10 ;
+              TooLowZ = 1;
+            }else{
+              TooLowZ = 0;
+            }
+          #endif
+     
+          
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+
+        //Move XY to side
+        if(code_seen('X'))
+        {
+          target[X_AXIS]+= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_XPOS
+            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
+          #endif
+        }
+        if(code_seen('Y'))
+        {
+          target[Y_AXIS]= code_value();
+        }
+        else
+        {
+          #ifdef FILAMENTCHANGE_YPOS
+            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
+          #endif
+        }
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+		st_synchronize();
+		custom_message = true;
+		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
+
+        // Unload filament
+        if(code_seen('L'))
+        {
+          target[E_AXIS]+= code_value();
+        }
+        else
+        {
+			#ifdef SNMM
+
+			#else
+				#ifdef FILAMENTCHANGE_FINALRETRACT
+							target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
+				#endif
+			#endif // SNMM
+        }
+
+#ifdef SNMM
+		target[E_AXIS] += 12;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
+		target[E_AXIS] += 6;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+		target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
+		st_synchronize();
+		target[E_AXIS] += (FIL_COOLING);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+		target[E_AXIS] += (FIL_COOLING*-1);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+		target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+		st_synchronize();
+
+#else
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+#endif // SNMM
+		     
+
+        //finish moves
+        st_synchronize();
+        //disable extruder steppers so filament can be removed
+        disable_e0();
+        disable_e1();
+        disable_e2();
+        delay(100);
+        
+        //Wait for user to insert filament
+        uint8_t cnt=0;
+        int counterBeep = 0;
+        lcd_wait_interact();
+		load_filament_time = millis();
+        while(!lcd_clicked()){
+
+		  cnt++;
+          manage_heater();
+          manage_inactivity(true);
+
+/*#ifdef SNMM
+		  target[E_AXIS] += 0.002;
+		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+
+#endif // SNMM*/
+
+          if(cnt==0)
+          {
+          #if BEEPER > 0
+            if (counterBeep== 500){
+              counterBeep = 0;  
+            }
+            SET_OUTPUT(BEEPER);
+            if (counterBeep== 0){
+              WRITE(BEEPER,HIGH);
+            }			
+            if (counterBeep== 20){
+              WRITE(BEEPER,LOW);
+            }
+            counterBeep++;
+          #else
+			   #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
+              lcd_buzz(1000/6,100);
+			   #else
+			     lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
+			   #endif
+          #endif
+          }
+
+        }
+		WRITE(BEEPER, LOW);
+#ifdef SNMM
+		display_loading();
+		do {
+			target[E_AXIS] += 0.002;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+			delay_keep_alive(2);
+		} while (!lcd_clicked());		
+		/*if (millis() - load_filament_time > 2) {
+			load_filament_time = millis();
+			target[E_AXIS] += 0.001;
+			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
+		}*/
+#endif
+        //Filament inserted
+        
+        
+
+		//Feed the filament to the end of nozzle quickly        
+#ifdef SNMM
+		
+		st_synchronize();
+		target[E_AXIS] += bowden_length[snmm_extruder];
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+		target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+		target[E_AXIS] += 40;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+		target[E_AXIS] += 10;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+#else
+		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
+		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
+#endif // SNMM
+        
+        //Extrude some filament
+        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
+        
+ 
+
+        
+        //Wait for user to check the state
+        lcd_change_fil_state = 0;
+        lcd_loading_filament();
+        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
+          lcd_change_fil_state = 0;
+          lcd_alright();
+          switch(lcd_change_fil_state){
+            
+             // Filament failed to load so load it again
+             case 2:
+#ifdef SNMM
+				 display_loading();
+				 do {
+					 target[E_AXIS] += 0.002;
+					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
+					 delay_keep_alive(2);
+				 } while (!lcd_clicked());
+
+				 st_synchronize();
+				 target[E_AXIS] += bowden_length[snmm_extruder];
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
+				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
+				 target[E_AXIS] += 40;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
+				 target[E_AXIS] += 10;
+				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
+
+#else
+                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
+#endif                
+                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
+
+                     lcd_loading_filament();
+
+                     break;
+
+             // Filament loaded properly but color is not clear
+             case 3:
+                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
+                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
+                     lcd_loading_color();
+                     break;
+                 
+             // Everything good             
+             default:
+                     lcd_change_success();
+					 lcd_update_enable(true);
+                     break;
+          }
+          
+        }
+        
+
+      //Not let's go back to print
+
+      //Feed a little of filament to stabilize pressure
+      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
+      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
+        
+      //Retract
+      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
+      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+        
+
+        
+      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
+      
+      //Move XY back
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
+      
+      //Move Z back
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
+        
+        
+      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
+        
+      //Unretract       
+      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
+        
+      //Set E position to original  
+      plan_set_e_position(lastpos[E_AXIS]);
+       
+      //Recover feed rate 
+      feedmultiply=feedmultiplyBckp;
+      char cmd[9];
+      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
+      enquecommand(cmd);
+      
+	  lcd_setstatuspgm(WELCOME_MSG);
+	  custom_message = false;
+	  custom_message_type = 0;
+        
+    }
+    break;
+    #endif //FILAMENTCHANGEENABLE
+	case 601: {
+		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
+	}
+	break;
+
+	case 602: {
+		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
+	}
+	break;
+
+    #ifdef LIN_ADVANCE
+      case 900: // M900: Set LIN_ADVANCE options.
+        gcode_M900();
+        break;
+    #endif
+      
+    case 907: // M907 Set digital trimpot motor current using axis codes.
+    {
+      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
+        if(code_seen('B')) digipot_current(4,code_value());
+        if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_XY_PIN
+        if(code_seen('X')) digipot_current(0, code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_Z_PIN
+        if(code_seen('Z')) digipot_current(1, code_value());
+      #endif
+      #ifdef MOTOR_CURRENT_PWM_E_PIN
+        if(code_seen('E')) digipot_current(2, code_value());
+      #endif
+      #ifdef DIGIPOT_I2C
+        // this one uses actual amps in floating point
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
+        // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
+        for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
+      #endif
+    }
+    break;
+    case 908: // M908 Control digital trimpot directly.
+    {
+      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+        uint8_t channel,current;
+        if(code_seen('P')) channel=code_value();
+        if(code_seen('S')) current=code_value();
+        digitalPotWrite(channel, current);
+      #endif
+    }
+    break;
+    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
+    {
+      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
+        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
+        if(code_seen('B')) microstep_mode(4,code_value());
+        microstep_readings();
+      #endif
+    }
+    break;
+    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
+    {
+      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+      if(code_seen('S')) switch((int)code_value())
+      {
+        case 1:
+          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
+          if(code_seen('B')) microstep_ms(4,code_value(),-1);
+          break;
+        case 2:
+          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
+          if(code_seen('B')) microstep_ms(4,-1,code_value());
+          break;
+      }
+      microstep_readings();
+      #endif
+    }
+    break;
+	case 701: //M701: load filament
+	{
+		enable_z();
+		custom_message = true;
+		custom_message_type = 2;
+		
+		lcd_setstatuspgm(MSG_LOADING_FILAMENT);
+		current_position[E_AXIS] += 70;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
+
+		current_position[E_AXIS] += 25;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+		st_synchronize();
+
+		if (!farm_mode && loading_flag) {
+			bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
+
+			while (!clean) {
+				lcd_update_enable(true);
+				lcd_update(2);
+				current_position[E_AXIS] += 25;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
+				st_synchronize();
+				clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
+			}
+		}
+		lcd_update_enable(true);
+		lcd_update(2);
+		lcd_setstatuspgm(WELCOME_MSG);
+		disable_z();
+		loading_flag = false;
+		custom_message = false;
+		custom_message_type = 0;
+	}
+	break;
+	case 702:
+	{
+#ifdef SNMM
+		if (code_seen('U')) {
+			extr_unload_used(); //unload all filaments which were used in current print
+		}
+		else if (code_seen('C')) {
+			extr_unload(); //unload just current filament 
+		}
+		else {
+			extr_unload_all(); //unload all filaments
+		}
+#else
+		custom_message = true;
+		custom_message_type = 2;
+		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); 
+		current_position[E_AXIS] -= 80;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
+		st_synchronize();
+		lcd_setstatuspgm(WELCOME_MSG);
+		custom_message = false;
+		custom_message_type = 0;
+#endif	
+	}
+	break;
+
+    case 999: // M999: Restart after being stopped
+      Stopped = false;
+      lcd_reset_alert_level();
+      gcode_LastN = Stopped_gcode_LastN;
+      FlushSerialRequestResend();
+    break;
+	default: SERIAL_ECHOLNPGM("Invalid M code.");
+    }
+	
+  } // end if(code_seen('M')) (end of M codes)
+
+  else if(code_seen('T'))
+  {
+	  int index;
+	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
+	   
+	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
+		  SERIAL_ECHOLNPGM("Invalid T code.");
+	  }
+	  else {
+		  if (*(strchr_pointer + index) == '?') {
+			  tmp_extruder = choose_extruder_menu();
+		  }
+		  else {
+			  tmp_extruder = code_value();
+		  }
+		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print
+#ifdef SNMM
+      #ifdef LIN_ADVANCE
+        if (snmm_extruder != tmp_extruder)
+          clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
+      #endif
+      
+      snmm_extruder = tmp_extruder;
+
+		  st_synchronize();
+		  delay(100);
+
+		  disable_e0();
+		  disable_e1();
+		  disable_e2();
+
+		  pinMode(E_MUX0_PIN, OUTPUT);
+		  pinMode(E_MUX1_PIN, OUTPUT);
+		  pinMode(E_MUX2_PIN, OUTPUT);
+
+		  delay(100);
+		  SERIAL_ECHO_START;
+		  SERIAL_ECHO("T:");
+		  SERIAL_ECHOLN((int)tmp_extruder);
+		  switch (tmp_extruder) {
+		  case 1:
+			  WRITE(E_MUX0_PIN, HIGH);
+			  WRITE(E_MUX1_PIN, LOW);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  case 2:
+			  WRITE(E_MUX0_PIN, LOW);
+			  WRITE(E_MUX1_PIN, HIGH);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  case 3:
+			  WRITE(E_MUX0_PIN, HIGH);
+			  WRITE(E_MUX1_PIN, HIGH);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  default:
+			  WRITE(E_MUX0_PIN, LOW);
+			  WRITE(E_MUX1_PIN, LOW);
+			  WRITE(E_MUX2_PIN, LOW);
+
+			  break;
+		  }
+		  delay(100);
+
+#else
+		  if (tmp_extruder >= EXTRUDERS) {
+			  SERIAL_ECHO_START;
+			  SERIAL_ECHOPGM("T");
+			  SERIAL_PROTOCOLLN((int)tmp_extruder);
+			  SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
+		  }
+		  else {
+			  boolean make_move = false;
+			  if (code_seen('F')) {
+				  make_move = true;
+				  next_feedrate = code_value();
+				  if (next_feedrate > 0.0) {
+					  feedrate = next_feedrate;
+				  }
+			  }
+#if EXTRUDERS > 1
+			  if (tmp_extruder != active_extruder) {
+				  // Save current position to return to after applying extruder offset
+				  memcpy(destination, current_position, sizeof(destination));
+				  // Offset extruder (only by XY)
+				  int i;
+				  for (i = 0; i < 2; i++) {
+					  current_position[i] = current_position[i] -
+						  extruder_offset[i][active_extruder] +
+						  extruder_offset[i][tmp_extruder];
+				  }
+				  // Set the new active extruder and position
+				  active_extruder = tmp_extruder;
+				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+				  // Move to the old position if 'F' was in the parameters
+				  if (make_move && Stopped == false) {
+					  prepare_move();
+				  }
+			  }
+#endif
+			  SERIAL_ECHO_START;
+			  SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
+			  SERIAL_PROTOCOLLN((int)active_extruder);
+		  }
+
+#endif
+	  }
+  } // end if(code_seen('T')) (end of T codes)
+
+#ifdef DEBUG_DCODES
+  else if (code_seen('D')) // D codes (debug)
+  {
+    switch((int)code_value_uint8())
+    {
+	case 0: // D0 - Reset
+		if (*(strchr_pointer + 1) == 0) break;
+		MYSERIAL.println("D0 - Reset");
+		asm volatile("jmp 0x00000");
+		break;
+	case 1: // D1 - Clear EEPROM
+		{
+			MYSERIAL.println("D1 - Clear EEPROM");
+			cli();
+			for (int i = 0; i < 4096; i++)
+				eeprom_write_byte((unsigned char*)i, (unsigned char)0);
+			sei();
+		}
+		break;
+	case 2: // D2 - Read/Write PIN
+		{
+			if (code_seen('P')) // Pin (0-255)
+			{
+				int pin = (int)code_value();
+				if ((pin >= 0) && (pin <= 255))
+				{
+					if (code_seen('F')) // Function in/out (0/1)
+					{
+						int fnc = (int)code_value();
+						if (fnc == 0) pinMode(pin, INPUT);
+						else if (fnc == 1) pinMode(pin, OUTPUT);
+					}
+					if (code_seen('V')) // Value (0/1)
+					{
+						int val = (int)code_value();
+						if (val == 0) digitalWrite(pin, LOW);
+						else if (val == 1) digitalWrite(pin, HIGH);
+					}
+					else
+					{
+						int val = (digitalRead(pin) != LOW)?1:0;
+						MYSERIAL.print("PIN");
+						MYSERIAL.print(pin);
+						MYSERIAL.print("=");
+						MYSERIAL.println(val);
+					}
+				}
+			}
+		}
+		break;
+	}
+  }
+#endif //DEBUG_DCODES
+
+  else
+  {
+    SERIAL_ECHO_START;
+    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
+    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
+    SERIAL_ECHOLNPGM("\"");
+  }
+
+  ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+  //char cmdbuffer[bufindr][100]="Resend:";
+  MYSERIAL.flush();
+  SERIAL_PROTOCOLRPGM(MSG_RESEND);
+  SERIAL_PROTOCOLLN(gcode_LastN + 1);
+  ClearToSend();
+}
+
+// Confirm the execution of a command, if sent from a serial line.
+// Execution of a command from a SD card will not be confirmed.
+void ClearToSend()
+{
+    previous_millis_cmd = millis();
+    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
+        SERIAL_PROTOCOLLNRPGM(MSG_OK);
+}
+
+void get_coordinates()
+{
+  bool seen[4]={false,false,false,false};
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    if(code_seen(axis_codes[i]))
+    {
+      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+      seen[i]=true;
+    }
+    else destination[i] = current_position[i]; //Are these else lines really needed?
+  }
+  if(code_seen('F')) {
+    next_feedrate = code_value();
+    if(next_feedrate > 0.0) feedrate = next_feedrate;
+  }
+}
+
+void get_arc_coordinates()
+{
+#ifdef SF_ARC_FIX
+   bool relative_mode_backup = relative_mode;
+   relative_mode = true;
+#endif
+   get_coordinates();
+#ifdef SF_ARC_FIX
+   relative_mode=relative_mode_backup;
+#endif
+
+   if(code_seen('I')) {
+     offset[0] = code_value();
+   }
+   else {
+     offset[0] = 0.0;
+   }
+   if(code_seen('J')) {
+     offset[1] = code_value();
+   }
+   else {
+     offset[1] = 0.0;
+   }
+}
+
+void clamp_to_software_endstops(float target[3])
+{
+#ifdef DEBUG_DISABLE_SWLIMITS
+	return;
+#endif //DEBUG_DISABLE_SWLIMITS
+    world2machine_clamp(target[0], target[1]);
+
+    // Clamp the Z coordinate.
+    if (min_software_endstops) {
+        float negative_z_offset = 0;
+        #ifdef ENABLE_AUTO_BED_LEVELING
+            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
+            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
+        #endif
+        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
+    }
+    if (max_software_endstops) {
+        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
+    }
+}
+
+#ifdef MESH_BED_LEVELING
+    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
+        float dx = x - current_position[X_AXIS];
+        float dy = y - current_position[Y_AXIS];
+        float dz = z - current_position[Z_AXIS];
+        int n_segments = 0;
+		
+        if (mbl.active) {
+            float len = abs(dx) + abs(dy);
+            if (len > 0)
+                // Split to 3cm segments or shorter.
+                n_segments = int(ceil(len / 30.f));
+        }
+        
+        if (n_segments > 1) {
+            float de = e - current_position[E_AXIS];
+            for (int i = 1; i < n_segments; ++ i) {
+                float t = float(i) / float(n_segments);
+                plan_buffer_line(
+                                 current_position[X_AXIS] + t * dx,
+                                 current_position[Y_AXIS] + t * dy,
+                                 current_position[Z_AXIS] + t * dz,
+                                 current_position[E_AXIS] + t * de,
+                                 feed_rate, extruder);
+            }
+        }
+        // The rest of the path.
+        plan_buffer_line(x, y, z, e, feed_rate, extruder);
+        current_position[X_AXIS] = x;
+        current_position[Y_AXIS] = y;
+        current_position[Z_AXIS] = z;
+        current_position[E_AXIS] = e;
+    }
+#endif  // MESH_BED_LEVELING
+    
+void prepare_move()
+{
+  clamp_to_software_endstops(destination);
+  previous_millis_cmd = millis();
+
+  // Do not use feedmultiply for E or Z only moves
+  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
+      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
+  }
+  else {
+#ifdef MESH_BED_LEVELING
+    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#else
+     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
+#endif
+  }
+
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+}
+
+void prepare_arc_move(char isclockwise) {
+  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+  // Trace the arc
+  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
+
+  // As far as the parser is concerned, the position is now == target. In reality the
+  // motion control system might still be processing the action and the real tool position
+  // in any intermediate location.
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+  previous_millis_cmd = millis();
+}
+
+#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+
+#if defined(FAN_PIN)
+  #if CONTROLLERFAN_PIN == FAN_PIN
+    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
+  #endif
+#endif
+
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
+unsigned long lastMotorCheck = 0;
+
+void controllerFan()
+{
+  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
+  {
+    lastMotorCheck = millis();
+
+    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
+    #if EXTRUDERS > 2
+       || !READ(E2_ENABLE_PIN)
+    #endif
+    #if EXTRUDER > 1
+      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
+       || !READ(X2_ENABLE_PIN)
+      #endif
+       || !READ(E1_ENABLE_PIN)
+    #endif
+       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
+    {
+      lastMotor = millis(); //... set time to NOW so the fan will turn on
+    }
+
+    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
+    {
+        digitalWrite(CONTROLLERFAN_PIN, 0);
+        analogWrite(CONTROLLERFAN_PIN, 0);
+    }
+    else
+    {
+        // allows digital or PWM fan output to be used (see M42 handling)
+        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
+    }
+  }
+}
+#endif
+
+#ifdef TEMP_STAT_LEDS
+static bool blue_led = false;
+static bool red_led = false;
+static uint32_t stat_update = 0;
+
+void handle_status_leds(void) {
+  float max_temp = 0.0;
+  if(millis() > stat_update) {
+    stat_update += 500; // Update every 0.5s
+    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
+       max_temp = max(max_temp, degHotend(cur_extruder));
+       max_temp = max(max_temp, degTargetHotend(cur_extruder));
+    }
+    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
+      max_temp = max(max_temp, degTargetBed());
+      max_temp = max(max_temp, degBed());
+    #endif
+    if((max_temp > 55.0) && (red_led == false)) {
+      digitalWrite(STAT_LED_RED, 1);
+      digitalWrite(STAT_LED_BLUE, 0);
+      red_led = true;
+      blue_led = false;
+    }
+    if((max_temp < 54.0) && (blue_led == false)) {
+      digitalWrite(STAT_LED_RED, 0);
+      digitalWrite(STAT_LED_BLUE, 1);
+      red_led = false;
+      blue_led = true;
+    }
+  }
+}
+#endif
+
+void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
+{
+	
+#if defined(KILL_PIN) && KILL_PIN > -1
+	static int killCount = 0;   // make the inactivity button a bit less responsive
+   const int KILL_DELAY = 10000;
+#endif
+	
+    if(buflen < (BUFSIZE-1)){
+        get_command();
+    }
+
+  if( (millis() - previous_millis_cmd) >  max_inactive_time )
+    if(max_inactive_time)
+      kill();
+  if(stepper_inactive_time)  {
+    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
+    {
+      if(blocks_queued() == false && ignore_stepper_queue == false) {
+        disable_x();
+//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
+        disable_y();
+        disable_z();
+        disable_e0();
+        disable_e1();
+        disable_e2();
+      }
+    }
+  }
+  
+  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
+    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
+    {
+      chdkActive = false;
+      WRITE(CHDK, LOW);
+    }
+  #endif
+  
+  #if defined(KILL_PIN) && KILL_PIN > -1
+    
+    // Check if the kill button was pressed and wait just in case it was an accidental
+    // key kill key press
+    // -------------------------------------------------------------------------------
+    if( 0 == READ(KILL_PIN) )
+    {
+       killCount++;
+    }
+    else if (killCount > 0)
+    {
+       killCount--;
+    }
+    // Exceeded threshold and we can confirm that it was not accidental
+    // KILL the machine
+    // ----------------------------------------------------------------
+    if ( killCount >= KILL_DELAY)
+    {
+       kill();
+    }
+  #endif
+    
+  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
+    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
+  #endif
+  #ifdef EXTRUDER_RUNOUT_PREVENT
+    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
+    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
+    {
+     bool oldstatus=READ(E0_ENABLE_PIN);
+     enable_e0();
+     float oldepos=current_position[E_AXIS];
+     float oldedes=destination[E_AXIS];
+     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
+                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
+                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
+     current_position[E_AXIS]=oldepos;
+     destination[E_AXIS]=oldedes;
+     plan_set_e_position(oldepos);
+     previous_millis_cmd=millis();
+     st_synchronize();
+     WRITE(E0_ENABLE_PIN,oldstatus);
+    }
+  #endif
+  #ifdef TEMP_STAT_LEDS
+      handle_status_leds();
+  #endif
+  check_axes_activity();
+}
+
+void kill(const char *full_screen_message)
+{
+  cli(); // Stop interrupts
+  disable_heater();
+
+  disable_x();
+//  SERIAL_ECHOLNPGM("kill - disable Y");
+  disable_y();
+  disable_z();
+  disable_e0();
+  disable_e1();
+  disable_e2();
+
+#if defined(PS_ON_PIN) && PS_ON_PIN > -1
+  pinMode(PS_ON_PIN,INPUT);
+#endif
+  SERIAL_ERROR_START;
+  SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
+  if (full_screen_message != NULL) {
+      SERIAL_ERRORLNRPGM(full_screen_message);
+      lcd_display_message_fullscreen_P(full_screen_message);
+  } else {
+      LCD_ALERTMESSAGERPGM(MSG_KILLED);
+  }
+
+  // FMC small patch to update the LCD before ending
+  sei();   // enable interrupts
+  for ( int i=5; i--; lcd_update())
+  {
+     delay(200);	
+  }
+  cli();   // disable interrupts
+  suicide();
+  while(1) { /* Intentionally left empty */ } // Wait for reset
+}
+
+void Stop()
+{
+  disable_heater();
+  if(Stopped == false) {
+    Stopped = true;
+    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
+    SERIAL_ERROR_START;
+    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
+    LCD_MESSAGERPGM(MSG_STOPPED);
+  }
+}
+
+bool IsStopped() { return Stopped; };
+
+#ifdef FAST_PWM_FAN
+void setPwmFrequency(uint8_t pin, int val)
+{
+  val &= 0x07;
+  switch(digitalPinToTimer(pin))
+  {
+
+    #if defined(TCCR0A)
+    case TIMER0A:
+    case TIMER0B:
+//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
+//         TCCR0B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR1A)
+    case TIMER1A:
+    case TIMER1B:
+//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+//         TCCR1B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR2)
+    case TIMER2:
+    case TIMER2:
+         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+         TCCR2 |= val;
+         break;
+    #endif
+
+    #if defined(TCCR2A)
+    case TIMER2A:
+    case TIMER2B:
+         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
+         TCCR2B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR3A)
+    case TIMER3A:
+    case TIMER3B:
+    case TIMER3C:
+         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
+         TCCR3B |= val;
+         break;
+    #endif
+
+    #if defined(TCCR4A)
+    case TIMER4A:
+    case TIMER4B:
+    case TIMER4C:
+         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
+         TCCR4B |= val;
+         break;
+   #endif
+
+    #if defined(TCCR5A)
+    case TIMER5A:
+    case TIMER5B:
+    case TIMER5C:
+         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
+         TCCR5B |= val;
+         break;
+   #endif
+
+  }
+}
+#endif //FAST_PWM_FAN
+
+bool setTargetedHotend(int code){
+  tmp_extruder = active_extruder;
+  if(code_seen('T')) {
+    tmp_extruder = code_value();
+    if(tmp_extruder >= EXTRUDERS) {
+      SERIAL_ECHO_START;
+      switch(code){
+        case 104:
+          SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
+          break;
+        case 105:
+          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
+          break;
+        case 109:
+          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
+          break;
+        case 218:
+          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
+          break;
+        case 221:
+          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
+          break;
+      }
+      SERIAL_PROTOCOLLN((int)tmp_extruder);
+      return true;
+    }
+  }
+  return false;
+}
+
+void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
+{
+	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
+	{
+		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+	}
+
+	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
+	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
+
+	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
+	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
+
+	total_filament_used = 0;
+
+}
+
+float calculate_volumetric_multiplier(float diameter) {
+	float area = .0;
+	float radius = .0;
+
+	radius = diameter * .5;
+	if (! volumetric_enabled || radius == 0) {
+		area = 1;
+	}
+	else {
+		area = M_PI * pow(radius, 2);
+	}
+
+	return 1.0 / area;
+}
+
+void calculate_volumetric_multipliers() {
+	volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
+#if EXTRUDERS > 1
+	volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
+#if EXTRUDERS > 2
+	volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
+#endif
+#endif
+}
+
+void delay_keep_alive(unsigned int ms)
+{
+    for (;;) {
+        manage_heater();
+        // Manage inactivity, but don't disable steppers on timeout.
+        manage_inactivity(true);
+        lcd_update();
+        if (ms == 0)
+            break;
+        else if (ms >= 50) {
+            delay(50);
+            ms -= 50;
+        } else {
+            delay(ms);
+            ms = 0;
+        }
+    }
+}
+
+void wait_for_heater(long codenum) {
+
+#ifdef TEMP_RESIDENCY_TIME
+	long residencyStart;
+	residencyStart = -1;
+	/* continue to loop until we have reached the target temp
+	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+	while ((!cancel_heatup) && ((residencyStart == -1) ||
+		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
+#else
+	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
+#endif //TEMP_RESIDENCY_TIME
+		if ((millis() - codenum) > 1000UL)
+		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
+			if (!farm_mode) {
+				SERIAL_PROTOCOLPGM("T:");
+				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
+				SERIAL_PROTOCOLPGM(" E:");
+				SERIAL_PROTOCOL((int)tmp_extruder);
+
+#ifdef TEMP_RESIDENCY_TIME
+				SERIAL_PROTOCOLPGM(" W:");
+				if (residencyStart > -1)
+				{
+					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
+					SERIAL_PROTOCOLLN(codenum);
+				}
+				else
+				{
+					SERIAL_PROTOCOLLN("?");
+				}
+			}
+#else
+				SERIAL_PROTOCOLLN("");
+#endif
+				codenum = millis();
+		}
+			manage_heater();
+			manage_inactivity();
+			lcd_update();
+#ifdef TEMP_RESIDENCY_TIME
+			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+			or when current temp falls outside the hysteresis after target temp was reached */
+			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
+				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
+				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
+			{
+				residencyStart = millis();
+			}
+#endif //TEMP_RESIDENCY_TIME
+	}
+}
+
+void check_babystep() {
+	int babystep_z;
+	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
+	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
+		babystep_z = 0; //if babystep value is out of min max range, set it to 0
+		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
+		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
+		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
+		lcd_update_enable(true);		
+	}	
+}
+#ifdef DIS
+void d_setup()
+{	
+	pinMode(D_DATACLOCK, INPUT_PULLUP);
+	pinMode(D_DATA, INPUT_PULLUP);
+	pinMode(D_REQUIRE, OUTPUT);
+	digitalWrite(D_REQUIRE, HIGH);
+}
+
+
+float d_ReadData()
+{
+	int digit[13];
+	String mergeOutput;
+	float output;
+
+	digitalWrite(D_REQUIRE, HIGH);
+	for (int i = 0; i<13; i++)
+	{
+		for (int j = 0; j < 4; j++)
+		{
+			while (digitalRead(D_DATACLOCK) == LOW) {}
+			while (digitalRead(D_DATACLOCK) == HIGH) {}
+			bitWrite(digit[i], j, digitalRead(D_DATA));
+		}
+	}
+
+	digitalWrite(D_REQUIRE, LOW);
+	mergeOutput = "";
+	output = 0;
+	for (int r = 5; r <= 10; r++) //Merge digits
+	{
+		mergeOutput += digit[r];
+	}
+	output = mergeOutput.toFloat();
+
+	if (digit[4] == 8) //Handle sign
+	{
+		output *= -1;
+	}
+
+	for (int i = digit[11]; i > 0; i--) //Handle floating point
+	{
+		output /= 10;
+	}
+
+	return output;
+
+}
+
+void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
+	int t1 = 0;
+	int t_delay = 0;
+	int digit[13];
+	int m;
+	char str[3];
+	//String mergeOutput;
+	char mergeOutput[15];
+	float output;
+
+	int mesh_point = 0; //index number of calibration point
+	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
+	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
+
+	float mesh_home_z_search = 4;
+	float row[x_points_num];
+	int ix = 0;
+	int iy = 0;
+
+	char* filename_wldsd = "wldsd.txt";
+	char data_wldsd[70];
+	char numb_wldsd[10];
+
+	d_setup();
+
+	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
+		// We don't know where we are! HOME!
+		// Push the commands to the front of the message queue in the reverse order!
+		// There shall be always enough space reserved for these commands.
+		repeatcommand_front(); // repeat G80 with all its parameters
+		
+		enquecommand_front_P((PSTR("G28 W0")));
+		enquecommand_front_P((PSTR("G1 Z5")));
+		return;
+	}
+	bool custom_message_old = custom_message;
+	unsigned int custom_message_type_old = custom_message_type;
+	unsigned int custom_message_state_old = custom_message_state;
+	custom_message = true;
+	custom_message_type = 1;
+	custom_message_state = (x_points_num * y_points_num) + 10;
+	lcd_update(1);
+
+	mbl.reset();
+	babystep_undo();
+
+	card.openFile(filename_wldsd, false);
+
+	current_position[Z_AXIS] = mesh_home_z_search;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
+
+	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
+	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
+	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
+
+	setup_for_endstop_move(false);
+
+	SERIAL_PROTOCOLPGM("Num X,Y: ");
+	SERIAL_PROTOCOL(x_points_num);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_points_num);
+	SERIAL_PROTOCOLPGM("\nZ search height: ");
+	SERIAL_PROTOCOL(mesh_home_z_search);
+	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
+	SERIAL_PROTOCOL(x_dimension);
+	SERIAL_PROTOCOLPGM(",");
+	SERIAL_PROTOCOL(y_dimension);
+	SERIAL_PROTOCOLLNPGM("\nMeasured points:");
+
+	while (mesh_point != x_points_num * y_points_num) {
+		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
+		iy = mesh_point / x_points_num;
+		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
+		float z0 = 0.f;
+		current_position[Z_AXIS] = mesh_home_z_search;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
+		st_synchronize();
+
+
+		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
+		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
+
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
+		st_synchronize();
+
+		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  
+			break;
+			card.closefile();
+		}
+
+
+		//memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
+		//strcat(data_wldsd, numb_wldsd);
+
+
+		
+		//MYSERIAL.println(data_wldsd);
+		//delay(1000);
+		//delay(3000);
+		//t1 = millis();
+		
+		//while (digitalRead(D_DATACLOCK) == LOW) {}
+		//while (digitalRead(D_DATACLOCK) == HIGH) {}
+		memset(digit, 0, sizeof(digit));
+		//cli();
+		digitalWrite(D_REQUIRE, LOW);	
+		
+		for (int i = 0; i<13; i++)
+		{
+			//t1 = millis();
+			for (int j = 0; j < 4; j++)
+			{
+				while (digitalRead(D_DATACLOCK) == LOW) {}				
+				while (digitalRead(D_DATACLOCK) == HIGH) {}
+				bitWrite(digit[i], j, digitalRead(D_DATA));
+			}
+			//t_delay = (millis() - t1);
+			//SERIAL_PROTOCOLPGM(" ");
+			//SERIAL_PROTOCOL_F(t_delay, 5);
+			//SERIAL_PROTOCOLPGM(" ");
+		}
+		//sei();
+		digitalWrite(D_REQUIRE, HIGH);
+		mergeOutput[0] = '\0';
+		output = 0;
+		for (int r = 5; r <= 10; r++) //Merge digits
+		{			
+			sprintf(str, "%d", digit[r]);
+			strcat(mergeOutput, str);
+		}
+		
+		output = atof(mergeOutput);
+
+		if (digit[4] == 8) //Handle sign
+		{
+			output *= -1;
+		}
+
+		for (int i = digit[11]; i > 0; i--) //Handle floating point
+		{
+			output *= 0.1;
+		}
+		
+
+		//output = d_ReadData();
+
+		//row[ix] = current_position[Z_AXIS];
+
+		memset(data_wldsd, 0, sizeof(data_wldsd));
+
+		for (int i = 0; i <3; i++) {
+			memset(numb_wldsd, 0, sizeof(numb_wldsd));
+			dtostrf(current_position[i], 8, 5, numb_wldsd);
+			strcat(data_wldsd, numb_wldsd);
+			strcat(data_wldsd, ";");
+
+		}
+		memset(numb_wldsd, 0, sizeof(numb_wldsd));
+		dtostrf(output, 8, 5, numb_wldsd);
+		strcat(data_wldsd, numb_wldsd);
+		//strcat(data_wldsd, ";");
+		card.write_command(data_wldsd);
+
+		
+		//row[ix] = d_ReadData();
+		
+		row[ix] = output; // current_position[Z_AXIS];
+
+		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
+			for (int i = 0; i < x_points_num; i++) {
+				SERIAL_PROTOCOLPGM(" ");
+				SERIAL_PROTOCOL_F(row[i], 5);
+
+
+			}
+			SERIAL_PROTOCOLPGM("\n");
+		}
+		custom_message_state--;
+		mesh_point++;
+		lcd_update(1);
+
+	}
+	card.closefile();
+
+}
+#endif
+
+void temp_compensation_start() {
+	
+	custom_message = true;
+	custom_message_type = 5;
+	custom_message_state = PINDA_HEAT_T + 1;
+	lcd_update(2);
+	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
+		current_position[E_AXIS] -= DEFAULT_RETRACTION;
+	}
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+	
+	current_position[X_AXIS] = PINDA_PREHEAT_X;
+	current_position[Y_AXIS] = PINDA_PREHEAT_Y;
+	current_position[Z_AXIS] = PINDA_PREHEAT_Z;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+	st_synchronize();
+	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
+
+	for (int i = 0; i < PINDA_HEAT_T; i++) {
+		delay_keep_alive(1000);
+		custom_message_state = PINDA_HEAT_T - i;
+		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
+		else lcd_update(1);
+	}	
+	custom_message_type = 0;
+	custom_message_state = 0;
+	custom_message = false;
+}
+
+void temp_compensation_apply() {
+	int i_add;
+	int compensation_value;
+	int z_shift = 0;
+	float z_shift_mm;
+
+	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
+		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
+			i_add = (target_temperature_bed - 60) / 10;
+			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
+			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
+		}else {
+			//interpolation
+			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
+		}
+		SERIAL_PROTOCOLPGM("\n");
+		SERIAL_PROTOCOLPGM("Z shift applied:");
+		MYSERIAL.print(z_shift_mm);
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
+		st_synchronize();
+		plan_set_z_position(current_position[Z_AXIS]);
+	}
+	else {		
+		//we have no temp compensation data
+	}
+}
+
+float temp_comp_interpolation(float inp_temperature) {
+
+	//cubic spline interpolation
+
+	int n, i, j, k;
+	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
+	int shift[10];
+	int temp_C[10];
+
+	n = 6; //number of measured points
+
+	shift[0] = 0;
+	for (i = 0; i < n; i++) {
+		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
+		temp_C[i] = 50 + i * 10; //temperature in C
+		
+		x[i] = (float)temp_C[i];
+		f[i] = (float)shift[i];
+	}
+	if (inp_temperature < x[0]) return 0;
+
+
+	for (i = n - 1; i>0; i--) {
+		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
+		h[i - 1] = x[i] - x[i - 1];
+	}
+	//*********** formation of h, s , f matrix **************
+	for (i = 1; i<n - 1; i++) {
+		m[i][i] = 2 * (h[i - 1] + h[i]);
+		if (i != 1) {
+			m[i][i - 1] = h[i - 1];
+			m[i - 1][i] = h[i - 1];
+		}
+		m[i][n - 1] = 6 * (F[i + 1] - F[i]);
+	}
+	//*********** forward elimination **************
+	for (i = 1; i<n - 2; i++) {
+		temp = (m[i + 1][i] / m[i][i]);
+		for (j = 1; j <= n - 1; j++)
+			m[i + 1][j] -= temp*m[i][j];
+	}
+	//*********** backward substitution *********
+	for (i = n - 2; i>0; i--) {
+		sum = 0;
+		for (j = i; j <= n - 2; j++)
+			sum += m[i][j] * s[j];
+		s[i] = (m[i][n - 1] - sum) / m[i][i];
+	}
+
+		for (i = 0; i<n - 1; i++)
+			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
+				a = (s[i + 1] - s[i]) / (6 * h[i]);
+				b = s[i] / 2;
+				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
+				d = f[i];
+				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
+			}
+
+		return sum;
+
+}
+
+void long_pause() //long pause print
+{
+	st_synchronize();
+	
+	//save currently set parameters to global variables
+	saved_feedmultiply = feedmultiply; 
+	HotendTempBckp = degTargetHotend(active_extruder);
+	fanSpeedBckp = fanSpeed;
+	start_pause_print = millis();
+		
+
+	//save position
+	pause_lastpos[X_AXIS] = current_position[X_AXIS];
+	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
+	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
+	pause_lastpos[E_AXIS] = current_position[E_AXIS];
+
+	//retract
+	current_position[E_AXIS] -= DEFAULT_RETRACTION;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
+
+	//lift z
+	current_position[Z_AXIS] += Z_PAUSE_LIFT;
+	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
+
+	//set nozzle target temperature to 0
+	setTargetHotend(0, 0);
+	setTargetHotend(0, 1);
+	setTargetHotend(0, 2);
+
+	//Move XY to side
+	current_position[X_AXIS] = X_PAUSE_POS;
+	current_position[Y_AXIS] = Y_PAUSE_POS;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
+
+	// Turn off the print fan
+	fanSpeed = 0;
+
+	st_synchronize();
+}
+
+void serialecho_temperatures() {
+	float tt = degHotend(active_extruder);
+	SERIAL_PROTOCOLPGM("T:");
+	SERIAL_PROTOCOL(tt);
+	SERIAL_PROTOCOLPGM(" E:");
+	SERIAL_PROTOCOL((int)active_extruder);
+	SERIAL_PROTOCOLPGM(" B:");
+	SERIAL_PROTOCOL_F(degBed(), 1);
+	SERIAL_PROTOCOLLN("");
 }

+ 116 - 22
Firmware/planner.cpp

@@ -126,6 +126,12 @@ float extrude_min_temp=EXTRUDE_MINTEMP;
  static char meas_sample; //temporary variable to hold filament measurement sample
 #endif
 
+#ifdef LIN_ADVANCE
+  float extruder_advance_k = LIN_ADVANCE_K,
+        advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
+        position_float[NUM_AXIS] = { 0 };
+#endif
+
 // Returns the index of the next block in the ring buffer
 // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
 static inline int8_t next_block_index(int8_t block_index) {
@@ -411,6 +417,9 @@ void plan_init() {
   block_buffer_head = 0;
   block_buffer_tail = 0;
   memset(position, 0, sizeof(position)); // clear position
+  #ifdef LIN_ADVANCE
+    memset(position_float, 0, sizeof(position)); // clear position
+  #endif
   previous_speed[0] = 0.0;
   previous_speed[1] = 0.0;
   previous_speed[2] = 0.0;
@@ -497,25 +506,53 @@ void check_axes_activity()
     disable_e2(); 
   }
 #if defined(FAN_PIN) && FAN_PIN > -1
-  #ifdef FAN_KICKSTART_TIME
-    static unsigned long fan_kick_end;
-    if (tail_fan_speed) {
-      if (fan_kick_end == 0) {
-        // Just starting up fan - run at full power.
-        fan_kick_end = millis() + FAN_KICKSTART_TIME;
-        tail_fan_speed = 255;
-      } else if (fan_kick_end > millis())
-        // Fan still spinning up.
-        tail_fan_speed = 255;
-    } else {
-      fan_kick_end = 0;
-    }
-  #endif//FAN_KICKSTART_TIME
-  #ifdef FAN_SOFT_PWM
-  fanSpeedSoftPwm = tail_fan_speed;
-  #else
-  analogWrite(FAN_PIN,tail_fan_speed);
-  #endif//!FAN_SOFT_PWM
+#ifdef FAN_KICK_START_TIME
+	static bool fan_kick = false;
+	static unsigned long fan_kick_timer = 0;
+	static unsigned char prev_fan_speed = 0;
+	if (tail_fan_speed)
+	{
+		if (prev_fan_speed != tail_fan_speed)
+		{ //speed changed
+			if (prev_fan_speed == 0) //prev speed == 0 (starting - long kick)
+				fan_kick_timer = millis() + FAN_KICK_START_TIME;
+			else if (tail_fan_speed <= FAN_KICK_RUN_MINPWM) //speed <= max kick speed (short kick)
+				fan_kick_timer = millis() + FAN_KICK_RUN_TIME;
+			else //speed > max kick speed (no kick)
+				fan_kick_timer = 0;
+			prev_fan_speed = tail_fan_speed; //store previous value
+			if (fan_kick_timer)
+				fan_kick = true;
+		}
+		else
+		{
+			if (fan_kick)
+			{
+				if (fan_kick_timer < millis())
+				{
+					fan_kick = false;
+					if (tail_fan_speed <= FAN_KICK_RUN_MINPWM)
+						fan_kick_timer = millis() + FAN_KICK_IDLE_TIME;
+				}
+			}
+			else if (tail_fan_speed <= FAN_KICK_RUN_MINPWM)
+			{
+				if (fan_kick_timer < millis())
+				{
+					fan_kick_timer = millis() + FAN_KICK_RUN_TIME;
+					fan_kick = true;
+				}
+			}
+		}
+		if (fan_kick)
+			tail_fan_speed = 255;
+	}
+#endif//FAN_KICKSTART_TIME
+#ifdef FAN_SOFT_PWM
+	fanSpeedSoftPwm = tail_fan_speed;
+#else
+	analogWrite(FAN_PIN,tail_fan_speed);
+#endif//!FAN_SOFT_PWM
 #endif//FAN_PIN > -1
 #ifdef AUTOTEMP
   getHighESpeed();
@@ -676,12 +713,22 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
     target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 #endif // ENABLE_MESH_BED_LEVELING
   target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+  
+  #ifdef LIN_ADVANCE
+    const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
+    float de_float = e - position_float[E_AXIS];
+  #endif
+  
   #ifdef PREVENT_DANGEROUS_EXTRUDE
   if(target[E_AXIS]!=position[E_AXIS])
   {
     if(degHotend(active_extruder)<extrude_min_temp)
     {
       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
+      #ifdef LIN_ADVANCE
+        position_float[E_AXIS] = e;
+        de_float = 0;
+      #endif
       SERIAL_ECHO_START;
       SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
     }
@@ -690,6 +737,10 @@ void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate
     if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
     {
       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
+      #ifdef LIN_ADVANCE
+        position_float[E_AXIS] = e;
+        de_float = 0;
+      #endif
       SERIAL_ECHO_START;
       SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
     }
@@ -1111,7 +1162,38 @@ Having the real displacement of the head, we can calculate the total movement le
   memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
   previous_nominal_speed = block->nominal_speed;
   previous_safe_speed = safe_speed;
-
+  
+  #ifdef LIN_ADVANCE
+
+    //
+    // Use LIN_ADVANCE for blocks if all these are true:
+    //
+    // esteps                                          : We have E steps todo (a printing move)
+    //
+    // block->steps[X_AXIS] || block->steps[Y_AXIS]    : We have a movement in XY direction (i.e., not retract / prime).
+    //
+    // extruder_advance_k                              : There is an advance factor set.
+    //
+    // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
+    //                                                   In that case, the retract and move will be executed together.
+    //                                                   This leads to too many advance steps due to a huge e_acceleration.
+    //                                                   The math is good, but we must avoid retract moves with advance!
+    // de_float > 0.0                                  : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
+    //
+    block->use_advance_lead =  block->steps_e
+                            && (block->steps_x || block->steps_y)
+                            && extruder_advance_k
+                            && (uint32_t)block->steps_e != block->step_event_count
+                            && de_float > 0.0;
+    if (block->use_advance_lead)
+      block->abs_adv_steps_multiplier8 = lround(
+        extruder_advance_k
+        * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
+        * (block->nominal_speed / (float)block->nominal_rate)
+        * axis_steps_per_unit[E_AXIS] * 256.0
+      );
+  #endif
+  
   // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
   block->speed_factor = block->nominal_rate / block->nominal_speed;
   calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
@@ -1121,6 +1203,12 @@ Having the real displacement of the head, we can calculate the total movement le
 
   // Update position
   memcpy(position, target, sizeof(target)); // position[] = target[]
+  #ifdef LIN_ADVANCE
+    position_float[X_AXIS] = x;
+    position_float[Y_AXIS] = y;
+    position_float[Z_AXIS] = z;
+    position_float[E_AXIS] = e;
+  #endif
 
   // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
   // the machine limits (maximum acceleration and maximum jerk).
@@ -1178,7 +1266,13 @@ void plan_set_position(float x, float y, float z, const float &e)
 #else
   position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 #endif // ENABLE_MESH_BED_LEVELING
-  position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
+  position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); 
+  #ifdef LIN_ADVANCE
+    position_float[X_AXIS] = x;
+    position_float[Y_AXIS] = y;
+    position_float[Z_AXIS] = z;
+    position_float[E_AXIS] = e;
+  #endif
   st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
   previous_speed[0] = 0.0;
@@ -1226,4 +1320,4 @@ void planner_queue_min_reset()
 {
   g_cntr_planner_queue_min = moves_planned();
 }
-#endif /* PLANNER_DIAGNOSTICS */
+#endif /* PLANNER_DIAGNOSTICS */

+ 9 - 0
Firmware/planner.h

@@ -88,8 +88,17 @@ typedef struct {
 
   // Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.
   float speed_factor;
+  
+  #ifdef LIN_ADVANCE
+    bool use_advance_lead;
+    unsigned long abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
+  #endif
 } block_t;
 
+#ifdef LIN_ADVANCE
+  extern float extruder_advance_k, advance_ed_ratio;
+#endif
+
 #ifdef ENABLE_AUTO_BED_LEVELING
 // this holds the required transform to compensate for bed level
 extern matrix_3x3 plan_bed_level_matrix;

+ 160 - 26
Firmware/stepper.cpp

@@ -88,6 +88,26 @@ int8_t SilentMode;
 volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
 volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
 
+#ifdef LIN_ADVANCE
+
+  uint16_t ADV_NEVER = 65535;
+
+  static uint16_t nextMainISR = 0;
+  static uint16_t nextAdvanceISR = ADV_NEVER;
+  static uint16_t eISR_Rate = ADV_NEVER;
+
+  static volatile int e_steps; //Extrusion steps to be executed by the stepper
+  static int final_estep_rate; //Speed of extruder at cruising speed
+  static int current_estep_rate; //The current speed of the extruder
+  static int current_adv_steps; //The current pretension of filament expressed in steps
+
+  #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)
+  #define _NEXT_ISR(T) nextMainISR = T
+
+#else
+  #define _NEXT_ISR(T) OCR1A = T    
+#endif
+
 //===========================================================================
 //=============================functions         ============================
 //===========================================================================
@@ -308,24 +328,27 @@ FORCE_INLINE void trapezoid_generator_reset() {
   step_loops_nominal = step_loops;
   acc_step_rate = current_block->initial_rate;
   acceleration_time = calc_timer(acc_step_rate);
-  OCR1A = acceleration_time;
-
-//    SERIAL_ECHO_START;
-//    SERIAL_ECHOPGM("advance :");
-//    SERIAL_ECHO(current_block->advance/256.0);
-//    SERIAL_ECHOPGM("advance rate :");
-//    SERIAL_ECHO(current_block->advance_rate/256.0);
-//    SERIAL_ECHOPGM("initial advance :");
-//  SERIAL_ECHO(current_block->initial_advance/256.0);
-//    SERIAL_ECHOPGM("final advance :");
-//    SERIAL_ECHOLN(current_block->final_advance/256.0);
-
+  _NEXT_ISR(acceleration_time);
+  
+  #ifdef LIN_ADVANCE
+    if (current_block->use_advance_lead) {
+      current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
+      final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
+    }
+  #endif
 }
 
 // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
-ISR(TIMER1_COMPA_vect)
-{
+ISR(TIMER1_COMPA_vect) {
+  #ifdef LIN_ADVANCE
+    advance_isr_scheduler();
+  #else
+    isr();
+  #endif
+}
+
+void isr() {
   // If there is no current block, attempt to pop one from the buffer
   if (current_block == NULL) {
     // Anything in the buffer?
@@ -343,13 +366,13 @@ ISR(TIMER1_COMPA_vect)
       #ifdef Z_LATE_ENABLE
         if(current_block->steps_z > 0) {
           enable_z();
-          OCR1A = 2000; //1ms wait
+          _NEXT_ISR(2000); //1ms wait
           return;
         }
       #endif
     }
     else {
-        OCR1A=2000; // 1kHz.
+        _NEXT_ISR(2000); // 1kHz.
     }
   }
 
@@ -395,7 +418,7 @@ ISR(TIMER1_COMPA_vect)
       CHECK_ENDSTOPS
       {
         {
-          #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+          #if defined(X_MIN_PIN) && (X_MIN_PIN > -1) && !defined(DEBUG_DISABLE_XMINLIMIT)
             bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
             if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
               endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
@@ -411,7 +434,7 @@ ISR(TIMER1_COMPA_vect)
       CHECK_ENDSTOPS
       {
         {
-          #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+          #if defined(X_MAX_PIN) && (X_MAX_PIN > -1) && !defined(DEBUG_DISABLE_XMAXLIMIT)
             bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
             if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
               endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
@@ -431,7 +454,7 @@ ISR(TIMER1_COMPA_vect)
     #endif
       CHECK_ENDSTOPS
       {
-        #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+        #if defined(Y_MIN_PIN) && (Y_MIN_PIN > -1) && !defined(DEBUG_DISABLE_YMINLIMIT)
           bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
           if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
@@ -445,7 +468,7 @@ ISR(TIMER1_COMPA_vect)
     else { // +direction
       CHECK_ENDSTOPS
       {
-        #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+        #if defined(Y_MAX_PIN) && (Y_MAX_PIN > -1) && !defined(DEBUG_DISABLE_YMAXLIMIT)
           bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
           if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
@@ -467,7 +490,7 @@ ISR(TIMER1_COMPA_vect)
       count_direction[Z_AXIS]=-1;
       if(check_endstops && ! check_z_endstop)
       {
-        #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+        #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
           bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
           if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
@@ -488,7 +511,7 @@ ISR(TIMER1_COMPA_vect)
       count_direction[Z_AXIS]=1;
       CHECK_ENDSTOPS
       {
-        #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+        #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
           bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
           if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
@@ -501,7 +524,7 @@ ISR(TIMER1_COMPA_vect)
     }
 
     // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
-    #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+    #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
     if(check_z_endstop) {
         // Check the Z min end-stop no matter what.
         // Good for searching for the center of an induction target.
@@ -553,6 +576,15 @@ ISR(TIMER1_COMPA_vect)
       #ifndef AT90USB
       MSerial.checkRx(); // Check for serial chars.
       #endif
+      
+      #ifdef LIN_ADVANCE
+        counter_e += current_block->steps_e;
+        if (counter_e > 0) {
+          counter_e -= current_block->step_event_count;
+          count_position[E_AXIS] += count_direction[E_AXIS];
+          ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;
+        }
+      #endif
 
         counter_x += current_block->steps_x;
         if (counter_x > 0) {
@@ -596,6 +628,7 @@ ISR(TIMER1_COMPA_vect)
         #endif
       }
 
+        #ifndef LIN_ADVANCE
         counter_e += current_block->steps_e;
         if (counter_e > 0) {
           WRITE_E_STEP(!INVERT_E_STEP_PIN);
@@ -603,9 +636,21 @@ ISR(TIMER1_COMPA_vect)
           count_position[E_AXIS]+=count_direction[E_AXIS];
           WRITE_E_STEP(INVERT_E_STEP_PIN);
         }
+        #endif
       step_events_completed += 1;
       if(step_events_completed >= current_block->step_event_count) break;
     }
+    
+    #ifdef LIN_ADVANCE
+      if (current_block->use_advance_lead) {
+        const int delta_adv_steps = current_estep_rate - current_adv_steps;
+        current_adv_steps += delta_adv_steps;
+        e_steps += delta_adv_steps;
+      }
+      // If we have esteps to execute, fire the next advance_isr "now"
+      if (e_steps) nextAdvanceISR = 0;
+    #endif
+  
     // Calculare new timer value
     unsigned short timer;
     unsigned short step_rate;
@@ -620,8 +665,15 @@ ISR(TIMER1_COMPA_vect)
 
       // step_rate to timer interval
       timer = calc_timer(acc_step_rate);
-      OCR1A = timer;
+      _NEXT_ISR(timer);
       acceleration_time += timer;
+      
+      #ifdef LIN_ADVANCE
+        if (current_block->use_advance_lead) {
+          current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
+        }
+        eISR_Rate = ADV_RATE(timer, step_loops);
+      #endif
     }
     else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
       MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
@@ -639,11 +691,25 @@ ISR(TIMER1_COMPA_vect)
 
       // step_rate to timer interval
       timer = calc_timer(step_rate);
-      OCR1A = timer;
+      _NEXT_ISR(timer);
       deceleration_time += timer;
+      
+      #ifdef LIN_ADVANCE
+        if (current_block->use_advance_lead) {
+          current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
+        }
+        eISR_Rate = ADV_RATE(timer, step_loops);
+      #endif
     }
     else {
-      OCR1A = OCR1A_nominal;
+      #ifdef LIN_ADVANCE
+        if (current_block->use_advance_lead)
+          current_estep_rate = final_estep_rate;
+
+        eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
+      #endif
+      
+      _NEXT_ISR(OCR1A_nominal);
       // ensure we're running at the correct step rate, even if we just came off an acceleration
       step_loops = step_loops_nominal;
     }
@@ -656,6 +722,69 @@ ISR(TIMER1_COMPA_vect)
   }
 }
 
+#ifdef LIN_ADVANCE
+
+  // Timer interrupt for E. e_steps is set in the main routine.
+
+  void advance_isr() {
+
+    nextAdvanceISR = eISR_Rate;
+
+    if (e_steps) {
+      bool dir =
+      #ifdef SNMM
+        ((e_steps < 0) == (snmm_extruder & 1))
+      #else
+        (e_steps < 0)
+      #endif
+      ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
+      WRITE(E0_DIR_PIN, dir);
+  
+      for (uint8_t i = step_loops; e_steps && i--;) {
+        WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
+        e_steps < 0 ? ++e_steps : --e_steps;
+        WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
+      }
+    }
+  }
+
+  void advance_isr_scheduler() {
+    // Run main stepping ISR if flagged
+    if (!nextMainISR) isr();
+
+    // Run Advance stepping ISR if flagged
+    if (!nextAdvanceISR) advance_isr();
+
+    // Is the next advance ISR scheduled before the next main ISR?
+    if (nextAdvanceISR <= nextMainISR) {
+      // Set up the next interrupt
+      OCR1A = nextAdvanceISR;
+      // New interval for the next main ISR
+      if (nextMainISR) nextMainISR -= nextAdvanceISR;
+      // Will call Stepper::advance_isr on the next interrupt
+      nextAdvanceISR = 0;
+    }
+    else {
+      // The next main ISR comes first
+      OCR1A = nextMainISR;
+      // New interval for the next advance ISR, if any
+      if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
+        nextAdvanceISR -= nextMainISR;
+      // Will call Stepper::isr on the next interrupt
+      nextMainISR = 0;
+    }
+
+    // Don't run the ISR faster than possible
+    if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;
+  }
+  
+  void clear_current_adv_vars() {
+    e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
+    current_adv_steps = 0;
+  }
+
+#endif // LIN_ADVANCE
+
 void st_init()
 {
   digipot_init(); //Initialize Digipot Motor Current
@@ -843,6 +972,11 @@ void st_init()
   OCR1A = 0x4000;
   TCNT1 = 0;
   ENABLE_STEPPER_DRIVER_INTERRUPT();
+  
+  #ifdef LIN_ADVANCE
+    e_steps = 0;
+    current_adv_steps = 0;
+  #endif
 
   enable_endstops(true); // Start with endstops active. After homing they can be disabled
   sei();

+ 10 - 0
Firmware/stepper.h

@@ -44,6 +44,16 @@ extern bool abort_on_endstop_hit;
 // Initialize and start the stepper motor subsystem
 void st_init();
 
+// Interrupt Service Routines
+
+void isr();
+
+#ifdef LIN_ADVANCE
+  void advance_isr();
+  void advance_isr_scheduler();
+  void clear_current_adv_vars(); //Used to reset the built up pretension and remaining esteps on filament change.
+#endif
+
 // Block until all buffered steps are executed
 void st_synchronize();
 

+ 6 - 0
Firmware/temperature.cpp

@@ -1303,6 +1303,9 @@ void max_temp_error(uint8_t e) {
 }
 
 void min_temp_error(uint8_t e) {
+#ifdef DEBUG_DISABLE_MINTEMP
+	return;
+#endif
   disable_heater();
   if(IsStopped() == false) {
     SERIAL_ERROR_START;
@@ -1333,6 +1336,9 @@ void bed_max_temp_error(void) {
 }
 
 void bed_min_temp_error(void) {
+#ifdef DEBUG_DISABLE_MINTEMP
+	return;
+#endif
 #if HEATER_BED_PIN > -1
     WRITE(HEATER_BED_PIN, 0);
 #endif

+ 5741 - 5740
Firmware/ultralcd.cpp

@@ -1,5746 +1,5747 @@
-#include "temperature.h"
-#include "ultralcd.h"
-#ifdef ULTRA_LCD
-#include "Marlin.h"
-#include "language.h"
-#include "cardreader.h"
-#include "temperature.h"
-#include "stepper.h"
-#include "ConfigurationStore.h"
-#include <string.h>
-
-#include "util.h"
-#include "mesh_bed_leveling.h"
-//#include "Configuration.h"
-
-#include "SdFatUtil.h"
-
-#define _STRINGIFY(s) #s
-
-
-int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
-
-extern int lcd_change_fil_state;
-
-//Function pointer to menu functions.
-typedef void (*menuFunc_t)();
-
-static void lcd_sd_updir();
-
-struct EditMenuParentState
-{
-    //prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
-    menuFunc_t prevMenu;
-    uint16_t prevEncoderPosition;
-    //Variables used when editing values.
-    const char* editLabel;
-    void* editValue;
-    int32_t minEditValue, maxEditValue;
-    // menuFunc_t callbackFunc;
-};
-
-union MenuData
-{ 
-    struct BabyStep
-    {
-        // 29B total
-        int8_t status;
-        int babystepMem[3];
-        float babystepMemMM[3];
-    } babyStep;
-
-    struct SupportMenu
-    {
-        // 6B+16B=22B total
-        int8_t status;
-        bool is_flash_air;
-        uint8_t ip[4];
-        char ip_str[3*4+3+1];
-    } supportMenu;
-
-    struct AdjustBed
-    {
-        // 6+13+16=35B
-        // editMenuParentState is used when an edit menu is entered, so it knows
-        // the return menu and encoder state.
-        struct EditMenuParentState editMenuParentState;
-        int8_t status;
-        int8_t left;
-        int8_t right;
-        int8_t front;
-        int8_t rear;
-        int    left2;
-        int    right2;
-        int    front2;
-        int    rear2;
-    } adjustBed;
-
-    // editMenuParentState is used when an edit menu is entered, so it knows
-    // the return menu and encoder state.
-    struct EditMenuParentState editMenuParentState;
-};
-
-// State of the currently active menu.
-// C Union manages sharing of the static memory by all the menus.
-union MenuData menuData = { 0 };
-
-union Data
-{
-  byte b[2];
-  int value;
-};
-
-int8_t ReInitLCD = 0;
-
-int8_t SDscrool = 0;
-
-int8_t SilentModeMenu = 0;
-
-#ifdef SNMM
-uint8_t snmm_extruder = 0;
-#endif
-
-int lcd_commands_type=LCD_COMMAND_IDLE;
-int lcd_commands_step=0;
-bool isPrintPaused = false;
-uint8_t farm_mode = 0;
-int farm_no = 0;
-int farm_timer = 30;
-int farm_status = 0;
-unsigned long allert_timer = millis();
-bool printer_connected = true;
-
-unsigned long display_time; //just timer for showing pid finished message on lcd;
-float pid_temp = DEFAULT_PID_TEMP;
-
-bool long_press_active = false;
-long long_press_timer = millis();
-long button_blanking_time = millis();
-bool button_pressed = false;
-
-bool menuExiting = false;
-
-#ifdef FILAMENT_LCD_DISPLAY
-unsigned long message_millis = 0;
-#endif
-
-#ifdef ULTIPANEL
-static float manual_feedrate[] = MANUAL_FEEDRATE;
-#endif // ULTIPANEL
-
-/* !Configuration settings */
-
-uint8_t lcd_status_message_level;
-char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME!
-unsigned char firstrun = 1;
-
-#ifdef DOGLCD
-#include "dogm_lcd_implementation.h"
-#else
-#include "ultralcd_implementation_hitachi_HD44780.h"
-#endif
-
-/** forward declarations **/
-
-// void copy_and_scalePID_i();
-// void copy_and_scalePID_d();
-
-/* Different menus */
-static void lcd_status_screen();
-#ifdef ULTIPANEL
-extern bool powersupply;
-static void lcd_main_menu();
-static void lcd_tune_menu();
-static void lcd_prepare_menu();
-static void lcd_move_menu();
-static void lcd_settings_menu();
-static void lcd_calibration_menu();
-static void lcd_language_menu();
-static void lcd_control_temperature_menu();
-static void lcd_control_temperature_preheat_pla_settings_menu();
-static void lcd_control_temperature_preheat_abs_settings_menu();
-static void lcd_control_motion_menu();
-static void lcd_control_volumetric_menu();
-
-static void prusa_stat_printerstatus(int _status);
-static void prusa_stat_farm_number();
-static void prusa_stat_temperatures();
-static void prusa_stat_printinfo();
-static void lcd_farm_no();
-
-#ifdef DOGLCD
-static void lcd_set_contrast();
-#endif
-static void lcd_control_retract_menu();
-static void lcd_sdcard_menu();
-
-#ifdef DELTA_CALIBRATION_MENU
-static void lcd_delta_calibrate_menu();
-#endif // DELTA_CALIBRATION_MENU
-
-static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
-
-/* Different types of actions that can be used in menu items. */
-static void menu_action_back(menuFunc_t data);
-#define menu_action_back_RAM menu_action_back
-static void menu_action_submenu(menuFunc_t data);
-static void menu_action_gcode(const char* pgcode);
-static void menu_action_function(menuFunc_t data);
-static void menu_action_setlang(unsigned char lang);
-static void menu_action_sdfile(const char* filename, char* longFilename);
-static void menu_action_sddirectory(const char* filename, char* longFilename);
-static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
-static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
-static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
-static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
-static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue);
-static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue);
-static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue);
-static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue);
-static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue);
-
-/*
-static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
-static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc);
-*/
-
-#define ENCODER_FEEDRATE_DEADZONE 10
-
-#if !defined(LCD_I2C_VIKI)
-#ifndef ENCODER_STEPS_PER_MENU_ITEM
-#define ENCODER_STEPS_PER_MENU_ITEM 5
-#endif
-#ifndef ENCODER_PULSES_PER_STEP
-#define ENCODER_PULSES_PER_STEP 1
-#endif
-#else
-#ifndef ENCODER_STEPS_PER_MENU_ITEM
-#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
-#endif
-#ifndef ENCODER_PULSES_PER_STEP
-#define ENCODER_PULSES_PER_STEP 1
-#endif
-#endif
-
-
-/* Helper macros for menus */
-#define START_MENU() do { \
-    if (encoderPosition > 0x8000) encoderPosition = 0; \
-    if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\
-    uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \
-    bool wasClicked = LCD_CLICKED;\
-    for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \
-      _menuItemNr = 0;
-
-#define MENU_ITEM(type, label, args...) do { \
-    if (_menuItemNr == _lineNr) { \
-      if (lcdDrawUpdate) { \
-        const char* _label_pstr = (label); \
-        if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \
-          lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \
-        }else{\
-          lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \
-        }\
-      }\
-      if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\
-        lcd_quick_feedback(); \
-        menu_action_ ## type ( args ); \
-        return;\
-      }\
-    }\
-    _menuItemNr++;\
-  } while(0)
-
-#define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
-#define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, (label) , ## args )
-#define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, (label) , ## args )
-#define END_MENU() \
-  if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \
-  if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
-  } } while(0)
-
-/** Used variables to keep track of the menu */
-#ifndef REPRAPWORLD_KEYPAD
-volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
-#else
-volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values
-#endif
-#ifdef LCD_HAS_SLOW_BUTTONS
-volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons.
-#endif
-uint8_t currentMenuViewOffset;              /* scroll offset in the current menu */
-uint8_t lastEncoderBits;
-uint32_t encoderPosition;
-uint32_t savedEncoderPosition;
-#if (SDCARDDETECT > 0)
-bool lcd_oldcardstatus;
-#endif
-#endif //ULTIPANEL
-
-menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
-menuFunc_t savedMenu;
-uint32_t lcd_next_update_millis;
-uint8_t lcd_status_update_delay;
-bool ignore_click = false;
-bool wait_for_unclick;
-uint8_t lcdDrawUpdate = 2;                  /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */
-
-// place-holders for Ki and Kd edits
-#ifdef PIDTEMP
-// float raw_Ki, raw_Kd;
-#endif
-
-static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder = 0, const bool feedback = true, bool reset_menu_state = true) {
-  if (currentMenu != menu) {
-    currentMenu = menu;
-    encoderPosition = encoder;
-    if (reset_menu_state) {
-        // Resets the global shared C union.
-        // This ensures, that the menu entered will find out, that it shall initialize itself.
-        memset(&menuData, 0, sizeof(menuData));
-    }
-    if (feedback) lcd_quick_feedback();
-
-    // For LCD_PROGRESS_BAR re-initialize the custom characters
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-    lcd_set_custom_characters(menu == lcd_status_screen);
-#endif
-  }
-}
-
-/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
-
-// Language selection dialog not active.
-#define LANGSEL_OFF 0
-// Language selection dialog modal, entered from the info screen. This is the case on firmware boot up,
-// if the language index stored in the EEPROM is not valid.
-#define LANGSEL_MODAL 1
-// Language selection dialog entered from the Setup menu.
-#define LANGSEL_ACTIVE 2
-// Language selection dialog status
-unsigned char langsel = LANGSEL_OFF;
-
-void set_language_from_EEPROM() {
-  unsigned char eep = eeprom_read_byte((unsigned char*)EEPROM_LANG);
-  if (eep < LANG_NUM)
-  {
-    lang_selected = eep;
-    // Language is valid, no need to enter the language selection screen.
-    langsel = LANGSEL_OFF;
-  }
-  else
-  {
-    lang_selected = LANG_ID_DEFAULT;
-    // Invalid language, enter the language selection screen in a modal mode.
-    langsel = LANGSEL_MODAL;
-  }
-}
-
-static void lcd_status_screen()
-{
-	
-  if (firstrun == 1) 
-  {
-    firstrun = 0;
-    set_language_from_EEPROM();
-     
-      if(lcd_status_message_level == 0){
-          strncpy_P(lcd_status_message, WELCOME_MSG, LCD_WIDTH);
-      }
-	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
-	{
-		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
-		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
-	}
-	
-	if (langsel) {
-      //strncpy_P(lcd_status_message, PSTR(">>>>>>>>>>>> PRESS v"), LCD_WIDTH);
-      // Entering the language selection screen in a modal mode.
-      
-    }
-  }
-
-  
-  if (lcd_status_update_delay)
-    lcd_status_update_delay--;
-  else
-    lcdDrawUpdate = 1;
-  if (lcdDrawUpdate)
-  {
-    ReInitLCD++;
-
-
-    if (ReInitLCD == 30) {
-      lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-        currentMenu == lcd_status_screen
-#endif
-      );
-      ReInitLCD = 0 ;
-    } else {
-
-      if ((ReInitLCD % 10) == 0) {
-        //lcd_implementation_nodisplay();
-        lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it.
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-          currentMenu == lcd_status_screen
-#endif
-        );
-
-      }
-
-    }
-
-
-    //lcd_implementation_display();
-    lcd_implementation_status_screen();
-    //lcd_implementation_clear();
-
-	if (farm_mode)
-	{
-		farm_timer--;
-		if (farm_timer < 1)
-		{
-			farm_timer = 180;
-			prusa_statistics(0);
-		}
-		switch (farm_timer)
-		{
-		case 45:
-			prusa_statistics(21);
-			break;
-		case 10:
-			if (IS_SD_PRINTING)
-			{
-				prusa_statistics(20);
-			}
-			break;
-		}
-	} // end of farm_mode
-
-
-
-
-
-    lcd_status_update_delay = 10;   /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
-	if (lcd_commands_type != LCD_COMMAND_IDLE)
-	{
-		lcd_commands();
-	}
-	
-
-  } // end of lcdDrawUpdate
-#ifdef ULTIPANEL
-
-  bool current_click = LCD_CLICKED;
-
-  if (ignore_click) {
-    if (wait_for_unclick) {
-      if (!current_click) {
-        ignore_click = wait_for_unclick = false;
-      }
-      else {
-        current_click = false;
-      }
-    }
-    else if (current_click) {
-      lcd_quick_feedback();
-      wait_for_unclick = true;
-      current_click = false;
-    }
-  }
-
-
-  //if (--langsel ==0) {langsel=1;current_click=true;}
-
-  if (current_click && (lcd_commands_type != LCD_COMMAND_STOP_PRINT)) //click is aborted unless stop print finishes
-  {
-
-    lcd_goto_menu(lcd_main_menu);
-    lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-      currentMenu == lcd_status_screen
-#endif
-    );
-#ifdef FILAMENT_LCD_DISPLAY
-    message_millis = millis();  // get status message to show up for a while
-#endif
-  }
-
-#ifdef ULTIPANEL_FEEDMULTIPLY
-  // Dead zone at 100% feedrate
-  if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
-      (feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
-  {
-    encoderPosition = 0;
-    feedmultiply = 100;
-  }
-
-  if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE)
-  {
-    feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
-    encoderPosition = 0;
-  }
-  else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
-  {
-    feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
-    encoderPosition = 0;
-  }
-  else if (feedmultiply != 100)
-  {
-    feedmultiply += int(encoderPosition);
-    encoderPosition = 0;
-  }
-#endif //ULTIPANEL_FEEDMULTIPLY
-
-  if (feedmultiply < 10)
-    feedmultiply = 10;
-  else if (feedmultiply > 999)
-    feedmultiply = 999;
-#endif //ULTIPANEL
-
-  if (farm_mode && !printer_connected) {
-	  lcd.setCursor(0, 3);
-	  lcd_printPGM(MSG_PRINTER_DISCONNECTED);
-  }
-
-}
-
-#ifdef ULTIPANEL
-
-void lcd_commands()
-{	
-	char cmd1[25];
-	if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE)
-	{
-		if(lcd_commands_step == 0) {
-			card.pauseSDPrint();
-			lcd_setstatuspgm(MSG_FINISHING_MOVEMENTS);
-			lcdDrawUpdate = 3;
-			lcd_commands_step = 1;
-		}
-		if (lcd_commands_step == 1 && !blocks_queued()) {
-			lcd_setstatuspgm(MSG_PRINT_PAUSED);
-			isPrintPaused = true;
-			long_pause();
-			lcd_commands_type = 0;
-			lcd_commands_step = 0;
-		}
-
-	}
-
-	if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE_RESUME) {
-		char cmd1[30];
-		if (lcd_commands_step == 0) {
-
-			lcdDrawUpdate = 3;
-			lcd_commands_step = 4;
-		}
-		if (lcd_commands_step == 1 && !blocks_queued()) {	//recover feedmultiply
-			
-			sprintf_P(cmd1, PSTR("M220 S%d"), saved_feedmultiply);
-			enquecommand(cmd1);
-			isPrintPaused = false;
-			pause_time += (millis() - start_pause_print); //accumulate time when print is paused for correct statistics calculation
-			card.startFileprint();
-			lcd_commands_step = 0;
-			lcd_commands_type = 0;
-		}
-		if (lcd_commands_step == 2 && !blocks_queued()) {	//turn on fan, move Z and unretract
-			
-			sprintf_P(cmd1, PSTR("M106 S%d"), fanSpeedBckp);
-			enquecommand(cmd1);
-			strcpy(cmd1, "G1 Z");
-			strcat(cmd1, ftostr32(pause_lastpos[Z_AXIS]));
-			enquecommand(cmd1);
-			if (axis_relative_modes[3] == true) enquecommand_P(PSTR("M83")); // set extruder to relative mode.
-			else enquecommand_P(PSTR("M82")); // set extruder to absolute mode
-			enquecommand_P(PSTR("G1 E"  STRINGIFY(DEFAULT_RETRACTION))); //unretract
-			enquecommand_P(PSTR("G90")); //absolute positioning
-			lcd_commands_step = 1;
-		}
-		if (lcd_commands_step == 3 && !blocks_queued()) {	//wait for nozzle to reach target temp
-			
-			strcpy(cmd1, "M109 S");
-			strcat(cmd1, ftostr3(HotendTempBckp));
-			enquecommand(cmd1);			
-			lcd_commands_step = 2;
-		}
-		if (lcd_commands_step == 4 && !blocks_queued()) {	//set temperature back and move xy
-			
-			strcpy(cmd1, "M104 S");
-			strcat(cmd1, ftostr3(HotendTempBckp));
-			enquecommand(cmd1);
-			
-			strcpy(cmd1, "G1 X");
-			strcat(cmd1, ftostr32(pause_lastpos[X_AXIS]));
-			strcat(cmd1, " Y");
-			strcat(cmd1, ftostr32(pause_lastpos[Y_AXIS]));
-			enquecommand(cmd1);
-			
-			lcd_setstatuspgm(MSG_RESUMING_PRINT);
-			lcd_commands_step = 3;
-		}
-	}
-
-	if (lcd_commands_type == LCD_COMMAND_STOP_PRINT)   /// stop print
-	{
-		uint8_t stopped_extruder;
-
-		if (lcd_commands_step == 0) 
-		{ 
-			lcd_commands_step = 6; 
-			custom_message = true;	
-		}
-
-		if (lcd_commands_step == 1 && !blocks_queued())
-		{
-			lcd_commands_step = 0;
-			lcd_commands_type = 0;
-			lcd_setstatuspgm(WELCOME_MSG);
-			custom_message_type = 0;
-			custom_message = false;
-			isPrintPaused = false;
-		}
-		if (lcd_commands_step == 2 && !blocks_queued())
-		{
-			setTargetBed(0);
-			enquecommand_P(PSTR("M104 S0")); //set hotend temp to 0
-
-			manage_heater();
-			lcd_setstatuspgm(WELCOME_MSG);
-			cancel_heatup = false;
-			lcd_commands_step = 1;
-		}
-		if (lcd_commands_step == 3 && !blocks_queued())
-		{
-      // M84: Disable steppers.
-			enquecommand_P(PSTR("M84"));
-			autotempShutdown();
-			lcd_commands_step = 2;
-		}
-		if (lcd_commands_step == 4 && !blocks_queued())
-		{
-			lcd_setstatuspgm(MSG_PLEASE_WAIT);
-      // G90: Absolute positioning.
-			enquecommand_P(PSTR("G90"));
-      // M83: Set extruder to relative mode.
-			enquecommand_P(PSTR("M83"));
-			#ifdef X_CANCEL_POS 
-			enquecommand_P(PSTR("G1 X"  STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
-			#else
-			enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000"));
-			#endif
-			lcd_ignore_click(false);
-			#ifdef SNMM
-			lcd_commands_step = 8;
-			#else
-			lcd_commands_step = 3;
-			#endif
-		}
-		if (lcd_commands_step == 5 && !blocks_queued())
-		{
-			lcd_setstatuspgm(MSG_PRINT_ABORTED);
-      // G91: Set to relative positioning.
-			enquecommand_P(PSTR("G91"));
-      // Lift up.
-			enquecommand_P(PSTR("G1 Z15 F1500"));
-			if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) lcd_commands_step = 4;
-			else lcd_commands_step = 3;
-		}
-		if (lcd_commands_step == 6 && !blocks_queued())
-		{
-			lcd_setstatuspgm(MSG_PRINT_ABORTED);
-			cancel_heatup = true;
-			setTargetBed(0);
-			#ifndef SNMM
-			setTargetHotend(0, 0);	//heating when changing filament for multicolor
-			setTargetHotend(0, 1);
-			setTargetHotend(0, 2);
-			#endif
-			manage_heater();
-			custom_message = true;
-			custom_message_type = 2;
-			lcd_commands_step = 5;
-		}
-		if (lcd_commands_step == 7 && !blocks_queued()) {
-			switch(snmm_stop_print_menu()) {
-				case 0: enquecommand_P(PSTR("M702")); break;//all 
-				case 1: enquecommand_P(PSTR("M702 U")); break; //used
-				case 2: enquecommand_P(PSTR("M702 C")); break; //current
-				default: enquecommand_P(PSTR("M702")); break;
-			}
-			lcd_commands_step = 3;
-		}
-		if (lcd_commands_step == 8 && !blocks_queued()) { //step 8 is here for delay (going to next step after execution of all gcodes from step 4)
-			lcd_commands_step = 7; 
-		}
-	}
-
-	if (lcd_commands_type == 3)
-	{
-		lcd_commands_type = 0;
-	}
-
-	if (lcd_commands_type == LCD_COMMAND_FARM_MODE_CONFIRM)   /// farm mode confirm
-	{
-
-		if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; }
-
-		if (lcd_commands_step == 1 && !blocks_queued())
-		{
-			lcd_confirm_print();
-			lcd_commands_step = 0;
-			lcd_commands_type = 0;
-		}
-		if (lcd_commands_step == 2 && !blocks_queued())
-		{
-			lcd_commands_step = 1;
-		}
-		if (lcd_commands_step == 3 && !blocks_queued())
-		{
-			lcd_commands_step = 2;
-		}
-		if (lcd_commands_step == 4 && !blocks_queued())
-		{
-			enquecommand_P(PSTR("G90"));
-			enquecommand_P(PSTR("G1 X"  STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
-			lcd_commands_step = 3;
-		}
-		if (lcd_commands_step == 5 && !blocks_queued())
-		{
-			lcd_commands_step = 4;
-		}
-		if (lcd_commands_step == 6 && !blocks_queued())
-		{
-			enquecommand_P(PSTR("G91"));
-			enquecommand_P(PSTR("G1 Z15 F1500"));
-			st_synchronize();
-			#ifdef SNMM
-			lcd_commands_step = 7;
-			#else
-			lcd_commands_step = 5;
-			#endif
-		}
-
-	}
-	if (lcd_commands_type == LCD_COMMAND_PID_EXTRUDER) {
-		char cmd1[30];
-		
-		if (lcd_commands_step == 0) {
-			custom_message_type = 3;
-			custom_message_state = 1;
-			custom_message = true;
-			lcdDrawUpdate = 3;
-			lcd_commands_step = 3;
-		}
-		if (lcd_commands_step == 3 && !blocks_queued()) { //PID calibration
-			strcpy(cmd1, "M303 E0 S");
-			strcat(cmd1, ftostr3(pid_temp));
-			enquecommand(cmd1);
-			lcd_setstatuspgm(MSG_PID_RUNNING);
-			lcd_commands_step = 2;
-		}
-		if (lcd_commands_step == 2 && pid_tuning_finished) { //saving to eeprom
-			pid_tuning_finished = false;
-			custom_message_state = 0;
-			lcd_setstatuspgm(MSG_PID_FINISHED);
-			strcpy(cmd1, "M301 P");
-			strcat(cmd1, ftostr32(_Kp));
-			strcat(cmd1, " I");
-			strcat(cmd1, ftostr32(_Ki));
-			strcat(cmd1, " D");
-			strcat(cmd1, ftostr32(_Kd));
-			enquecommand(cmd1);
-			enquecommand_P(PSTR("M500"));
-			display_time = millis();
-			lcd_commands_step = 1;
-		}
-		if ((lcd_commands_step == 1) && ((millis()- display_time)>2000)) { //calibration finished message
-			lcd_setstatuspgm(WELCOME_MSG);
-			custom_message_type = 0;
-			custom_message = false;
-			pid_temp = DEFAULT_PID_TEMP;
-			lcd_commands_step = 0;
-			lcd_commands_type = 0;
-		}
-	}
-
-
-}
-
-static void lcd_return_to_status() {
-  lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-    currentMenu == lcd_status_screen
-#endif
-  );
-
-    lcd_goto_menu(lcd_status_screen, 0, false);
-}
-
-
-static void lcd_sdcard_pause() {
-	lcd_return_to_status();
-	lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
-
-}
-
-static void lcd_sdcard_resume() {
-	lcd_return_to_status();
-	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
-}
-
-float move_menu_scale;
-static void lcd_move_menu_axis();
-
-
-
-/* Menu implementation */
-
-
-void lcd_preheat_pla()
-{
-  setTargetHotend0(PLA_PREHEAT_HOTEND_TEMP);
-  setTargetBed(PLA_PREHEAT_HPB_TEMP);
-  fanSpeed = 0;
-  lcd_return_to_status();
-  setWatch(); // heater sanity check timer
-}
-
-void lcd_preheat_abs()
-{
-  setTargetHotend0(ABS_PREHEAT_HOTEND_TEMP);
-  setTargetBed(ABS_PREHEAT_HPB_TEMP);
-  fanSpeed = 0;
-  lcd_return_to_status();
-  setWatch(); // heater sanity check timer
-}
-
-void lcd_preheat_pp()
-{
-  setTargetHotend0(PP_PREHEAT_HOTEND_TEMP);
-  setTargetBed(PP_PREHEAT_HPB_TEMP);
-  fanSpeed = 0;
-  lcd_return_to_status();
-  setWatch(); // heater sanity check timer
-}
-
-void lcd_preheat_pet()
-{
-  setTargetHotend0(PET_PREHEAT_HOTEND_TEMP);
-  setTargetBed(PET_PREHEAT_HPB_TEMP);
-  fanSpeed = 0;
-  lcd_return_to_status();
-  setWatch(); // heater sanity check timer
-}
-
-void lcd_preheat_hips()
-{
-  setTargetHotend0(HIPS_PREHEAT_HOTEND_TEMP);
-  setTargetBed(HIPS_PREHEAT_HPB_TEMP);
-  fanSpeed = 0;
-  lcd_return_to_status();
-  setWatch(); // heater sanity check timer
-}
-
-void lcd_preheat_flex()
-{
-  setTargetHotend0(FLEX_PREHEAT_HOTEND_TEMP);
-  setTargetBed(FLEX_PREHEAT_HPB_TEMP);
-  fanSpeed = 0;
-  lcd_return_to_status();
-  setWatch(); // heater sanity check timer
-}
-
-
-void lcd_cooldown()
-{
-  setTargetHotend0(0);
-  setTargetHotend1(0);
-  setTargetHotend2(0);
-  setTargetBed(0);
-  fanSpeed = 0;
-  lcd_return_to_status();
-}
-
-
-
-static void lcd_preheat_menu()
-{
-  START_MENU();
-
-  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-
-  MENU_ITEM(function, PSTR("ABS  -  " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
-  MENU_ITEM(function, PSTR("PLA  -  " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla);
-  MENU_ITEM(function, PSTR("PET  -  " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet);
-  MENU_ITEM(function, PSTR("HIPS -  " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips);
-  MENU_ITEM(function, PSTR("PP   -  " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp);
-  MENU_ITEM(function, PSTR("FLEX -  " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex);
-
-  MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
-
-  END_MENU();
-}
-
-static void lcd_support_menu()
-{
-    if (menuData.supportMenu.status == 0 || lcdDrawUpdate == 2) {
-        // Menu was entered or SD card status has changed (plugged in or removed).
-        // Initialize its status.
-        menuData.supportMenu.status = 1;
-        menuData.supportMenu.is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(menuData.supportMenu.ip);
-        if (menuData.supportMenu.is_flash_air)
-            sprintf_P(menuData.supportMenu.ip_str, PSTR("%d.%d.%d.%d"), 
-                menuData.supportMenu.ip[0], menuData.supportMenu.ip[1], 
-                menuData.supportMenu.ip[2], menuData.supportMenu.ip[3]);
-    } else if (menuData.supportMenu.is_flash_air && 
-        menuData.supportMenu.ip[0] == 0 && menuData.supportMenu.ip[1] == 0 && 
-        menuData.supportMenu.ip[2] == 0 && menuData.supportMenu.ip[3] == 0 &&
-        ++ menuData.supportMenu.status == 16) {
-        // Waiting for the FlashAir card to get an IP address from a router. Force an update.
-        menuData.supportMenu.status = 0;
-    }
-
-  START_MENU();
-
-  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-
-  // Ideally this block would be optimized out by the compiler.
-  const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P());
-  if (fw_string_len < 6) {
-      MENU_ITEM(back, PSTR(MSG_FW_VERSION " - " FW_version), lcd_main_menu);
-  } else {
-      MENU_ITEM(back, PSTR("FW - " FW_version), lcd_main_menu);
-  }
-      
-  MENU_ITEM(back, MSG_PRUSA3D, lcd_main_menu);
-  MENU_ITEM(back, MSG_PRUSA3D_FORUM, lcd_main_menu);
-  MENU_ITEM(back, MSG_PRUSA3D_HOWTO, lcd_main_menu);
-  MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
-  MENU_ITEM(back, PSTR(FILAMENT_SIZE), lcd_main_menu);
-  MENU_ITEM(back, PSTR(ELECTRONICS),lcd_main_menu);
-  MENU_ITEM(back, PSTR(NOZZLE_TYPE),lcd_main_menu);
-  MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
-  MENU_ITEM(back, MSG_DATE, lcd_main_menu);
-  MENU_ITEM(back, PSTR(__DATE__), lcd_main_menu);
-
-  // Show the FlashAir IP address, if the card is available.
-  if (menuData.supportMenu.is_flash_air) {
-      MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
-      MENU_ITEM(back, PSTR("FlashAir IP Addr:"), lcd_main_menu);
-      MENU_ITEM(back_RAM, menuData.supportMenu.ip_str, lcd_main_menu);
-  }
-  #ifndef MK1BP
-  MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
-  if(!IS_SD_PRINTING) MENU_ITEM(function, MSG_XYZ_DETAILS, lcd_service_mode_show_result);
-  #endif //MK1BP
-  END_MENU();
-}
-
-void lcd_unLoadFilament()
-{
-
-  if (degHotend0() > EXTRUDE_MINTEMP) {
-	
-	  enquecommand_P(PSTR("M702")); //unload filament
-
-  } else {
-
-    lcd_implementation_clear();
-    lcd.setCursor(0, 0);
-    lcd_printPGM(MSG_ERROR);
-    lcd.setCursor(0, 2);
-    lcd_printPGM(MSG_PREHEAT_NOZZLE);
-
-    delay(2000);
-    lcd_implementation_clear();
-  }
-
-  lcd_return_to_status();
-}
-
-void lcd_change_filament() {
-
-  lcd_implementation_clear();
-
-  lcd.setCursor(0, 1);
-
-  lcd_printPGM(MSG_CHANGING_FILAMENT);
-
-
-}
-
-
-void lcd_wait_interact() {
-
-  lcd_implementation_clear();
-
-  lcd.setCursor(0, 1);
-#ifdef SNMM 
-  lcd_printPGM(MSG_PREPARE_FILAMENT);
-#else
-  lcd_printPGM(MSG_INSERT_FILAMENT);
-#endif
-  lcd.setCursor(0, 2);
-  lcd_printPGM(MSG_PRESS);
-
-}
-
-
-void lcd_change_success() {
-
-  lcd_implementation_clear();
-
-  lcd.setCursor(0, 2);
-
-  lcd_printPGM(MSG_CHANGE_SUCCESS);
-
-
-}
-
-
-void lcd_loading_color() {
-
-  lcd_implementation_clear();
-
-  lcd.setCursor(0, 0);
-
-  lcd_printPGM(MSG_LOADING_COLOR);
-  lcd.setCursor(0, 2);
-  lcd_printPGM(MSG_PLEASE_WAIT);
-
-
-  for (int i = 0; i < 20; i++) {
-
-    lcd.setCursor(i, 3);
-    lcd.print(".");
-    for (int j = 0; j < 10 ; j++) {
-      manage_heater();
-      manage_inactivity(true);
-      delay(85);
-
-    }
-
-
-  }
-
-}
-
-
-void lcd_loading_filament() {
-
-
-  lcd_implementation_clear();
-
-  lcd.setCursor(0, 0);
-
-  lcd_printPGM(MSG_LOADING_FILAMENT);
-  lcd.setCursor(0, 2);
-  lcd_printPGM(MSG_PLEASE_WAIT);
-
-  for (int i = 0; i < 20; i++) {
-
-    lcd.setCursor(i, 3);
-    lcd.print(".");
-    for (int j = 0; j < 10 ; j++) {
-      manage_heater();
-      manage_inactivity(true);
-#ifdef SNMM
-      delay(153);
-#else
-	  delay(137);
-#endif
-
-    }
-
-
-  }
-
-}
-
-
-
-
-void lcd_alright() {
-  int enc_dif = 0;
-  int cursor_pos = 1;
-
-
-
-
-  lcd_implementation_clear();
-
-  lcd.setCursor(0, 0);
-
-  lcd_printPGM(MSG_CORRECTLY);
-
-  lcd.setCursor(1, 1);
-
-  lcd_printPGM(MSG_YES);
-
-  lcd.setCursor(1, 2);
-
-  lcd_printPGM(MSG_NOT_LOADED);
-
-
-  lcd.setCursor(1, 3);
-  lcd_printPGM(MSG_NOT_COLOR);
-
-
-  lcd.setCursor(0, 1);
-
-  lcd.print(">");
-
-
-  enc_dif = encoderDiff;
-
-  while (lcd_change_fil_state == 0) {
-
-    manage_heater();
-    manage_inactivity(true);
-
-    if ( abs((enc_dif - encoderDiff)) > 4 ) {
-
-      if ( (abs(enc_dif - encoderDiff)) > 1 ) {
-        if (enc_dif > encoderDiff ) {
-          cursor_pos --;
-        }
-
-        if (enc_dif < encoderDiff  ) {
-          cursor_pos ++;
-        }
-
-        if (cursor_pos > 3) {
-          cursor_pos = 3;
-        }
-
-        if (cursor_pos < 1) {
-          cursor_pos = 1;
-        }
-        lcd.setCursor(0, 1);
-        lcd.print(" ");
-        lcd.setCursor(0, 2);
-        lcd.print(" ");
-        lcd.setCursor(0, 3);
-        lcd.print(" ");
-        lcd.setCursor(0, cursor_pos);
-        lcd.print(">");
-        enc_dif = encoderDiff;
-        delay(100);
-      }
-
-    }
-
-
-    if (lcd_clicked()) {
-
-      lcd_change_fil_state = cursor_pos;
-      delay(500);
-
-    }
-
-
-
-  };
-
-
-  lcd_implementation_clear();
-  lcd_return_to_status();
-
-}
-
-
-
-void lcd_LoadFilament()
-{
-  if (degHotend0() > EXTRUDE_MINTEMP) 
-  {
-	  custom_message = true;
-	  loading_flag = true;
-	  enquecommand_P(PSTR("M701")); //load filament
-	  SERIAL_ECHOLN("Loading filament");	    
-    }
-  else 
-  {
-
-    lcd_implementation_clear();
-    lcd.setCursor(0, 0);
-    lcd_printPGM(MSG_ERROR);
-    lcd.setCursor(0, 2);
-	lcd_printPGM(MSG_PREHEAT_NOZZLE);
-    delay(2000);
-    lcd_implementation_clear();
-  }
-  lcd_return_to_status();
-}
-
-
-void lcd_menu_statistics()
-{
-
-	if (IS_SD_PRINTING)
-	{
-		int _met = total_filament_used / 100000;
-		int _cm = (total_filament_used - (_met * 100000))/10;
-		
-		int _t = (millis() - starttime) / 1000;
-		int _h = _t / 3600;
-		int _m = (_t - (_h * 3600)) / 60;
-		int _s = _t - ((_h * 3600) + (_m * 60));
-		
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_STATS_FILAMENTUSED);
-
-		lcd.setCursor(6, 1);
-		lcd.print(itostr3(_met));
-		lcd.print("m ");
-		lcd.print(ftostr32ns(_cm));
-		lcd.print("cm");
-		
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_STATS_PRINTTIME);
-
-		lcd.setCursor(8, 3);
-		lcd.print(itostr2(_h));
-		lcd.print("h ");
-		lcd.print(itostr2(_m));
-		lcd.print("m ");
-		lcd.print(itostr2(_s));
-		lcd.print("s");
-
-		if (lcd_clicked())
-		{
-			lcd_quick_feedback();
-			lcd_return_to_status();
-		}
-	}
-	else
-	{
-		unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
-		unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes
-		
-		uint8_t _hours, _minutes;
-		uint32_t _days;
-
-		float _filament_m = (float)_filament;
-		int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0;
-		if (_filament_km > 0)  _filament_m = _filament - (_filament_km * 100000);
-
-		_days = _time / 1440;
-		_hours = (_time - (_days * 1440)) / 60;
-		_minutes = _time - ((_days * 1440) + (_hours * 60));
-
-		lcd_implementation_clear();
-
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_STATS_TOTALFILAMENT);
-		lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)), 1);
-		lcd.print(ftostr32ns(_filament_m));
-
-		if (_filament_km > 0)
-		{
-			lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 3, 1);
-			lcd.print("km");
-			lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 8, 1);
-			lcd.print(itostr4(_filament_km));
-		}
-
-
-		lcd.setCursor(18, 1);
-		lcd.print("m");
-
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_STATS_TOTALPRINTTIME);;
-
-		lcd.setCursor(18, 3);
-		lcd.print("m");
-		lcd.setCursor(14, 3);
-		lcd.print(itostr3(_minutes));
-
-		lcd.setCursor(14, 3);
-		lcd.print(":");
-
-		lcd.setCursor(12, 3);
-		lcd.print("h");
-		lcd.setCursor(9, 3);
-		lcd.print(itostr3(_hours));
-
-		lcd.setCursor(9, 3);
-		lcd.print(":");
-
-		lcd.setCursor(7, 3);
-		lcd.print("d");
-		lcd.setCursor(4, 3);
-		lcd.print(itostr3(_days));
-
-
-
-		while (!lcd_clicked())
-		{
-			manage_heater();
-			manage_inactivity(true);
-			delay(100);
-		}
-
-		lcd_quick_feedback();
-		lcd_return_to_status();
-	}
-}
-
-
-static void _lcd_move(const char *name, int axis, int min, int max) {
-	if (encoderPosition != 0) {
-    refresh_cmd_timeout();
-    if (! planner_queue_full()) {
-      current_position[axis] += float((int)encoderPosition) * move_menu_scale;
-      if (min_software_endstops && current_position[axis] < min) current_position[axis] = min;
-      if (max_software_endstops && current_position[axis] > max) current_position[axis] = max;
-      encoderPosition = 0;
-      world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
-      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder);
-      lcdDrawUpdate = 1;
-    }
-  }
-  if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis]));
-  if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis); {
-  }
-}
-
-
-static void lcd_move_e()
-{
-	if (degHotend0() > EXTRUDE_MINTEMP) {
-  if (encoderPosition != 0)
-  {
-    refresh_cmd_timeout();
-    if (! planner_queue_full()) {
-      current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale;
-      encoderPosition = 0;
-      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder);
-      lcdDrawUpdate = 1;
-    }
-  }
-  if (lcdDrawUpdate)
-  {
-    lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
-  }
-  if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
-}
-	else {
-		lcd_implementation_clear();
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_ERROR);
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_PREHEAT_NOZZLE);
-
-		delay(2000);
-		lcd_return_to_status();
-	}
-}
-
-void lcd_service_mode_show_result() {
-	float angleDiff;
-	lcd_set_custom_characters_degree();
-	count_xyz_details();
-	angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
-	
-	lcd_update_enable(false);
-	lcd_implementation_clear();
-	lcd_printPGM(MSG_Y_DISTANCE_FROM_MIN);
-	lcd_print_at_PGM(0, 1, MSG_LEFT);
-	lcd_print_at_PGM(0, 2, MSG_CENTER);
-	lcd_print_at_PGM(0, 3, MSG_RIGHT);
-	for (int i = 0; i < 3; i++) {
-		if(distance_from_min[i] < 200) {
-			lcd_print_at_PGM(11, i + 1, PSTR(""));
-			lcd.print(distance_from_min[i]);
-			lcd_print_at_PGM((distance_from_min[i] < 0) ? 17 : 16, i + 1, PSTR("mm"));
-		} else lcd_print_at_PGM(11, i + 1, PSTR("N/A"));
-	}
-	delay_keep_alive(500);
-	while (!lcd_clicked()) {
-		delay_keep_alive(100);
-	}
-	delay_keep_alive(500);
-	lcd_implementation_clear();
-	
-
-	lcd_printPGM(MSG_MEASURED_SKEW);
-	if (angleDiff < 100) {
-		lcd.setCursor(15, 0);
-		lcd.print(angleDiff * 180 / M_PI);
-		lcd.print(LCD_STR_DEGREE);
-	}else lcd_print_at_PGM(16, 0, PSTR("N/A"));
-	lcd_print_at_PGM(0, 1, PSTR("--------------------"));
-	lcd_print_at_PGM(0, 2, MSG_SLIGHT_SKEW);
-	lcd_print_at_PGM(15, 2, PSTR(""));
-	lcd.print(bed_skew_angle_mild * 180 / M_PI);
-	lcd.print(LCD_STR_DEGREE);
-	lcd_print_at_PGM(0, 3, MSG_SEVERE_SKEW);
-	lcd_print_at_PGM(15, 3, PSTR(""));
-	lcd.print(bed_skew_angle_extreme * 180 / M_PI);
-	lcd.print(LCD_STR_DEGREE);
-	delay_keep_alive(500);
-	while (!lcd_clicked()) {
-		delay_keep_alive(100);
-	}
-	delay_keep_alive(500);
-	lcd_set_custom_characters_arrows();
-	lcd_return_to_status();
-	lcd_update_enable(true);
-	lcd_update(2);
-}
-
-
-
-
-// Save a single axis babystep value.
-void EEPROM_save_B(int pos, int* value)
-{
-  union Data data;
-  data.value = *value;
-
-  eeprom_update_byte((unsigned char*)pos, data.b[0]);
-  eeprom_update_byte((unsigned char*)pos + 1, data.b[1]);
-}
-
-// Read a single axis babystep value.
-void EEPROM_read_B(int pos, int* value)
-{
-  union Data data;
-  data.b[0] = eeprom_read_byte((unsigned char*)pos);
-  data.b[1] = eeprom_read_byte((unsigned char*)pos + 1);
-  *value = data.value;
-}
-
-
-static void lcd_move_x() {
-  _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS);
-}
-static void lcd_move_y() {
-  _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS);
-}
-static void lcd_move_z() {
-  _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS);
-}
-
-
-
-static void _lcd_babystep(int axis, const char *msg) 
-{
-    if (menuData.babyStep.status == 0) {
-        // Menu was entered.
-        // Initialize its status.
-        menuData.babyStep.status = 1;
-		check_babystep();
-
-		EEPROM_read_B(EEPROM_BABYSTEP_X, &menuData.babyStep.babystepMem[0]);
-        EEPROM_read_B(EEPROM_BABYSTEP_Y, &menuData.babyStep.babystepMem[1]);
-        EEPROM_read_B(EEPROM_BABYSTEP_Z, &menuData.babyStep.babystepMem[2]);
-		
-        menuData.babyStep.babystepMemMM[0] = menuData.babyStep.babystepMem[0]/axis_steps_per_unit[X_AXIS];
-        menuData.babyStep.babystepMemMM[1] = menuData.babyStep.babystepMem[1]/axis_steps_per_unit[Y_AXIS];
-        menuData.babyStep.babystepMemMM[2] = menuData.babyStep.babystepMem[2]/axis_steps_per_unit[Z_AXIS];
-        lcdDrawUpdate = 1;
-		//SERIAL_ECHO("Z baby step: ");
-		//SERIAL_ECHO(menuData.babyStep.babystepMem[2]);
-        // Wait 90 seconds before closing the live adjust dialog.
-        lcd_timeoutToStatus = millis() + 90000;
-    }
-
-  if (encoderPosition != 0) 
-  {
-	if (homing_flag) encoderPosition = 0;
-
-    menuData.babyStep.babystepMem[axis] += (int)encoderPosition;
-	if (axis == 2) {
-		if (menuData.babyStep.babystepMem[axis] < Z_BABYSTEP_MIN) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm
-		else  if (menuData.babyStep.babystepMem[axis] > Z_BABYSTEP_MAX) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MAX; //0
-		else {
-			CRITICAL_SECTION_START
-				babystepsTodo[axis] += (int)encoderPosition;
-			CRITICAL_SECTION_END		
-		}
-	}
-    menuData.babyStep.babystepMemMM[axis] = menuData.babyStep.babystepMem[axis]/axis_steps_per_unit[axis]; 
-	  delay(50);
-	  encoderPosition = 0;
-    lcdDrawUpdate = 1;
-  }
-  if (lcdDrawUpdate)
-    lcd_implementation_drawedit_2(msg, ftostr13ns(menuData.babyStep.babystepMemMM[axis]));
-  if (LCD_CLICKED || menuExiting) {
-    // Only update the EEPROM when leaving the menu.
-    EEPROM_save_B(
-      (axis == 0) ? EEPROM_BABYSTEP_X : ((axis == 1) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z), 
-      &menuData.babyStep.babystepMem[axis]);
-  }
-  if (LCD_CLICKED) lcd_goto_menu(lcd_main_menu);
-}
-
-static void lcd_babystep_x() {
-  _lcd_babystep(X_AXIS, (MSG_BABYSTEPPING_X));
-}
-static void lcd_babystep_y() {
-  _lcd_babystep(Y_AXIS, (MSG_BABYSTEPPING_Y));
-}
-static void lcd_babystep_z() {
-	_lcd_babystep(Z_AXIS, (MSG_BABYSTEPPING_Z));
-}
-
-static void lcd_adjust_bed();
-
-static void lcd_adjust_bed_reset()
-{
-    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
-    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0);
-    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
-    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
-    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0);
-    lcd_goto_menu(lcd_adjust_bed, 0, false);
-    // Because we did not leave the menu, the menuData did not reset.
-    // Force refresh of the bed leveling data.
-    menuData.adjustBed.status = 0;
-}
-
-void adjust_bed_reset() {
-	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
-	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
-	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
-	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
-	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
-	menuData.adjustBed.left = menuData.adjustBed.left2 = 0;
-	menuData.adjustBed.right = menuData.adjustBed.right2 = 0;
-	menuData.adjustBed.front = menuData.adjustBed.front2 = 0;
-	menuData.adjustBed.rear = menuData.adjustBed.rear2 = 0;
-}
-#define BED_ADJUSTMENT_UM_MAX 50
-
-static void lcd_adjust_bed()
-{
-    if (menuData.adjustBed.status == 0) {
-        // Menu was entered.
-        // Initialize its status.
-        menuData.adjustBed.status = 1;
-        bool valid = false;
-        menuData.adjustBed.left  = menuData.adjustBed.left2  = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT);
-        menuData.adjustBed.right = menuData.adjustBed.right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT);
-        menuData.adjustBed.front = menuData.adjustBed.front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT);
-        menuData.adjustBed.rear  = menuData.adjustBed.rear2  = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR);
-        if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 && 
-            menuData.adjustBed.left  >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.left  <= BED_ADJUSTMENT_UM_MAX &&
-            menuData.adjustBed.right >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right <= BED_ADJUSTMENT_UM_MAX &&
-            menuData.adjustBed.front >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front <= BED_ADJUSTMENT_UM_MAX &&
-            menuData.adjustBed.rear  >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear  <= BED_ADJUSTMENT_UM_MAX)
-            valid = true;
-        if (! valid) {
-            // Reset the values: simulate an edit.
-            menuData.adjustBed.left2  = 0;
-            menuData.adjustBed.right2 = 0;
-            menuData.adjustBed.front2 = 0;
-            menuData.adjustBed.rear2  = 0;
-        }
-        lcdDrawUpdate = 1;
-        eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
-    }
-
-    if (menuData.adjustBed.left  != menuData.adjustBed.left2)
-        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT,  menuData.adjustBed.left  = menuData.adjustBed.left2);
-    if (menuData.adjustBed.right != menuData.adjustBed.right2)
-        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, menuData.adjustBed.right = menuData.adjustBed.right2);
-    if (menuData.adjustBed.front != menuData.adjustBed.front2)
-        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, menuData.adjustBed.front = menuData.adjustBed.front2);
-    if (menuData.adjustBed.rear  != menuData.adjustBed.rear2)
-        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR,  menuData.adjustBed.rear  = menuData.adjustBed.rear2);
-
-    START_MENU();
-    MENU_ITEM(back, MSG_SETTINGS, lcd_calibration_menu);
-    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_LEFT,  &menuData.adjustBed.left2,  -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
-    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_RIGHT, &menuData.adjustBed.right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
-    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_FRONT, &menuData.adjustBed.front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
-    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_REAR,  &menuData.adjustBed.rear2,  -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
-    MENU_ITEM(function, MSG_BED_CORRECTION_RESET, lcd_adjust_bed_reset);
-    END_MENU();
-}
-
-void pid_extruder() {
-
-	lcd_implementation_clear();
-	lcd.setCursor(1, 0);
-	lcd_printPGM(MSG_SET_TEMPERATURE);
-	pid_temp += int(encoderPosition);
-	if (pid_temp > HEATER_0_MAXTEMP) pid_temp = HEATER_0_MAXTEMP;
-	if (pid_temp < HEATER_0_MINTEMP) pid_temp = HEATER_0_MINTEMP;
-	encoderPosition = 0;
-	lcd.setCursor(1, 2);
-	lcd.print(ftostr3(pid_temp));
-	if (lcd_clicked()) {
-		lcd_commands_type = LCD_COMMAND_PID_EXTRUDER;
-		lcd_return_to_status();
-		lcd_update(2);
-	}
-
-}
-
-void lcd_adjust_z() {
-  int enc_dif = 0;
-  int cursor_pos = 1;
-  int fsm = 0;
-
-
-
-
-  lcd_implementation_clear();
-  lcd.setCursor(0, 0);
-  lcd_printPGM(MSG_ADJUSTZ);
-  lcd.setCursor(1, 1);
-  lcd_printPGM(MSG_YES);
-
-  lcd.setCursor(1, 2);
-
-  lcd_printPGM(MSG_NO);
-
-  lcd.setCursor(0, 1);
-
-  lcd.print(">");
-
-
-  enc_dif = encoderDiff;
-
-  while (fsm == 0) {
-
-    manage_heater();
-    manage_inactivity(true);
-
-    if ( abs((enc_dif - encoderDiff)) > 4 ) {
-
-      if ( (abs(enc_dif - encoderDiff)) > 1 ) {
-        if (enc_dif > encoderDiff ) {
-          cursor_pos --;
-        }
-
-        if (enc_dif < encoderDiff  ) {
-          cursor_pos ++;
-        }
-
-        if (cursor_pos > 2) {
-          cursor_pos = 2;
-        }
-
-        if (cursor_pos < 1) {
-          cursor_pos = 1;
-        }
-        lcd.setCursor(0, 1);
-        lcd.print(" ");
-        lcd.setCursor(0, 2);
-        lcd.print(" ");
-        lcd.setCursor(0, cursor_pos);
-        lcd.print(">");
-        enc_dif = encoderDiff;
-        delay(100);
-      }
-
-    }
-
-
-    if (lcd_clicked()) {
-      fsm = cursor_pos;
-      if (fsm == 1) {
-        int babystepLoadZ = 0;
-        EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
-        CRITICAL_SECTION_START
-        babystepsTodo[Z_AXIS] = babystepLoadZ;
-        CRITICAL_SECTION_END
-      } else {
-        int zero = 0;
-        EEPROM_save_B(EEPROM_BABYSTEP_X, &zero);
-        EEPROM_save_B(EEPROM_BABYSTEP_Y, &zero);
-        EEPROM_save_B(EEPROM_BABYSTEP_Z, &zero);
-      }
-      delay(500);
-    }
-  };
-
-  lcd_implementation_clear();
-  lcd_return_to_status();
-
-}
-
-void lcd_wait_for_cool_down() {
-	lcd_set_custom_characters_degree();
-	while ((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) {
-		lcd_display_message_fullscreen_P(MSG_WAITING_TEMP);
-
-		lcd.setCursor(0, 4);
-		lcd.print(LCD_STR_THERMOMETER[0]);
-		lcd.print(ftostr3(degHotend(0)));
-		lcd.print("/0");		
-		lcd.print(LCD_STR_DEGREE);
-
-		lcd.setCursor(9, 4);
-		lcd.print(LCD_STR_BEDTEMP[0]);
-		lcd.print(ftostr3(degBed()));
-		lcd.print("/0");		
-		lcd.print(LCD_STR_DEGREE);
-		lcd_set_custom_characters();
-		delay_keep_alive(1000);
-	}
-	lcd_set_custom_characters_arrows();
-}
-
-// Lets the user move the Z carriage up to the end stoppers.
-// When done, it sets the current Z to Z_MAX_POS and returns true.
-// Otherwise the Z calibration is not changed and false is returned.
-bool lcd_calibrate_z_end_stop_manual(bool only_z)
-{
-    bool clean_nozzle_asked = false;
-
-    // Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up.
-    current_position[Z_AXIS] = 0;
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
-    // Until confirmed by the confirmation dialog.
-    for (;;) {
-        unsigned long previous_millis_cmd = millis();
-        const char   *msg                 = only_z ? MSG_MOVE_CARRIAGE_TO_THE_TOP_Z : MSG_MOVE_CARRIAGE_TO_THE_TOP;
-        const char   *msg_next            = lcd_display_message_fullscreen_P(msg);
-        const bool    multi_screen        = msg_next != NULL;
-        unsigned long previous_millis_msg = millis();
-        // Until the user finishes the z up movement.
-        encoderDiff = 0;
-        encoderPosition = 0;
-        for (;;) {
-//          if (millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
-//             goto canceled;
-            manage_heater();
-            manage_inactivity(true);
-            if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) {
-                delay(50);
-                previous_millis_cmd = millis();
-                encoderPosition += abs(encoderDiff / ENCODER_PULSES_PER_STEP);
-                encoderDiff = 0;
-                if (! planner_queue_full()) {
-                    // Only move up, whatever direction the user rotates the encoder.
-                    current_position[Z_AXIS] += fabs(encoderPosition);
-                    encoderPosition = 0;
-                    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder);
-                }
-            }
-            if (lcd_clicked()) {
-                // Abort a move if in progress.
-                planner_abort_hard();
-                while (lcd_clicked()) ;
-                delay(10);
-                while (lcd_clicked()) ;
-                break;
-            }
-            if (multi_screen && millis() - previous_millis_msg > 5000) {
-                if (msg_next == NULL)
-                    msg_next = msg;
-                msg_next = lcd_display_message_fullscreen_P(msg_next);
-                previous_millis_msg = millis();
-            }
-        }
-
-        if (! clean_nozzle_asked) {
-            lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
-            clean_nozzle_asked = true;
-        }
-		
-
-        // Let the user confirm, that the Z carriage is at the top end stoppers.
-        int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CONFIRM_CARRIAGE_AT_THE_TOP, false);
-        if (result == -1)
-            goto canceled;
-        else if (result == 1)
-            goto calibrated;
-        // otherwise perform another round of the Z up dialog.
-    }
-
-calibrated:
-    // Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed
-    // during the search for the induction points.
-    current_position[Z_AXIS] = Z_MAX_POS-3.f;
-    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-    
-    
-    if(only_z){
-        lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
-        lcd_implementation_print_at(0, 3, 1);
-        lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
-    }else{
-		lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
-        lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
-        lcd_implementation_print_at(0, 2, 1);
-        lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
-    }
-    
-    
-    return true;
-
-canceled:
-    return false;
-}
-
-static inline bool pgm_is_whitespace(const char *c_addr)
-{
-    const char c = pgm_read_byte(c_addr);
-    return c == ' ' || c == '\t' || c == '\r' || c == '\n';
-}
-
-static inline bool pgm_is_interpunction(const char *c_addr)
-{
-    const char c = pgm_read_byte(c_addr);
-    return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/';
-}
-
-const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
-{
-    // Disable update of the screen by the usual lcd_update() routine. 
-    lcd_update_enable(false);
-    lcd_implementation_clear();
-    lcd.setCursor(0, 0);
-    const char *msgend = msg;
-    uint8_t row = 0;
-    bool multi_screen = false;
-    for (; row < 4; ++ row) {
-        while (pgm_is_whitespace(msg))
-            ++ msg;
-        if (pgm_read_byte(msg) == 0)
-            // End of the message.
-            break;
-        lcd.setCursor(0, row);
-        uint8_t linelen = min(strlen_P(msg), 20);
-        const char *msgend2 = msg + linelen;
-        msgend = msgend2;
-        if (row == 3 && linelen == 20) {
-            // Last line of the display, full line shall be displayed.
-            // Find out, whether this message will be split into multiple screens.
-            while (pgm_is_whitespace(msgend))
-                ++ msgend;
-            multi_screen = pgm_read_byte(msgend) != 0;
-            if (multi_screen)
-                msgend = (msgend2 -= 2);
-        }
-        if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) {
-            // Splitting a word. Find the start of the current word.
-            while (msgend > msg && ! pgm_is_whitespace(msgend - 1))
-                 -- msgend;
-            if (msgend == msg)
-                // Found a single long word, which cannot be split. Just cut it.
-                msgend = msgend2;
-        }
-        for (; msg < msgend; ++ msg) {
-            char c = char(pgm_read_byte(msg));
-            if (c == '~')
-                c = ' ';
-            lcd.print(c);
-        }
-    }
-
-    if (multi_screen) {
-        // Display the "next screen" indicator character.
-        // lcd_set_custom_characters_arrows();
-        lcd_set_custom_characters_nextpage();
-        lcd.setCursor(19, 3);
-        // Display the down arrow.
-        lcd.print(char(1));
-    }
-
-    nlines = row;
-    return multi_screen ? msgend : NULL;
-}
-
-void lcd_show_fullscreen_message_and_wait_P(const char *msg)
-{
-    const char *msg_next = lcd_display_message_fullscreen_P(msg);
-    bool multi_screen = msg_next != NULL;
-
-    // Until confirmed by a button click.
-    for (;;) {
-        // Wait for 5 seconds before displaying the next text.
-        for (uint8_t i = 0; i < 100; ++ i) {
-            delay_keep_alive(50);
-            if (lcd_clicked()) {
-                while (lcd_clicked()) ;
-                delay(10);
-                while (lcd_clicked()) ;
-                return;
-            }
-        }
-        if (multi_screen) {
-            if (msg_next == NULL)
-                msg_next = msg;
-            msg_next = lcd_display_message_fullscreen_P(msg_next);
-        }
-    }
-}
-
-void lcd_wait_for_click()
-{
-    for (;;) {
-        manage_heater();
-        manage_inactivity(true);
-        if (lcd_clicked()) {
-            while (lcd_clicked()) ;
-            delay(10);
-            while (lcd_clicked()) ;
-            return;
-        }
-    }
-}
-
-int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes)
-{
-
-	lcd_display_message_fullscreen_P(msg);
-	
-	if (default_yes) {
-		lcd.setCursor(0, 2);
-		lcd_printPGM(PSTR(">"));
-		lcd_printPGM(MSG_YES);
-		lcd.setCursor(1, 3);
-		lcd_printPGM(MSG_NO);
-	}
-	else {
-		lcd.setCursor(1, 2);
-		lcd_printPGM(MSG_YES);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(PSTR(">"));
-		lcd_printPGM(MSG_NO);
-	}
-	bool yes = default_yes ? true : false;
-
-	// Wait for user confirmation or a timeout.
-	unsigned long previous_millis_cmd = millis();
-	int8_t        enc_dif = encoderDiff;
-	for (;;) {
-		if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
-			return -1;
-		manage_heater();
-		manage_inactivity(true);
-		if (abs(enc_dif - encoderDiff) > 4) {
-			lcd.setCursor(0, 2);
-				if (enc_dif < encoderDiff && yes) {
-					lcd_printPGM((PSTR(" ")));
-					lcd.setCursor(0, 3);
-					lcd_printPGM((PSTR(">")));
-					yes = false;
-				}
-				else if (enc_dif > encoderDiff && !yes) {
-					lcd_printPGM((PSTR(">")));
-					lcd.setCursor(0, 3);
-					lcd_printPGM((PSTR(" ")));
-					yes = true;
-				}
-				enc_dif = encoderDiff;
-		}
-		if (lcd_clicked()) {
-			while (lcd_clicked());
-			delay(10);
-			while (lcd_clicked());
-			return yes;
-		}
-	}
-}
-
-void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask)
-{
-    const char *msg = NULL;
-    if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) {
-        lcd_show_fullscreen_message_and_wait_P(MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND);
-    } else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) {
-        if (point_too_far_mask == 0)
-            msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
-        else if (point_too_far_mask == 2 || point_too_far_mask == 7)
-            // Only the center point or all the three front points.
-            msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR;
-        else if (point_too_far_mask & 1 == 0)
-            // The right and maybe the center point out of reach.
-            msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR;
-        else
-            // The left and maybe the center point out of reach.
-            msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR;
-        lcd_show_fullscreen_message_and_wait_P(msg);
-    } else {
-        if (point_too_far_mask != 0) {
-            if (point_too_far_mask == 2 || point_too_far_mask == 7)
-                // Only the center point or all the three front points.
-                msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR;
-            else if (point_too_far_mask & 1 == 0)
-                // The right and maybe the center point out of reach.
-                msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR;
-            else
-                // The left and maybe the center point out of reach.
-                msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR;
-            lcd_show_fullscreen_message_and_wait_P(msg);
-        }
-        if (point_too_far_mask == 0 || result > 0) {
-            switch (result) {
-                default:
-                    // should not happen
-                    msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
-                    break;
-                case BED_SKEW_OFFSET_DETECTION_PERFECT:
-                    msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT;
-                    break;
-                case BED_SKEW_OFFSET_DETECTION_SKEW_MILD:
-                    msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
-                    break;
-                case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME:
-                    msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
-                    break;
-            }
-            lcd_show_fullscreen_message_and_wait_P(msg);
-        }
-    }
-}
-
-static void lcd_show_end_stops() {
-    lcd.setCursor(0, 0);
-    lcd_printPGM((PSTR("End stops diag")));
-    lcd.setCursor(0, 1);
-    lcd_printPGM((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("X1")) : (PSTR("X0")));
-    lcd.setCursor(0, 2);
-    lcd_printPGM((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Y1")) : (PSTR("Y0")));
-    lcd.setCursor(0, 3);
-    lcd_printPGM((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Z1")) : (PSTR("Z0")));
-}
-
-static void menu_show_end_stops() {
-    lcd_show_end_stops();
-    if (LCD_CLICKED) lcd_goto_menu(lcd_calibration_menu);
-}
-
-// Lets the user move the Z carriage up to the end stoppers.
-// When done, it sets the current Z to Z_MAX_POS and returns true.
-// Otherwise the Z calibration is not changed and false is returned.
-void lcd_diag_show_end_stops()
-{
-    int enc_dif = encoderDiff;
-    lcd_implementation_clear();
-    for (;;) {
-        manage_heater();
-        manage_inactivity(true);
-        lcd_show_end_stops();
-        if (lcd_clicked()) {
-            while (lcd_clicked()) ;
-            delay(10);
-            while (lcd_clicked()) ;
-            break;
-        }
-    }
-    lcd_implementation_clear();
-    lcd_return_to_status();
-}
-
-
-
-void prusa_statistics(int _message, uint8_t _fil_nr) {
-	
-
-	switch (_message)
-	{
-
-	case 0: // default message
-		if (IS_SD_PRINTING)
-		{
-			SERIAL_ECHO("{");
-			prusa_stat_printerstatus(4);
-			prusa_stat_farm_number();
-			prusa_stat_printinfo();
-			SERIAL_ECHOLN("}");
-			status_number = 4;
-		}
-		else
-		{
-			SERIAL_ECHO("{");
-			prusa_stat_printerstatus(1);
-			prusa_stat_farm_number();
-			SERIAL_ECHOLN("}");
-			status_number = 1;
-		}
-		break;
-
-	case 1:		// 1 heating
-		farm_status = 2;
-		SERIAL_ECHO("{");
-		prusa_stat_printerstatus(2);
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		status_number = 2;
-		farm_timer = 1;
-		break;
-
-	case 2:		// heating done
-		farm_status = 3;
-		SERIAL_ECHO("{");
-		prusa_stat_printerstatus(3);
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		status_number = 3;
-		farm_timer = 1;
-
-		if (IS_SD_PRINTING)
-		{
-			farm_status = 4;
-			SERIAL_ECHO("{");
-			prusa_stat_printerstatus(4);
-			prusa_stat_farm_number();
-			SERIAL_ECHOLN("}");
-			status_number = 4;
-		}
-		else
-		{
-			SERIAL_ECHO("{");
-			prusa_stat_printerstatus(3);
-			prusa_stat_farm_number();
-			SERIAL_ECHOLN("}");
-			status_number = 3;
-		}
-		farm_timer = 1;
-		break;
-
-	case 3:		// filament change
-
-		break;
-	case 4:		// print succesfull
-		SERIAL_ECHO("{[RES:1][FIL:");
-		MYSERIAL.print(int(_fil_nr));
-		SERIAL_ECHO("]");
-		prusa_stat_printerstatus(status_number);
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		farm_timer = 2;
-		break;
-	case 5:		// print not succesfull
-		SERIAL_ECHO("{[RES:0][FIL:");
-		MYSERIAL.print(int(_fil_nr));
-		SERIAL_ECHO("]");
-		prusa_stat_printerstatus(status_number);
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		farm_timer = 2;
-		break;
-	case 6:		// print done
-		SERIAL_ECHOLN("{[PRN:8]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		status_number = 8;
-		farm_timer = 2;
-		break;
-	case 7:		// print done - stopped
-		SERIAL_ECHOLN("{[PRN:9]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		status_number = 9;
-		farm_timer = 2;
-		break;
-	case 8:		// printer started
-		SERIAL_ECHO("{[PRN:0][PFN:");
-		status_number = 0;
-		SERIAL_ECHO(farm_no);
-		SERIAL_ECHOLN("]}");
-		farm_timer = 2;
-		break;
-	case 20:		// echo farm no
-		SERIAL_ECHOLN("{");
-		prusa_stat_printerstatus(status_number);
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		farm_timer = 5;
-		break;
-	case 21: // temperatures
-		SERIAL_ECHO("{");
-		prusa_stat_temperatures();
-		prusa_stat_farm_number();
-		prusa_stat_printerstatus(status_number);
-		SERIAL_ECHOLN("}");
-		break;
-    case 22: // waiting for filament change
-        SERIAL_ECHOLN("{[PRN:5]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		status_number = 5;
-        break;
-	
-	case 90: // Error - Thermal Runaway
-		SERIAL_ECHOLN("{[ERR:1]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		break;
-	case 91: // Error - Thermal Runaway Preheat
-		SERIAL_ECHOLN("{[ERR:2]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		break;
-	case 92: // Error - Min temp
-		SERIAL_ECHOLN("{[ERR:3]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		break;
-	case 93: // Error - Max temp
-		SERIAL_ECHOLN("{[ERR:4]");
-		prusa_stat_farm_number();
-		SERIAL_ECHOLN("}");
-		break;
-
-    case 99:		// heartbeat
-        SERIAL_ECHO("{[PRN:99]");
-        prusa_stat_temperatures();
-		SERIAL_ECHO("[PFN:");
-		SERIAL_ECHO(farm_no);
-		SERIAL_ECHO("]");
-        SERIAL_ECHOLN("}");
-            
-        break;
-	}
-
-}
-
-static void prusa_stat_printerstatus(int _status)
-{
-	SERIAL_ECHO("[PRN:");
-	SERIAL_ECHO(_status);
-	SERIAL_ECHO("]");
-}
-
-static void prusa_stat_farm_number() {
-	SERIAL_ECHO("[PFN:");
-	SERIAL_ECHO(farm_no);
-	SERIAL_ECHO("]");
-}
-
-static void prusa_stat_temperatures()
-{
-	SERIAL_ECHO("[ST0:");
-	SERIAL_ECHO(target_temperature[0]);
-	SERIAL_ECHO("][STB:");
-	SERIAL_ECHO(target_temperature_bed);
-	SERIAL_ECHO("][AT0:");
-	SERIAL_ECHO(current_temperature[0]);
-	SERIAL_ECHO("][ATB:");
-	SERIAL_ECHO(current_temperature_bed);
-	SERIAL_ECHO("]");
-}
-
-static void prusa_stat_printinfo()
-{
-	SERIAL_ECHO("[TFU:");
-	SERIAL_ECHO(total_filament_used);
-	SERIAL_ECHO("][PCD:");
-	SERIAL_ECHO(itostr3(card.percentDone()));
-	SERIAL_ECHO("][FEM:");
-	SERIAL_ECHO(itostr3(feedmultiply));
-	SERIAL_ECHO("][FNM:");
-	SERIAL_ECHO(longFilenameOLD);
-	SERIAL_ECHO("][TIM:");
-	if (starttime != 0)
-	{
-		SERIAL_ECHO(millis() / 1000 - starttime / 1000);
-	}
-	else
-	{
-		SERIAL_ECHO(0);
-	}
-	SERIAL_ECHO("][FWR:");
-	SERIAL_ECHO(FW_version);
-	SERIAL_ECHO("]");
-}
-
-
-void lcd_pick_babystep(){
-    int enc_dif = 0;
-    int cursor_pos = 1;
-    int fsm = 0;
-    
-    
-    
-    
-    lcd_implementation_clear();
-    
-    lcd.setCursor(0, 0);
-    
-    lcd_printPGM(MSG_PICK_Z);
-    
-    
-    lcd.setCursor(3, 2);
-    
-    lcd.print("1");
-    
-    lcd.setCursor(3, 3);
-    
-    lcd.print("2");
-    
-    lcd.setCursor(12, 2);
-    
-    lcd.print("3");
-    
-    lcd.setCursor(12, 3);
-    
-    lcd.print("4");
-    
-    lcd.setCursor(1, 2);
-    
-    lcd.print(">");
-    
-    
-    enc_dif = encoderDiff;
-    
-    while (fsm == 0) {
-        
-        manage_heater();
-        manage_inactivity(true);
-        
-        if ( abs((enc_dif - encoderDiff)) > 4 ) {
-            
-            if ( (abs(enc_dif - encoderDiff)) > 1 ) {
-                if (enc_dif > encoderDiff ) {
-                    cursor_pos --;
-                }
-                
-                if (enc_dif < encoderDiff  ) {
-                    cursor_pos ++;
-                }
-                
-                if (cursor_pos > 4) {
-                    cursor_pos = 4;
-                }
-                
-                if (cursor_pos < 1) {
-                    cursor_pos = 1;
-                }
-
-                
-                lcd.setCursor(1, 2);
-                lcd.print(" ");
-                lcd.setCursor(1, 3);
-                lcd.print(" ");
-                lcd.setCursor(10, 2);
-                lcd.print(" ");
-                lcd.setCursor(10, 3);
-                lcd.print(" ");
-                
-                if (cursor_pos < 3) {
-                    lcd.setCursor(1, cursor_pos+1);
-                    lcd.print(">");
-                }else{
-                    lcd.setCursor(10, cursor_pos-1);
-                    lcd.print(">");
-                }
-                
-   
-                enc_dif = encoderDiff;
-                delay(100);
-            }
-            
-        }
-        
-        if (lcd_clicked()) {
-            fsm = cursor_pos;
-            int babyStepZ;
-            EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babyStepZ);
-            EEPROM_save_B(EEPROM_BABYSTEP_Z,&babyStepZ);
-            calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
-            delay(500);
-            
-        }
-    };
-    
-    lcd_implementation_clear();
-    lcd_return_to_status();
-}
-
-void lcd_move_menu_axis()
-{
-	START_MENU();
-	MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
-	MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
-	MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
-	MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
-	MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
-	END_MENU();
-}
-
-static void lcd_move_menu_1mm()
-{
-  move_menu_scale = 1.0;
-  lcd_move_menu_axis();
-}
-
-
-void EEPROM_save(int pos, uint8_t* value, uint8_t size)
-{
-  do
-  {
-    eeprom_write_byte((unsigned char*)pos, *value);
-    pos++;
-    value++;
-  } while (--size);
-}
-
-void EEPROM_read(int pos, uint8_t* value, uint8_t size)
-{
-  do
-  {
-    *value = eeprom_read_byte((unsigned char*)pos);
-    pos++;
-    value++;
-  } while (--size);
-}
-
-#ifdef SDCARD_SORT_ALPHA
-static void lcd_sort_type_set() {
-	uint8_t sdSort;
-	
-	EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));
-	switch (sdSort) {
-	case SD_SORT_TIME: sdSort = SD_SORT_ALPHA; break;
-	case SD_SORT_ALPHA: sdSort = SD_SORT_NONE; break;
-	default: sdSort = SD_SORT_TIME;
-	}
-	eeprom_update_byte((unsigned char *)EEPROM_SD_SORT, sdSort);
-	lcd_goto_menu(lcd_sdcard_menu, 1);
-	//lcd_update(2);
-	//delay(1000);
-	
-	card.presort();
-}
-#endif //SDCARD_SORT_ALPHA
-
-static void lcd_silent_mode_set() {
-  SilentModeMenu = !SilentModeMenu;
-  eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
-  digipot_init();
-  lcd_goto_menu(lcd_settings_menu, 7);
-}
-static void lcd_set_lang(unsigned char lang) {
-  lang_selected = lang;
-  firstrun = 1;
-  eeprom_update_byte((unsigned char *)EEPROM_LANG, lang);
-  /*langsel=0;*/
-  if (langsel == LANGSEL_MODAL)
-    // From modal mode to an active mode? This forces the menu to return to the setup menu.
-    langsel = LANGSEL_ACTIVE;
-}
-
-#if !SDSORT_USES_RAM
-void lcd_set_arrows() {
-	void lcd_set_custom_characters_arrows();
-}
-
-void lcd_set_progress() {
-	lcd_set_custom_characters_progress();
-}
-#endif
-
-void lcd_force_language_selection() {
-  eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
-}
-
-static void lcd_language_menu()
-{
-  START_MENU();
-  if (langsel == LANGSEL_OFF) {
-    MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
-  } else if (langsel == LANGSEL_ACTIVE) {
-    MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
-  }
-  for (int i=0;i<LANG_NUM;i++){
-    MENU_ITEM(setlang, MSG_LANGUAGE_NAME_EXPLICIT(i), i);
-  }
-  END_MENU();
-}
-
-void lcd_mesh_bedleveling()
-{
-	mesh_bed_run_from_menu = true;
-	enquecommand_P(PSTR("G80"));
-	lcd_return_to_status();
-}
-
-void lcd_mesh_calibration()
-{
-  enquecommand_P(PSTR("M45"));
-  lcd_return_to_status();
-}
-
-void lcd_mesh_calibration_z()
-{
-  enquecommand_P(PSTR("M45 Z"));
-  lcd_return_to_status();
-}
-
-void lcd_pinda_calibration_menu()
-{
-	START_MENU();
-		MENU_ITEM(back, MSG_MENU_CALIBRATION, lcd_calibration_menu);
-		MENU_ITEM(submenu, MSG_CALIBRATE_PINDA, lcd_calibrate_pinda);
-		if (temp_cal_active == false) {
-			MENU_ITEM(function, MSG_TEMP_CALIBRATION_OFF, lcd_temp_calibration_set);
-		}
-		else {
-			MENU_ITEM(function, MSG_TEMP_CALIBRATION_ON, lcd_temp_calibration_set);
-		}
-	END_MENU();
-}
-
-void lcd_temp_calibration_set() {
-	temp_cal_active = !temp_cal_active;
-	eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, temp_cal_active);
-	digipot_init();
-	lcd_goto_menu(lcd_pinda_calibration_menu, 2);
-}
-
-void lcd_calibrate_pinda() {
-	enquecommand_P(PSTR("G76"));
-	lcd_return_to_status();
-}
-
-#ifndef SNMM
-
-/*void lcd_calibrate_extruder() {
-	
-	if (degHotend0() > EXTRUDE_MINTEMP)
-	{
-		current_position[E_AXIS] = 0;									//set initial position to zero
-		plan_set_e_position(current_position[E_AXIS]);
-		
-		//long steps_start = st_get_position(E_AXIS);
-
-		long steps_final;
-		float e_steps_per_unit;
-		float feedrate = (180 / axis_steps_per_unit[E_AXIS]) * 1;	//3	//initial automatic extrusion feedrate (depends on current value of axis_steps_per_unit to avoid too fast extrusion)
-		float e_shift_calibration = (axis_steps_per_unit[E_AXIS] > 180 ) ? ((180 / axis_steps_per_unit[E_AXIS]) * 70): 70; //length of initial automatic extrusion sequence
-		const char   *msg_e_cal_knob = MSG_E_CAL_KNOB;
-		const char   *msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_e_cal_knob);
-		const bool    multi_screen = msg_next_e_cal_knob != NULL;
-		unsigned long msg_millis;
-
-		lcd_show_fullscreen_message_and_wait_P(MSG_MARK_FIL);
-		lcd_implementation_clear();
-		
-		
-		lcd.setCursor(0, 1); lcd_printPGM(MSG_PLEASE_WAIT);
-		current_position[E_AXIS] += e_shift_calibration;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder);
-		st_synchronize();
-
-		lcd_display_message_fullscreen_P(msg_e_cal_knob);
-		msg_millis = millis();
-		while (!LCD_CLICKED) {
-			if (multi_screen && millis() - msg_millis > 5000) {
-				if (msg_next_e_cal_knob == NULL)
-					msg_next_e_cal_knob = msg_e_cal_knob;
-					msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_next_e_cal_knob);
-					msg_millis = millis();
-			}
-
-			//manage_inactivity(true);
-			manage_heater();
-			if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) {						//adjusting mark by knob rotation
-				delay_keep_alive(50);
-				//previous_millis_cmd = millis();
-				encoderPosition += (encoderDiff / ENCODER_PULSES_PER_STEP);
-				encoderDiff = 0;
-				if (!planner_queue_full()) {
-					current_position[E_AXIS] += float(abs((int)encoderPosition)) * 0.01; //0.05
-					encoderPosition = 0;
-					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder);
-					
-				}
-			}	
-		}
-		
-		steps_final = current_position[E_AXIS] * axis_steps_per_unit[E_AXIS];
-		//steps_final = st_get_position(E_AXIS);
-		lcdDrawUpdate = 1;
-		e_steps_per_unit = ((float)(steps_final)) / 100.0f;
-		if (e_steps_per_unit < MIN_E_STEPS_PER_UNIT) e_steps_per_unit = MIN_E_STEPS_PER_UNIT;				
-		if (e_steps_per_unit > MAX_E_STEPS_PER_UNIT) e_steps_per_unit = MAX_E_STEPS_PER_UNIT;
-
-		lcd_implementation_clear();
-
-		axis_steps_per_unit[E_AXIS] = e_steps_per_unit;
-		enquecommand_P(PSTR("M500")); //store settings to eeprom
-	
-		//lcd_implementation_drawedit(PSTR("Result"), ftostr31(axis_steps_per_unit[E_AXIS]));
-		//delay_keep_alive(2000);
-		delay_keep_alive(500);
-		lcd_show_fullscreen_message_and_wait_P(MSG_CLEAN_NOZZLE_E);
-		lcd_update_enable(true);
-		lcdDrawUpdate = 2;
-
-	}
-	else
-	{
-		lcd_implementation_clear();
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_ERROR);
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_PREHEAT_NOZZLE);
-		delay(2000);
-		lcd_implementation_clear();
-	}
-	lcd_return_to_status();
-}
-
-void lcd_extr_cal_reset() {
-	float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
-	axis_steps_per_unit[E_AXIS] = tmp1[3];
-	//extrudemultiply = 100;
-	enquecommand_P(PSTR("M500"));
-}*/
-
-#endif
-
-void lcd_toshiba_flash_air_compatibility_toggle()
-{
-   card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled());
-   eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled());
-}
-
-static void lcd_settings_menu()
-{
-  EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
-  START_MENU();
-
-  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-
-  MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
-  if (!homing_flag)
-  {
-	  MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu_1mm);
-  }
-  if (!isPrintPaused)
-  {
-	  MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
-  }
-
-  if ((SilentModeMenu == 0) || (farm_mode) ) {
-    MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set);
-  } else {
-    MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set);
-  }
-  
-	if (!isPrintPaused && !homing_flag)
-	{
-		MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
-	}
-	MENU_ITEM(submenu, MSG_LANGUAGE_SELECT, lcd_language_menu);
-
-  if (card.ToshibaFlashAir_isEnabled()) {
-    MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON, lcd_toshiba_flash_air_compatibility_toggle);
-  } else {
-    MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF, lcd_toshiba_flash_air_compatibility_toggle);
-  }
-    
-    if (farm_mode)
-    {
-        MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
-		MENU_ITEM(function, PSTR("Disable farm mode"), lcd_disable_farm_mode);
-    }
-
-	END_MENU();
-}
-
-static void lcd_calibration_menu()
-{
-  START_MENU();
-  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-  if (!isPrintPaused)
-  {
-    MENU_ITEM(function, MSG_SELFTEST, lcd_selftest);
+#include "temperature.h"
+#include "ultralcd.h"
+#ifdef ULTRA_LCD
+#include "Marlin.h"
+#include "language.h"
+#include "cardreader.h"
+#include "temperature.h"
+#include "stepper.h"
+#include "ConfigurationStore.h"
+#include <string.h>
+
+#include "util.h"
+#include "mesh_bed_leveling.h"
+//#include "Configuration.h"
+
+#include "SdFatUtil.h"
+
+#define _STRINGIFY(s) #s
+
+
+int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
+
+extern int lcd_change_fil_state;
+
+//Function pointer to menu functions.
+typedef void (*menuFunc_t)();
+
+static void lcd_sd_updir();
+
+struct EditMenuParentState
+{
+    //prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
+    menuFunc_t prevMenu;
+    uint16_t prevEncoderPosition;
+    //Variables used when editing values.
+    const char* editLabel;
+    void* editValue;
+    int32_t minEditValue, maxEditValue;
+    // menuFunc_t callbackFunc;
+};
+
+union MenuData
+{ 
+    struct BabyStep
+    {
+        // 29B total
+        int8_t status;
+        int babystepMem[3];
+        float babystepMemMM[3];
+    } babyStep;
+
+    struct SupportMenu
+    {
+        // 6B+16B=22B total
+        int8_t status;
+        bool is_flash_air;
+        uint8_t ip[4];
+        char ip_str[3*4+3+1];
+    } supportMenu;
+
+    struct AdjustBed
+    {
+        // 6+13+16=35B
+        // editMenuParentState is used when an edit menu is entered, so it knows
+        // the return menu and encoder state.
+        struct EditMenuParentState editMenuParentState;
+        int8_t status;
+        int8_t left;
+        int8_t right;
+        int8_t front;
+        int8_t rear;
+        int    left2;
+        int    right2;
+        int    front2;
+        int    rear2;
+    } adjustBed;
+
+    // editMenuParentState is used when an edit menu is entered, so it knows
+    // the return menu and encoder state.
+    struct EditMenuParentState editMenuParentState;
+};
+
+// State of the currently active menu.
+// C Union manages sharing of the static memory by all the menus.
+union MenuData menuData = { 0 };
+
+union Data
+{
+  byte b[2];
+  int value;
+};
+
+int8_t ReInitLCD = 0;
+
+int8_t SDscrool = 0;
+
+int8_t SilentModeMenu = 0;
+
+#ifdef SNMM
+uint8_t snmm_extruder = 0;
+#endif
+
+int lcd_commands_type=LCD_COMMAND_IDLE;
+int lcd_commands_step=0;
+bool isPrintPaused = false;
+uint8_t farm_mode = 0;
+int farm_no = 0;
+int farm_timer = 30;
+int farm_status = 0;
+unsigned long allert_timer = millis();
+bool printer_connected = true;
+
+unsigned long display_time; //just timer for showing pid finished message on lcd;
+float pid_temp = DEFAULT_PID_TEMP;
+
+bool long_press_active = false;
+long long_press_timer = millis();
+long button_blanking_time = millis();
+bool button_pressed = false;
+
+bool menuExiting = false;
+
+#ifdef FILAMENT_LCD_DISPLAY
+unsigned long message_millis = 0;
+#endif
+
+#ifdef ULTIPANEL
+static float manual_feedrate[] = MANUAL_FEEDRATE;
+#endif // ULTIPANEL
+
+/* !Configuration settings */
+
+uint8_t lcd_status_message_level;
+char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME!
+unsigned char firstrun = 1;
+
+#ifdef DOGLCD
+#include "dogm_lcd_implementation.h"
+#else
+#include "ultralcd_implementation_hitachi_HD44780.h"
+#endif
+
+/** forward declarations **/
+
+// void copy_and_scalePID_i();
+// void copy_and_scalePID_d();
+
+/* Different menus */
+static void lcd_status_screen();
+#ifdef ULTIPANEL
+extern bool powersupply;
+static void lcd_main_menu();
+static void lcd_tune_menu();
+static void lcd_prepare_menu();
+static void lcd_move_menu();
+static void lcd_settings_menu();
+static void lcd_calibration_menu();
+static void lcd_language_menu();
+static void lcd_control_temperature_menu();
+static void lcd_control_temperature_preheat_pla_settings_menu();
+static void lcd_control_temperature_preheat_abs_settings_menu();
+static void lcd_control_motion_menu();
+static void lcd_control_volumetric_menu();
+
+static void prusa_stat_printerstatus(int _status);
+static void prusa_stat_farm_number();
+static void prusa_stat_temperatures();
+static void prusa_stat_printinfo();
+static void lcd_farm_no();
+
+#ifdef DOGLCD
+static void lcd_set_contrast();
+#endif
+static void lcd_control_retract_menu();
+static void lcd_sdcard_menu();
+
+#ifdef DELTA_CALIBRATION_MENU
+static void lcd_delta_calibrate_menu();
+#endif // DELTA_CALIBRATION_MENU
+
+static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
+
+/* Different types of actions that can be used in menu items. */
+static void menu_action_back(menuFunc_t data);
+#define menu_action_back_RAM menu_action_back
+static void menu_action_submenu(menuFunc_t data);
+static void menu_action_gcode(const char* pgcode);
+static void menu_action_function(menuFunc_t data);
+static void menu_action_setlang(unsigned char lang);
+static void menu_action_sdfile(const char* filename, char* longFilename);
+static void menu_action_sddirectory(const char* filename, char* longFilename);
+static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
+static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
+static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
+static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
+static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue);
+static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue);
+static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue);
+static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue);
+static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue);
+
+/*
+static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
+static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc);
+*/
+
+#define ENCODER_FEEDRATE_DEADZONE 10
+
+#if !defined(LCD_I2C_VIKI)
+#ifndef ENCODER_STEPS_PER_MENU_ITEM
+#define ENCODER_STEPS_PER_MENU_ITEM 5
+#endif
+#ifndef ENCODER_PULSES_PER_STEP
+#define ENCODER_PULSES_PER_STEP 1
+#endif
+#else
+#ifndef ENCODER_STEPS_PER_MENU_ITEM
+#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
+#endif
+#ifndef ENCODER_PULSES_PER_STEP
+#define ENCODER_PULSES_PER_STEP 1
+#endif
+#endif
+
+
+/* Helper macros for menus */
+#define START_MENU() do { \
+    if (encoderPosition > 0x8000) encoderPosition = 0; \
+    if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\
+    uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \
+    bool wasClicked = LCD_CLICKED;\
+    for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \
+      _menuItemNr = 0;
+
+#define MENU_ITEM(type, label, args...) do { \
+    if (_menuItemNr == _lineNr) { \
+      if (lcdDrawUpdate) { \
+        const char* _label_pstr = (label); \
+        if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \
+          lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \
+        }else{\
+          lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \
+        }\
+      }\
+      if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\
+        lcd_quick_feedback(); \
+        menu_action_ ## type ( args ); \
+        return;\
+      }\
+    }\
+    _menuItemNr++;\
+  } while(0)
+
+#define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
+#define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, (label) , ## args )
+#define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, (label) , ## args )
+#define END_MENU() \
+  if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \
+  if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
+  } } while(0)
+
+/** Used variables to keep track of the menu */
+#ifndef REPRAPWORLD_KEYPAD
+volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
+#else
+volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values
+#endif
+#ifdef LCD_HAS_SLOW_BUTTONS
+volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons.
+#endif
+uint8_t currentMenuViewOffset;              /* scroll offset in the current menu */
+uint8_t lastEncoderBits;
+uint32_t encoderPosition;
+uint32_t savedEncoderPosition;
+#if (SDCARDDETECT > 0)
+bool lcd_oldcardstatus;
+#endif
+#endif //ULTIPANEL
+
+menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
+menuFunc_t savedMenu;
+uint32_t lcd_next_update_millis;
+uint8_t lcd_status_update_delay;
+bool ignore_click = false;
+bool wait_for_unclick;
+uint8_t lcdDrawUpdate = 2;                  /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */
+
+// place-holders for Ki and Kd edits
+#ifdef PIDTEMP
+// float raw_Ki, raw_Kd;
+#endif
+
+static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder = 0, const bool feedback = true, bool reset_menu_state = true) {
+  if (currentMenu != menu) {
+    currentMenu = menu;
+    encoderPosition = encoder;
+    if (reset_menu_state) {
+        // Resets the global shared C union.
+        // This ensures, that the menu entered will find out, that it shall initialize itself.
+        memset(&menuData, 0, sizeof(menuData));
+    }
+    if (feedback) lcd_quick_feedback();
+
+    // For LCD_PROGRESS_BAR re-initialize the custom characters
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+    lcd_set_custom_characters(menu == lcd_status_screen);
+#endif
+  }
+}
+
+/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
+
+// Language selection dialog not active.
+#define LANGSEL_OFF 0
+// Language selection dialog modal, entered from the info screen. This is the case on firmware boot up,
+// if the language index stored in the EEPROM is not valid.
+#define LANGSEL_MODAL 1
+// Language selection dialog entered from the Setup menu.
+#define LANGSEL_ACTIVE 2
+// Language selection dialog status
+unsigned char langsel = LANGSEL_OFF;
+
+void set_language_from_EEPROM() {
+  unsigned char eep = eeprom_read_byte((unsigned char*)EEPROM_LANG);
+  if (eep < LANG_NUM)
+  {
+    lang_selected = eep;
+    // Language is valid, no need to enter the language selection screen.
+    langsel = LANGSEL_OFF;
+  }
+  else
+  {
+    lang_selected = LANG_ID_DEFAULT;
+    // Invalid language, enter the language selection screen in a modal mode.
+    langsel = LANGSEL_MODAL;
+  }
+}
+
+static void lcd_status_screen()
+{
+	
+  if (firstrun == 1) 
+  {
+    firstrun = 0;
+    set_language_from_EEPROM();
+     
+      if(lcd_status_message_level == 0){
+          strncpy_P(lcd_status_message, WELCOME_MSG, LCD_WIDTH);
+      }
+	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
+	{
+		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
+		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
+	}
+	
+	if (langsel) {
+      //strncpy_P(lcd_status_message, PSTR(">>>>>>>>>>>> PRESS v"), LCD_WIDTH);
+      // Entering the language selection screen in a modal mode.
+      
+    }
+  }
+
+  
+  if (lcd_status_update_delay)
+    lcd_status_update_delay--;
+  else
+    lcdDrawUpdate = 1;
+  if (lcdDrawUpdate)
+  {
+    ReInitLCD++;
+
+
+    if (ReInitLCD == 30) {
+      lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+        currentMenu == lcd_status_screen
+#endif
+      );
+      ReInitLCD = 0 ;
+    } else {
+
+      if ((ReInitLCD % 10) == 0) {
+        //lcd_implementation_nodisplay();
+        lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it.
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+          currentMenu == lcd_status_screen
+#endif
+        );
+
+      }
+
+    }
+
+
+    //lcd_implementation_display();
+    lcd_implementation_status_screen();
+    //lcd_implementation_clear();
+
+	if (farm_mode)
+	{
+		farm_timer--;
+		if (farm_timer < 1)
+		{
+			farm_timer = 180;
+			prusa_statistics(0);
+		}
+		switch (farm_timer)
+		{
+		case 45:
+			prusa_statistics(21);
+			break;
+		case 10:
+			if (IS_SD_PRINTING)
+			{
+				prusa_statistics(20);
+			}
+			break;
+		}
+	} // end of farm_mode
+
+
+
+
+
+    lcd_status_update_delay = 10;   /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
+	if (lcd_commands_type != LCD_COMMAND_IDLE)
+	{
+		lcd_commands();
+	}
+	
+
+  } // end of lcdDrawUpdate
+#ifdef ULTIPANEL
+
+  bool current_click = LCD_CLICKED;
+
+  if (ignore_click) {
+    if (wait_for_unclick) {
+      if (!current_click) {
+        ignore_click = wait_for_unclick = false;
+      }
+      else {
+        current_click = false;
+      }
+    }
+    else if (current_click) {
+      lcd_quick_feedback();
+      wait_for_unclick = true;
+      current_click = false;
+    }
+  }
+
+
+  //if (--langsel ==0) {langsel=1;current_click=true;}
+
+  if (current_click && (lcd_commands_type != LCD_COMMAND_STOP_PRINT)) //click is aborted unless stop print finishes
+  {
+
+    lcd_goto_menu(lcd_main_menu);
+    lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+      currentMenu == lcd_status_screen
+#endif
+    );
+#ifdef FILAMENT_LCD_DISPLAY
+    message_millis = millis();  // get status message to show up for a while
+#endif
+  }
+
+#ifdef ULTIPANEL_FEEDMULTIPLY
+  // Dead zone at 100% feedrate
+  if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
+      (feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
+  {
+    encoderPosition = 0;
+    feedmultiply = 100;
+  }
+
+  if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE)
+  {
+    feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
+    encoderPosition = 0;
+  }
+  else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
+  {
+    feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
+    encoderPosition = 0;
+  }
+  else if (feedmultiply != 100)
+  {
+    feedmultiply += int(encoderPosition);
+    encoderPosition = 0;
+  }
+#endif //ULTIPANEL_FEEDMULTIPLY
+
+  if (feedmultiply < 10)
+    feedmultiply = 10;
+  else if (feedmultiply > 999)
+    feedmultiply = 999;
+#endif //ULTIPANEL
+
+  if (farm_mode && !printer_connected) {
+	  lcd.setCursor(0, 3);
+	  lcd_printPGM(MSG_PRINTER_DISCONNECTED);
+  }
+
+}
+
+#ifdef ULTIPANEL
+
+void lcd_commands()
+{	
+	char cmd1[25];
+	if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE)
+	{
+		if(lcd_commands_step == 0) {
+			card.pauseSDPrint();
+			lcd_setstatuspgm(MSG_FINISHING_MOVEMENTS);
+			lcdDrawUpdate = 3;
+			lcd_commands_step = 1;
+		}
+		if (lcd_commands_step == 1 && !blocks_queued()) {
+			lcd_setstatuspgm(MSG_PRINT_PAUSED);
+			isPrintPaused = true;
+			long_pause();
+			lcd_commands_type = 0;
+			lcd_commands_step = 0;
+		}
+
+	}
+
+	if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE_RESUME) {
+		char cmd1[30];
+		if (lcd_commands_step == 0) {
+
+			lcdDrawUpdate = 3;
+			lcd_commands_step = 4;
+		}
+		if (lcd_commands_step == 1 && !blocks_queued()) {	//recover feedmultiply
+			
+			sprintf_P(cmd1, PSTR("M220 S%d"), saved_feedmultiply);
+			enquecommand(cmd1);
+			isPrintPaused = false;
+			pause_time += (millis() - start_pause_print); //accumulate time when print is paused for correct statistics calculation
+			card.startFileprint();
+			lcd_commands_step = 0;
+			lcd_commands_type = 0;
+		}
+		if (lcd_commands_step == 2 && !blocks_queued()) {	//turn on fan, move Z and unretract
+			
+			sprintf_P(cmd1, PSTR("M106 S%d"), fanSpeedBckp);
+			enquecommand(cmd1);
+			strcpy(cmd1, "G1 Z");
+			strcat(cmd1, ftostr32(pause_lastpos[Z_AXIS]));
+			enquecommand(cmd1);
+			if (axis_relative_modes[3] == true) enquecommand_P(PSTR("M83")); // set extruder to relative mode.
+			else enquecommand_P(PSTR("M82")); // set extruder to absolute mode
+			enquecommand_P(PSTR("G1 E"  STRINGIFY(DEFAULT_RETRACTION))); //unretract
+			enquecommand_P(PSTR("G90")); //absolute positioning
+			lcd_commands_step = 1;
+		}
+		if (lcd_commands_step == 3 && !blocks_queued()) {	//wait for nozzle to reach target temp
+			
+			strcpy(cmd1, "M109 S");
+			strcat(cmd1, ftostr3(HotendTempBckp));
+			enquecommand(cmd1);			
+			lcd_commands_step = 2;
+		}
+		if (lcd_commands_step == 4 && !blocks_queued()) {	//set temperature back and move xy
+			
+			strcpy(cmd1, "M104 S");
+			strcat(cmd1, ftostr3(HotendTempBckp));
+			enquecommand(cmd1);
+			
+			strcpy(cmd1, "G1 X");
+			strcat(cmd1, ftostr32(pause_lastpos[X_AXIS]));
+			strcat(cmd1, " Y");
+			strcat(cmd1, ftostr32(pause_lastpos[Y_AXIS]));
+			enquecommand(cmd1);
+			
+			lcd_setstatuspgm(MSG_RESUMING_PRINT);
+			lcd_commands_step = 3;
+		}
+	}
+
+	if (lcd_commands_type == LCD_COMMAND_STOP_PRINT)   /// stop print
+	{
+		uint8_t stopped_extruder;
+
+		if (lcd_commands_step == 0) 
+		{ 
+			lcd_commands_step = 6; 
+			custom_message = true;	
+		}
+
+		if (lcd_commands_step == 1 && !blocks_queued())
+		{
+			lcd_commands_step = 0;
+			lcd_commands_type = 0;
+			lcd_setstatuspgm(WELCOME_MSG);
+			custom_message_type = 0;
+			custom_message = false;
+			isPrintPaused = false;
+		}
+		if (lcd_commands_step == 2 && !blocks_queued())
+		{
+			setTargetBed(0);
+			enquecommand_P(PSTR("M104 S0")); //set hotend temp to 0
+
+			manage_heater();
+			lcd_setstatuspgm(WELCOME_MSG);
+			cancel_heatup = false;
+			lcd_commands_step = 1;
+		}
+		if (lcd_commands_step == 3 && !blocks_queued())
+		{
+      // M84: Disable steppers.
+			enquecommand_P(PSTR("M84"));
+			autotempShutdown();
+			lcd_commands_step = 2;
+		}
+		if (lcd_commands_step == 4 && !blocks_queued())
+		{
+			lcd_setstatuspgm(MSG_PLEASE_WAIT);
+      // G90: Absolute positioning.
+			enquecommand_P(PSTR("G90"));
+      // M83: Set extruder to relative mode.
+			enquecommand_P(PSTR("M83"));
+			#ifdef X_CANCEL_POS 
+			enquecommand_P(PSTR("G1 X"  STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
+			#else
+			enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000"));
+			#endif
+			lcd_ignore_click(false);
+			#ifdef SNMM
+			lcd_commands_step = 8;
+			#else
+			lcd_commands_step = 3;
+			#endif
+		}
+		if (lcd_commands_step == 5 && !blocks_queued())
+		{
+			lcd_setstatuspgm(MSG_PRINT_ABORTED);
+      // G91: Set to relative positioning.
+			enquecommand_P(PSTR("G91"));
+      // Lift up.
+			enquecommand_P(PSTR("G1 Z15 F1500"));
+			if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) lcd_commands_step = 4;
+			else lcd_commands_step = 3;
+		}
+		if (lcd_commands_step == 6 && !blocks_queued())
+		{
+			lcd_setstatuspgm(MSG_PRINT_ABORTED);
+			cancel_heatup = true;
+			setTargetBed(0);
+			#ifndef SNMM
+			setTargetHotend(0, 0);	//heating when changing filament for multicolor
+			setTargetHotend(0, 1);
+			setTargetHotend(0, 2);
+			#endif
+			manage_heater();
+			custom_message = true;
+			custom_message_type = 2;
+			lcd_commands_step = 5;
+		}
+		if (lcd_commands_step == 7 && !blocks_queued()) {
+			switch(snmm_stop_print_menu()) {
+				case 0: enquecommand_P(PSTR("M702")); break;//all 
+				case 1: enquecommand_P(PSTR("M702 U")); break; //used
+				case 2: enquecommand_P(PSTR("M702 C")); break; //current
+				default: enquecommand_P(PSTR("M702")); break;
+			}
+			lcd_commands_step = 3;
+		}
+		if (lcd_commands_step == 8 && !blocks_queued()) { //step 8 is here for delay (going to next step after execution of all gcodes from step 4)
+			lcd_commands_step = 7; 
+		}
+	}
+
+	if (lcd_commands_type == 3)
+	{
+		lcd_commands_type = 0;
+	}
+
+	if (lcd_commands_type == LCD_COMMAND_FARM_MODE_CONFIRM)   /// farm mode confirm
+	{
+
+		if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; }
+
+		if (lcd_commands_step == 1 && !blocks_queued())
+		{
+			lcd_confirm_print();
+			lcd_commands_step = 0;
+			lcd_commands_type = 0;
+		}
+		if (lcd_commands_step == 2 && !blocks_queued())
+		{
+			lcd_commands_step = 1;
+		}
+		if (lcd_commands_step == 3 && !blocks_queued())
+		{
+			lcd_commands_step = 2;
+		}
+		if (lcd_commands_step == 4 && !blocks_queued())
+		{
+			enquecommand_P(PSTR("G90"));
+			enquecommand_P(PSTR("G1 X"  STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000"));
+			lcd_commands_step = 3;
+		}
+		if (lcd_commands_step == 5 && !blocks_queued())
+		{
+			lcd_commands_step = 4;
+		}
+		if (lcd_commands_step == 6 && !blocks_queued())
+		{
+			enquecommand_P(PSTR("G91"));
+			enquecommand_P(PSTR("G1 Z15 F1500"));
+			st_synchronize();
+			#ifdef SNMM
+			lcd_commands_step = 7;
+			#else
+			lcd_commands_step = 5;
+			#endif
+		}
+
+	}
+	if (lcd_commands_type == LCD_COMMAND_PID_EXTRUDER) {
+		char cmd1[30];
+		
+		if (lcd_commands_step == 0) {
+			custom_message_type = 3;
+			custom_message_state = 1;
+			custom_message = true;
+			lcdDrawUpdate = 3;
+			lcd_commands_step = 3;
+		}
+		if (lcd_commands_step == 3 && !blocks_queued()) { //PID calibration
+			strcpy(cmd1, "M303 E0 S");
+			strcat(cmd1, ftostr3(pid_temp));
+			enquecommand(cmd1);
+			lcd_setstatuspgm(MSG_PID_RUNNING);
+			lcd_commands_step = 2;
+		}
+		if (lcd_commands_step == 2 && pid_tuning_finished) { //saving to eeprom
+			pid_tuning_finished = false;
+			custom_message_state = 0;
+			lcd_setstatuspgm(MSG_PID_FINISHED);
+			strcpy(cmd1, "M301 P");
+			strcat(cmd1, ftostr32(_Kp));
+			strcat(cmd1, " I");
+			strcat(cmd1, ftostr32(_Ki));
+			strcat(cmd1, " D");
+			strcat(cmd1, ftostr32(_Kd));
+			enquecommand(cmd1);
+			enquecommand_P(PSTR("M500"));
+			display_time = millis();
+			lcd_commands_step = 1;
+		}
+		if ((lcd_commands_step == 1) && ((millis()- display_time)>2000)) { //calibration finished message
+			lcd_setstatuspgm(WELCOME_MSG);
+			custom_message_type = 0;
+			custom_message = false;
+			pid_temp = DEFAULT_PID_TEMP;
+			lcd_commands_step = 0;
+			lcd_commands_type = 0;
+		}
+	}
+
+
+}
+
+static void lcd_return_to_status() {
+  lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+    currentMenu == lcd_status_screen
+#endif
+  );
+
+    lcd_goto_menu(lcd_status_screen, 0, false);
+}
+
+
+static void lcd_sdcard_pause() {
+	lcd_return_to_status();
+	lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
+
+}
+
+static void lcd_sdcard_resume() {
+	lcd_return_to_status();
+	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
+}
+
+float move_menu_scale;
+static void lcd_move_menu_axis();
+
+
+
+/* Menu implementation */
+
+
+void lcd_preheat_pla()
+{
+  setTargetHotend0(PLA_PREHEAT_HOTEND_TEMP);
+  setTargetBed(PLA_PREHEAT_HPB_TEMP);
+  fanSpeed = 0;
+  lcd_return_to_status();
+  setWatch(); // heater sanity check timer
+}
+
+void lcd_preheat_abs()
+{
+  setTargetHotend0(ABS_PREHEAT_HOTEND_TEMP);
+  setTargetBed(ABS_PREHEAT_HPB_TEMP);
+  fanSpeed = 0;
+  lcd_return_to_status();
+  setWatch(); // heater sanity check timer
+}
+
+void lcd_preheat_pp()
+{
+  setTargetHotend0(PP_PREHEAT_HOTEND_TEMP);
+  setTargetBed(PP_PREHEAT_HPB_TEMP);
+  fanSpeed = 0;
+  lcd_return_to_status();
+  setWatch(); // heater sanity check timer
+}
+
+void lcd_preheat_pet()
+{
+  setTargetHotend0(PET_PREHEAT_HOTEND_TEMP);
+  setTargetBed(PET_PREHEAT_HPB_TEMP);
+  fanSpeed = 0;
+  lcd_return_to_status();
+  setWatch(); // heater sanity check timer
+}
+
+void lcd_preheat_hips()
+{
+  setTargetHotend0(HIPS_PREHEAT_HOTEND_TEMP);
+  setTargetBed(HIPS_PREHEAT_HPB_TEMP);
+  fanSpeed = 0;
+  lcd_return_to_status();
+  setWatch(); // heater sanity check timer
+}
+
+void lcd_preheat_flex()
+{
+  setTargetHotend0(FLEX_PREHEAT_HOTEND_TEMP);
+  setTargetBed(FLEX_PREHEAT_HPB_TEMP);
+  fanSpeed = 0;
+  lcd_return_to_status();
+  setWatch(); // heater sanity check timer
+}
+
+
+void lcd_cooldown()
+{
+  setTargetHotend0(0);
+  setTargetHotend1(0);
+  setTargetHotend2(0);
+  setTargetBed(0);
+  fanSpeed = 0;
+  lcd_return_to_status();
+}
+
+
+
+static void lcd_preheat_menu()
+{
+  START_MENU();
+
+  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+
+  MENU_ITEM(function, PSTR("ABS  -  " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs);
+  MENU_ITEM(function, PSTR("PLA  -  " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla);
+  MENU_ITEM(function, PSTR("PET  -  " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet);
+  MENU_ITEM(function, PSTR("HIPS -  " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips);
+  MENU_ITEM(function, PSTR("PP   -  " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp);
+  MENU_ITEM(function, PSTR("FLEX -  " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex);
+
+  MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
+
+  END_MENU();
+}
+
+static void lcd_support_menu()
+{
+    if (menuData.supportMenu.status == 0 || lcdDrawUpdate == 2) {
+        // Menu was entered or SD card status has changed (plugged in or removed).
+        // Initialize its status.
+        menuData.supportMenu.status = 1;
+        menuData.supportMenu.is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(menuData.supportMenu.ip);
+        if (menuData.supportMenu.is_flash_air)
+            sprintf_P(menuData.supportMenu.ip_str, PSTR("%d.%d.%d.%d"), 
+                menuData.supportMenu.ip[0], menuData.supportMenu.ip[1], 
+                menuData.supportMenu.ip[2], menuData.supportMenu.ip[3]);
+    } else if (menuData.supportMenu.is_flash_air && 
+        menuData.supportMenu.ip[0] == 0 && menuData.supportMenu.ip[1] == 0 && 
+        menuData.supportMenu.ip[2] == 0 && menuData.supportMenu.ip[3] == 0 &&
+        ++ menuData.supportMenu.status == 16) {
+        // Waiting for the FlashAir card to get an IP address from a router. Force an update.
+        menuData.supportMenu.status = 0;
+    }
+
+  START_MENU();
+
+  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+
+  // Ideally this block would be optimized out by the compiler.
+  const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P());
+  if (fw_string_len < 6) {
+      MENU_ITEM(back, PSTR(MSG_FW_VERSION " - " FW_version), lcd_main_menu);
+  } else {
+      MENU_ITEM(back, PSTR("FW - " FW_version), lcd_main_menu);
+  }
+      
+  MENU_ITEM(back, MSG_PRUSA3D, lcd_main_menu);
+  MENU_ITEM(back, MSG_PRUSA3D_FORUM, lcd_main_menu);
+  MENU_ITEM(back, MSG_PRUSA3D_HOWTO, lcd_main_menu);
+  MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
+  MENU_ITEM(back, PSTR(FILAMENT_SIZE), lcd_main_menu);
+  MENU_ITEM(back, PSTR(ELECTRONICS),lcd_main_menu);
+  MENU_ITEM(back, PSTR(NOZZLE_TYPE),lcd_main_menu);
+  MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
+  MENU_ITEM(back, MSG_DATE, lcd_main_menu);
+  MENU_ITEM(back, PSTR(__DATE__), lcd_main_menu);
+
+  // Show the FlashAir IP address, if the card is available.
+  if (menuData.supportMenu.is_flash_air) {
+      MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
+      MENU_ITEM(back, PSTR("FlashAir IP Addr:"), lcd_main_menu);
+      MENU_ITEM(back_RAM, menuData.supportMenu.ip_str, lcd_main_menu);
+  }
+  #ifndef MK1BP
+  MENU_ITEM(back, PSTR("------------"), lcd_main_menu);
+  if(!IS_SD_PRINTING) MENU_ITEM(function, MSG_XYZ_DETAILS, lcd_service_mode_show_result);
+  #endif //MK1BP
+  END_MENU();
+}
+
+void lcd_unLoadFilament()
+{
+
+  if (degHotend0() > EXTRUDE_MINTEMP) {
+	
+	  enquecommand_P(PSTR("M702")); //unload filament
+
+  } else {
+
+    lcd_implementation_clear();
+    lcd.setCursor(0, 0);
+    lcd_printPGM(MSG_ERROR);
+    lcd.setCursor(0, 2);
+    lcd_printPGM(MSG_PREHEAT_NOZZLE);
+
+    delay(2000);
+    lcd_implementation_clear();
+  }
+
+  lcd_return_to_status();
+}
+
+void lcd_change_filament() {
+
+  lcd_implementation_clear();
+
+  lcd.setCursor(0, 1);
+
+  lcd_printPGM(MSG_CHANGING_FILAMENT);
+
+
+}
+
+
+void lcd_wait_interact() {
+
+  lcd_implementation_clear();
+
+  lcd.setCursor(0, 1);
+#ifdef SNMM 
+  lcd_printPGM(MSG_PREPARE_FILAMENT);
+#else
+  lcd_printPGM(MSG_INSERT_FILAMENT);
+#endif
+  lcd.setCursor(0, 2);
+  lcd_printPGM(MSG_PRESS);
+
+}
+
+
+void lcd_change_success() {
+
+  lcd_implementation_clear();
+
+  lcd.setCursor(0, 2);
+
+  lcd_printPGM(MSG_CHANGE_SUCCESS);
+
+
+}
+
+
+void lcd_loading_color() {
+
+  lcd_implementation_clear();
+
+  lcd.setCursor(0, 0);
+
+  lcd_printPGM(MSG_LOADING_COLOR);
+  lcd.setCursor(0, 2);
+  lcd_printPGM(MSG_PLEASE_WAIT);
+
+
+  for (int i = 0; i < 20; i++) {
+
+    lcd.setCursor(i, 3);
+    lcd.print(".");
+    for (int j = 0; j < 10 ; j++) {
+      manage_heater();
+      manage_inactivity(true);
+      delay(85);
+
+    }
+
+
+  }
+
+}
+
+
+void lcd_loading_filament() {
+
+
+  lcd_implementation_clear();
+
+  lcd.setCursor(0, 0);
+
+  lcd_printPGM(MSG_LOADING_FILAMENT);
+  lcd.setCursor(0, 2);
+  lcd_printPGM(MSG_PLEASE_WAIT);
+
+  for (int i = 0; i < 20; i++) {
+
+    lcd.setCursor(i, 3);
+    lcd.print(".");
+    for (int j = 0; j < 10 ; j++) {
+      manage_heater();
+      manage_inactivity(true);
+#ifdef SNMM
+      delay(153);
+#else
+	  delay(137);
+#endif
+
+    }
+
+
+  }
+
+}
+
+
+
+
+void lcd_alright() {
+  int enc_dif = 0;
+  int cursor_pos = 1;
+
+
+
+
+  lcd_implementation_clear();
+
+  lcd.setCursor(0, 0);
+
+  lcd_printPGM(MSG_CORRECTLY);
+
+  lcd.setCursor(1, 1);
+
+  lcd_printPGM(MSG_YES);
+
+  lcd.setCursor(1, 2);
+
+  lcd_printPGM(MSG_NOT_LOADED);
+
+
+  lcd.setCursor(1, 3);
+  lcd_printPGM(MSG_NOT_COLOR);
+
+
+  lcd.setCursor(0, 1);
+
+  lcd.print(">");
+
+
+  enc_dif = encoderDiff;
+
+  while (lcd_change_fil_state == 0) {
+
+    manage_heater();
+    manage_inactivity(true);
+
+    if ( abs((enc_dif - encoderDiff)) > 4 ) {
+
+      if ( (abs(enc_dif - encoderDiff)) > 1 ) {
+        if (enc_dif > encoderDiff ) {
+          cursor_pos --;
+        }
+
+        if (enc_dif < encoderDiff  ) {
+          cursor_pos ++;
+        }
+
+        if (cursor_pos > 3) {
+          cursor_pos = 3;
+        }
+
+        if (cursor_pos < 1) {
+          cursor_pos = 1;
+        }
+        lcd.setCursor(0, 1);
+        lcd.print(" ");
+        lcd.setCursor(0, 2);
+        lcd.print(" ");
+        lcd.setCursor(0, 3);
+        lcd.print(" ");
+        lcd.setCursor(0, cursor_pos);
+        lcd.print(">");
+        enc_dif = encoderDiff;
+        delay(100);
+      }
+
+    }
+
+
+    if (lcd_clicked()) {
+
+      lcd_change_fil_state = cursor_pos;
+      delay(500);
+
+    }
+
+
+
+  };
+
+
+  lcd_implementation_clear();
+  lcd_return_to_status();
+
+}
+
+
+
+void lcd_LoadFilament()
+{
+  if (degHotend0() > EXTRUDE_MINTEMP) 
+  {
+	  custom_message = true;
+	  loading_flag = true;
+	  enquecommand_P(PSTR("M701")); //load filament
+	  SERIAL_ECHOLN("Loading filament");	    
+    }
+  else 
+  {
+
+    lcd_implementation_clear();
+    lcd.setCursor(0, 0);
+    lcd_printPGM(MSG_ERROR);
+    lcd.setCursor(0, 2);
+	lcd_printPGM(MSG_PREHEAT_NOZZLE);
+    delay(2000);
+    lcd_implementation_clear();
+  }
+  lcd_return_to_status();
+}
+
+
+void lcd_menu_statistics()
+{
+
+	if (IS_SD_PRINTING)
+	{
+		int _met = total_filament_used / 100000;
+		int _cm = (total_filament_used - (_met * 100000))/10;
+		
+		int _t = (millis() - starttime) / 1000;
+		int _h = _t / 3600;
+		int _m = (_t - (_h * 3600)) / 60;
+		int _s = _t - ((_h * 3600) + (_m * 60));
+		
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_STATS_FILAMENTUSED);
+
+		lcd.setCursor(6, 1);
+		lcd.print(itostr3(_met));
+		lcd.print("m ");
+		lcd.print(ftostr32ns(_cm));
+		lcd.print("cm");
+		
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_STATS_PRINTTIME);
+
+		lcd.setCursor(8, 3);
+		lcd.print(itostr2(_h));
+		lcd.print("h ");
+		lcd.print(itostr2(_m));
+		lcd.print("m ");
+		lcd.print(itostr2(_s));
+		lcd.print("s");
+
+		if (lcd_clicked())
+		{
+			lcd_quick_feedback();
+			lcd_return_to_status();
+		}
+	}
+	else
+	{
+		unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
+		unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes
+		
+		uint8_t _hours, _minutes;
+		uint32_t _days;
+
+		float _filament_m = (float)_filament;
+		int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0;
+		if (_filament_km > 0)  _filament_m = _filament - (_filament_km * 100000);
+
+		_days = _time / 1440;
+		_hours = (_time - (_days * 1440)) / 60;
+		_minutes = _time - ((_days * 1440) + (_hours * 60));
+
+		lcd_implementation_clear();
+
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_STATS_TOTALFILAMENT);
+		lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)), 1);
+		lcd.print(ftostr32ns(_filament_m));
+
+		if (_filament_km > 0)
+		{
+			lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 3, 1);
+			lcd.print("km");
+			lcd.setCursor(17 - strlen(ftostr32ns(_filament_m)) - 8, 1);
+			lcd.print(itostr4(_filament_km));
+		}
+
+
+		lcd.setCursor(18, 1);
+		lcd.print("m");
+
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_STATS_TOTALPRINTTIME);;
+
+		lcd.setCursor(18, 3);
+		lcd.print("m");
+		lcd.setCursor(14, 3);
+		lcd.print(itostr3(_minutes));
+
+		lcd.setCursor(14, 3);
+		lcd.print(":");
+
+		lcd.setCursor(12, 3);
+		lcd.print("h");
+		lcd.setCursor(9, 3);
+		lcd.print(itostr3(_hours));
+
+		lcd.setCursor(9, 3);
+		lcd.print(":");
+
+		lcd.setCursor(7, 3);
+		lcd.print("d");
+		lcd.setCursor(4, 3);
+		lcd.print(itostr3(_days));
+
+
+
+		while (!lcd_clicked())
+		{
+			manage_heater();
+			manage_inactivity(true);
+			delay(100);
+		}
+
+		lcd_quick_feedback();
+		lcd_return_to_status();
+	}
+}
+
+
+static void _lcd_move(const char *name, int axis, int min, int max) {
+	if (encoderPosition != 0) {
+    refresh_cmd_timeout();
+    if (! planner_queue_full()) {
+      current_position[axis] += float((int)encoderPosition) * move_menu_scale;
+      if (min_software_endstops && current_position[axis] < min) current_position[axis] = min;
+      if (max_software_endstops && current_position[axis] > max) current_position[axis] = max;
+      encoderPosition = 0;
+      world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder);
+      lcdDrawUpdate = 1;
+    }
+  }
+  if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis]));
+  if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis); {
+  }
+}
+
+
+static void lcd_move_e()
+{
+	if (degHotend0() > EXTRUDE_MINTEMP) {
+  if (encoderPosition != 0)
+  {
+    refresh_cmd_timeout();
+    if (! planner_queue_full()) {
+      current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale;
+      encoderPosition = 0;
+      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder);
+      lcdDrawUpdate = 1;
+    }
+  }
+  if (lcdDrawUpdate)
+  {
+    lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
+  }
+  if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
+}
+	else {
+		lcd_implementation_clear();
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_ERROR);
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_PREHEAT_NOZZLE);
+
+		delay(2000);
+		lcd_return_to_status();
+	}
+}
+
+void lcd_service_mode_show_result() {
+	float angleDiff;
+	lcd_set_custom_characters_degree();
+	count_xyz_details();
+	angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW));
+	
+	lcd_update_enable(false);
+	lcd_implementation_clear();
+	lcd_printPGM(MSG_Y_DISTANCE_FROM_MIN);
+	lcd_print_at_PGM(0, 1, MSG_LEFT);
+	lcd_print_at_PGM(0, 2, MSG_CENTER);
+	lcd_print_at_PGM(0, 3, MSG_RIGHT);
+	for (int i = 0; i < 3; i++) {
+		if(distance_from_min[i] < 200) {
+			lcd_print_at_PGM(11, i + 1, PSTR(""));
+			lcd.print(distance_from_min[i]);
+			lcd_print_at_PGM((distance_from_min[i] < 0) ? 17 : 16, i + 1, PSTR("mm"));
+		} else lcd_print_at_PGM(11, i + 1, PSTR("N/A"));
+	}
+	delay_keep_alive(500);
+	while (!lcd_clicked()) {
+		delay_keep_alive(100);
+	}
+	delay_keep_alive(500);
+	lcd_implementation_clear();
+	
+
+	lcd_printPGM(MSG_MEASURED_SKEW);
+	if (angleDiff < 100) {
+		lcd.setCursor(15, 0);
+		lcd.print(angleDiff * 180 / M_PI);
+		lcd.print(LCD_STR_DEGREE);
+	}else lcd_print_at_PGM(16, 0, PSTR("N/A"));
+	lcd_print_at_PGM(0, 1, PSTR("--------------------"));
+	lcd_print_at_PGM(0, 2, MSG_SLIGHT_SKEW);
+	lcd_print_at_PGM(15, 2, PSTR(""));
+	lcd.print(bed_skew_angle_mild * 180 / M_PI);
+	lcd.print(LCD_STR_DEGREE);
+	lcd_print_at_PGM(0, 3, MSG_SEVERE_SKEW);
+	lcd_print_at_PGM(15, 3, PSTR(""));
+	lcd.print(bed_skew_angle_extreme * 180 / M_PI);
+	lcd.print(LCD_STR_DEGREE);
+	delay_keep_alive(500);
+	while (!lcd_clicked()) {
+		delay_keep_alive(100);
+	}
+	delay_keep_alive(500);
+	lcd_set_custom_characters_arrows();
+	lcd_return_to_status();
+	lcd_update_enable(true);
+	lcd_update(2);
+}
+
+
+
+
+// Save a single axis babystep value.
+void EEPROM_save_B(int pos, int* value)
+{
+  union Data data;
+  data.value = *value;
+
+  eeprom_update_byte((unsigned char*)pos, data.b[0]);
+  eeprom_update_byte((unsigned char*)pos + 1, data.b[1]);
+}
+
+// Read a single axis babystep value.
+void EEPROM_read_B(int pos, int* value)
+{
+  union Data data;
+  data.b[0] = eeprom_read_byte((unsigned char*)pos);
+  data.b[1] = eeprom_read_byte((unsigned char*)pos + 1);
+  *value = data.value;
+}
+
+
+static void lcd_move_x() {
+  _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS);
+}
+static void lcd_move_y() {
+  _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS);
+}
+static void lcd_move_z() {
+  _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS);
+}
+
+
+
+static void _lcd_babystep(int axis, const char *msg) 
+{
+    if (menuData.babyStep.status == 0) {
+        // Menu was entered.
+        // Initialize its status.
+        menuData.babyStep.status = 1;
+		check_babystep();
+
+		EEPROM_read_B(EEPROM_BABYSTEP_X, &menuData.babyStep.babystepMem[0]);
+        EEPROM_read_B(EEPROM_BABYSTEP_Y, &menuData.babyStep.babystepMem[1]);
+        EEPROM_read_B(EEPROM_BABYSTEP_Z, &menuData.babyStep.babystepMem[2]);
+		
+        menuData.babyStep.babystepMemMM[0] = menuData.babyStep.babystepMem[0]/axis_steps_per_unit[X_AXIS];
+        menuData.babyStep.babystepMemMM[1] = menuData.babyStep.babystepMem[1]/axis_steps_per_unit[Y_AXIS];
+        menuData.babyStep.babystepMemMM[2] = menuData.babyStep.babystepMem[2]/axis_steps_per_unit[Z_AXIS];
+        lcdDrawUpdate = 1;
+		//SERIAL_ECHO("Z baby step: ");
+		//SERIAL_ECHO(menuData.babyStep.babystepMem[2]);
+        // Wait 90 seconds before closing the live adjust dialog.
+        lcd_timeoutToStatus = millis() + 90000;
+    }
+
+  if (encoderPosition != 0) 
+  {
+	if (homing_flag) encoderPosition = 0;
+
+    menuData.babyStep.babystepMem[axis] += (int)encoderPosition;
+	if (axis == 2) {
+		if (menuData.babyStep.babystepMem[axis] < Z_BABYSTEP_MIN) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm
+		else  if (menuData.babyStep.babystepMem[axis] > Z_BABYSTEP_MAX) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MAX; //0
+		else {
+			CRITICAL_SECTION_START
+				babystepsTodo[axis] += (int)encoderPosition;
+			CRITICAL_SECTION_END		
+		}
+	}
+    menuData.babyStep.babystepMemMM[axis] = menuData.babyStep.babystepMem[axis]/axis_steps_per_unit[axis]; 
+	  delay(50);
+	  encoderPosition = 0;
+    lcdDrawUpdate = 1;
+  }
+  if (lcdDrawUpdate)
+    lcd_implementation_drawedit_2(msg, ftostr13ns(menuData.babyStep.babystepMemMM[axis]));
+  if (LCD_CLICKED || menuExiting) {
+    // Only update the EEPROM when leaving the menu.
+    EEPROM_save_B(
+      (axis == 0) ? EEPROM_BABYSTEP_X : ((axis == 1) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z), 
+      &menuData.babyStep.babystepMem[axis]);
+  }
+  if (LCD_CLICKED) lcd_goto_menu(lcd_main_menu);
+}
+
+static void lcd_babystep_x() {
+  _lcd_babystep(X_AXIS, (MSG_BABYSTEPPING_X));
+}
+static void lcd_babystep_y() {
+  _lcd_babystep(Y_AXIS, (MSG_BABYSTEPPING_Y));
+}
+static void lcd_babystep_z() {
+	_lcd_babystep(Z_AXIS, (MSG_BABYSTEPPING_Z));
+}
+
+static void lcd_adjust_bed();
+
+static void lcd_adjust_bed_reset()
+{
+    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
+    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0);
+    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
+    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
+    eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0);
+    lcd_goto_menu(lcd_adjust_bed, 0, false);
+    // Because we did not leave the menu, the menuData did not reset.
+    // Force refresh of the bed leveling data.
+    menuData.adjustBed.status = 0;
+}
+
+void adjust_bed_reset() {
+	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
+	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
+	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
+	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
+	eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
+	menuData.adjustBed.left = menuData.adjustBed.left2 = 0;
+	menuData.adjustBed.right = menuData.adjustBed.right2 = 0;
+	menuData.adjustBed.front = menuData.adjustBed.front2 = 0;
+	menuData.adjustBed.rear = menuData.adjustBed.rear2 = 0;
+}
+#define BED_ADJUSTMENT_UM_MAX 50
+
+static void lcd_adjust_bed()
+{
+    if (menuData.adjustBed.status == 0) {
+        // Menu was entered.
+        // Initialize its status.
+        menuData.adjustBed.status = 1;
+        bool valid = false;
+        menuData.adjustBed.left  = menuData.adjustBed.left2  = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT);
+        menuData.adjustBed.right = menuData.adjustBed.right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT);
+        menuData.adjustBed.front = menuData.adjustBed.front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT);
+        menuData.adjustBed.rear  = menuData.adjustBed.rear2  = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR);
+        if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 && 
+            menuData.adjustBed.left  >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.left  <= BED_ADJUSTMENT_UM_MAX &&
+            menuData.adjustBed.right >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right <= BED_ADJUSTMENT_UM_MAX &&
+            menuData.adjustBed.front >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front <= BED_ADJUSTMENT_UM_MAX &&
+            menuData.adjustBed.rear  >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear  <= BED_ADJUSTMENT_UM_MAX)
+            valid = true;
+        if (! valid) {
+            // Reset the values: simulate an edit.
+            menuData.adjustBed.left2  = 0;
+            menuData.adjustBed.right2 = 0;
+            menuData.adjustBed.front2 = 0;
+            menuData.adjustBed.rear2  = 0;
+        }
+        lcdDrawUpdate = 1;
+        eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
+    }
+
+    if (menuData.adjustBed.left  != menuData.adjustBed.left2)
+        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT,  menuData.adjustBed.left  = menuData.adjustBed.left2);
+    if (menuData.adjustBed.right != menuData.adjustBed.right2)
+        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, menuData.adjustBed.right = menuData.adjustBed.right2);
+    if (menuData.adjustBed.front != menuData.adjustBed.front2)
+        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, menuData.adjustBed.front = menuData.adjustBed.front2);
+    if (menuData.adjustBed.rear  != menuData.adjustBed.rear2)
+        eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR,  menuData.adjustBed.rear  = menuData.adjustBed.rear2);
+
+    START_MENU();
+    MENU_ITEM(back, MSG_SETTINGS, lcd_calibration_menu);
+    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_LEFT,  &menuData.adjustBed.left2,  -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
+    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_RIGHT, &menuData.adjustBed.right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
+    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_FRONT, &menuData.adjustBed.front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
+    MENU_ITEM_EDIT(int3, MSG_BED_CORRECTION_REAR,  &menuData.adjustBed.rear2,  -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);
+    MENU_ITEM(function, MSG_BED_CORRECTION_RESET, lcd_adjust_bed_reset);
+    END_MENU();
+}
+
+void pid_extruder() {
+
+	lcd_implementation_clear();
+	lcd.setCursor(1, 0);
+	lcd_printPGM(MSG_SET_TEMPERATURE);
+	pid_temp += int(encoderPosition);
+	if (pid_temp > HEATER_0_MAXTEMP) pid_temp = HEATER_0_MAXTEMP;
+	if (pid_temp < HEATER_0_MINTEMP) pid_temp = HEATER_0_MINTEMP;
+	encoderPosition = 0;
+	lcd.setCursor(1, 2);
+	lcd.print(ftostr3(pid_temp));
+	if (lcd_clicked()) {
+		lcd_commands_type = LCD_COMMAND_PID_EXTRUDER;
+		lcd_return_to_status();
+		lcd_update(2);
+	}
+
+}
+
+void lcd_adjust_z() {
+  int enc_dif = 0;
+  int cursor_pos = 1;
+  int fsm = 0;
+
+
+
+
+  lcd_implementation_clear();
+  lcd.setCursor(0, 0);
+  lcd_printPGM(MSG_ADJUSTZ);
+  lcd.setCursor(1, 1);
+  lcd_printPGM(MSG_YES);
+
+  lcd.setCursor(1, 2);
+
+  lcd_printPGM(MSG_NO);
+
+  lcd.setCursor(0, 1);
+
+  lcd.print(">");
+
+
+  enc_dif = encoderDiff;
+
+  while (fsm == 0) {
+
+    manage_heater();
+    manage_inactivity(true);
+
+    if ( abs((enc_dif - encoderDiff)) > 4 ) {
+
+      if ( (abs(enc_dif - encoderDiff)) > 1 ) {
+        if (enc_dif > encoderDiff ) {
+          cursor_pos --;
+        }
+
+        if (enc_dif < encoderDiff  ) {
+          cursor_pos ++;
+        }
+
+        if (cursor_pos > 2) {
+          cursor_pos = 2;
+        }
+
+        if (cursor_pos < 1) {
+          cursor_pos = 1;
+        }
+        lcd.setCursor(0, 1);
+        lcd.print(" ");
+        lcd.setCursor(0, 2);
+        lcd.print(" ");
+        lcd.setCursor(0, cursor_pos);
+        lcd.print(">");
+        enc_dif = encoderDiff;
+        delay(100);
+      }
+
+    }
+
+
+    if (lcd_clicked()) {
+      fsm = cursor_pos;
+      if (fsm == 1) {
+        int babystepLoadZ = 0;
+        EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ);
+        CRITICAL_SECTION_START
+        babystepsTodo[Z_AXIS] = babystepLoadZ;
+        CRITICAL_SECTION_END
+      } else {
+        int zero = 0;
+        EEPROM_save_B(EEPROM_BABYSTEP_X, &zero);
+        EEPROM_save_B(EEPROM_BABYSTEP_Y, &zero);
+        EEPROM_save_B(EEPROM_BABYSTEP_Z, &zero);
+      }
+      delay(500);
+    }
+  };
+
+  lcd_implementation_clear();
+  lcd_return_to_status();
+
+}
+
+void lcd_wait_for_cool_down() {
+	lcd_set_custom_characters_degree();
+	while ((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) {
+		lcd_display_message_fullscreen_P(MSG_WAITING_TEMP);
+
+		lcd.setCursor(0, 4);
+		lcd.print(LCD_STR_THERMOMETER[0]);
+		lcd.print(ftostr3(degHotend(0)));
+		lcd.print("/0");		
+		lcd.print(LCD_STR_DEGREE);
+
+		lcd.setCursor(9, 4);
+		lcd.print(LCD_STR_BEDTEMP[0]);
+		lcd.print(ftostr3(degBed()));
+		lcd.print("/0");		
+		lcd.print(LCD_STR_DEGREE);
+		lcd_set_custom_characters();
+		delay_keep_alive(1000);
+	}
+	lcd_set_custom_characters_arrows();
+}
+
+// Lets the user move the Z carriage up to the end stoppers.
+// When done, it sets the current Z to Z_MAX_POS and returns true.
+// Otherwise the Z calibration is not changed and false is returned.
+bool lcd_calibrate_z_end_stop_manual(bool only_z)
+{
+    bool clean_nozzle_asked = false;
+
+    // Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up.
+    current_position[Z_AXIS] = 0;
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+
+    // Until confirmed by the confirmation dialog.
+    for (;;) {
+        unsigned long previous_millis_cmd = millis();
+        const char   *msg                 = only_z ? MSG_MOVE_CARRIAGE_TO_THE_TOP_Z : MSG_MOVE_CARRIAGE_TO_THE_TOP;
+        const char   *msg_next            = lcd_display_message_fullscreen_P(msg);
+        const bool    multi_screen        = msg_next != NULL;
+        unsigned long previous_millis_msg = millis();
+        // Until the user finishes the z up movement.
+        encoderDiff = 0;
+        encoderPosition = 0;
+        for (;;) {
+//          if (millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
+//             goto canceled;
+            manage_heater();
+            manage_inactivity(true);
+            if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) {
+                delay(50);
+                previous_millis_cmd = millis();
+                encoderPosition += abs(encoderDiff / ENCODER_PULSES_PER_STEP);
+                encoderDiff = 0;
+                if (! planner_queue_full()) {
+                    // Only move up, whatever direction the user rotates the encoder.
+                    current_position[Z_AXIS] += fabs(encoderPosition);
+                    encoderPosition = 0;
+                    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder);
+                }
+            }
+            if (lcd_clicked()) {
+                // Abort a move if in progress.
+                planner_abort_hard();
+                while (lcd_clicked()) ;
+                delay(10);
+                while (lcd_clicked()) ;
+                break;
+            }
+            if (multi_screen && millis() - previous_millis_msg > 5000) {
+                if (msg_next == NULL)
+                    msg_next = msg;
+                msg_next = lcd_display_message_fullscreen_P(msg_next);
+                previous_millis_msg = millis();
+            }
+        }
+
+        if (! clean_nozzle_asked) {
+            lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
+            clean_nozzle_asked = true;
+        }
+		
+
+        // Let the user confirm, that the Z carriage is at the top end stoppers.
+        int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CONFIRM_CARRIAGE_AT_THE_TOP, false);
+        if (result == -1)
+            goto canceled;
+        else if (result == 1)
+            goto calibrated;
+        // otherwise perform another round of the Z up dialog.
+    }
+
+calibrated:
+    // Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed
+    // during the search for the induction points.
+    current_position[Z_AXIS] = Z_MAX_POS-3.f;
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+    
+    
+    if(only_z){
+        lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
+        lcd_implementation_print_at(0, 3, 1);
+        lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
+    }else{
+		lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
+        lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
+        lcd_implementation_print_at(0, 2, 1);
+        lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
+    }
+    
+    
+    return true;
+
+canceled:
+    return false;
+}
+
+static inline bool pgm_is_whitespace(const char *c_addr)
+{
+    const char c = pgm_read_byte(c_addr);
+    return c == ' ' || c == '\t' || c == '\r' || c == '\n';
+}
+
+static inline bool pgm_is_interpunction(const char *c_addr)
+{
+    const char c = pgm_read_byte(c_addr);
+    return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/';
+}
+
+const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines)
+{
+    // Disable update of the screen by the usual lcd_update() routine. 
+    lcd_update_enable(false);
+    lcd_implementation_clear();
+    lcd.setCursor(0, 0);
+    const char *msgend = msg;
+    uint8_t row = 0;
+    bool multi_screen = false;
+    for (; row < 4; ++ row) {
+        while (pgm_is_whitespace(msg))
+            ++ msg;
+        if (pgm_read_byte(msg) == 0)
+            // End of the message.
+            break;
+        lcd.setCursor(0, row);
+        uint8_t linelen = min(strlen_P(msg), 20);
+        const char *msgend2 = msg + linelen;
+        msgend = msgend2;
+        if (row == 3 && linelen == 20) {
+            // Last line of the display, full line shall be displayed.
+            // Find out, whether this message will be split into multiple screens.
+            while (pgm_is_whitespace(msgend))
+                ++ msgend;
+            multi_screen = pgm_read_byte(msgend) != 0;
+            if (multi_screen)
+                msgend = (msgend2 -= 2);
+        }
+        if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) {
+            // Splitting a word. Find the start of the current word.
+            while (msgend > msg && ! pgm_is_whitespace(msgend - 1))
+                 -- msgend;
+            if (msgend == msg)
+                // Found a single long word, which cannot be split. Just cut it.
+                msgend = msgend2;
+        }
+        for (; msg < msgend; ++ msg) {
+            char c = char(pgm_read_byte(msg));
+            if (c == '~')
+                c = ' ';
+            lcd.print(c);
+        }
+    }
+
+    if (multi_screen) {
+        // Display the "next screen" indicator character.
+        // lcd_set_custom_characters_arrows();
+        lcd_set_custom_characters_nextpage();
+        lcd.setCursor(19, 3);
+        // Display the down arrow.
+        lcd.print(char(1));
+    }
+
+    nlines = row;
+    return multi_screen ? msgend : NULL;
+}
+
+void lcd_show_fullscreen_message_and_wait_P(const char *msg)
+{
+    const char *msg_next = lcd_display_message_fullscreen_P(msg);
+    bool multi_screen = msg_next != NULL;
+
+    // Until confirmed by a button click.
+    for (;;) {
+        // Wait for 5 seconds before displaying the next text.
+        for (uint8_t i = 0; i < 100; ++ i) {
+            delay_keep_alive(50);
+            if (lcd_clicked()) {
+                while (lcd_clicked()) ;
+                delay(10);
+                while (lcd_clicked()) ;
+                return;
+            }
+        }
+        if (multi_screen) {
+            if (msg_next == NULL)
+                msg_next = msg;
+            msg_next = lcd_display_message_fullscreen_P(msg_next);
+        }
+    }
+}
+
+void lcd_wait_for_click()
+{
+    for (;;) {
+        manage_heater();
+        manage_inactivity(true);
+        if (lcd_clicked()) {
+            while (lcd_clicked()) ;
+            delay(10);
+            while (lcd_clicked()) ;
+            return;
+        }
+    }
+}
+
+int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes)
+{
+
+	lcd_display_message_fullscreen_P(msg);
+	
+	if (default_yes) {
+		lcd.setCursor(0, 2);
+		lcd_printPGM(PSTR(">"));
+		lcd_printPGM(MSG_YES);
+		lcd.setCursor(1, 3);
+		lcd_printPGM(MSG_NO);
+	}
+	else {
+		lcd.setCursor(1, 2);
+		lcd_printPGM(MSG_YES);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(PSTR(">"));
+		lcd_printPGM(MSG_NO);
+	}
+	bool yes = default_yes ? true : false;
+
+	// Wait for user confirmation or a timeout.
+	unsigned long previous_millis_cmd = millis();
+	int8_t        enc_dif = encoderDiff;
+	for (;;) {
+		if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS)
+			return -1;
+		manage_heater();
+		manage_inactivity(true);
+		if (abs(enc_dif - encoderDiff) > 4) {
+			lcd.setCursor(0, 2);
+				if (enc_dif < encoderDiff && yes) {
+					lcd_printPGM((PSTR(" ")));
+					lcd.setCursor(0, 3);
+					lcd_printPGM((PSTR(">")));
+					yes = false;
+				}
+				else if (enc_dif > encoderDiff && !yes) {
+					lcd_printPGM((PSTR(">")));
+					lcd.setCursor(0, 3);
+					lcd_printPGM((PSTR(" ")));
+					yes = true;
+				}
+				enc_dif = encoderDiff;
+		}
+		if (lcd_clicked()) {
+			while (lcd_clicked());
+			delay(10);
+			while (lcd_clicked());
+			return yes;
+		}
+	}
+}
+
+void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask)
+{
+    const char *msg = NULL;
+    if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) {
+        lcd_show_fullscreen_message_and_wait_P(MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND);
+    } else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) {
+        if (point_too_far_mask == 0)
+            msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
+        else if (point_too_far_mask == 2 || point_too_far_mask == 7)
+            // Only the center point or all the three front points.
+            msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR;
+        else if (point_too_far_mask & 1 == 0)
+            // The right and maybe the center point out of reach.
+            msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR;
+        else
+            // The left and maybe the center point out of reach.
+            msg = MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR;
+        lcd_show_fullscreen_message_and_wait_P(msg);
+    } else {
+        if (point_too_far_mask != 0) {
+            if (point_too_far_mask == 2 || point_too_far_mask == 7)
+                // Only the center point or all the three front points.
+                msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR;
+            else if (point_too_far_mask & 1 == 0)
+                // The right and maybe the center point out of reach.
+                msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR;
+            else
+                // The left and maybe the center point out of reach.
+                msg = MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR;
+            lcd_show_fullscreen_message_and_wait_P(msg);
+        }
+        if (point_too_far_mask == 0 || result > 0) {
+            switch (result) {
+                default:
+                    // should not happen
+                    msg = MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
+                    break;
+                case BED_SKEW_OFFSET_DETECTION_PERFECT:
+                    msg = MSG_BED_SKEW_OFFSET_DETECTION_PERFECT;
+                    break;
+                case BED_SKEW_OFFSET_DETECTION_SKEW_MILD:
+                    msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD;
+                    break;
+                case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME:
+                    msg = MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
+                    break;
+            }
+            lcd_show_fullscreen_message_and_wait_P(msg);
+        }
+    }
+}
+
+static void lcd_show_end_stops() {
+    lcd.setCursor(0, 0);
+    lcd_printPGM((PSTR("End stops diag")));
+    lcd.setCursor(0, 1);
+    lcd_printPGM((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("X1")) : (PSTR("X0")));
+    lcd.setCursor(0, 2);
+    lcd_printPGM((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Y1")) : (PSTR("Y0")));
+    lcd.setCursor(0, 3);
+    lcd_printPGM((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Z1")) : (PSTR("Z0")));
+}
+
+static void menu_show_end_stops() {
+    lcd_show_end_stops();
+    if (LCD_CLICKED) lcd_goto_menu(lcd_calibration_menu);
+}
+
+// Lets the user move the Z carriage up to the end stoppers.
+// When done, it sets the current Z to Z_MAX_POS and returns true.
+// Otherwise the Z calibration is not changed and false is returned.
+void lcd_diag_show_end_stops()
+{
+    int enc_dif = encoderDiff;
+    lcd_implementation_clear();
+    for (;;) {
+        manage_heater();
+        manage_inactivity(true);
+        lcd_show_end_stops();
+        if (lcd_clicked()) {
+            while (lcd_clicked()) ;
+            delay(10);
+            while (lcd_clicked()) ;
+            break;
+        }
+    }
+    lcd_implementation_clear();
+    lcd_return_to_status();
+}
+
+
+
+void prusa_statistics(int _message, uint8_t _fil_nr) {
+#ifdef DEBUG_DISABLE_PRUSA_STATISTICS
+	return;
+#endif //DEBUG_DISABLE_PRUSA_STATISTICS
+	switch (_message)
+	{
+
+	case 0: // default message
+		if (IS_SD_PRINTING)
+		{
+			SERIAL_ECHO("{");
+			prusa_stat_printerstatus(4);
+			prusa_stat_farm_number();
+			prusa_stat_printinfo();
+			SERIAL_ECHOLN("}");
+			status_number = 4;
+		}
+		else
+		{
+			SERIAL_ECHO("{");
+			prusa_stat_printerstatus(1);
+			prusa_stat_farm_number();
+			SERIAL_ECHOLN("}");
+			status_number = 1;
+		}
+		break;
+
+	case 1:		// 1 heating
+		farm_status = 2;
+		SERIAL_ECHO("{");
+		prusa_stat_printerstatus(2);
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		status_number = 2;
+		farm_timer = 1;
+		break;
+
+	case 2:		// heating done
+		farm_status = 3;
+		SERIAL_ECHO("{");
+		prusa_stat_printerstatus(3);
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		status_number = 3;
+		farm_timer = 1;
+
+		if (IS_SD_PRINTING)
+		{
+			farm_status = 4;
+			SERIAL_ECHO("{");
+			prusa_stat_printerstatus(4);
+			prusa_stat_farm_number();
+			SERIAL_ECHOLN("}");
+			status_number = 4;
+		}
+		else
+		{
+			SERIAL_ECHO("{");
+			prusa_stat_printerstatus(3);
+			prusa_stat_farm_number();
+			SERIAL_ECHOLN("}");
+			status_number = 3;
+		}
+		farm_timer = 1;
+		break;
+
+	case 3:		// filament change
+
+		break;
+	case 4:		// print succesfull
+		SERIAL_ECHO("{[RES:1][FIL:");
+		MYSERIAL.print(int(_fil_nr));
+		SERIAL_ECHO("]");
+		prusa_stat_printerstatus(status_number);
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		farm_timer = 2;
+		break;
+	case 5:		// print not succesfull
+		SERIAL_ECHO("{[RES:0][FIL:");
+		MYSERIAL.print(int(_fil_nr));
+		SERIAL_ECHO("]");
+		prusa_stat_printerstatus(status_number);
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		farm_timer = 2;
+		break;
+	case 6:		// print done
+		SERIAL_ECHOLN("{[PRN:8]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		status_number = 8;
+		farm_timer = 2;
+		break;
+	case 7:		// print done - stopped
+		SERIAL_ECHOLN("{[PRN:9]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		status_number = 9;
+		farm_timer = 2;
+		break;
+	case 8:		// printer started
+		SERIAL_ECHO("{[PRN:0][PFN:");
+		status_number = 0;
+		SERIAL_ECHO(farm_no);
+		SERIAL_ECHOLN("]}");
+		farm_timer = 2;
+		break;
+	case 20:		// echo farm no
+		SERIAL_ECHOLN("{");
+		prusa_stat_printerstatus(status_number);
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		farm_timer = 5;
+		break;
+	case 21: // temperatures
+		SERIAL_ECHO("{");
+		prusa_stat_temperatures();
+		prusa_stat_farm_number();
+		prusa_stat_printerstatus(status_number);
+		SERIAL_ECHOLN("}");
+		break;
+    case 22: // waiting for filament change
+        SERIAL_ECHOLN("{[PRN:5]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		status_number = 5;
+        break;
+	
+	case 90: // Error - Thermal Runaway
+		SERIAL_ECHOLN("{[ERR:1]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		break;
+	case 91: // Error - Thermal Runaway Preheat
+		SERIAL_ECHOLN("{[ERR:2]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		break;
+	case 92: // Error - Min temp
+		SERIAL_ECHOLN("{[ERR:3]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		break;
+	case 93: // Error - Max temp
+		SERIAL_ECHOLN("{[ERR:4]");
+		prusa_stat_farm_number();
+		SERIAL_ECHOLN("}");
+		break;
+
+    case 99:		// heartbeat
+        SERIAL_ECHO("{[PRN:99]");
+        prusa_stat_temperatures();
+		SERIAL_ECHO("[PFN:");
+		SERIAL_ECHO(farm_no);
+		SERIAL_ECHO("]");
+        SERIAL_ECHOLN("}");
+            
+        break;
+	}
+
+}
+
+static void prusa_stat_printerstatus(int _status)
+{
+	SERIAL_ECHO("[PRN:");
+	SERIAL_ECHO(_status);
+	SERIAL_ECHO("]");
+}
+
+static void prusa_stat_farm_number() {
+	SERIAL_ECHO("[PFN:");
+	SERIAL_ECHO(farm_no);
+	SERIAL_ECHO("]");
+}
+
+static void prusa_stat_temperatures()
+{
+	SERIAL_ECHO("[ST0:");
+	SERIAL_ECHO(target_temperature[0]);
+	SERIAL_ECHO("][STB:");
+	SERIAL_ECHO(target_temperature_bed);
+	SERIAL_ECHO("][AT0:");
+	SERIAL_ECHO(current_temperature[0]);
+	SERIAL_ECHO("][ATB:");
+	SERIAL_ECHO(current_temperature_bed);
+	SERIAL_ECHO("]");
+}
+
+static void prusa_stat_printinfo()
+{
+	SERIAL_ECHO("[TFU:");
+	SERIAL_ECHO(total_filament_used);
+	SERIAL_ECHO("][PCD:");
+	SERIAL_ECHO(itostr3(card.percentDone()));
+	SERIAL_ECHO("][FEM:");
+	SERIAL_ECHO(itostr3(feedmultiply));
+	SERIAL_ECHO("][FNM:");
+	SERIAL_ECHO(longFilenameOLD);
+	SERIAL_ECHO("][TIM:");
+	if (starttime != 0)
+	{
+		SERIAL_ECHO(millis() / 1000 - starttime / 1000);
+	}
+	else
+	{
+		SERIAL_ECHO(0);
+	}
+	SERIAL_ECHO("][FWR:");
+	SERIAL_ECHO(FW_version);
+	SERIAL_ECHO("]");
+}
+
+
+void lcd_pick_babystep(){
+    int enc_dif = 0;
+    int cursor_pos = 1;
+    int fsm = 0;
+    
+    
+    
+    
+    lcd_implementation_clear();
+    
+    lcd.setCursor(0, 0);
+    
+    lcd_printPGM(MSG_PICK_Z);
+    
+    
+    lcd.setCursor(3, 2);
+    
+    lcd.print("1");
+    
+    lcd.setCursor(3, 3);
+    
+    lcd.print("2");
+    
+    lcd.setCursor(12, 2);
+    
+    lcd.print("3");
+    
+    lcd.setCursor(12, 3);
+    
+    lcd.print("4");
+    
+    lcd.setCursor(1, 2);
+    
+    lcd.print(">");
+    
+    
+    enc_dif = encoderDiff;
+    
+    while (fsm == 0) {
+        
+        manage_heater();
+        manage_inactivity(true);
+        
+        if ( abs((enc_dif - encoderDiff)) > 4 ) {
+            
+            if ( (abs(enc_dif - encoderDiff)) > 1 ) {
+                if (enc_dif > encoderDiff ) {
+                    cursor_pos --;
+                }
+                
+                if (enc_dif < encoderDiff  ) {
+                    cursor_pos ++;
+                }
+                
+                if (cursor_pos > 4) {
+                    cursor_pos = 4;
+                }
+                
+                if (cursor_pos < 1) {
+                    cursor_pos = 1;
+                }
+
+                
+                lcd.setCursor(1, 2);
+                lcd.print(" ");
+                lcd.setCursor(1, 3);
+                lcd.print(" ");
+                lcd.setCursor(10, 2);
+                lcd.print(" ");
+                lcd.setCursor(10, 3);
+                lcd.print(" ");
+                
+                if (cursor_pos < 3) {
+                    lcd.setCursor(1, cursor_pos+1);
+                    lcd.print(">");
+                }else{
+                    lcd.setCursor(10, cursor_pos-1);
+                    lcd.print(">");
+                }
+                
+   
+                enc_dif = encoderDiff;
+                delay(100);
+            }
+            
+        }
+        
+        if (lcd_clicked()) {
+            fsm = cursor_pos;
+            int babyStepZ;
+            EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babyStepZ);
+            EEPROM_save_B(EEPROM_BABYSTEP_Z,&babyStepZ);
+            calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
+            delay(500);
+            
+        }
+    };
+    
+    lcd_implementation_clear();
+    lcd_return_to_status();
+}
+
+void lcd_move_menu_axis()
+{
+	START_MENU();
+	MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
+	MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
+	MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
+	MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
+	MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
+	END_MENU();
+}
+
+static void lcd_move_menu_1mm()
+{
+  move_menu_scale = 1.0;
+  lcd_move_menu_axis();
+}
+
+
+void EEPROM_save(int pos, uint8_t* value, uint8_t size)
+{
+  do
+  {
+    eeprom_write_byte((unsigned char*)pos, *value);
+    pos++;
+    value++;
+  } while (--size);
+}
+
+void EEPROM_read(int pos, uint8_t* value, uint8_t size)
+{
+  do
+  {
+    *value = eeprom_read_byte((unsigned char*)pos);
+    pos++;
+    value++;
+  } while (--size);
+}
+
+#ifdef SDCARD_SORT_ALPHA
+static void lcd_sort_type_set() {
+	uint8_t sdSort;
+	
+	EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));
+	switch (sdSort) {
+	case SD_SORT_TIME: sdSort = SD_SORT_ALPHA; break;
+	case SD_SORT_ALPHA: sdSort = SD_SORT_NONE; break;
+	default: sdSort = SD_SORT_TIME;
+	}
+	eeprom_update_byte((unsigned char *)EEPROM_SD_SORT, sdSort);
+	lcd_goto_menu(lcd_sdcard_menu, 1);
+	//lcd_update(2);
+	//delay(1000);
+	
+	card.presort();
+}
+#endif //SDCARD_SORT_ALPHA
+
+static void lcd_silent_mode_set() {
+  SilentModeMenu = !SilentModeMenu;
+  eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
+  digipot_init();
+  lcd_goto_menu(lcd_settings_menu, 7);
+}
+static void lcd_set_lang(unsigned char lang) {
+  lang_selected = lang;
+  firstrun = 1;
+  eeprom_update_byte((unsigned char *)EEPROM_LANG, lang);
+  /*langsel=0;*/
+  if (langsel == LANGSEL_MODAL)
+    // From modal mode to an active mode? This forces the menu to return to the setup menu.
+    langsel = LANGSEL_ACTIVE;
+}
+
+#if !SDSORT_USES_RAM
+void lcd_set_arrows() {
+	void lcd_set_custom_characters_arrows();
+}
+
+void lcd_set_progress() {
+	lcd_set_custom_characters_progress();
+}
+#endif
+
+void lcd_force_language_selection() {
+  eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_FORCE_SELECTION);
+}
+
+static void lcd_language_menu()
+{
+  START_MENU();
+  if (langsel == LANGSEL_OFF) {
+    MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
+  } else if (langsel == LANGSEL_ACTIVE) {
+    MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
+  }
+  for (int i=0;i<LANG_NUM;i++){
+    MENU_ITEM(setlang, MSG_LANGUAGE_NAME_EXPLICIT(i), i);
+  }
+  END_MENU();
+}
+
+void lcd_mesh_bedleveling()
+{
+	mesh_bed_run_from_menu = true;
+	enquecommand_P(PSTR("G80"));
+	lcd_return_to_status();
+}
+
+void lcd_mesh_calibration()
+{
+  enquecommand_P(PSTR("M45"));
+  lcd_return_to_status();
+}
+
+void lcd_mesh_calibration_z()
+{
+  enquecommand_P(PSTR("M45 Z"));
+  lcd_return_to_status();
+}
+
+void lcd_pinda_calibration_menu()
+{
+	START_MENU();
+		MENU_ITEM(back, MSG_MENU_CALIBRATION, lcd_calibration_menu);
+		MENU_ITEM(submenu, MSG_CALIBRATE_PINDA, lcd_calibrate_pinda);
+		if (temp_cal_active == false) {
+			MENU_ITEM(function, MSG_TEMP_CALIBRATION_OFF, lcd_temp_calibration_set);
+		}
+		else {
+			MENU_ITEM(function, MSG_TEMP_CALIBRATION_ON, lcd_temp_calibration_set);
+		}
+	END_MENU();
+}
+
+void lcd_temp_calibration_set() {
+	temp_cal_active = !temp_cal_active;
+	eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, temp_cal_active);
+	digipot_init();
+	lcd_goto_menu(lcd_pinda_calibration_menu, 2);
+}
+
+void lcd_calibrate_pinda() {
+	enquecommand_P(PSTR("G76"));
+	lcd_return_to_status();
+}
+
+#ifndef SNMM
+
+/*void lcd_calibrate_extruder() {
+	
+	if (degHotend0() > EXTRUDE_MINTEMP)
+	{
+		current_position[E_AXIS] = 0;									//set initial position to zero
+		plan_set_e_position(current_position[E_AXIS]);
+		
+		//long steps_start = st_get_position(E_AXIS);
+
+		long steps_final;
+		float e_steps_per_unit;
+		float feedrate = (180 / axis_steps_per_unit[E_AXIS]) * 1;	//3	//initial automatic extrusion feedrate (depends on current value of axis_steps_per_unit to avoid too fast extrusion)
+		float e_shift_calibration = (axis_steps_per_unit[E_AXIS] > 180 ) ? ((180 / axis_steps_per_unit[E_AXIS]) * 70): 70; //length of initial automatic extrusion sequence
+		const char   *msg_e_cal_knob = MSG_E_CAL_KNOB;
+		const char   *msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_e_cal_knob);
+		const bool    multi_screen = msg_next_e_cal_knob != NULL;
+		unsigned long msg_millis;
+
+		lcd_show_fullscreen_message_and_wait_P(MSG_MARK_FIL);
+		lcd_implementation_clear();
+		
+		
+		lcd.setCursor(0, 1); lcd_printPGM(MSG_PLEASE_WAIT);
+		current_position[E_AXIS] += e_shift_calibration;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder);
+		st_synchronize();
+
+		lcd_display_message_fullscreen_P(msg_e_cal_knob);
+		msg_millis = millis();
+		while (!LCD_CLICKED) {
+			if (multi_screen && millis() - msg_millis > 5000) {
+				if (msg_next_e_cal_knob == NULL)
+					msg_next_e_cal_knob = msg_e_cal_knob;
+					msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_next_e_cal_knob);
+					msg_millis = millis();
+			}
+
+			//manage_inactivity(true);
+			manage_heater();
+			if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) {						//adjusting mark by knob rotation
+				delay_keep_alive(50);
+				//previous_millis_cmd = millis();
+				encoderPosition += (encoderDiff / ENCODER_PULSES_PER_STEP);
+				encoderDiff = 0;
+				if (!planner_queue_full()) {
+					current_position[E_AXIS] += float(abs((int)encoderPosition)) * 0.01; //0.05
+					encoderPosition = 0;
+					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder);
+					
+				}
+			}	
+		}
+		
+		steps_final = current_position[E_AXIS] * axis_steps_per_unit[E_AXIS];
+		//steps_final = st_get_position(E_AXIS);
+		lcdDrawUpdate = 1;
+		e_steps_per_unit = ((float)(steps_final)) / 100.0f;
+		if (e_steps_per_unit < MIN_E_STEPS_PER_UNIT) e_steps_per_unit = MIN_E_STEPS_PER_UNIT;				
+		if (e_steps_per_unit > MAX_E_STEPS_PER_UNIT) e_steps_per_unit = MAX_E_STEPS_PER_UNIT;
+
+		lcd_implementation_clear();
+
+		axis_steps_per_unit[E_AXIS] = e_steps_per_unit;
+		enquecommand_P(PSTR("M500")); //store settings to eeprom
+	
+		//lcd_implementation_drawedit(PSTR("Result"), ftostr31(axis_steps_per_unit[E_AXIS]));
+		//delay_keep_alive(2000);
+		delay_keep_alive(500);
+		lcd_show_fullscreen_message_and_wait_P(MSG_CLEAN_NOZZLE_E);
+		lcd_update_enable(true);
+		lcdDrawUpdate = 2;
+
+	}
+	else
+	{
+		lcd_implementation_clear();
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_ERROR);
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_PREHEAT_NOZZLE);
+		delay(2000);
+		lcd_implementation_clear();
+	}
+	lcd_return_to_status();
+}
+
+void lcd_extr_cal_reset() {
+	float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
+	axis_steps_per_unit[E_AXIS] = tmp1[3];
+	//extrudemultiply = 100;
+	enquecommand_P(PSTR("M500"));
+}*/
+
+#endif
+
+void lcd_toshiba_flash_air_compatibility_toggle()
+{
+   card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled());
+   eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled());
+}
+
+static void lcd_settings_menu()
+{
+  EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
+  START_MENU();
+
+  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+
+  MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
+  if (!homing_flag)
+  {
+	  MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu_1mm);
+  }
+  if (!isPrintPaused)
+  {
+	  MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
+  }
+
+  if ((SilentModeMenu == 0) || (farm_mode) ) {
+    MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set);
+  } else {
+    MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set);
+  }
+  
+	if (!isPrintPaused && !homing_flag)
+	{
+		MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
+	}
+	MENU_ITEM(submenu, MSG_LANGUAGE_SELECT, lcd_language_menu);
+
+  if (card.ToshibaFlashAir_isEnabled()) {
+    MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON, lcd_toshiba_flash_air_compatibility_toggle);
+  } else {
+    MENU_ITEM(function, MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF, lcd_toshiba_flash_air_compatibility_toggle);
+  }
+    
+    if (farm_mode)
+    {
+        MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
+		MENU_ITEM(function, PSTR("Disable farm mode"), lcd_disable_farm_mode);
+    }
+
+	END_MENU();
+}
+
+static void lcd_calibration_menu()
+{
+  START_MENU();
+  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+  if (!isPrintPaused)
+  {
+    MENU_ITEM(function, MSG_SELFTEST, lcd_selftest);
 #ifdef MK1BP
-    // MK1
-    // "Calibrate Z"
-    MENU_ITEM(gcode, MSG_HOMEYZ, PSTR("G28 Z"));
-#else //MK1BP
-    // MK2
-MENU_ITEM(function, MSG_CALIBRATE_BED, lcd_mesh_calibration);
-    // "Calibrate Z" with storing the reference values to EEPROM.
-    MENU_ITEM(submenu, MSG_HOMEYZ, lcd_mesh_calibration_z);
-	
-#ifndef SNMM
-	//MENU_ITEM(function, MSG_CALIBRATE_E, lcd_calibrate_extruder);
-#endif
-    // "Mesh Bed Leveling"
-    MENU_ITEM(submenu, MSG_MESH_BED_LEVELING, lcd_mesh_bedleveling);
-#endif //MK1BP
-    MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28 W"));
-    MENU_ITEM(submenu, MSG_BED_CORRECTION_MENU, lcd_adjust_bed);
+    // MK1
+    // "Calibrate Z"
+    MENU_ITEM(gcode, MSG_HOMEYZ, PSTR("G28 Z"));
+#else //MK1BP
+    // MK2
+MENU_ITEM(function, MSG_CALIBRATE_BED, lcd_mesh_calibration);
+    // "Calibrate Z" with storing the reference values to EEPROM.
+    MENU_ITEM(submenu, MSG_HOMEYZ, lcd_mesh_calibration_z);
+	
+#ifndef SNMM
+	//MENU_ITEM(function, MSG_CALIBRATE_E, lcd_calibrate_extruder);
+#endif
+    // "Mesh Bed Leveling"
+    MENU_ITEM(submenu, MSG_MESH_BED_LEVELING, lcd_mesh_bedleveling);
+#endif //MK1BP
+    MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28 W"));
+    MENU_ITEM(submenu, MSG_BED_CORRECTION_MENU, lcd_adjust_bed);
 #ifndef MK1BP
-	MENU_ITEM(submenu, MSG_CALIBRATION_PINDA_MENU, lcd_pinda_calibration_menu);
+	MENU_ITEM(submenu, MSG_CALIBRATION_PINDA_MENU, lcd_pinda_calibration_menu);
 #endif //MK1BP
-	MENU_ITEM(submenu, MSG_PID_EXTRUDER, pid_extruder);
-    MENU_ITEM(submenu, MSG_SHOW_END_STOPS, menu_show_end_stops);
+	MENU_ITEM(submenu, MSG_PID_EXTRUDER, pid_extruder);
+    MENU_ITEM(submenu, MSG_SHOW_END_STOPS, menu_show_end_stops);
 #ifndef MK1BP
-    MENU_ITEM(gcode, MSG_CALIBRATE_BED_RESET, PSTR("M44"));
+    MENU_ITEM(gcode, MSG_CALIBRATE_BED_RESET, PSTR("M44"));
 #endif //MK1BP
-#ifndef SNMM
-	//MENU_ITEM(function, MSG_RESET_CALIBRATE_E, lcd_extr_cal_reset);
-#endif
-  }
-  
-  END_MENU();
-}
-/*
-void lcd_mylang_top(int hlaska) {
-    lcd.setCursor(0,0);
-    lcd.print("                    ");
-    lcd.setCursor(0,0);
-    lcd_printPGM(MSG_ALL[hlaska-1][LANGUAGE_SELECT]);   
-}
-
-void lcd_mylang_drawmenu(int cursor) {
-  int first = 0;
-  if (cursor>2) first = cursor-2;
-  if (cursor==LANG_NUM) first = LANG_NUM-3;
-  lcd.setCursor(0, 1);
-  lcd.print("                    ");
-  lcd.setCursor(1, 1);
-  lcd_printPGM(MSG_ALL[first][LANGUAGE_NAME]);
-
-  lcd.setCursor(0, 2);
-  lcd.print("                    ");
-  lcd.setCursor(1, 2);
-  lcd_printPGM(MSG_ALL[first+1][LANGUAGE_NAME]);
-
-  lcd.setCursor(0, 3);
-  lcd.print("                    ");
-  lcd.setCursor(1, 3);
-  lcd_printPGM(MSG_ALL[first+2][LANGUAGE_NAME]);  
-  
-  if (cursor==1) lcd.setCursor(0, 1);
-  if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
-  if (cursor==LANG_NUM) lcd.setCursor(0, 3);
-
-  lcd.print(">");
-  
-  if (cursor<LANG_NUM-1) {
-    lcd.setCursor(19,3);
-    lcd.print("\x01");
-  }
-  if (cursor>2) {
-    lcd.setCursor(19,1);
-    lcd.print("^");
-  }  
-}
-*/
-
-void lcd_mylang_drawmenu(int cursor) {
-  int first = 0;
-  if (cursor>3) first = cursor-3;
-  if (cursor==LANG_NUM && LANG_NUM>4) first = LANG_NUM-4;
-  if (cursor==LANG_NUM && LANG_NUM==4) first = LANG_NUM-4;
-
-
-  lcd.setCursor(0, 0);
-  lcd.print("                    ");
-  lcd.setCursor(1, 0);
-  lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+0));
-
-  lcd.setCursor(0, 1);
-  lcd.print("                    ");
-  lcd.setCursor(1, 1);
-  lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+1));
-
-  lcd.setCursor(0, 2);
-  lcd.print("                    ");
-
-  if (LANG_NUM > 2){
-    lcd.setCursor(1, 2);
-    lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+2));
-  }
-
-  lcd.setCursor(0, 3);
-  lcd.print("                    ");
-  if (LANG_NUM>3) {
-    lcd.setCursor(1, 3);
-    lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+3));
-  }
-  
-  if (cursor==1) lcd.setCursor(0, 0);
-  if (cursor==2) lcd.setCursor(0, 1);
-  if (cursor>2) lcd.setCursor(0, 2);
-  if (cursor==LANG_NUM && LANG_NUM>3) lcd.setCursor(0, 3);
-
-  lcd.print(">");
-  
-  if (cursor<LANG_NUM-1 && LANG_NUM>4) {
-    lcd.setCursor(19,3);
-    lcd.print("\x01");
-  }
-  if (cursor>3 && LANG_NUM>4) {
-    lcd.setCursor(19,0);
-    lcd.print("^");
-  }  
-}
- 
-void lcd_mylang_drawcursor(int cursor) {
-  
-  if (cursor==1) lcd.setCursor(0, 1);
-  if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
-  if (cursor==LANG_NUM) lcd.setCursor(0, 3);
-
-  lcd.print(">");
-  
-}  
-
-void lcd_mylang() {
-  int enc_dif = 0;
-  int cursor_pos = 1;
-  lang_selected=255;
-  int hlaska=1;
-  int counter=0;
-  lcd_set_custom_characters_arrows();
-
-  lcd_implementation_clear();
-
-  //lcd_mylang_top(hlaska);
-
-  lcd_mylang_drawmenu(cursor_pos);
-
-
-  enc_dif = encoderDiff;
-
-  while ( (lang_selected == 255)  ) {
-
-    manage_heater();
-    manage_inactivity(true);
-
-    if ( abs((enc_dif - encoderDiff)) > 4 ) {
-
-      //if ( (abs(enc_dif - encoderDiff)) > 1 ) {
-        if (enc_dif > encoderDiff ) {
-          cursor_pos --;
-        }
-
-        if (enc_dif < encoderDiff  ) {
-          cursor_pos ++;
-        }
-
-        if (cursor_pos > LANG_NUM) {
-          cursor_pos = LANG_NUM;
-        }
-
-        if (cursor_pos < 1) {
-          cursor_pos = 1;
-        }
-
-        lcd_mylang_drawmenu(cursor_pos);
-        enc_dif = encoderDiff;
-        delay(100);
-      //}
-
-    } else delay(20);
-
-
-    if (lcd_clicked()) {
-
-      lcd_set_lang(cursor_pos-1);
-      delay(500);
-
-    }
-    /*
-    if (++counter == 80) {
-      hlaska++;
-      if(hlaska>LANG_NUM) hlaska=1;
-      lcd_mylang_top(hlaska);
-      lcd_mylang_drawcursor(cursor_pos);
-      counter=0;
-    }
-    */
-  };
-
-  if(MYSERIAL.available() > 1){
-    lang_selected = 0;
-    firstrun = 0;
-  }
-
-  lcd_set_custom_characters_degree();
-  lcd_implementation_clear();
-  lcd_return_to_status();
-
-}
-
-void bowden_menu() {
-	int enc_dif = encoderDiff;
-	int cursor_pos = 0;
-	lcd_implementation_clear();
-	lcd.setCursor(0, 0);
-	lcd.print(">");
-	for (int i = 0; i < 4; i++) {
-		lcd.setCursor(1, i);
-		lcd.print("Extruder ");
-		lcd.print(i);
-		lcd.print(": ");
-		EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
-		lcd.print(bowden_length[i] - 48);
-
-	}
-	enc_dif = encoderDiff;
-
-	while (1) {
-
-		manage_heater();
-		manage_inactivity(true);
-
-		if (abs((enc_dif - encoderDiff)) > 2) {
-
-			if (enc_dif > encoderDiff) {
-					cursor_pos--;
-				}
-
-				if (enc_dif < encoderDiff) {
-					cursor_pos++;
-				}
-
-				if (cursor_pos > 3) {
-					cursor_pos = 3;
-				}
-
-				if (cursor_pos < 0) {
-					cursor_pos = 0;
-				}
-
-				lcd.setCursor(0, 0);
-				lcd.print(" ");
-				lcd.setCursor(0, 1);
-				lcd.print(" ");
-				lcd.setCursor(0, 2);
-				lcd.print(" ");
-				lcd.setCursor(0, 3);
-				lcd.print(" ");
-				lcd.setCursor(0, cursor_pos);
-				lcd.print(">");
-
-				enc_dif = encoderDiff;
-				delay(100);
-		}
-
-		if (lcd_clicked()) {
-			while (lcd_clicked());
-			delay(10);
-			while (lcd_clicked());
-
-			lcd_implementation_clear();
-			while (1) {
-
-				manage_heater();
-				manage_inactivity(true);
-
-				lcd.setCursor(1, 1);
-				lcd.print("Extruder ");
-				lcd.print(cursor_pos);
-				lcd.print(": ");
-				lcd.setCursor(13, 1);
-				lcd.print(bowden_length[cursor_pos] - 48);
-
-				if (abs((enc_dif - encoderDiff)) > 2) {
-						if (enc_dif > encoderDiff) {
-							bowden_length[cursor_pos]--;
-							lcd.setCursor(13, 1);
-							lcd.print(bowden_length[cursor_pos] - 48);
-							enc_dif = encoderDiff;
-						}
-
-						if (enc_dif < encoderDiff) {
-							bowden_length[cursor_pos]++;
-							lcd.setCursor(13, 1);
-							lcd.print(bowden_length[cursor_pos] - 48);
-							enc_dif = encoderDiff;
-						}
-				}
-				delay(100);
-				if (lcd_clicked()) {
-					while (lcd_clicked());
-					delay(10);
-					while (lcd_clicked());
-					EEPROM_save_B(EEPROM_BOWDEN_LENGTH + cursor_pos * 2, &bowden_length[cursor_pos]);
-					if (lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Continue with another bowden?"))) {
-						lcd_update_enable(true);
-						lcd_implementation_clear();
-						enc_dif = encoderDiff;
-						lcd.setCursor(0, cursor_pos);
-						lcd.print(">");
-						for (int i = 0; i < 4; i++) {
-							lcd.setCursor(1, i);
-							lcd.print("Extruder ");
-							lcd.print(i);
-							lcd.print(": ");
-							EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
-							lcd.print(bowden_length[i] - 48);
-
-						}
-						break;
-					}
-					else return;
-				}
-			}
-		}
-	}
-}
-
-static char snmm_stop_print_menu() { //menu for choosing which filaments will be unloaded in stop print
-	lcd_implementation_clear();
-	lcd_print_at_PGM(0,0,MSG_UNLOAD_FILAMENT); lcd.print(":");
-	lcd.setCursor(0, 1); lcd.print(">");
-	lcd_print_at_PGM(1,1,MSG_ALL);
-	lcd_print_at_PGM(1,2,MSG_USED);
-	lcd_print_at_PGM(1,3,MSG_CURRENT);
-	char cursor_pos = 1;
-	int enc_dif = 0;
-
-	while (1) {
-		manage_heater();
-		manage_inactivity(true);
-		if (abs((enc_dif - encoderDiff)) > 4) {
-
-			if ((abs(enc_dif - encoderDiff)) > 1) {
-				if (enc_dif > encoderDiff) cursor_pos--;
-				if (enc_dif < encoderDiff) cursor_pos++;
-				if (cursor_pos > 3) cursor_pos = 3;
-				if (cursor_pos < 1) cursor_pos = 1;
-
-				lcd.setCursor(0, 1);
-				lcd.print(" ");
-				lcd.setCursor(0, 2);
-				lcd.print(" ");
-				lcd.setCursor(0, 3);
-				lcd.print(" ");
-				lcd.setCursor(0, cursor_pos);
-				lcd.print(">");
-				enc_dif = encoderDiff;
-				delay(100);
-			}
-		}
-		if (lcd_clicked()) {
-			while (lcd_clicked());
-			delay(10);
-			while (lcd_clicked());
-			return(cursor_pos - 1);
-		}
-	}
-	
-}
-
-char choose_extruder_menu() {
-
-	int items_no = 4;
-	int first = 0;
-	int enc_dif = 0;
-	char cursor_pos = 1;
-	
-	enc_dif = encoderDiff;
-	lcd_implementation_clear();
-	
-	lcd_printPGM(MSG_CHOOSE_EXTRUDER);
-	lcd.setCursor(0, 1);
-	lcd.print(">");
-	for (int i = 0; i < 3; i++) {
-		lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
-	}
-
-	while (1) {
-
-		for (int i = 0; i < 3; i++) {
-			lcd.setCursor(2 + strlen_P(MSG_EXTRUDER), i+1);
-			lcd.print(first + i + 1);
-		}
-
-		manage_heater();
-		manage_inactivity(true);
-
-		if (abs((enc_dif - encoderDiff)) > 4) {
-
-			if ((abs(enc_dif - encoderDiff)) > 1) {
-				if (enc_dif > encoderDiff) {
-					cursor_pos--;
-				}
-
-				if (enc_dif < encoderDiff) {
-					cursor_pos++;
-				}
-
-				if (cursor_pos > 3) {
-					cursor_pos = 3;
-					if (first < items_no - 3) {
-						first++;
-						lcd_implementation_clear();
-						lcd_printPGM(MSG_CHOOSE_EXTRUDER);
-						for (int i = 0; i < 3; i++) {
-							lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
-						}
-					}
-				}
-
-				if (cursor_pos < 1) {
-					cursor_pos = 1;
-					if (first > 0) {
-						first--;
-						lcd_implementation_clear();
-						lcd_printPGM(MSG_CHOOSE_EXTRUDER);
-						for (int i = 0; i < 3; i++) {
-							lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
-						}
-					}
-				}
-				lcd.setCursor(0, 1);
-				lcd.print(" ");
-				lcd.setCursor(0, 2);
-				lcd.print(" ");
-				lcd.setCursor(0, 3);
-				lcd.print(" ");
-				lcd.setCursor(0, cursor_pos);
-				lcd.print(">");
-				enc_dif = encoderDiff;
-				delay(100);
-			}
-
-		}
-
-		if (lcd_clicked()) {
-			lcd_update(2);
-			while (lcd_clicked());
-			delay(10);
-			while (lcd_clicked());
-			return(cursor_pos + first - 1);
-			
-		}
-
-	}
-
-}
-
-
-char reset_menu() {
-#ifdef SNMM
-	int items_no = 5;
-#else
-	int items_no = 4;
-#endif
-	static int first = 0;
-	int enc_dif = 0;
-	char cursor_pos = 0;
-	const char *item [items_no];
-	
-	item[0] = "Language";
-	item[1] = "Statistics";
-	item[2] = "Shipping prep";
-	item[3] = "All Data";
-#ifdef SNMM
-	item[4] = "Bowden length";
-#endif // SNMM
-
-	enc_dif = encoderDiff;
-	lcd_implementation_clear();
-	lcd.setCursor(0, 0);
-	lcd.print(">");
-
-	while (1) {		
-
-		for (int i = 0; i < 4; i++) {
-			lcd.setCursor(1, i);
-			lcd.print(item[first + i]);
-		}
-
-		manage_heater();
-		manage_inactivity(true);
-
-		if (abs((enc_dif - encoderDiff)) > 4) {
-
-			if ((abs(enc_dif - encoderDiff)) > 1) {
-				if (enc_dif > encoderDiff) {
-					cursor_pos--;
-				}
-
-				if (enc_dif < encoderDiff) {
-					cursor_pos++;
-				}
-
-				if (cursor_pos > 3) {
-					cursor_pos = 3;
-					if (first < items_no - 4) {
-						first++;
-						lcd_implementation_clear();
-					}
-				}
-
-				if (cursor_pos < 0) {
-					cursor_pos = 0;
-					if (first > 0) {
-						first--;
-						lcd_implementation_clear();
-					}
-				}
-				lcd.setCursor(0, 0);
-				lcd.print(" ");
-				lcd.setCursor(0, 1);
-				lcd.print(" ");
-				lcd.setCursor(0, 2);
-				lcd.print(" ");
-				lcd.setCursor(0, 3);
-				lcd.print(" ");
-				lcd.setCursor(0, cursor_pos);
-				lcd.print(">");
-				enc_dif = encoderDiff;
-				delay(100);
-			}
-
-		}
-
-		if (lcd_clicked()) {
-			while (lcd_clicked());
-			delay(10);
-			while (lcd_clicked());
-			return(cursor_pos + first);
-		}
-
-	}
-
-}
-
-static void lcd_disable_farm_mode() {
-	int8_t disable = lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Disable farm mode?"), true, false); //allow timeouting, default no
-	if (disable) {
-		enquecommand_P(PSTR("G99"));
-		lcd_return_to_status();
-	}
-	else {
-		lcd_goto_menu(lcd_settings_menu);
-	}
-	lcd_update_enable(true);
-	lcdDrawUpdate = 2;
-	
-}
-
-static void lcd_ping_allert() {
-	if ((abs(millis() - allert_timer)*0.001) > PING_ALLERT_PERIOD) {
-		allert_timer = millis();
-		SET_OUTPUT(BEEPER);
-		for (int i = 0; i < 2; i++) {
-			WRITE(BEEPER, HIGH);
-			delay(50);
-			WRITE(BEEPER, LOW);
-			delay(100);
-		}
-	}
-
-};
-
-
-#ifdef SNMM
-
-static void extr_mov(float shift, float feed_rate) { //move extruder no matter what the current heater temperature is
-	set_extrude_min_temp(.0);
-	current_position[E_AXIS] += shift;
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
-	set_extrude_min_temp(EXTRUDE_MINTEMP);
-}
-
-
-void change_extr(int extr) { //switches multiplexer for extruders
-	st_synchronize();
-	delay(100);
-
-	disable_e0();
-	disable_e1();
-	disable_e2();
-
-#ifdef SNMM
-	snmm_extruder = extr;
-#endif
-
-	pinMode(E_MUX0_PIN, OUTPUT);
-	pinMode(E_MUX1_PIN, OUTPUT);
-	pinMode(E_MUX2_PIN, OUTPUT);
-
-	switch (extr) {
-	case 1:
-		WRITE(E_MUX0_PIN, HIGH);
-		WRITE(E_MUX1_PIN, LOW);
-		WRITE(E_MUX2_PIN, LOW);
-		
-		break;
-	case 2:
-		WRITE(E_MUX0_PIN, LOW);
-		WRITE(E_MUX1_PIN, HIGH);
-		WRITE(E_MUX2_PIN, LOW);
-		
-		break;
-	case 3:
-		WRITE(E_MUX0_PIN, HIGH);
-		WRITE(E_MUX1_PIN, HIGH);
-		WRITE(E_MUX2_PIN, LOW);
-		
-		break;
-	default:
-		WRITE(E_MUX0_PIN, LOW);
-		WRITE(E_MUX1_PIN, LOW);
-		WRITE(E_MUX2_PIN, LOW);
-		
-		break;
-	}
-	delay(100);
-}
-
-static int get_ext_nr() { //reads multiplexer input pins and return current extruder number (counted from 0)
-	return(4 * READ(E_MUX2_PIN) + 2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
-}
-
-
-void display_loading() {
-	switch (snmm_extruder) {
-	case 1: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T1); break;
-	case 2: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T2); break;
-	case 3: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T3); break;
-	default: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T0); break;
-	}
-}
-
-static void extr_adj(int extruder) //loading filament for SNMM
-{
-	bool correct;
-	max_feedrate[E_AXIS] =80;
-	//max_feedrate[E_AXIS] = 50;
-	START:
-	lcd_implementation_clear();
-	lcd.setCursor(0, 0); 
-	switch (extruder) {
-	case 1: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T1); break;
-	case 2: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T2); break;
-	case 3: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T3); break;
-	default: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T0); break;   
-	}
-			
-	do{
-		extr_mov(0.001,1000);
-		delay_keep_alive(2);
-	} while (!lcd_clicked());
-	//delay_keep_alive(500);
-
-	st_synchronize();
-	//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
-	//if (!correct) goto	START;
-	//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
-	//extr_mov(BOWDEN_LENGTH/2.f, 500);
-	extr_mov(bowden_length[extruder], 500);
-	lcd_implementation_clear();
-	lcd.setCursor(0, 0); lcd_printPGM(MSG_LOADING_FILAMENT);
-	if(strlen(MSG_LOADING_FILAMENT)>18) lcd.setCursor(0, 1);
-	else lcd.print(" ");
-	lcd.print(snmm_extruder + 1);
-	lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
-	st_synchronize();
-	max_feedrate[E_AXIS] = 50;
-	lcd_update_enable(true);
-	lcd_return_to_status();
-	lcdDrawUpdate = 2;
-}
-
-
-void extr_unload() { //unloads filament
-	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
-	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
-	int8_t SilentMode;
-
-	if (degHotend0() > EXTRUDE_MINTEMP) {
-		lcd_implementation_clear();
-		lcd_display_message_fullscreen_P(PSTR(""));
-		max_feedrate[E_AXIS] = 50;
-		lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
-		lcd.print(" ");
-		lcd.print(snmm_extruder + 1);
-		lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
-		if (current_position[Z_AXIS] < 15) {
-			current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
-		}
-		
-		current_position[E_AXIS] += 10; //extrusion
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
-		digipot_current(2, E_MOTOR_HIGH_CURRENT);
-		if (current_temperature[0] < 230) { //PLA & all other filaments
-			current_position[E_AXIS] += 5.4;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
-			current_position[E_AXIS] += 3.2;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			current_position[E_AXIS] += 3;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
-		}
-		else { //ABS
-			current_position[E_AXIS] += 3.1;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
-			current_position[E_AXIS] += 3.1;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
-			current_position[E_AXIS] += 4;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
-			/*current_position[X_AXIS] += 23; //delay
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
-			current_position[X_AXIS] -= 23; //delay
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
-			delay_keep_alive(4700);
-		}
-	
-		max_feedrate[E_AXIS] = 80;
-		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
-		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
-		st_synchronize();
-		//digipot_init();
-		if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
-		else digipot_current(2, tmp_motor_loud[2]);
-		lcd_update_enable(true);
-		lcd_return_to_status();
-		max_feedrate[E_AXIS] = 50;
-	}
-	else {
-
-		lcd_implementation_clear();
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_ERROR);
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_PREHEAT_NOZZLE);
-
-		delay(2000);
-		lcd_implementation_clear();
-	}
-
-	lcd_return_to_status();
-
-
-
-
-}
-
-//wrapper functions for loading filament
-static void extr_adj_0(){
-	change_extr(0);
-	extr_adj(0);
-}
-static void extr_adj_1() {
-	change_extr(1);
-	extr_adj(1);
-}
-static void extr_adj_2() {
-	change_extr(2);
-	extr_adj(2);
-}
-static void extr_adj_3() {
-	change_extr(3);
-	extr_adj(3);
-}
-
-static void load_all() {
-	for (int i = 0; i < 4; i++) {
-		change_extr(i);
-		extr_adj(i);
-	}
-}
-
-//wrapper functions for changing extruders
-static void extr_change_0() {
-	change_extr(0);
-	lcd_return_to_status();
-}
-static void extr_change_1() {
-	change_extr(1);
-	lcd_return_to_status();
-}
-static void extr_change_2() {
-	change_extr(2);
-	lcd_return_to_status();
-}
-static void extr_change_3() {
-	change_extr(3);
-	lcd_return_to_status();
-}
-
-//wrapper functions for unloading filament
-void extr_unload_all() {
-	if (degHotend0() > EXTRUDE_MINTEMP) {
-		for (int i = 0; i < 4; i++) {
-			change_extr(i);
-			extr_unload();
-		}
-	}
-	else {
-		lcd_implementation_clear();
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_ERROR);
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_PREHEAT_NOZZLE);
-		delay(2000);
-		lcd_implementation_clear();
-		lcd_return_to_status();
-	}
-}
-
-//unloading just used filament (for snmm)
-
-void extr_unload_used() {
-	if (degHotend0() > EXTRUDE_MINTEMP) {
-		for (int i = 0; i < 4; i++) {
-			if (snmm_filaments_used & (1 << i)) {
-				change_extr(i);
-				extr_unload();
-			}
-		}
-		snmm_filaments_used = 0;
-	}
-	else {
-		lcd_implementation_clear();
-		lcd.setCursor(0, 0);
-		lcd_printPGM(MSG_ERROR);
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_PREHEAT_NOZZLE);
-		delay(2000);
-		lcd_implementation_clear();
-		lcd_return_to_status();
-	}
-}
-
-
-
-static void extr_unload_0() {
-	change_extr(0);
-	extr_unload();
-}
-static void extr_unload_1() {
-	change_extr(1);
-	extr_unload();
-}
-static void extr_unload_2() {
-	change_extr(2);
-	extr_unload();
-}
-static void extr_unload_3() {
-	change_extr(3);
-	extr_unload();
-}
-
-
-static void fil_load_menu()
-{
-	START_MENU();
-	MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-	MENU_ITEM(function, MSG_LOAD_ALL, load_all);
-	MENU_ITEM(function, MSG_LOAD_FILAMENT_1, extr_adj_0);
-	MENU_ITEM(function, MSG_LOAD_FILAMENT_2, extr_adj_1);
-	MENU_ITEM(function, MSG_LOAD_FILAMENT_3, extr_adj_2);
-	MENU_ITEM(function, MSG_LOAD_FILAMENT_4, extr_adj_3);
-	
-	END_MENU();
-}
-
-static void fil_unload_menu()
-{
-	START_MENU();
-	MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-	MENU_ITEM(function, MSG_UNLOAD_ALL, extr_unload_all);
-	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_1, extr_unload_0);
-	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_2, extr_unload_1);
-	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_3, extr_unload_2);
-	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_4, extr_unload_3);
-
-	END_MENU();
-}
-
-static void change_extr_menu(){
-	START_MENU();
-	MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-	MENU_ITEM(function, MSG_EXTRUDER_1, extr_change_0);
-	MENU_ITEM(function, MSG_EXTRUDER_2, extr_change_1);
-	MENU_ITEM(function, MSG_EXTRUDER_3, extr_change_2);
-	MENU_ITEM(function, MSG_EXTRUDER_4, extr_change_3);
-
-	END_MENU();
-}
-
-#endif
-
-static void lcd_farm_no()
-{
-	char step = 0;
-	int enc_dif = 0;
-	int _farmno = farm_no;
-	int _ret = 0;
-	lcd_implementation_clear();
-
-	lcd.setCursor(0, 0);
-	lcd.print("Farm no");
-
-	do
-	{
-
-		if (abs((enc_dif - encoderDiff)) > 2) {
-			if (enc_dif > encoderDiff) {
-				switch (step) {
-				case(0): if (_farmno >= 100) _farmno -= 100; break;
-				case(1): if (_farmno % 100 >= 10) _farmno -= 10; break;
-				case(2): if (_farmno % 10 >= 1) _farmno--; break;
-				default: break;
-				}
-			}
-
-			if (enc_dif < encoderDiff) {
-				switch (step) {
-				case(0): if (_farmno < 900) _farmno += 100; break;
-				case(1): if (_farmno % 100 < 90) _farmno += 10; break;
-				case(2): if (_farmno % 10 <= 8)_farmno++; break;
-				default: break;
-				}
-			}
-			enc_dif = 0;
-			encoderDiff = 0;
-		}
-
-		lcd.setCursor(0, 2);
-		if (_farmno < 100) lcd.print("0");
-		if (_farmno < 10) lcd.print("0");
-		lcd.print(_farmno);
-		lcd.print("  ");
-		lcd.setCursor(0, 3);
-		lcd.print("   ");
-
-
-		lcd.setCursor(step, 3);
-		lcd.print("^");
-		delay(100);
-
-		if (lcd_clicked())
-		{
-			delay(200);
-			step++;
-			if(step == 3) {
-				_ret = 1;
-				farm_no = _farmno;
-				EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
-				prusa_statistics(20);
-				lcd_return_to_status();
-			}
-		}
-
-		manage_heater();
-	} while (_ret == 0);
-
-}
-
-
-unsigned char lcd_choose_color() {
-	//function returns index of currently chosen item
-	//following part can be modified from 2 to 255 items:
-	//-----------------------------------------------------
-	unsigned char items_no = 2;
-	const char *item[items_no];
-	item[0] = "Black";
-	item[1] = "Orange";
-	//-----------------------------------------------------
-	unsigned char active_rows;
-	static int first = 0;
-	int enc_dif = 0;
-	unsigned char cursor_pos = 1;
-	enc_dif = encoderDiff;
-	lcd_implementation_clear();
-	lcd.setCursor(0, 1);
-	lcd.print(">");
-
-	active_rows = items_no < 3 ? items_no : 3;
-
-	while (1) {
-		lcd_print_at_PGM(0, 0, PSTR("Choose color:"));
-		for (int i = 0; i < active_rows; i++) {
-			lcd.setCursor(1, i+1);
-			lcd.print(item[first + i]);
-		}
-
-		manage_heater();
-		manage_inactivity(true);
-
-		if (abs((enc_dif - encoderDiff)) > 4) {
-
-			if ((abs(enc_dif - encoderDiff)) > 1) {
-				if (enc_dif > encoderDiff) {
-					cursor_pos--;
-				}
-
-				if (enc_dif < encoderDiff) {
-					cursor_pos++;
-				}
-
-				if (cursor_pos > active_rows) {
-					cursor_pos = active_rows;
-					if (first < items_no - active_rows) {
-						first++;
-						lcd_implementation_clear();
-					}
-				}
-
-				if (cursor_pos < 1) {
-					cursor_pos = 1;
-					if (first > 0) {
-						first--;
-						lcd_implementation_clear();
-					}
-				}
-				lcd.setCursor(0, 1);
-				lcd.print(" ");
-				lcd.setCursor(0, 2);
-				lcd.print(" ");
-				lcd.setCursor(0, 3);
-				lcd.print(" ");
-				lcd.setCursor(0, cursor_pos);
-				lcd.print(">");
-				enc_dif = encoderDiff;
-				delay(100);
-			}
-
-		}
-
-		if (lcd_clicked()) {
-			while (lcd_clicked());
-			delay(10);
-			while (lcd_clicked());
-			return(cursor_pos + first - 1);
-		}
-
-	}
-
-}
-
-void lcd_confirm_print()
-{
-	uint8_t filament_type;
-	int enc_dif = 0;
-	int cursor_pos = 1;
-	int _ret = 0;
-	int _t = 0;
-
-
-	lcd_implementation_clear();
-
-	lcd.setCursor(0, 0);
-	lcd.print("Print ok ?");
-
-	do
-	{
-
-		if (abs((enc_dif - encoderDiff)) > 2) {
-			if (enc_dif > encoderDiff) {
-				cursor_pos--;
-			}
-
-			if (enc_dif < encoderDiff) {
-				cursor_pos++;
-			}
-		}
-
-		if (cursor_pos > 2) { cursor_pos = 2; }
-		if (cursor_pos < 1) { cursor_pos = 1; }
-
-		lcd.setCursor(0, 2); lcd.print("          ");
-		lcd.setCursor(0, 3); lcd.print("          ");
-		lcd.setCursor(2, 2);
-		lcd_printPGM(MSG_YES);
-		lcd.setCursor(2, 3);
-		lcd_printPGM(MSG_NO);
-		lcd.setCursor(0, 1 + cursor_pos);
-		lcd.print(">");
-		delay(100);
-
-		_t = _t + 1;
-		if (_t>100)
-		{
-			prusa_statistics(99);
-			_t = 0;
-		}
-		if (lcd_clicked())
-		{
-			if (cursor_pos == 1)
-			{
-				_ret = 1;
-				filament_type = lcd_choose_color();
-				prusa_statistics(4, filament_type);
-			}
-			if (cursor_pos == 2)
-			{
-				_ret = 2;
-				filament_type = lcd_choose_color();
-				prusa_statistics(5, filament_type);
-			}
-		}
-
-		manage_heater();
-		manage_inactivity();
-
-	} while (_ret == 0);
-
-}
-
-
-
-static void lcd_main_menu()
-{
-
-  SDscrool = 0;
-  START_MENU();
-
-  // Majkl superawesome menu
-
-  
- MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
-   /* if (farm_mode && !IS_SD_PRINTING )
-    {
-    
-        int tempScrool = 0;
-        if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
-            //delay(100);
-            return; // nothing to do (so don't thrash the SD card)
-        uint16_t fileCnt = card.getnrfilenames();
-        
-        card.getWorkDirName();
-        if (card.filename[0] == '/')
-        {
-#if SDCARDDETECT == -1
-            MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
-#endif
-        } else {
-            MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
-        }
-        
-        for (uint16_t i = 0; i < fileCnt; i++)
-        {
-            if (_menuItemNr == _lineNr)
-            {
-#ifndef SDCARD_RATHERRECENTFIRST
-                card.getfilename(i);
-#else
-                card.getfilename(fileCnt - 1 - i);
-#endif
-                if (card.filenameIsDir)
-                {
-                    MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
-                } else {
-                    
-                    MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
-                    
-                    
-                    
-                    
-                }
-            } else {
-                MENU_ITEM_DUMMY();
-            }
-        }
-        
-        MENU_ITEM(back, PSTR("- - - - - - - - -"), lcd_status_screen);
-    
-        
-    }*/
-    
-  if ( ( IS_SD_PRINTING || is_usb_printing ) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag)
-  {
-	MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8
-  }
-
-
-  if ( moves_planned() || IS_SD_PRINTING || is_usb_printing )
-  {
-    MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
-  } else 
-  {
-    MENU_ITEM(submenu, MSG_PREHEAT, lcd_preheat_menu);
-  }
-
-#ifdef SDSUPPORT
-  if (card.cardOK)
-  {
-    if (card.isFileOpen())
-    {
-		if (mesh_bed_leveling_flag == false && homing_flag == false) {
-			if (card.sdprinting)
-			{
-				MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
-			}
-			else
-			{
-				MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
-			}
-			MENU_ITEM(submenu, MSG_STOP_PRINT, lcd_sdcard_stop);
-		}
-	}
-	else
-	{
-		if (!is_usb_printing)
-		{
-			//if (farm_mode) MENU_ITEM(submenu, MSG_FARM_CARD_MENU, lcd_farm_sdcard_menu);
-			/*else*/ MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
-		}
-#if SDCARDDETECT < 1
-      MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21"));  // SD-card changed by user
-#endif
-    }
-  } else 
-  {
-    MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
-#if SDCARDDETECT < 1
-    MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
-#endif
-  }
-#endif
-
-
-  if (IS_SD_PRINTING || is_usb_printing)
-  {
-	  if (farm_mode)
-	  {
-		  MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
-	  }
-  } 
-  else 
-  {
-	#ifndef SNMM
-    MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament);
-    MENU_ITEM(function, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament);
-	#endif
-	#ifdef SNMM
-	MENU_ITEM(submenu, MSG_LOAD_FILAMENT, fil_load_menu);
-	MENU_ITEM(submenu, MSG_UNLOAD_FILAMENT, fil_unload_menu);
-	MENU_ITEM(submenu, MSG_CHANGE_EXTR, change_extr_menu);
-	#endif
-	MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu);
-    if(!isPrintPaused) MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu);
-  }
-
-  if (!is_usb_printing)
-  {
-	  MENU_ITEM(submenu, MSG_STATISTICS, lcd_menu_statistics);
-  }
-  MENU_ITEM(submenu, MSG_SUPPORT, lcd_support_menu);
-  END_MENU();
-
-}
-
-void stack_error() {
-	SET_OUTPUT(BEEPER);
-	WRITE(BEEPER, HIGH);
-	delay(1000);
-	WRITE(BEEPER, LOW);
-	lcd_display_message_fullscreen_P(MSG_STACK_ERROR);
-	//err_triggered = 1;
-	 while (1) delay_keep_alive(1000);
-}
-
-#ifdef SDSUPPORT
-static void lcd_autostart_sd()
-{
-  card.lastnr = 0;
-  card.setroot();
-  card.checkautostart(true);
-}
-#endif
-
-
-
-static void lcd_silent_mode_set_tune() {
-  SilentModeMenu = !SilentModeMenu;
-  eeprom_update_byte((unsigned char*)EEPROM_SILENT, SilentModeMenu);
-  digipot_init();
-  lcd_goto_menu(lcd_tune_menu, 9);
-}
-
-static void lcd_colorprint_change() {
-	
-	enquecommand_P(PSTR("M600"));
-	
-	custom_message = true;
-	custom_message_type = 2; //just print status message
-	lcd_setstatuspgm(MSG_FINISHING_MOVEMENTS);
-	lcd_return_to_status();
-	lcdDrawUpdate = 3;
-}
-
-static void lcd_tune_menu()
-{
-  EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
-
-  
-
-  START_MENU();
-  MENU_ITEM(back, MSG_MAIN, lcd_main_menu); //1
-  MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);//2
-
-  MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3
-  MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 10);//4
-
-  MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);//5
-  MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);//6
-#ifdef FILAMENTCHANGEENABLE
-  MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_colorprint_change);//7
-#endif
-  
-  if (SilentModeMenu == 0) {
-    MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set_tune);
-  } else {
-    MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set_tune);
-  }
-  END_MENU();
-}
-
-
-
-
-static void lcd_move_menu_01mm()
-{
-  move_menu_scale = 0.1;
-  lcd_move_menu_axis();
-}
-
-static void lcd_control_temperature_menu()
-{
-#ifdef PIDTEMP
-  // set up temp variables - undo the default scaling
-//  raw_Ki = unscalePID_i(Ki);
-//  raw_Kd = unscalePID_d(Kd);
-#endif
-
-  START_MENU();
-  MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
-#if TEMP_SENSOR_0 != 0
-  MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);
-#endif
-#if TEMP_SENSOR_1 != 0
-  MENU_ITEM_EDIT(int3, MSG_NOZZLE1, &target_temperature[1], 0, HEATER_1_MAXTEMP - 10);
-#endif
-#if TEMP_SENSOR_2 != 0
-  MENU_ITEM_EDIT(int3, MSG_NOZZLE2, &target_temperature[2], 0, HEATER_2_MAXTEMP - 10);
-#endif
-#if TEMP_SENSOR_BED != 0
-  MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3);
-#endif
-  MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
-#if defined AUTOTEMP && (TEMP_SENSOR_0 != 0)
-  MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
-  MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 10);
-  MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 10);
-  MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0);
-#endif
-
-  END_MENU();
-}
-
-
-#if SDCARDDETECT == -1
-static void lcd_sd_refresh()
-{
-  card.initsd();
-  currentMenuViewOffset = 0;
-}
-#endif
-static void lcd_sd_updir()
-{
-  SDscrool = 0;
-  card.updir();
-  currentMenuViewOffset = 0;
-}
-
-
-void lcd_sdcard_stop()
-{
-	
-	lcd.setCursor(0, 0);
-	lcd_printPGM(MSG_STOP_PRINT);
-	lcd.setCursor(2, 2);
-	lcd_printPGM(MSG_NO);
-	lcd.setCursor(2, 3);
-	lcd_printPGM(MSG_YES);
-	lcd.setCursor(0, 2); lcd.print(" ");
-	lcd.setCursor(0, 3); lcd.print(" ");
-
-	if ((int32_t)encoderPosition > 2) { encoderPosition = 2; }
-	if ((int32_t)encoderPosition < 1) { encoderPosition = 1; }
-	
-	lcd.setCursor(0, 1 + encoderPosition);
-	lcd.print(">");
-
-	if (lcd_clicked())
-	{
-		if ((int32_t)encoderPosition == 1)
-		{
-			lcd_return_to_status();
-		}
-		if ((int32_t)encoderPosition == 2)
-		{
-		cancel_heatup = true;
-        #ifdef MESH_BED_LEVELING
-        mbl.active = false;
-        #endif
-        // Stop the stoppers, update the position from the stoppers.
-		if (mesh_bed_leveling_flag == false && homing_flag == false) {
-			planner_abort_hard();
-			// Because the planner_abort_hard() initialized current_position[Z] from the stepper,
-			// Z baystep is no more applied. Reset it.
-			babystep_reset();
-		}
-        // Clean the input command queue.
-        cmdqueue_reset();
-				lcd_setstatuspgm(MSG_PRINT_ABORTED);
-				lcd_update(2);
-				card.sdprinting = false;
-				card.closefile();
-
-				stoptime = millis();
-				unsigned long t = (stoptime - starttime - pause_time) / 1000; //time in s
-				pause_time = 0;
-				save_statistics(total_filament_used, t);
-
-				lcd_return_to_status();
-				lcd_ignore_click(true);
-				lcd_commands_type = LCD_COMMAND_STOP_PRINT;
-            
-                // Turn off the print fan
-                SET_OUTPUT(FAN_PIN);
-                WRITE(FAN_PIN, 0);
-                fanSpeed=0;
-		}
-	}
-
-}
-/*
-void getFileDescription(char *name, char *description) {
-	// get file description, ie the REAL filenam, ie the second line
-	card.openFile(name, true);
-	int i = 0;
-	// skip the first line (which is the version line)
-	while (true) {
-		uint16_t readByte = card.get();
-		if (readByte == '\n') {
-			break;
-		}
-	}
-	// read the second line (which is the description line)
-	while (true) {
-		uint16_t readByte = card.get();
-		if (i == 0) {
-			// skip the first '^'
-			readByte = card.get();
-		}
-		description[i] = readByte;
-		i++;
-		if (readByte == '\n') {
-			break;
-		}
-	}
-	card.closefile();
-	description[i-1] = 0;
-}
-*/
-
-void lcd_sdcard_menu()
-{	
-  uint8_t sdSort;
-  int tempScrool = 0;
-  if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
-    //delay(100);
-  return; // nothing to do (so don't thrash the SD card)
-  uint16_t fileCnt = card.getnrfilenames();
-    
-  START_MENU();
-  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-#ifdef SDCARD_SORT_ALPHA
-  EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));
-  switch(sdSort){
-    case SD_SORT_TIME: MENU_ITEM(function, MSG_SORT_TIME, lcd_sort_type_set); break;
-    case SD_SORT_ALPHA: MENU_ITEM(function, MSG_SORT_ALPHA, lcd_sort_type_set); break;
-    default: MENU_ITEM(function, MSG_SORT_NONE, lcd_sort_type_set);
-  }
-#endif // SDCARD_SORT_ALPHA
-  card.getWorkDirName();
-  if (card.filename[0] == '/')
-  {
-#if SDCARDDETECT == -1
-    MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
-#endif
-  } else {
-    MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
-  }
-
-  for (uint16_t i = 0; i < fileCnt; i++)
-  {
-    if (_menuItemNr == _lineNr)
-    {
-		const uint16_t nr = (sdSort == SD_SORT_NONE) ? (fileCnt - 1 - i) : i;
-		 /* #ifdef SDCARD_RATHERRECENTFIRST
-			#ifndef SDCARD_SORT_ALPHA
-				fileCnt - 1 -
-			#endif
-		  #endif
-		i;*/
-		#ifdef SDCARD_SORT_ALPHA
-		if (sdSort == SD_SORT_NONE) card.getfilename(nr);
-		else card.getfilename_sorted(nr);
-		#else
-		  card.getfilename(nr);
-		#endif
-
-		if (card.filenameIsDir)
-			MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
-		else
-			MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
-    } else {
-      MENU_ITEM_DUMMY();
-    }
-  }
-  END_MENU();
-}
-
-//char description [10] [31];
-
-/*void get_description() {
-	uint16_t fileCnt = card.getnrfilenames();
-	for (uint16_t i = 0; i < fileCnt; i++)
-	{
-		card.getfilename(fileCnt - 1 - i);
-		getFileDescription(card.filename, description[i]);
-	}
-}*/
-
-/*void lcd_farm_sdcard_menu() 
-{
-	static int i = 0;
-	if (i == 0) {
-		get_description();
-		i++;
-	}
-		//int j;
-		//char description[31];
-		int tempScrool = 0;
-		if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
-			//delay(100);
-			return; // nothing to do (so don't thrash the SD card)
-		uint16_t fileCnt = card.getnrfilenames();
-
-		START_MENU();
-		MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
-		card.getWorkDirName();
-		if (card.filename[0] == '/')
-		{
-#if SDCARDDETECT == -1
-			MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
-#endif
-		}
-		else {
-			MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
-		}
-
-
-
-		for (uint16_t i = 0; i < fileCnt; i++)
-		{
-			if (_menuItemNr == _lineNr)
-			{
-#ifndef SDCARD_RATHERRECENTFIRST
-				card.getfilename(i);
-#else
-				card.getfilename(fileCnt - 1 - i);
-#endif
-				if (card.filenameIsDir)
-				{
-					MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
-				}
-				else {
-					
-					MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, description[i]);
-				}
-			}
-			else {
-				MENU_ITEM_DUMMY();
-			}
-		}
-		END_MENU();
-
-}*/
-
-#define menu_edit_type(_type, _name, _strFunc, scale) \
-  void menu_edit_ ## _name () \
-  { \
-    if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
-    if ((int32_t)encoderPosition > menuData.editMenuParentState.maxEditValue) encoderPosition = menuData.editMenuParentState.maxEditValue; \
-    if (lcdDrawUpdate) \
-      lcd_implementation_drawedit(menuData.editMenuParentState.editLabel, _strFunc(((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale)); \
-    if (LCD_CLICKED) \
-    { \
-      *((_type*)menuData.editMenuParentState.editValue) = ((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale; \
-      lcd_goto_menu(menuData.editMenuParentState.prevMenu, menuData.editMenuParentState.prevEncoderPosition, true, false); \
-    } \
-  } \
-  static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \
-  { \
-    menuData.editMenuParentState.prevMenu = currentMenu; \
-    menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
-    \
-    lcdDrawUpdate = 2; \
-    menuData.editMenuParentState.editLabel = pstr; \
-    menuData.editMenuParentState.editValue = ptr; \
-    menuData.editMenuParentState.minEditValue = minValue * scale; \
-    menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
-    lcd_goto_menu(menu_edit_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
-    \
-  }\
-  /*
-  void menu_edit_callback_ ## _name () { \
-    menu_edit_ ## _name (); \
-    if (LCD_CLICKED) (*callbackFunc)(); \
-  } \
-  static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \
-  { \
-    menuData.editMenuParentState.prevMenu = currentMenu; \
-    menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
-    \
-    lcdDrawUpdate = 2; \
-    lcd_goto_menu(menu_edit_callback_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
-    \
-    menuData.editMenuParentState.editLabel = pstr; \
-    menuData.editMenuParentState.editValue = ptr; \
-    menuData.editMenuParentState.minEditValue = minValue * scale; \
-    menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
-    callbackFunc = callback;\
-  }
-  */
-
-menu_edit_type(int, int3, itostr3, 1)
-menu_edit_type(float, float3, ftostr3, 1)
-menu_edit_type(float, float32, ftostr32, 100)
-menu_edit_type(float, float43, ftostr43, 1000)
-menu_edit_type(float, float5, ftostr5, 0.01)
-menu_edit_type(float, float51, ftostr51, 10)
-menu_edit_type(float, float52, ftostr52, 100)
-menu_edit_type(unsigned long, long5, ftostr5, 0.01)
-
-static void lcd_selftest()
-{
-	int _progress = 0;
-	bool _result = false;
-
-	lcd_implementation_clear();
-	lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_START);
-	delay(2000);
-
-
-	_result = lcd_selftest_fan_dialog(1);
-
-	if (_result)
-	{
-		_result = lcd_selftest_fan_dialog(2);
-	}
-
-	if (_result)
-	{
-		_progress = lcd_selftest_screen(0, _progress, 3, true, 2000);
-		_result = lcd_selfcheck_endstops();
-	}
-		
-	if (_result)
-	{
-		_progress = lcd_selftest_screen(1, _progress, 3, true, 1000);
-		_result = lcd_selfcheck_check_heater(false);
-	}
-
-	if (_result)
-	{
-		current_position[Z_AXIS] += 15;									//move Z axis higher to avoid false triggering of Z end stop in case that we are very low - just above heatbed
-		_progress = lcd_selftest_screen(2, _progress, 3, true, 2000);
-		_result = lcd_selfcheck_axis(X_AXIS, X_MAX_POS);
-		
-	}
-
-	if (_result)
-	{
-		_progress = lcd_selftest_screen(2, _progress, 3, true, 0);
-		_result = lcd_selfcheck_pulleys(X_AXIS);
-	}
-
-
-	if (_result)
-	{
-		_progress = lcd_selftest_screen(3, _progress, 3, true, 1500);
-		_result = lcd_selfcheck_axis(Y_AXIS, Y_MAX_POS);
-	}
-
-	if (_result)
-	{
-		_progress = lcd_selftest_screen(3, _progress, 3, true, 0);
-		_result = lcd_selfcheck_pulleys(Y_AXIS);
-	}
-
-
-	if (_result)
-	{
-		current_position[X_AXIS] = current_position[X_AXIS] - 3;
-		current_position[Y_AXIS] = current_position[Y_AXIS] - 14;
-		_progress = lcd_selftest_screen(4, _progress, 3, true, 1500);
-		_result = lcd_selfcheck_axis(2, Z_MAX_POS);
-		enquecommand_P(PSTR("G28 W"));
-		enquecommand_P(PSTR("G1 Z15"));
-	}
-
-	if (_result)
-	{		
-		_progress = lcd_selftest_screen(5, _progress, 3, true, 2000);
-		_result = lcd_selfcheck_check_heater(true);
-	}
-	if (_result)
-	{
-		_progress = lcd_selftest_screen(6, _progress, 3, true, 5000);
-	}
-	else
-	{
-		_progress = lcd_selftest_screen(7, _progress, 3, true, 5000);
-	}
-	lcd_reset_alert_level();
-	enquecommand_P(PSTR("M84"));
-	lcd_implementation_clear();
-	lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
-
-	if (_result)
-	{
-		LCD_ALERTMESSAGERPGM(MSG_SELFTEST_OK);				
-	}
-	else
-	{
-		LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
-	}
-}
-
-static bool lcd_selfcheck_axis(int _axis, int _travel)
-{
-	bool _stepdone = false;
-	bool _stepresult = false;
-	int _progress = 0;
-	int _travel_done = 0;
-	int _err_endstop = 0;
-	int _lcd_refresh = 0;
-	_travel = _travel + (_travel / 10);
-
-	do {
-		current_position[_axis] = current_position[_axis] - 1;
-
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
-		st_synchronize();
-
-		if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
-		{
-			if (_axis == 0)
-			{
-				_stepresult = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? true : false;
-				_err_endstop = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? 1 : 2;
-				
-			}
-			if (_axis == 1)
-			{
-				_stepresult = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? true : false;
-				_err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 2;
-				
-			}
-			if (_axis == 2)
-			{
-				_stepresult = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? true : false;
-				_err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 1;
-				/*disable_x();
-				disable_y();
-				disable_z();*/
-			}
-			_stepdone = true;
-		}
-
-		if (_lcd_refresh < 6)
-		{
-			_lcd_refresh++;
-		}
-		else
-		{
-			_progress = lcd_selftest_screen(2 + _axis, _progress, 3, false, 0);
-			_lcd_refresh = 0;
-		}
-
-		manage_heater();
-		manage_inactivity(true);
-
-		//delay(100);
-		(_travel_done <= _travel) ? _travel_done++ : _stepdone = true;
-
-	} while (!_stepdone);
-
-
-	//current_position[_axis] = current_position[_axis] + 15;
-	//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
-
-	if (!_stepresult)
-	{
-		const char *_error_1;
-		const char *_error_2;
-
-		if (_axis == X_AXIS) _error_1 = "X";
-		if (_axis == Y_AXIS) _error_1 = "Y";
-		if (_axis == Z_AXIS) _error_1 = "Z";
-
-		if (_err_endstop == 0) _error_2 = "X";
-		if (_err_endstop == 1) _error_2 = "Y";
-		if (_err_endstop == 2) _error_2 = "Z";
-
-		if (_travel_done >= _travel)
-		{
-			lcd_selftest_error(5, _error_1, _error_2);
-		}
-		else
-		{
-			lcd_selftest_error(4, _error_1, _error_2);
-		}
-	}
-
-	return _stepresult;
-}
-
-static bool lcd_selfcheck_pulleys(int axis)
-{
-	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
-	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
-	float current_position_init;
-	float move;
-	bool endstop_triggered = false;
-	bool result = true;
-	int i;
-	unsigned long timeout_counter;
-	refresh_cmd_timeout();
-	manage_inactivity(true);
-
-	if (axis == 0) move = 50; //X_AXIS 
-		else move = 50; //Y_AXIS
-
-		current_position_init = current_position[axis];
-				
-		current_position[axis] += 2;
-		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
-		for (i = 0; i < 5; i++) {
-			refresh_cmd_timeout();
-			current_position[axis] = current_position[axis] + move;
-			digipot_current(0, 850); //set motor current higher
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 200, active_extruder);
-			st_synchronize();
-			if (SilentModeMenu == 1) digipot_current(0, tmp_motor[0]); //set back to normal operation currents
-			else digipot_current(0, tmp_motor_loud[0]); //set motor current back			
-			current_position[axis] = current_position[axis] - move;
-			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 50, active_extruder);
-			st_synchronize();
-			if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) || (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1)) {
-				lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
-				return(false);
-			}
-		}
-		timeout_counter = millis() + 2500;
-		endstop_triggered = false;
-		manage_inactivity(true);
-		while (!endstop_triggered) {
-			if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) || (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1)) {
-				endstop_triggered = true;
-				if (current_position_init - 1 <= current_position[axis] && current_position_init + 1 >= current_position[axis]) {
-					current_position[axis] += 15;
-					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
-					st_synchronize();
-					return(true);
-				}
-				else {
-					lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
-					return(false);
-				}
-			}
-			else {
-				current_position[axis] -= 1;
-				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
-				st_synchronize();
-				if (millis() > timeout_counter) {
-					lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
-					return(false);
-				}
-			}
-		}		
-}
-
-static bool lcd_selfcheck_endstops()
-{
-	bool _result = true;
-
-	if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
-	{
-		current_position[0] = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? current_position[0] = current_position[0] + 10 : current_position[0];
-		current_position[1] = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? current_position[1] = current_position[1] + 10 : current_position[1];
-		current_position[2] = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? current_position[2] = current_position[2] + 10 : current_position[2];
-	}
-	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder);
-	delay(500);
-
-	if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
-	{
-		_result = false;
-		char _error[4] = "";
-		if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) strcat(_error, "X");
-		if (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) strcat(_error, "Y");
-		if (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) strcat(_error, "Z");
-		lcd_selftest_error(3, _error, "");
-	}
-	manage_heater();
-	manage_inactivity(true);
-	return _result;
-}
-
-static bool lcd_selfcheck_check_heater(bool _isbed)
-{
-	int _counter = 0;
-	int _progress = 0;
-	bool _stepresult = false;
-	bool _docycle = true;
-
-	int _checked_snapshot = (_isbed) ? degBed() : degHotend(0);
-	int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed();
-	int _cycles = (_isbed) ? 180 : 60; //~ 90s / 30s
-
-	target_temperature[0] = (_isbed) ? 0 : 200;
-	target_temperature_bed = (_isbed) ? 100 : 0;
-	manage_heater();
-	manage_inactivity(true);
-
-	do {
-		_counter++;
-		_docycle = (_counter < _cycles) ? true : false;
-
-		manage_heater();
-		manage_inactivity(true);
-		_progress = (_isbed) ? lcd_selftest_screen(5, _progress, 2, false, 400) : lcd_selftest_screen(1, _progress, 2, false, 400);
-		/*if (_isbed) {
-			MYSERIAL.print("Bed temp:");
-			MYSERIAL.println(degBed());
-		}
-		else {
-			MYSERIAL.print("Hotend temp:");
-			MYSERIAL.println(degHotend(0));
-		}*/
-
-	} while (_docycle); 
-
-	target_temperature[0] = 0;
-	target_temperature_bed = 0;
-	manage_heater();
-
-	int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot;
-	int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot;
-	/*
-	MYSERIAL.println("");
-	MYSERIAL.print("Checked result:");
-	MYSERIAL.println(_checked_result);
-	MYSERIAL.print("Opposite result:");
-	MYSERIAL.println(_opposite_result);
-	*/
-	if (_opposite_result < ((_isbed) ? 10 : 3))
-	{
-		if (_checked_result >= ((_isbed) ? 3 : 10))
-		{
-			_stepresult = true;
-		}
-		else
-		{
-			lcd_selftest_error(1, "", "");
-		}
-	}
-	else
-	{
-		lcd_selftest_error(2, "", "");
-	}
-
-	manage_heater();
-	manage_inactivity(true);
-	return _stepresult;
-
-}
-static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2)
-{
-	lcd_implementation_quick_feedback();
-
-	target_temperature[0] = 0;
-	target_temperature_bed = 0;
-	manage_heater();
-	manage_inactivity();
-
-	lcd_implementation_clear();
-
-	lcd.setCursor(0, 0);
-	lcd_printPGM(MSG_SELFTEST_ERROR);
-	lcd.setCursor(0, 1);
-	lcd_printPGM(MSG_SELFTEST_PLEASECHECK);
-
-	switch (_error_no)
-	{
-	case 1:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_HEATERTHERMISTOR);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_NOTCONNECTED);
-		break;
-	case 2:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_BEDHEATER);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
-		break;
-	case 3:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_ENDSTOPS);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
-		lcd.setCursor(17, 3);
-		lcd.print(_error_1);
-		break;
-	case 4:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_MOTOR);
-		lcd.setCursor(18, 2);
-		lcd.print(_error_1);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_ENDSTOP);
-		lcd.setCursor(18, 3);
-		lcd.print(_error_2);
-		break;
-	case 5:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_ENDSTOP_NOTHIT);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_MOTOR);
-		lcd.setCursor(18, 3);
-		lcd.print(_error_1);
-		break;
-	case 6:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
-		lcd.setCursor(18, 3);
-		lcd.print(_error_1);
-		break;
-	case 7:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
-		lcd.setCursor(18, 3);
-		lcd.print(_error_1);
-		break;
-	case 8:
-		lcd.setCursor(0, 2);
-		lcd_printPGM(MSG_LOOSE_PULLEY);
-		lcd.setCursor(0, 3);
-		lcd_printPGM(MSG_SELFTEST_MOTOR);
-		lcd.setCursor(18, 3);
-		lcd.print(_error_1);
-		break;
-	}
-
-	delay(1000);
-	lcd_implementation_quick_feedback();
-
-	do {
-		delay(100);
-		manage_heater();
-		manage_inactivity();
-	} while (!lcd_clicked());
-
-	LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
-	lcd_return_to_status();
-
-}
-
-static bool lcd_selftest_fan_dialog(int _fan)
-{
-	bool _result = false;
-	int _errno = 0;
-	lcd_implementation_clear();
-
-	lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_FAN);
-	switch (_fan)
-	{
-	case 1:
-		// extruder cooling fan
-		lcd.setCursor(0, 1); lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
-		SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
-		WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
-		_errno = 7;
-		break;
-	case 2:
-		// object cooling fan
-		lcd.setCursor(0, 1); lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
-		SET_OUTPUT(FAN_PIN);
-		analogWrite(FAN_PIN, 255);
-		_errno = 6;
-		break;
-	}
-	delay(500);
-
-	lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
-	lcd.setCursor(0, 3); lcd.print(">");
-	lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
-
-	int8_t enc_dif = 0;
-	do
-	{
-		switch (_fan)
-		{
-		case 1:
-			// extruder cooling fan
-			SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
-			WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
-			break;
-		case 2:
-			// object cooling fan
-			SET_OUTPUT(FAN_PIN);
-			analogWrite(FAN_PIN, 255);
-			break;
-		}
-		if (abs((enc_dif - encoderDiff)) > 2) {
-			if (enc_dif > encoderDiff) {
-				_result = true;
-				lcd.setCursor(0, 2); lcd.print(">");
-				lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
-				lcd.setCursor(0, 3); lcd.print(" ");
-				lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
-			}
-
-			if (enc_dif < encoderDiff) {
-				_result = false;
-				lcd.setCursor(0, 2); lcd.print(" ");
-				lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
-				lcd.setCursor(0, 3); lcd.print(">");
-				lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
-			}
-			enc_dif = 0;
-			encoderDiff = 0;
-		}
-
-
-		manage_heater();
-		delay(100);
-
-	} while (!lcd_clicked());
-
-	SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
-	WRITE(EXTRUDER_0_AUTO_FAN_PIN, 0);
-	SET_OUTPUT(FAN_PIN);
-	analogWrite(FAN_PIN, 0);
-
-	fanSpeed = 0;
-	manage_heater();
-
-	if (!_result)
-	{
-		const char *_err;
-		lcd_selftest_error(_errno, _err, _err);
-	}
-
-	return _result;
-
-}
-
-static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bool _clear, int _delay)
-{
-	
-	lcd_next_update_millis = millis() + (LCD_UPDATE_INTERVAL * 10000);
-
-	int _step_block = 0;
-	const char *_indicator = (_progress > _progress_scale) ? "-" : "|";
-
-	if (_clear) lcd_implementation_clear();
-
-
-	lcd.setCursor(0, 0);
-
-	if (_step == -1) lcd_printPGM(MSG_SELFTEST_START);
-	if (_step == 0) lcd_printPGM(MSG_SELFTEST_CHECK_ENDSTOPS);
-	if (_step == 1) lcd_printPGM(MSG_SELFTEST_CHECK_HOTEND);
-	if (_step == 2) lcd_printPGM(MSG_SELFTEST_CHECK_X);
-	if (_step == 3) lcd_printPGM(MSG_SELFTEST_CHECK_Y);
-	if (_step == 4) lcd_printPGM(MSG_SELFTEST_CHECK_Z);
-	if (_step == 5) lcd_printPGM(MSG_SELFTEST_CHECK_BED);
-	if (_step == 6) lcd_printPGM(MSG_SELFTEST_CHECK_ALLCORRECT);
-	if (_step == 7) lcd_printPGM(MSG_SELFTEST_FAILED);
-
-	lcd.setCursor(0, 1);
-	lcd.print("--------------------");
-
-	if (_step != 7)
-	{
-		_step_block = 1;
-		lcd_selftest_screen_step(3, 9, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Hotend", _indicator);
-
-		_step_block = 2;
-		lcd_selftest_screen_step(2, 2, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "X", _indicator);
-
-		_step_block = 3;
-		lcd_selftest_screen_step(2, 8, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Y", _indicator);
-
-		_step_block = 4;
-		lcd_selftest_screen_step(2, 14, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Z", _indicator);
-
-		_step_block = 5;
-		lcd_selftest_screen_step(3, 0, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Bed", _indicator);
-	}
-
-	if (_delay > 0) delay(_delay);
-	_progress++;
-
-	return (_progress > _progress_scale * 2) ? 0 : _progress;
-}
-static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator)
-{
-	lcd.setCursor(_col, _row);
-
-	switch (_state)
-	{
-	case 1:
-		lcd.print(_name);
-		lcd.setCursor(_col + strlen(_name), _row);
-		lcd.print(":");
-		lcd.setCursor(_col + strlen(_name) + 1, _row);
-		lcd.print(_indicator);
-		break;
-	case 2:
-		lcd.print(_name);
-		lcd.setCursor(_col + strlen(_name), _row);
-		lcd.print(":");
-		lcd.setCursor(_col + strlen(_name) + 1, _row);
-		lcd.print("OK");
-		break;
-	default:
-		lcd.print(_name);
-	}
-}
-
-
-/** End of menus **/
-
-static void lcd_quick_feedback()
-{
-  lcdDrawUpdate = 2;
-  button_pressed = false;  
-  lcd_implementation_quick_feedback();
-}
-
-/** Menu action functions **/
-static void menu_action_back(menuFunc_t data) {
-  lcd_goto_menu(data);
-}
-static void menu_action_submenu(menuFunc_t data) {
-  lcd_goto_menu(data);
-}
-static void menu_action_gcode(const char* pgcode) {
-  enquecommand_P(pgcode);
-}
-static void menu_action_setlang(unsigned char lang) {
-  lcd_set_lang(lang);
-}
-static void menu_action_function(menuFunc_t data) {
-  (*data)();
-}
-static void menu_action_sdfile(const char* filename, char* longFilename)
-{
-  loading_flag = false;
-  char cmd[30];
-  char* c;
-  sprintf_P(cmd, PSTR("M23 %s"), filename);
-  for (c = &cmd[4]; *c; c++)
-    *c = tolower(*c);
-  enquecommand(cmd);
-  enquecommand_P(PSTR("M24"));
-  lcd_return_to_status();
-}
-static void menu_action_sddirectory(const char* filename, char* longFilename)
-{
-  card.chdir(filename);
-  encoderPosition = 0;
-}
-static void menu_action_setting_edit_bool(const char* pstr, bool* ptr)
-{
-  *ptr = !(*ptr);
-}
-/*
-static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback)
-{
-  menu_action_setting_edit_bool(pstr, ptr);
-  (*callback)();
-}
-*/
-#endif//ULTIPANEL
-
-/** LCD API **/
-
-void lcd_init()
-{
-  lcd_implementation_init();
-
-#ifdef NEWPANEL
-  SET_INPUT(BTN_EN1);
-  SET_INPUT(BTN_EN2);
-  WRITE(BTN_EN1, HIGH);
-  WRITE(BTN_EN2, HIGH);
-#if BTN_ENC > 0
-  SET_INPUT(BTN_ENC);
-  WRITE(BTN_ENC, HIGH);
-#endif
-#ifdef REPRAPWORLD_KEYPAD
-  pinMode(SHIFT_CLK, OUTPUT);
-  pinMode(SHIFT_LD, OUTPUT);
-  pinMode(SHIFT_OUT, INPUT);
-  WRITE(SHIFT_OUT, HIGH);
-  WRITE(SHIFT_LD, HIGH);
-#endif
-#else  // Not NEWPANEL
-#ifdef SR_LCD_2W_NL // Non latching 2 wire shift register
-  pinMode (SR_DATA_PIN, OUTPUT);
-  pinMode (SR_CLK_PIN, OUTPUT);
-#elif defined(SHIFT_CLK)
-  pinMode(SHIFT_CLK, OUTPUT);
-  pinMode(SHIFT_LD, OUTPUT);
-  pinMode(SHIFT_EN, OUTPUT);
-  pinMode(SHIFT_OUT, INPUT);
-  WRITE(SHIFT_OUT, HIGH);
-  WRITE(SHIFT_LD, HIGH);
-  WRITE(SHIFT_EN, LOW);
-#else
-#ifdef ULTIPANEL
-#error ULTIPANEL requires an encoder
-#endif
-#endif // SR_LCD_2W_NL
-#endif//!NEWPANEL
-
-#if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0)
-  pinMode(SDCARDDETECT, INPUT);
-  WRITE(SDCARDDETECT, HIGH);
-  lcd_oldcardstatus = IS_SD_INSERTED;
-#endif//(SDCARDDETECT > 0)
-#ifdef LCD_HAS_SLOW_BUTTONS
-  slow_buttons = 0;
-#endif
-  lcd_buttons_update();
-#ifdef ULTIPANEL
-  encoderDiff = 0;
-#endif
-}
-
-
-
-
-//#include <avr/pgmspace.h>
-
-static volatile bool lcd_update_enabled = true;
-unsigned long lcd_timeoutToStatus = 0;
-
-void lcd_update_enable(bool enabled)
-{
-    if (lcd_update_enabled != enabled) {
-        lcd_update_enabled = enabled;
-        if (enabled) {
-            // Reset encoder position. This is equivalent to re-entering a menu.
-            encoderPosition = 0;
-            encoderDiff = 0;
-            // Enabling the normal LCD update procedure.
-            // Reset the timeout interval.
-            lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
-            // Force the keypad update now.
-            lcd_next_update_millis = millis() - 1;
-            // Full update.
-            lcd_implementation_clear();
-      #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-            lcd_set_custom_characters(currentMenu == lcd_status_screen);
-      #else
-            if (currentMenu == lcd_status_screen)
-                lcd_set_custom_characters_degree();
-            else
-                lcd_set_custom_characters_arrows();
-      #endif
-            lcd_update(2);
-        } else {
-            // Clear the LCD always, or let it to the caller?
-        }
-    }
-}
-
-void lcd_update(uint8_t lcdDrawUpdateOverride)
-{
-
-	if (lcdDrawUpdate < lcdDrawUpdateOverride)
-		lcdDrawUpdate = lcdDrawUpdateOverride;
-
-	if (!lcd_update_enabled)
-		return;
-
-#ifdef LCD_HAS_SLOW_BUTTONS
-  slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
-#endif
-  
-  lcd_buttons_update();
-
-#if (SDCARDDETECT > 0)
-  if ((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()))
-  {
-	  lcdDrawUpdate = 2;
-	  lcd_oldcardstatus = IS_SD_INSERTED;
-	  lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-		  currentMenu == lcd_status_screen
-#endif
-	  );
-
-	  if (lcd_oldcardstatus)
-	  {
-		  card.initsd();
-		  LCD_MESSAGERPGM(MSG_SD_INSERTED);
-		  //get_description();
-	  }
-	  else
-	  {
-		  card.release();
-		  LCD_MESSAGERPGM(MSG_SD_REMOVED);
-	  }
-  }
-#endif//CARDINSERTED
-
-  if (lcd_next_update_millis < millis())
-  {
-#ifdef ULTIPANEL
-#ifdef REPRAPWORLD_KEYPAD
-	  if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
-		  reprapworld_keypad_move_z_up();
-	  }
-	  if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
-		  reprapworld_keypad_move_z_down();
-	  }
-	  if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
-		  reprapworld_keypad_move_x_left();
-	  }
-	  if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
-		  reprapworld_keypad_move_x_right();
-	  }
-	  if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
-		  reprapworld_keypad_move_y_down();
-	  }
-	  if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
-		  reprapworld_keypad_move_y_up();
-	  }
-	  if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
-		  reprapworld_keypad_move_home();
-	  }
-#endif
-	  if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP)
-	  {
-      if (lcdDrawUpdate == 0)
-		    lcdDrawUpdate = 1;
-		  encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP;
-		  encoderDiff = 0;
-		  lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
-	  }
-
-	  if (LCD_CLICKED) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
-#endif//ULTIPANEL
-
-#ifdef DOGLCD        // Changes due to different driver architecture of the DOGM display
-	  blink++;     // Variable for fan animation and alive dot
-	  u8g.firstPage();
-	  do
-	  {
-		  u8g.setFont(u8g_font_6x10_marlin);
-		  u8g.setPrintPos(125, 0);
-		  if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
-		  u8g.drawPixel(127, 63); // draw alive dot
-		  u8g.setColorIndex(1); // black on white
-		  (*currentMenu)();
-		  if (!lcdDrawUpdate)  break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
-	  } while (u8g.nextPage());
-#else
-	  (*currentMenu)();
-#endif
-
-#ifdef LCD_HAS_STATUS_INDICATORS
-	  lcd_implementation_update_indicators();
-#endif
-
-#ifdef ULTIPANEL
-	  if (lcd_timeoutToStatus < millis() && currentMenu != lcd_status_screen)
-	  {
-      // Exiting a menu. Let's call the menu function the last time with menuExiting flag set to true
-      // to give it a chance to save its state.
-      // This is useful for example, when the babystep value has to be written into EEPROM.
-      if (currentMenu != NULL) {
-        menuExiting = true;
-        (*currentMenu)();
-        menuExiting = false;
-      }
-		  lcd_return_to_status();
-		  lcdDrawUpdate = 2;
-	  }
-#endif//ULTIPANEL
-	  if (lcdDrawUpdate == 2) lcd_implementation_clear();
-	  if (lcdDrawUpdate) lcdDrawUpdate--;
-	  lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
-	  }
-	if (!SdFatUtil::test_stack_integrity()) stack_error();
-	lcd_ping(); //check that we have received ping command if we are in farm mode
-}
-
-void lcd_printer_connected() {
-	printer_connected = true;
-}
-
-void lcd_ping() { //chceck if printer is connected to monitoring when in farm mode
-	if (farm_mode) {
-		bool empty = is_buffer_empty();
-		if ((millis() - PingTime) * 0.001 > (empty ? PING_TIME : PING_TIME_LONG)) { //if commands buffer is empty use shorter time period
-																							  //if there are comamnds in buffer, some long gcodes can delay execution of ping command
-																							  //therefore longer period is used
-			printer_connected = false;
-			//lcd_ping_allert(); //acustic signals
-		}
-		else {
-			lcd_printer_connected();
-		}
-	}
-}
-void lcd_ignore_click(bool b)
-{
-  ignore_click = b;
-  wait_for_unclick = false;
-}
-
-void lcd_finishstatus() {
-  int len = strlen(lcd_status_message);
-  if (len > 0) {
-    while (len < LCD_WIDTH) {
-      lcd_status_message[len++] = ' ';
-    }
-  }
-  lcd_status_message[LCD_WIDTH] = '\0';
-#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
-#if PROGRESS_MSG_EXPIRE > 0
-  messageTick =
-#endif
-    progressBarTick = millis();
-#endif
-  lcdDrawUpdate = 2;
-
-#ifdef FILAMENT_LCD_DISPLAY
-  message_millis = millis();  //get status message to show up for a while
-#endif
-}
-void lcd_setstatus(const char* message)
-{
-  if (lcd_status_message_level > 0)
-    return;
-  strncpy(lcd_status_message, message, LCD_WIDTH);
-  lcd_finishstatus();
-}
-void lcd_setstatuspgm(const char* message)
-{
-  if (lcd_status_message_level > 0)
-    return;
-  strncpy_P(lcd_status_message, message, LCD_WIDTH);
-  lcd_finishstatus();
-}
-void lcd_setalertstatuspgm(const char* message)
-{
-  lcd_setstatuspgm(message);
-  lcd_status_message_level = 1;
-#ifdef ULTIPANEL
-  lcd_return_to_status();
-#endif//ULTIPANEL
-}
-void lcd_reset_alert_level()
-{
-  lcd_status_message_level = 0;
-}
-
-#ifdef DOGLCD
-void lcd_setcontrast(uint8_t value)
-{
-  lcd_contrast = value & 63;
-  u8g.setContrast(lcd_contrast);
-}
-#endif
-
-#ifdef ULTIPANEL
-/* Warning: This function is called from interrupt context */
-void lcd_buttons_update()
-{
-#ifdef NEWPANEL
-  uint8_t newbutton = 0;
-  if (READ(BTN_EN1) == 0)  newbutton |= EN_A;
-  if (READ(BTN_EN2) == 0)  newbutton |= EN_B;
-#if BTN_ENC > 0
-  if (lcd_update_enabled == true) { //if we are in non-modal mode, long press can be used and short press triggers with button release
-	  if (READ(BTN_ENC) == 0) { //button is pressed	  
-		  lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
-		  if (millis() > button_blanking_time) {
-			  button_blanking_time = millis() + BUTTON_BLANKING_TIME;
-			  if (button_pressed == false && long_press_active == false) {
-				  if (currentMenu != lcd_move_z) {
-					  savedMenu = currentMenu;
-					  savedEncoderPosition = encoderPosition;
-				  }
-				  long_press_timer = millis();
-				  button_pressed = true;
-			  }
-			  else {
-				  if (millis() - long_press_timer > LONG_PRESS_TIME) { //long press activated
-
-					  long_press_active = true;
-					  move_menu_scale = 1.0;
-					  lcd_goto_menu(lcd_move_z);
-				  }
-			  }
-		  }
-	  }
-	  else { //button not pressed
-		  if (button_pressed) { //button was released
-			  button_blanking_time = millis() + BUTTON_BLANKING_TIME;
-
-			  if (long_press_active == false) { //button released before long press gets activated
-				  if (currentMenu == lcd_move_z) {
-					  //return to previously active menu and previous encoder position
-					  lcd_goto_menu(savedMenu, savedEncoderPosition);					  
-				  }
-				  else {
-					  newbutton |= EN_C;
-				  }
-			  }
-			  else if (currentMenu == lcd_move_z) lcd_quick_feedback(); 
-			  //button_pressed is set back to false via lcd_quick_feedback function
-		  }
-		  else {			  
-			  long_press_active = false;
-		  }
-	  }
-  }
-  else { //we are in modal mode
-	  if (READ(BTN_ENC) == 0)
-		  newbutton |= EN_C; 
-  }
-  
-#endif  
-  buttons = newbutton;
-#ifdef LCD_HAS_SLOW_BUTTONS
-  buttons |= slow_buttons;
-#endif
-#ifdef REPRAPWORLD_KEYPAD
-  // for the reprapworld_keypad
-  uint8_t newbutton_reprapworld_keypad = 0;
-  WRITE(SHIFT_LD, LOW);
-  WRITE(SHIFT_LD, HIGH);
-  for (int8_t i = 0; i < 8; i++) {
-    newbutton_reprapworld_keypad = newbutton_reprapworld_keypad >> 1;
-    if (READ(SHIFT_OUT))
-      newbutton_reprapworld_keypad |= (1 << 7);
-    WRITE(SHIFT_CLK, HIGH);
-    WRITE(SHIFT_CLK, LOW);
-  }
-  buttons_reprapworld_keypad = ~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
-#endif
-#else   //read it from the shift register
-  uint8_t newbutton = 0;
-  WRITE(SHIFT_LD, LOW);
-  WRITE(SHIFT_LD, HIGH);
-  unsigned char tmp_buttons = 0;
-  for (int8_t i = 0; i < 8; i++)
-  {
-    newbutton = newbutton >> 1;
-    if (READ(SHIFT_OUT))
-      newbutton |= (1 << 7);
-    WRITE(SHIFT_CLK, HIGH);
-    WRITE(SHIFT_CLK, LOW);
-  }
-  buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0
-#endif//!NEWPANEL
-
-  //manage encoder rotation
-  uint8_t enc = 0;
-  if (buttons & EN_A) enc |= B01;
-  if (buttons & EN_B) enc |= B10;
-  if (enc != lastEncoderBits)
-  {
-    switch (enc)
-    {
-      case encrot0:
-        if (lastEncoderBits == encrot3)
-          encoderDiff++;
-        else if (lastEncoderBits == encrot1)
-          encoderDiff--;
-        break;
-      case encrot1:
-        if (lastEncoderBits == encrot0)
-          encoderDiff++;
-        else if (lastEncoderBits == encrot2)
-          encoderDiff--;
-        break;
-      case encrot2:
-        if (lastEncoderBits == encrot1)
-          encoderDiff++;
-        else if (lastEncoderBits == encrot3)
-          encoderDiff--;
-        break;
-      case encrot3:
-        if (lastEncoderBits == encrot2)
-          encoderDiff++;
-        else if (lastEncoderBits == encrot0)
-          encoderDiff--;
-        break;
-    }
-  }
-  lastEncoderBits = enc;
-}
-
-bool lcd_detected(void)
-{
-#if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
-  return lcd.LcdDetected() == 1;
-#else
-  return true;
-#endif
-}
-
-void lcd_buzz(long duration, uint16_t freq)
-{
-#ifdef LCD_USE_I2C_BUZZER
-  lcd.buzz(duration, freq);
-#endif
-}
-
-bool lcd_clicked()
-{
-	bool clicked = LCD_CLICKED;
-	if(clicked) button_pressed = false;
-    return clicked;
-}
-#endif//ULTIPANEL
-
-/********************************/
-/** Float conversion utilities **/
-/********************************/
-//  convert float to string with +123.4 format
-char conv[8];
-char *ftostr3(const float &x)
-{
-  return itostr3((int)x);
-}
-
-char *itostr2(const uint8_t &x)
-{
-  //sprintf(conv,"%5.1f",x);
-  int xx = x;
-  conv[0] = (xx / 10) % 10 + '0';
-  conv[1] = (xx) % 10 + '0';
-  conv[2] = 0;
-  return conv;
-}
-
-// Convert float to string with 123.4 format, dropping sign
-char *ftostr31(const float &x)
-{
-  int xx = x * 10;
-  conv[0] = (xx >= 0) ? '+' : '-';
-  xx = abs(xx);
-  conv[1] = (xx / 1000) % 10 + '0';
-  conv[2] = (xx / 100) % 10 + '0';
-  conv[3] = (xx / 10) % 10 + '0';
-  conv[4] = '.';
-  conv[5] = (xx) % 10 + '0';
-  conv[6] = 0;
-  return conv;
-}
-
-// Convert float to string with 123.4 format
-char *ftostr31ns(const float &x)
-{
-  int xx = x * 10;
-  //conv[0]=(xx>=0)?'+':'-';
-  xx = abs(xx);
-  conv[0] = (xx / 1000) % 10 + '0';
-  conv[1] = (xx / 100) % 10 + '0';
-  conv[2] = (xx / 10) % 10 + '0';
-  conv[3] = '.';
-  conv[4] = (xx) % 10 + '0';
-  conv[5] = 0;
-  return conv;
-}
-
-char *ftostr32(const float &x)
-{
-  long xx = x * 100;
-  if (xx >= 0)
-    conv[0] = (xx / 10000) % 10 + '0';
-  else
-    conv[0] = '-';
-  xx = abs(xx);
-  conv[1] = (xx / 1000) % 10 + '0';
-  conv[2] = (xx / 100) % 10 + '0';
-  conv[3] = '.';
-  conv[4] = (xx / 10) % 10 + '0';
-  conv[5] = (xx) % 10 + '0';
-  conv[6] = 0;
-  return conv;
-}
-
-//// Convert float to rj string with 123.45 format
-char *ftostr32ns(const float &x) {
-	long xx = abs(x);
-	conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
-	conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
-	conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : '0';
-	conv[3] = '.';
-	conv[4] = (xx / 10) % 10 + '0';
-	conv[5] = xx % 10 + '0';
-	return conv;
-}
-
-
-// Convert float to string with 1.234 format
-char *ftostr43(const float &x)
-{
-  long xx = x * 1000;
-  if (xx >= 0)
-    conv[0] = (xx / 1000) % 10 + '0';
-  else
-    conv[0] = '-';
-  xx = abs(xx);
-  conv[1] = '.';
-  conv[2] = (xx / 100) % 10 + '0';
-  conv[3] = (xx / 10) % 10 + '0';
-  conv[4] = (xx) % 10 + '0';
-  conv[5] = 0;
-  return conv;
-}
-
-//Float to string with 1.23 format
-char *ftostr12ns(const float &x)
-{
-  long xx = x * 100;
-
-  xx = abs(xx);
-  conv[0] = (xx / 100) % 10 + '0';
-  conv[1] = '.';
-  conv[2] = (xx / 10) % 10 + '0';
-  conv[3] = (xx) % 10 + '0';
-  conv[4] = 0;
-  return conv;
-}
-
-//Float to string with 1.234 format
-char *ftostr13ns(const float &x)
-{
-    long xx = x * 1000;
-    if (xx >= 0)
-        conv[0] = ' ';
-    else
-        conv[0] = '-';
-    xx = abs(xx);
-    conv[1] = (xx / 1000) % 10 + '0';
-    conv[2] = '.';
-    conv[3] = (xx / 100) % 10 + '0';
-    conv[4] = (xx / 10) % 10 + '0';
-    conv[5] = (xx) % 10 + '0';
-    conv[6] = 0;
-    return conv;
-}
-
-//  convert float to space-padded string with -_23.4_ format
-char *ftostr32sp(const float &x) {
-  long xx = abs(x * 100);
-  uint8_t dig;
-
-  if (x < 0) { // negative val = -_0
-    conv[0] = '-';
-    dig = (xx / 1000) % 10;
-    conv[1] = dig ? '0' + dig : ' ';
-  }
-  else { // positive val = __0
-    dig = (xx / 10000) % 10;
-    if (dig) {
-      conv[0] = '0' + dig;
-      conv[1] = '0' + (xx / 1000) % 10;
-    }
-    else {
-      conv[0] = ' ';
-      dig = (xx / 1000) % 10;
-      conv[1] = dig ? '0' + dig : ' ';
-    }
-  }
-
-  conv[2] = '0' + (xx / 100) % 10; // lsd always
-
-  dig = xx % 10;
-  if (dig) { // 2 decimal places
-    conv[5] = '0' + dig;
-    conv[4] = '0' + (xx / 10) % 10;
-    conv[3] = '.';
-  }
-  else { // 1 or 0 decimal place
-    dig = (xx / 10) % 10;
-    if (dig) {
-      conv[4] = '0' + dig;
-      conv[3] = '.';
-    }
-    else {
-      conv[3] = conv[4] = ' ';
-    }
-    conv[5] = ' ';
-  }
-  conv[6] = '\0';
-  return conv;
-}
-
-char *itostr31(const int &xx)
-{
-  conv[0] = (xx >= 0) ? '+' : '-';
-  conv[1] = (xx / 1000) % 10 + '0';
-  conv[2] = (xx / 100) % 10 + '0';
-  conv[3] = (xx / 10) % 10 + '0';
-  conv[4] = '.';
-  conv[5] = (xx) % 10 + '0';
-  conv[6] = 0;
-  return conv;
-}
-
-// Convert int to rj string with 123 or -12 format
-char *itostr3(const int &x)
-{
-  int xx = x;
-  if (xx < 0) {
-    conv[0] = '-';
-    xx = -xx;
-  } else if (xx >= 100)
-    conv[0] = (xx / 100) % 10 + '0';
-  else
-    conv[0] = ' ';
-  if (xx >= 10)
-    conv[1] = (xx / 10) % 10 + '0';
-  else
-    conv[1] = ' ';
-  conv[2] = (xx) % 10 + '0';
-  conv[3] = 0;
-  return conv;
-}
-
-// Convert int to lj string with 123 format
-char *itostr3left(const int &xx)
-{
-  if (xx >= 100)
-  {
-    conv[0] = (xx / 100) % 10 + '0';
-    conv[1] = (xx / 10) % 10 + '0';
-    conv[2] = (xx) % 10 + '0';
-    conv[3] = 0;
-  }
-  else if (xx >= 10)
-  {
-    conv[0] = (xx / 10) % 10 + '0';
-    conv[1] = (xx) % 10 + '0';
-    conv[2] = 0;
-  }
-  else
-  {
-    conv[0] = (xx) % 10 + '0';
-    conv[1] = 0;
-  }
-  return conv;
-}
-
-// Convert int to rj string with 1234 format
-char *itostr4(const int &xx) {
-  conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
-  conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
-  conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
-  conv[3] = xx % 10 + '0';
-  conv[4] = 0;
-  return conv;
-}
-
-// Convert float to rj string with 12345 format
-char *ftostr5(const float &x) {
-  long xx = abs(x);
-  conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
-  conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
-  conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
-  conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
-  conv[4] = xx % 10 + '0';
-  conv[5] = 0;
-  return conv;
-}
-
-// Convert float to string with +1234.5 format
-char *ftostr51(const float &x)
-{
-  long xx = x * 10;
-  conv[0] = (xx >= 0) ? '+' : '-';
-  xx = abs(xx);
-  conv[1] = (xx / 10000) % 10 + '0';
-  conv[2] = (xx / 1000) % 10 + '0';
-  conv[3] = (xx / 100) % 10 + '0';
-  conv[4] = (xx / 10) % 10 + '0';
-  conv[5] = '.';
-  conv[6] = (xx) % 10 + '0';
-  conv[7] = 0;
-  return conv;
-}
-
-// Convert float to string with +123.45 format
-char *ftostr52(const float &x)
-{
-  long xx = x * 100;
-  conv[0] = (xx >= 0) ? '+' : '-';
-  xx = abs(xx);
-  conv[1] = (xx / 10000) % 10 + '0';
-  conv[2] = (xx / 1000) % 10 + '0';
-  conv[3] = (xx / 100) % 10 + '0';
-  conv[4] = '.';
-  conv[5] = (xx / 10) % 10 + '0';
-  conv[6] = (xx) % 10 + '0';
-  conv[7] = 0;
-  return conv;
-}
-
-/*
-// Callback for after editing PID i value
-// grab the PID i value out of the temp variable; scale it; then update the PID driver
-void copy_and_scalePID_i()
-{
-#ifdef PIDTEMP
-  Ki = scalePID_i(raw_Ki);
-  updatePID();
-#endif
-}
-
-// Callback for after editing PID d value
-// grab the PID d value out of the temp variable; scale it; then update the PID driver
-void copy_and_scalePID_d()
-{
-#ifdef PIDTEMP
-  Kd = scalePID_d(raw_Kd);
-  updatePID();
-#endif
-}
-*/
-
+#ifndef SNMM
+	//MENU_ITEM(function, MSG_RESET_CALIBRATE_E, lcd_extr_cal_reset);
+#endif
+  }
+  
+  END_MENU();
+}
+/*
+void lcd_mylang_top(int hlaska) {
+    lcd.setCursor(0,0);
+    lcd.print("                    ");
+    lcd.setCursor(0,0);
+    lcd_printPGM(MSG_ALL[hlaska-1][LANGUAGE_SELECT]);   
+}
+
+void lcd_mylang_drawmenu(int cursor) {
+  int first = 0;
+  if (cursor>2) first = cursor-2;
+  if (cursor==LANG_NUM) first = LANG_NUM-3;
+  lcd.setCursor(0, 1);
+  lcd.print("                    ");
+  lcd.setCursor(1, 1);
+  lcd_printPGM(MSG_ALL[first][LANGUAGE_NAME]);
+
+  lcd.setCursor(0, 2);
+  lcd.print("                    ");
+  lcd.setCursor(1, 2);
+  lcd_printPGM(MSG_ALL[first+1][LANGUAGE_NAME]);
+
+  lcd.setCursor(0, 3);
+  lcd.print("                    ");
+  lcd.setCursor(1, 3);
+  lcd_printPGM(MSG_ALL[first+2][LANGUAGE_NAME]);  
+  
+  if (cursor==1) lcd.setCursor(0, 1);
+  if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
+  if (cursor==LANG_NUM) lcd.setCursor(0, 3);
+
+  lcd.print(">");
+  
+  if (cursor<LANG_NUM-1) {
+    lcd.setCursor(19,3);
+    lcd.print("\x01");
+  }
+  if (cursor>2) {
+    lcd.setCursor(19,1);
+    lcd.print("^");
+  }  
+}
+*/
+
+void lcd_mylang_drawmenu(int cursor) {
+  int first = 0;
+  if (cursor>3) first = cursor-3;
+  if (cursor==LANG_NUM && LANG_NUM>4) first = LANG_NUM-4;
+  if (cursor==LANG_NUM && LANG_NUM==4) first = LANG_NUM-4;
+
+
+  lcd.setCursor(0, 0);
+  lcd.print("                    ");
+  lcd.setCursor(1, 0);
+  lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+0));
+
+  lcd.setCursor(0, 1);
+  lcd.print("                    ");
+  lcd.setCursor(1, 1);
+  lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+1));
+
+  lcd.setCursor(0, 2);
+  lcd.print("                    ");
+
+  if (LANG_NUM > 2){
+    lcd.setCursor(1, 2);
+    lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+2));
+  }
+
+  lcd.setCursor(0, 3);
+  lcd.print("                    ");
+  if (LANG_NUM>3) {
+    lcd.setCursor(1, 3);
+    lcd_printPGM(MSG_LANGUAGE_NAME_EXPLICIT(first+3));
+  }
+  
+  if (cursor==1) lcd.setCursor(0, 0);
+  if (cursor==2) lcd.setCursor(0, 1);
+  if (cursor>2) lcd.setCursor(0, 2);
+  if (cursor==LANG_NUM && LANG_NUM>3) lcd.setCursor(0, 3);
+
+  lcd.print(">");
+  
+  if (cursor<LANG_NUM-1 && LANG_NUM>4) {
+    lcd.setCursor(19,3);
+    lcd.print("\x01");
+  }
+  if (cursor>3 && LANG_NUM>4) {
+    lcd.setCursor(19,0);
+    lcd.print("^");
+  }  
+}
+ 
+void lcd_mylang_drawcursor(int cursor) {
+  
+  if (cursor==1) lcd.setCursor(0, 1);
+  if (cursor>1 && cursor<LANG_NUM) lcd.setCursor(0, 2);
+  if (cursor==LANG_NUM) lcd.setCursor(0, 3);
+
+  lcd.print(">");
+  
+}  
+
+void lcd_mylang() {
+  int enc_dif = 0;
+  int cursor_pos = 1;
+  lang_selected=255;
+  int hlaska=1;
+  int counter=0;
+  lcd_set_custom_characters_arrows();
+
+  lcd_implementation_clear();
+
+  //lcd_mylang_top(hlaska);
+
+  lcd_mylang_drawmenu(cursor_pos);
+
+
+  enc_dif = encoderDiff;
+
+  while ( (lang_selected == 255)  ) {
+
+    manage_heater();
+    manage_inactivity(true);
+
+    if ( abs((enc_dif - encoderDiff)) > 4 ) {
+
+      //if ( (abs(enc_dif - encoderDiff)) > 1 ) {
+        if (enc_dif > encoderDiff ) {
+          cursor_pos --;
+        }
+
+        if (enc_dif < encoderDiff  ) {
+          cursor_pos ++;
+        }
+
+        if (cursor_pos > LANG_NUM) {
+          cursor_pos = LANG_NUM;
+        }
+
+        if (cursor_pos < 1) {
+          cursor_pos = 1;
+        }
+
+        lcd_mylang_drawmenu(cursor_pos);
+        enc_dif = encoderDiff;
+        delay(100);
+      //}
+
+    } else delay(20);
+
+
+    if (lcd_clicked()) {
+
+      lcd_set_lang(cursor_pos-1);
+      delay(500);
+
+    }
+    /*
+    if (++counter == 80) {
+      hlaska++;
+      if(hlaska>LANG_NUM) hlaska=1;
+      lcd_mylang_top(hlaska);
+      lcd_mylang_drawcursor(cursor_pos);
+      counter=0;
+    }
+    */
+  };
+
+  if(MYSERIAL.available() > 1){
+    lang_selected = 0;
+    firstrun = 0;
+  }
+
+  lcd_set_custom_characters_degree();
+  lcd_implementation_clear();
+  lcd_return_to_status();
+
+}
+
+void bowden_menu() {
+	int enc_dif = encoderDiff;
+	int cursor_pos = 0;
+	lcd_implementation_clear();
+	lcd.setCursor(0, 0);
+	lcd.print(">");
+	for (int i = 0; i < 4; i++) {
+		lcd.setCursor(1, i);
+		lcd.print("Extruder ");
+		lcd.print(i);
+		lcd.print(": ");
+		EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
+		lcd.print(bowden_length[i] - 48);
+
+	}
+	enc_dif = encoderDiff;
+
+	while (1) {
+
+		manage_heater();
+		manage_inactivity(true);
+
+		if (abs((enc_dif - encoderDiff)) > 2) {
+
+			if (enc_dif > encoderDiff) {
+					cursor_pos--;
+				}
+
+				if (enc_dif < encoderDiff) {
+					cursor_pos++;
+				}
+
+				if (cursor_pos > 3) {
+					cursor_pos = 3;
+				}
+
+				if (cursor_pos < 0) {
+					cursor_pos = 0;
+				}
+
+				lcd.setCursor(0, 0);
+				lcd.print(" ");
+				lcd.setCursor(0, 1);
+				lcd.print(" ");
+				lcd.setCursor(0, 2);
+				lcd.print(" ");
+				lcd.setCursor(0, 3);
+				lcd.print(" ");
+				lcd.setCursor(0, cursor_pos);
+				lcd.print(">");
+
+				enc_dif = encoderDiff;
+				delay(100);
+		}
+
+		if (lcd_clicked()) {
+			while (lcd_clicked());
+			delay(10);
+			while (lcd_clicked());
+
+			lcd_implementation_clear();
+			while (1) {
+
+				manage_heater();
+				manage_inactivity(true);
+
+				lcd.setCursor(1, 1);
+				lcd.print("Extruder ");
+				lcd.print(cursor_pos);
+				lcd.print(": ");
+				lcd.setCursor(13, 1);
+				lcd.print(bowden_length[cursor_pos] - 48);
+
+				if (abs((enc_dif - encoderDiff)) > 2) {
+						if (enc_dif > encoderDiff) {
+							bowden_length[cursor_pos]--;
+							lcd.setCursor(13, 1);
+							lcd.print(bowden_length[cursor_pos] - 48);
+							enc_dif = encoderDiff;
+						}
+
+						if (enc_dif < encoderDiff) {
+							bowden_length[cursor_pos]++;
+							lcd.setCursor(13, 1);
+							lcd.print(bowden_length[cursor_pos] - 48);
+							enc_dif = encoderDiff;
+						}
+				}
+				delay(100);
+				if (lcd_clicked()) {
+					while (lcd_clicked());
+					delay(10);
+					while (lcd_clicked());
+					EEPROM_save_B(EEPROM_BOWDEN_LENGTH + cursor_pos * 2, &bowden_length[cursor_pos]);
+					if (lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Continue with another bowden?"))) {
+						lcd_update_enable(true);
+						lcd_implementation_clear();
+						enc_dif = encoderDiff;
+						lcd.setCursor(0, cursor_pos);
+						lcd.print(">");
+						for (int i = 0; i < 4; i++) {
+							lcd.setCursor(1, i);
+							lcd.print("Extruder ");
+							lcd.print(i);
+							lcd.print(": ");
+							EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
+							lcd.print(bowden_length[i] - 48);
+
+						}
+						break;
+					}
+					else return;
+				}
+			}
+		}
+	}
+}
+
+static char snmm_stop_print_menu() { //menu for choosing which filaments will be unloaded in stop print
+	lcd_implementation_clear();
+	lcd_print_at_PGM(0,0,MSG_UNLOAD_FILAMENT); lcd.print(":");
+	lcd.setCursor(0, 1); lcd.print(">");
+	lcd_print_at_PGM(1,1,MSG_ALL);
+	lcd_print_at_PGM(1,2,MSG_USED);
+	lcd_print_at_PGM(1,3,MSG_CURRENT);
+	char cursor_pos = 1;
+	int enc_dif = 0;
+
+	while (1) {
+		manage_heater();
+		manage_inactivity(true);
+		if (abs((enc_dif - encoderDiff)) > 4) {
+
+			if ((abs(enc_dif - encoderDiff)) > 1) {
+				if (enc_dif > encoderDiff) cursor_pos--;
+				if (enc_dif < encoderDiff) cursor_pos++;
+				if (cursor_pos > 3) cursor_pos = 3;
+				if (cursor_pos < 1) cursor_pos = 1;
+
+				lcd.setCursor(0, 1);
+				lcd.print(" ");
+				lcd.setCursor(0, 2);
+				lcd.print(" ");
+				lcd.setCursor(0, 3);
+				lcd.print(" ");
+				lcd.setCursor(0, cursor_pos);
+				lcd.print(">");
+				enc_dif = encoderDiff;
+				delay(100);
+			}
+		}
+		if (lcd_clicked()) {
+			while (lcd_clicked());
+			delay(10);
+			while (lcd_clicked());
+			return(cursor_pos - 1);
+		}
+	}
+	
+}
+
+char choose_extruder_menu() {
+
+	int items_no = 4;
+	int first = 0;
+	int enc_dif = 0;
+	char cursor_pos = 1;
+	
+	enc_dif = encoderDiff;
+	lcd_implementation_clear();
+	
+	lcd_printPGM(MSG_CHOOSE_EXTRUDER);
+	lcd.setCursor(0, 1);
+	lcd.print(">");
+	for (int i = 0; i < 3; i++) {
+		lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
+	}
+
+	while (1) {
+
+		for (int i = 0; i < 3; i++) {
+			lcd.setCursor(2 + strlen_P(MSG_EXTRUDER), i+1);
+			lcd.print(first + i + 1);
+		}
+
+		manage_heater();
+		manage_inactivity(true);
+
+		if (abs((enc_dif - encoderDiff)) > 4) {
+
+			if ((abs(enc_dif - encoderDiff)) > 1) {
+				if (enc_dif > encoderDiff) {
+					cursor_pos--;
+				}
+
+				if (enc_dif < encoderDiff) {
+					cursor_pos++;
+				}
+
+				if (cursor_pos > 3) {
+					cursor_pos = 3;
+					if (first < items_no - 3) {
+						first++;
+						lcd_implementation_clear();
+						lcd_printPGM(MSG_CHOOSE_EXTRUDER);
+						for (int i = 0; i < 3; i++) {
+							lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
+						}
+					}
+				}
+
+				if (cursor_pos < 1) {
+					cursor_pos = 1;
+					if (first > 0) {
+						first--;
+						lcd_implementation_clear();
+						lcd_printPGM(MSG_CHOOSE_EXTRUDER);
+						for (int i = 0; i < 3; i++) {
+							lcd_print_at_PGM(1, i + 1, MSG_EXTRUDER);
+						}
+					}
+				}
+				lcd.setCursor(0, 1);
+				lcd.print(" ");
+				lcd.setCursor(0, 2);
+				lcd.print(" ");
+				lcd.setCursor(0, 3);
+				lcd.print(" ");
+				lcd.setCursor(0, cursor_pos);
+				lcd.print(">");
+				enc_dif = encoderDiff;
+				delay(100);
+			}
+
+		}
+
+		if (lcd_clicked()) {
+			lcd_update(2);
+			while (lcd_clicked());
+			delay(10);
+			while (lcd_clicked());
+			return(cursor_pos + first - 1);
+			
+		}
+
+	}
+
+}
+
+
+char reset_menu() {
+#ifdef SNMM
+	int items_no = 5;
+#else
+	int items_no = 4;
+#endif
+	static int first = 0;
+	int enc_dif = 0;
+	char cursor_pos = 0;
+	const char *item [items_no];
+	
+	item[0] = "Language";
+	item[1] = "Statistics";
+	item[2] = "Shipping prep";
+	item[3] = "All Data";
+#ifdef SNMM
+	item[4] = "Bowden length";
+#endif // SNMM
+
+	enc_dif = encoderDiff;
+	lcd_implementation_clear();
+	lcd.setCursor(0, 0);
+	lcd.print(">");
+
+	while (1) {		
+
+		for (int i = 0; i < 4; i++) {
+			lcd.setCursor(1, i);
+			lcd.print(item[first + i]);
+		}
+
+		manage_heater();
+		manage_inactivity(true);
+
+		if (abs((enc_dif - encoderDiff)) > 4) {
+
+			if ((abs(enc_dif - encoderDiff)) > 1) {
+				if (enc_dif > encoderDiff) {
+					cursor_pos--;
+				}
+
+				if (enc_dif < encoderDiff) {
+					cursor_pos++;
+				}
+
+				if (cursor_pos > 3) {
+					cursor_pos = 3;
+					if (first < items_no - 4) {
+						first++;
+						lcd_implementation_clear();
+					}
+				}
+
+				if (cursor_pos < 0) {
+					cursor_pos = 0;
+					if (first > 0) {
+						first--;
+						lcd_implementation_clear();
+					}
+				}
+				lcd.setCursor(0, 0);
+				lcd.print(" ");
+				lcd.setCursor(0, 1);
+				lcd.print(" ");
+				lcd.setCursor(0, 2);
+				lcd.print(" ");
+				lcd.setCursor(0, 3);
+				lcd.print(" ");
+				lcd.setCursor(0, cursor_pos);
+				lcd.print(">");
+				enc_dif = encoderDiff;
+				delay(100);
+			}
+
+		}
+
+		if (lcd_clicked()) {
+			while (lcd_clicked());
+			delay(10);
+			while (lcd_clicked());
+			return(cursor_pos + first);
+		}
+
+	}
+
+}
+
+static void lcd_disable_farm_mode() {
+	int8_t disable = lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Disable farm mode?"), true, false); //allow timeouting, default no
+	if (disable) {
+		enquecommand_P(PSTR("G99"));
+		lcd_return_to_status();
+	}
+	else {
+		lcd_goto_menu(lcd_settings_menu);
+	}
+	lcd_update_enable(true);
+	lcdDrawUpdate = 2;
+	
+}
+
+static void lcd_ping_allert() {
+	if ((abs(millis() - allert_timer)*0.001) > PING_ALLERT_PERIOD) {
+		allert_timer = millis();
+		SET_OUTPUT(BEEPER);
+		for (int i = 0; i < 2; i++) {
+			WRITE(BEEPER, HIGH);
+			delay(50);
+			WRITE(BEEPER, LOW);
+			delay(100);
+		}
+	}
+
+};
+
+
+#ifdef SNMM
+
+static void extr_mov(float shift, float feed_rate) { //move extruder no matter what the current heater temperature is
+	set_extrude_min_temp(.0);
+	current_position[E_AXIS] += shift;
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
+	set_extrude_min_temp(EXTRUDE_MINTEMP);
+}
+
+
+void change_extr(int extr) { //switches multiplexer for extruders
+	st_synchronize();
+	delay(100);
+
+	disable_e0();
+	disable_e1();
+	disable_e2();
+
+#ifdef SNMM
+	snmm_extruder = extr;
+#endif
+
+	pinMode(E_MUX0_PIN, OUTPUT);
+	pinMode(E_MUX1_PIN, OUTPUT);
+	pinMode(E_MUX2_PIN, OUTPUT);
+
+	switch (extr) {
+	case 1:
+		WRITE(E_MUX0_PIN, HIGH);
+		WRITE(E_MUX1_PIN, LOW);
+		WRITE(E_MUX2_PIN, LOW);
+		
+		break;
+	case 2:
+		WRITE(E_MUX0_PIN, LOW);
+		WRITE(E_MUX1_PIN, HIGH);
+		WRITE(E_MUX2_PIN, LOW);
+		
+		break;
+	case 3:
+		WRITE(E_MUX0_PIN, HIGH);
+		WRITE(E_MUX1_PIN, HIGH);
+		WRITE(E_MUX2_PIN, LOW);
+		
+		break;
+	default:
+		WRITE(E_MUX0_PIN, LOW);
+		WRITE(E_MUX1_PIN, LOW);
+		WRITE(E_MUX2_PIN, LOW);
+		
+		break;
+	}
+	delay(100);
+}
+
+static int get_ext_nr() { //reads multiplexer input pins and return current extruder number (counted from 0)
+	return(4 * READ(E_MUX2_PIN) + 2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
+}
+
+
+void display_loading() {
+	switch (snmm_extruder) {
+	case 1: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T1); break;
+	case 2: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T2); break;
+	case 3: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T3); break;
+	default: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T0); break;
+	}
+}
+
+static void extr_adj(int extruder) //loading filament for SNMM
+{
+	bool correct;
+	max_feedrate[E_AXIS] =80;
+	//max_feedrate[E_AXIS] = 50;
+	START:
+	lcd_implementation_clear();
+	lcd.setCursor(0, 0); 
+	switch (extruder) {
+	case 1: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T1); break;
+	case 2: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T2); break;
+	case 3: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T3); break;
+	default: lcd_display_message_fullscreen_P(MSG_FILAMENT_LOADING_T0); break;   
+	}
+			
+	do{
+		extr_mov(0.001,1000);
+		delay_keep_alive(2);
+	} while (!lcd_clicked());
+	//delay_keep_alive(500);
+
+	st_synchronize();
+	//correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
+	//if (!correct) goto	START;
+	//extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
+	//extr_mov(BOWDEN_LENGTH/2.f, 500);
+	extr_mov(bowden_length[extruder], 500);
+	lcd_implementation_clear();
+	lcd.setCursor(0, 0); lcd_printPGM(MSG_LOADING_FILAMENT);
+	if(strlen(MSG_LOADING_FILAMENT)>18) lcd.setCursor(0, 1);
+	else lcd.print(" ");
+	lcd.print(snmm_extruder + 1);
+	lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
+	st_synchronize();
+	max_feedrate[E_AXIS] = 50;
+	lcd_update_enable(true);
+	lcd_return_to_status();
+	lcdDrawUpdate = 2;
+}
+
+
+void extr_unload() { //unloads filament
+	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+	int8_t SilentMode;
+
+	if (degHotend0() > EXTRUDE_MINTEMP) {
+		lcd_implementation_clear();
+		lcd_display_message_fullscreen_P(PSTR(""));
+		max_feedrate[E_AXIS] = 50;
+		lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
+		lcd.print(" ");
+		lcd.print(snmm_extruder + 1);
+		lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
+		if (current_position[Z_AXIS] < 15) {
+			current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
+		}
+		
+		current_position[E_AXIS] += 10; //extrusion
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
+		digipot_current(2, E_MOTOR_HIGH_CURRENT);
+		if (current_temperature[0] < 230) { //PLA & all other filaments
+			current_position[E_AXIS] += 5.4;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
+			current_position[E_AXIS] += 3.2;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			current_position[E_AXIS] += 3;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
+		}
+		else { //ABS
+			current_position[E_AXIS] += 3.1;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
+			current_position[E_AXIS] += 3.1;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
+			current_position[E_AXIS] += 4;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
+			/*current_position[X_AXIS] += 23; //delay
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
+			current_position[X_AXIS] -= 23; //delay
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
+			delay_keep_alive(4700);
+		}
+	
+		max_feedrate[E_AXIS] = 80;
+		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
+		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
+		st_synchronize();
+		//digipot_init();
+		if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
+		else digipot_current(2, tmp_motor_loud[2]);
+		lcd_update_enable(true);
+		lcd_return_to_status();
+		max_feedrate[E_AXIS] = 50;
+	}
+	else {
+
+		lcd_implementation_clear();
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_ERROR);
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_PREHEAT_NOZZLE);
+
+		delay(2000);
+		lcd_implementation_clear();
+	}
+
+	lcd_return_to_status();
+
+
+
+
+}
+
+//wrapper functions for loading filament
+static void extr_adj_0(){
+	change_extr(0);
+	extr_adj(0);
+}
+static void extr_adj_1() {
+	change_extr(1);
+	extr_adj(1);
+}
+static void extr_adj_2() {
+	change_extr(2);
+	extr_adj(2);
+}
+static void extr_adj_3() {
+	change_extr(3);
+	extr_adj(3);
+}
+
+static void load_all() {
+	for (int i = 0; i < 4; i++) {
+		change_extr(i);
+		extr_adj(i);
+	}
+}
+
+//wrapper functions for changing extruders
+static void extr_change_0() {
+	change_extr(0);
+	lcd_return_to_status();
+}
+static void extr_change_1() {
+	change_extr(1);
+	lcd_return_to_status();
+}
+static void extr_change_2() {
+	change_extr(2);
+	lcd_return_to_status();
+}
+static void extr_change_3() {
+	change_extr(3);
+	lcd_return_to_status();
+}
+
+//wrapper functions for unloading filament
+void extr_unload_all() {
+	if (degHotend0() > EXTRUDE_MINTEMP) {
+		for (int i = 0; i < 4; i++) {
+			change_extr(i);
+			extr_unload();
+		}
+	}
+	else {
+		lcd_implementation_clear();
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_ERROR);
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_PREHEAT_NOZZLE);
+		delay(2000);
+		lcd_implementation_clear();
+		lcd_return_to_status();
+	}
+}
+
+//unloading just used filament (for snmm)
+
+void extr_unload_used() {
+	if (degHotend0() > EXTRUDE_MINTEMP) {
+		for (int i = 0; i < 4; i++) {
+			if (snmm_filaments_used & (1 << i)) {
+				change_extr(i);
+				extr_unload();
+			}
+		}
+		snmm_filaments_used = 0;
+	}
+	else {
+		lcd_implementation_clear();
+		lcd.setCursor(0, 0);
+		lcd_printPGM(MSG_ERROR);
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_PREHEAT_NOZZLE);
+		delay(2000);
+		lcd_implementation_clear();
+		lcd_return_to_status();
+	}
+}
+
+
+
+static void extr_unload_0() {
+	change_extr(0);
+	extr_unload();
+}
+static void extr_unload_1() {
+	change_extr(1);
+	extr_unload();
+}
+static void extr_unload_2() {
+	change_extr(2);
+	extr_unload();
+}
+static void extr_unload_3() {
+	change_extr(3);
+	extr_unload();
+}
+
+
+static void fil_load_menu()
+{
+	START_MENU();
+	MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+	MENU_ITEM(function, MSG_LOAD_ALL, load_all);
+	MENU_ITEM(function, MSG_LOAD_FILAMENT_1, extr_adj_0);
+	MENU_ITEM(function, MSG_LOAD_FILAMENT_2, extr_adj_1);
+	MENU_ITEM(function, MSG_LOAD_FILAMENT_3, extr_adj_2);
+	MENU_ITEM(function, MSG_LOAD_FILAMENT_4, extr_adj_3);
+	
+	END_MENU();
+}
+
+static void fil_unload_menu()
+{
+	START_MENU();
+	MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+	MENU_ITEM(function, MSG_UNLOAD_ALL, extr_unload_all);
+	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_1, extr_unload_0);
+	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_2, extr_unload_1);
+	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_3, extr_unload_2);
+	MENU_ITEM(function, MSG_UNLOAD_FILAMENT_4, extr_unload_3);
+
+	END_MENU();
+}
+
+static void change_extr_menu(){
+	START_MENU();
+	MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+	MENU_ITEM(function, MSG_EXTRUDER_1, extr_change_0);
+	MENU_ITEM(function, MSG_EXTRUDER_2, extr_change_1);
+	MENU_ITEM(function, MSG_EXTRUDER_3, extr_change_2);
+	MENU_ITEM(function, MSG_EXTRUDER_4, extr_change_3);
+
+	END_MENU();
+}
+
+#endif
+
+static void lcd_farm_no()
+{
+	char step = 0;
+	int enc_dif = 0;
+	int _farmno = farm_no;
+	int _ret = 0;
+	lcd_implementation_clear();
+
+	lcd.setCursor(0, 0);
+	lcd.print("Farm no");
+
+	do
+	{
+
+		if (abs((enc_dif - encoderDiff)) > 2) {
+			if (enc_dif > encoderDiff) {
+				switch (step) {
+				case(0): if (_farmno >= 100) _farmno -= 100; break;
+				case(1): if (_farmno % 100 >= 10) _farmno -= 10; break;
+				case(2): if (_farmno % 10 >= 1) _farmno--; break;
+				default: break;
+				}
+			}
+
+			if (enc_dif < encoderDiff) {
+				switch (step) {
+				case(0): if (_farmno < 900) _farmno += 100; break;
+				case(1): if (_farmno % 100 < 90) _farmno += 10; break;
+				case(2): if (_farmno % 10 <= 8)_farmno++; break;
+				default: break;
+				}
+			}
+			enc_dif = 0;
+			encoderDiff = 0;
+		}
+
+		lcd.setCursor(0, 2);
+		if (_farmno < 100) lcd.print("0");
+		if (_farmno < 10) lcd.print("0");
+		lcd.print(_farmno);
+		lcd.print("  ");
+		lcd.setCursor(0, 3);
+		lcd.print("   ");
+
+
+		lcd.setCursor(step, 3);
+		lcd.print("^");
+		delay(100);
+
+		if (lcd_clicked())
+		{
+			delay(200);
+			step++;
+			if(step == 3) {
+				_ret = 1;
+				farm_no = _farmno;
+				EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
+				prusa_statistics(20);
+				lcd_return_to_status();
+			}
+		}
+
+		manage_heater();
+	} while (_ret == 0);
+
+}
+
+
+unsigned char lcd_choose_color() {
+	//function returns index of currently chosen item
+	//following part can be modified from 2 to 255 items:
+	//-----------------------------------------------------
+	unsigned char items_no = 2;
+	const char *item[items_no];
+	item[0] = "Black";
+	item[1] = "Orange";
+	//-----------------------------------------------------
+	unsigned char active_rows;
+	static int first = 0;
+	int enc_dif = 0;
+	unsigned char cursor_pos = 1;
+	enc_dif = encoderDiff;
+	lcd_implementation_clear();
+	lcd.setCursor(0, 1);
+	lcd.print(">");
+
+	active_rows = items_no < 3 ? items_no : 3;
+
+	while (1) {
+		lcd_print_at_PGM(0, 0, PSTR("Choose color:"));
+		for (int i = 0; i < active_rows; i++) {
+			lcd.setCursor(1, i+1);
+			lcd.print(item[first + i]);
+		}
+
+		manage_heater();
+		manage_inactivity(true);
+
+		if (abs((enc_dif - encoderDiff)) > 4) {
+
+			if ((abs(enc_dif - encoderDiff)) > 1) {
+				if (enc_dif > encoderDiff) {
+					cursor_pos--;
+				}
+
+				if (enc_dif < encoderDiff) {
+					cursor_pos++;
+				}
+
+				if (cursor_pos > active_rows) {
+					cursor_pos = active_rows;
+					if (first < items_no - active_rows) {
+						first++;
+						lcd_implementation_clear();
+					}
+				}
+
+				if (cursor_pos < 1) {
+					cursor_pos = 1;
+					if (first > 0) {
+						first--;
+						lcd_implementation_clear();
+					}
+				}
+				lcd.setCursor(0, 1);
+				lcd.print(" ");
+				lcd.setCursor(0, 2);
+				lcd.print(" ");
+				lcd.setCursor(0, 3);
+				lcd.print(" ");
+				lcd.setCursor(0, cursor_pos);
+				lcd.print(">");
+				enc_dif = encoderDiff;
+				delay(100);
+			}
+
+		}
+
+		if (lcd_clicked()) {
+			while (lcd_clicked());
+			delay(10);
+			while (lcd_clicked());
+			return(cursor_pos + first - 1);
+		}
+
+	}
+
+}
+
+void lcd_confirm_print()
+{
+	uint8_t filament_type;
+	int enc_dif = 0;
+	int cursor_pos = 1;
+	int _ret = 0;
+	int _t = 0;
+
+
+	lcd_implementation_clear();
+
+	lcd.setCursor(0, 0);
+	lcd.print("Print ok ?");
+
+	do
+	{
+
+		if (abs((enc_dif - encoderDiff)) > 2) {
+			if (enc_dif > encoderDiff) {
+				cursor_pos--;
+			}
+
+			if (enc_dif < encoderDiff) {
+				cursor_pos++;
+			}
+		}
+
+		if (cursor_pos > 2) { cursor_pos = 2; }
+		if (cursor_pos < 1) { cursor_pos = 1; }
+
+		lcd.setCursor(0, 2); lcd.print("          ");
+		lcd.setCursor(0, 3); lcd.print("          ");
+		lcd.setCursor(2, 2);
+		lcd_printPGM(MSG_YES);
+		lcd.setCursor(2, 3);
+		lcd_printPGM(MSG_NO);
+		lcd.setCursor(0, 1 + cursor_pos);
+		lcd.print(">");
+		delay(100);
+
+		_t = _t + 1;
+		if (_t>100)
+		{
+			prusa_statistics(99);
+			_t = 0;
+		}
+		if (lcd_clicked())
+		{
+			if (cursor_pos == 1)
+			{
+				_ret = 1;
+				filament_type = lcd_choose_color();
+				prusa_statistics(4, filament_type);
+			}
+			if (cursor_pos == 2)
+			{
+				_ret = 2;
+				filament_type = lcd_choose_color();
+				prusa_statistics(5, filament_type);
+			}
+		}
+
+		manage_heater();
+		manage_inactivity();
+
+	} while (_ret == 0);
+
+}
+
+
+
+static void lcd_main_menu()
+{
+
+  SDscrool = 0;
+  START_MENU();
+
+  // Majkl superawesome menu
+
+  
+ MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
+   /* if (farm_mode && !IS_SD_PRINTING )
+    {
+    
+        int tempScrool = 0;
+        if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
+            //delay(100);
+            return; // nothing to do (so don't thrash the SD card)
+        uint16_t fileCnt = card.getnrfilenames();
+        
+        card.getWorkDirName();
+        if (card.filename[0] == '/')
+        {
+#if SDCARDDETECT == -1
+            MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
+#endif
+        } else {
+            MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
+        }
+        
+        for (uint16_t i = 0; i < fileCnt; i++)
+        {
+            if (_menuItemNr == _lineNr)
+            {
+#ifndef SDCARD_RATHERRECENTFIRST
+                card.getfilename(i);
+#else
+                card.getfilename(fileCnt - 1 - i);
+#endif
+                if (card.filenameIsDir)
+                {
+                    MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
+                } else {
+                    
+                    MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
+                    
+                    
+                    
+                    
+                }
+            } else {
+                MENU_ITEM_DUMMY();
+            }
+        }
+        
+        MENU_ITEM(back, PSTR("- - - - - - - - -"), lcd_status_screen);
+    
+        
+    }*/
+    
+  if ( ( IS_SD_PRINTING || is_usb_printing ) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag)
+  {
+	MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);//8
+  }
+
+
+  if ( moves_planned() || IS_SD_PRINTING || is_usb_printing )
+  {
+    MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
+  } else 
+  {
+    MENU_ITEM(submenu, MSG_PREHEAT, lcd_preheat_menu);
+  }
+
+#ifdef SDSUPPORT
+  if (card.cardOK)
+  {
+    if (card.isFileOpen())
+    {
+		if (mesh_bed_leveling_flag == false && homing_flag == false) {
+			if (card.sdprinting)
+			{
+				MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
+			}
+			else
+			{
+				MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
+			}
+			MENU_ITEM(submenu, MSG_STOP_PRINT, lcd_sdcard_stop);
+		}
+	}
+	else
+	{
+		if (!is_usb_printing)
+		{
+			//if (farm_mode) MENU_ITEM(submenu, MSG_FARM_CARD_MENU, lcd_farm_sdcard_menu);
+			/*else*/ MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
+		}
+#if SDCARDDETECT < 1
+      MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21"));  // SD-card changed by user
+#endif
+    }
+  } else 
+  {
+    MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
+#if SDCARDDETECT < 1
+    MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
+#endif
+  }
+#endif
+
+
+  if (IS_SD_PRINTING || is_usb_printing)
+  {
+	  if (farm_mode)
+	  {
+		  MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no);
+	  }
+  } 
+  else 
+  {
+	#ifndef SNMM
+    MENU_ITEM(function, MSG_LOAD_FILAMENT, lcd_LoadFilament);
+    MENU_ITEM(function, MSG_UNLOAD_FILAMENT, lcd_unLoadFilament);
+	#endif
+	#ifdef SNMM
+	MENU_ITEM(submenu, MSG_LOAD_FILAMENT, fil_load_menu);
+	MENU_ITEM(submenu, MSG_UNLOAD_FILAMENT, fil_unload_menu);
+	MENU_ITEM(submenu, MSG_CHANGE_EXTR, change_extr_menu);
+	#endif
+	MENU_ITEM(submenu, MSG_SETTINGS, lcd_settings_menu);
+    if(!isPrintPaused) MENU_ITEM(submenu, MSG_MENU_CALIBRATION, lcd_calibration_menu);
+  }
+
+  if (!is_usb_printing)
+  {
+	  MENU_ITEM(submenu, MSG_STATISTICS, lcd_menu_statistics);
+  }
+  MENU_ITEM(submenu, MSG_SUPPORT, lcd_support_menu);
+  END_MENU();
+
+}
+
+void stack_error() {
+	SET_OUTPUT(BEEPER);
+	WRITE(BEEPER, HIGH);
+	delay(1000);
+	WRITE(BEEPER, LOW);
+	lcd_display_message_fullscreen_P(MSG_STACK_ERROR);
+	//err_triggered = 1;
+	 while (1) delay_keep_alive(1000);
+}
+
+#ifdef SDSUPPORT
+static void lcd_autostart_sd()
+{
+  card.lastnr = 0;
+  card.setroot();
+  card.checkautostart(true);
+}
+#endif
+
+
+
+static void lcd_silent_mode_set_tune() {
+  SilentModeMenu = !SilentModeMenu;
+  eeprom_update_byte((unsigned char*)EEPROM_SILENT, SilentModeMenu);
+  digipot_init();
+  lcd_goto_menu(lcd_tune_menu, 9);
+}
+
+static void lcd_colorprint_change() {
+	
+	enquecommand_P(PSTR("M600"));
+	
+	custom_message = true;
+	custom_message_type = 2; //just print status message
+	lcd_setstatuspgm(MSG_FINISHING_MOVEMENTS);
+	lcd_return_to_status();
+	lcdDrawUpdate = 3;
+}
+
+static void lcd_tune_menu()
+{
+  EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu));
+
+  
+
+  START_MENU();
+  MENU_ITEM(back, MSG_MAIN, lcd_main_menu); //1
+  MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);//2
+
+  MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3
+  MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 10);//4
+
+  MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);//5
+  MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);//6
+#ifdef FILAMENTCHANGEENABLE
+  MENU_ITEM(function, MSG_FILAMENTCHANGE, lcd_colorprint_change);//7
+#endif
+  
+  if (SilentModeMenu == 0) {
+    MENU_ITEM(function, MSG_SILENT_MODE_OFF, lcd_silent_mode_set_tune);
+  } else {
+    MENU_ITEM(function, MSG_SILENT_MODE_ON, lcd_silent_mode_set_tune);
+  }
+  END_MENU();
+}
+
+
+
+
+static void lcd_move_menu_01mm()
+{
+  move_menu_scale = 0.1;
+  lcd_move_menu_axis();
+}
+
+static void lcd_control_temperature_menu()
+{
+#ifdef PIDTEMP
+  // set up temp variables - undo the default scaling
+//  raw_Ki = unscalePID_i(Ki);
+//  raw_Kd = unscalePID_d(Kd);
+#endif
+
+  START_MENU();
+  MENU_ITEM(back, MSG_SETTINGS, lcd_settings_menu);
+#if TEMP_SENSOR_0 != 0
+  MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);
+#endif
+#if TEMP_SENSOR_1 != 0
+  MENU_ITEM_EDIT(int3, MSG_NOZZLE1, &target_temperature[1], 0, HEATER_1_MAXTEMP - 10);
+#endif
+#if TEMP_SENSOR_2 != 0
+  MENU_ITEM_EDIT(int3, MSG_NOZZLE2, &target_temperature[2], 0, HEATER_2_MAXTEMP - 10);
+#endif
+#if TEMP_SENSOR_BED != 0
+  MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 3);
+#endif
+  MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
+#if defined AUTOTEMP && (TEMP_SENSOR_0 != 0)
+  MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
+  MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 10);
+  MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 10);
+  MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0);
+#endif
+
+  END_MENU();
+}
+
+
+#if SDCARDDETECT == -1
+static void lcd_sd_refresh()
+{
+  card.initsd();
+  currentMenuViewOffset = 0;
+}
+#endif
+static void lcd_sd_updir()
+{
+  SDscrool = 0;
+  card.updir();
+  currentMenuViewOffset = 0;
+}
+
+
+void lcd_sdcard_stop()
+{
+	
+	lcd.setCursor(0, 0);
+	lcd_printPGM(MSG_STOP_PRINT);
+	lcd.setCursor(2, 2);
+	lcd_printPGM(MSG_NO);
+	lcd.setCursor(2, 3);
+	lcd_printPGM(MSG_YES);
+	lcd.setCursor(0, 2); lcd.print(" ");
+	lcd.setCursor(0, 3); lcd.print(" ");
+
+	if ((int32_t)encoderPosition > 2) { encoderPosition = 2; }
+	if ((int32_t)encoderPosition < 1) { encoderPosition = 1; }
+	
+	lcd.setCursor(0, 1 + encoderPosition);
+	lcd.print(">");
+
+	if (lcd_clicked())
+	{
+		if ((int32_t)encoderPosition == 1)
+		{
+			lcd_return_to_status();
+		}
+		if ((int32_t)encoderPosition == 2)
+		{
+		cancel_heatup = true;
+        #ifdef MESH_BED_LEVELING
+        mbl.active = false;
+        #endif
+        // Stop the stoppers, update the position from the stoppers.
+		if (mesh_bed_leveling_flag == false && homing_flag == false) {
+			planner_abort_hard();
+			// Because the planner_abort_hard() initialized current_position[Z] from the stepper,
+			// Z baystep is no more applied. Reset it.
+			babystep_reset();
+		}
+        // Clean the input command queue.
+        cmdqueue_reset();
+				lcd_setstatuspgm(MSG_PRINT_ABORTED);
+				lcd_update(2);
+				card.sdprinting = false;
+				card.closefile();
+
+				stoptime = millis();
+				unsigned long t = (stoptime - starttime - pause_time) / 1000; //time in s
+				pause_time = 0;
+				save_statistics(total_filament_used, t);
+
+				lcd_return_to_status();
+				lcd_ignore_click(true);
+				lcd_commands_type = LCD_COMMAND_STOP_PRINT;
+            
+                // Turn off the print fan
+                SET_OUTPUT(FAN_PIN);
+                WRITE(FAN_PIN, 0);
+                fanSpeed=0;
+		}
+	}
+
+}
+/*
+void getFileDescription(char *name, char *description) {
+	// get file description, ie the REAL filenam, ie the second line
+	card.openFile(name, true);
+	int i = 0;
+	// skip the first line (which is the version line)
+	while (true) {
+		uint16_t readByte = card.get();
+		if (readByte == '\n') {
+			break;
+		}
+	}
+	// read the second line (which is the description line)
+	while (true) {
+		uint16_t readByte = card.get();
+		if (i == 0) {
+			// skip the first '^'
+			readByte = card.get();
+		}
+		description[i] = readByte;
+		i++;
+		if (readByte == '\n') {
+			break;
+		}
+	}
+	card.closefile();
+	description[i-1] = 0;
+}
+*/
+
+void lcd_sdcard_menu()
+{	
+  uint8_t sdSort;
+  int tempScrool = 0;
+  if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
+    //delay(100);
+  return; // nothing to do (so don't thrash the SD card)
+  uint16_t fileCnt = card.getnrfilenames();
+    
+  START_MENU();
+  MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+#ifdef SDCARD_SORT_ALPHA
+  EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort));
+  switch(sdSort){
+    case SD_SORT_TIME: MENU_ITEM(function, MSG_SORT_TIME, lcd_sort_type_set); break;
+    case SD_SORT_ALPHA: MENU_ITEM(function, MSG_SORT_ALPHA, lcd_sort_type_set); break;
+    default: MENU_ITEM(function, MSG_SORT_NONE, lcd_sort_type_set);
+  }
+#endif // SDCARD_SORT_ALPHA
+  card.getWorkDirName();
+  if (card.filename[0] == '/')
+  {
+#if SDCARDDETECT == -1
+    MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
+#endif
+  } else {
+    MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
+  }
+
+  for (uint16_t i = 0; i < fileCnt; i++)
+  {
+    if (_menuItemNr == _lineNr)
+    {
+		const uint16_t nr = (sdSort == SD_SORT_NONE) ? (fileCnt - 1 - i) : i;
+		 /* #ifdef SDCARD_RATHERRECENTFIRST
+			#ifndef SDCARD_SORT_ALPHA
+				fileCnt - 1 -
+			#endif
+		  #endif
+		i;*/
+		#ifdef SDCARD_SORT_ALPHA
+		if (sdSort == SD_SORT_NONE) card.getfilename(nr);
+		else card.getfilename_sorted(nr);
+		#else
+		  card.getfilename(nr);
+		#endif
+
+		if (card.filenameIsDir)
+			MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
+		else
+			MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
+    } else {
+      MENU_ITEM_DUMMY();
+    }
+  }
+  END_MENU();
+}
+
+//char description [10] [31];
+
+/*void get_description() {
+	uint16_t fileCnt = card.getnrfilenames();
+	for (uint16_t i = 0; i < fileCnt; i++)
+	{
+		card.getfilename(fileCnt - 1 - i);
+		getFileDescription(card.filename, description[i]);
+	}
+}*/
+
+/*void lcd_farm_sdcard_menu() 
+{
+	static int i = 0;
+	if (i == 0) {
+		get_description();
+		i++;
+	}
+		//int j;
+		//char description[31];
+		int tempScrool = 0;
+		if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
+			//delay(100);
+			return; // nothing to do (so don't thrash the SD card)
+		uint16_t fileCnt = card.getnrfilenames();
+
+		START_MENU();
+		MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
+		card.getWorkDirName();
+		if (card.filename[0] == '/')
+		{
+#if SDCARDDETECT == -1
+			MENU_ITEM(function, MSG_REFRESH, lcd_sd_refresh);
+#endif
+		}
+		else {
+			MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir);
+		}
+
+
+
+		for (uint16_t i = 0; i < fileCnt; i++)
+		{
+			if (_menuItemNr == _lineNr)
+			{
+#ifndef SDCARD_RATHERRECENTFIRST
+				card.getfilename(i);
+#else
+				card.getfilename(fileCnt - 1 - i);
+#endif
+				if (card.filenameIsDir)
+				{
+					MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
+				}
+				else {
+					
+					MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, description[i]);
+				}
+			}
+			else {
+				MENU_ITEM_DUMMY();
+			}
+		}
+		END_MENU();
+
+}*/
+
+#define menu_edit_type(_type, _name, _strFunc, scale) \
+  void menu_edit_ ## _name () \
+  { \
+    if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
+    if ((int32_t)encoderPosition > menuData.editMenuParentState.maxEditValue) encoderPosition = menuData.editMenuParentState.maxEditValue; \
+    if (lcdDrawUpdate) \
+      lcd_implementation_drawedit(menuData.editMenuParentState.editLabel, _strFunc(((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale)); \
+    if (LCD_CLICKED) \
+    { \
+      *((_type*)menuData.editMenuParentState.editValue) = ((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale; \
+      lcd_goto_menu(menuData.editMenuParentState.prevMenu, menuData.editMenuParentState.prevEncoderPosition, true, false); \
+    } \
+  } \
+  static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \
+  { \
+    menuData.editMenuParentState.prevMenu = currentMenu; \
+    menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
+    \
+    lcdDrawUpdate = 2; \
+    menuData.editMenuParentState.editLabel = pstr; \
+    menuData.editMenuParentState.editValue = ptr; \
+    menuData.editMenuParentState.minEditValue = minValue * scale; \
+    menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
+    lcd_goto_menu(menu_edit_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
+    \
+  }\
+  /*
+  void menu_edit_callback_ ## _name () { \
+    menu_edit_ ## _name (); \
+    if (LCD_CLICKED) (*callbackFunc)(); \
+  } \
+  static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \
+  { \
+    menuData.editMenuParentState.prevMenu = currentMenu; \
+    menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \
+    \
+    lcdDrawUpdate = 2; \
+    lcd_goto_menu(menu_edit_callback_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \
+    \
+    menuData.editMenuParentState.editLabel = pstr; \
+    menuData.editMenuParentState.editValue = ptr; \
+    menuData.editMenuParentState.minEditValue = minValue * scale; \
+    menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \
+    callbackFunc = callback;\
+  }
+  */
+
+menu_edit_type(int, int3, itostr3, 1)
+menu_edit_type(float, float3, ftostr3, 1)
+menu_edit_type(float, float32, ftostr32, 100)
+menu_edit_type(float, float43, ftostr43, 1000)
+menu_edit_type(float, float5, ftostr5, 0.01)
+menu_edit_type(float, float51, ftostr51, 10)
+menu_edit_type(float, float52, ftostr52, 100)
+menu_edit_type(unsigned long, long5, ftostr5, 0.01)
+
+static void lcd_selftest()
+{
+	int _progress = 0;
+	bool _result = false;
+
+	lcd_implementation_clear();
+	lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_START);
+	delay(2000);
+
+
+	_result = lcd_selftest_fan_dialog(1);
+
+	if (_result)
+	{
+		_result = lcd_selftest_fan_dialog(2);
+	}
+
+	if (_result)
+	{
+		_progress = lcd_selftest_screen(0, _progress, 3, true, 2000);
+		_result = lcd_selfcheck_endstops();
+	}
+		
+	if (_result)
+	{
+		_progress = lcd_selftest_screen(1, _progress, 3, true, 1000);
+		_result = lcd_selfcheck_check_heater(false);
+	}
+
+	if (_result)
+	{
+		current_position[Z_AXIS] += 15;									//move Z axis higher to avoid false triggering of Z end stop in case that we are very low - just above heatbed
+		_progress = lcd_selftest_screen(2, _progress, 3, true, 2000);
+		_result = lcd_selfcheck_axis(X_AXIS, X_MAX_POS);
+		
+	}
+
+	if (_result)
+	{
+		_progress = lcd_selftest_screen(2, _progress, 3, true, 0);
+		_result = lcd_selfcheck_pulleys(X_AXIS);
+	}
+
+
+	if (_result)
+	{
+		_progress = lcd_selftest_screen(3, _progress, 3, true, 1500);
+		_result = lcd_selfcheck_axis(Y_AXIS, Y_MAX_POS);
+	}
+
+	if (_result)
+	{
+		_progress = lcd_selftest_screen(3, _progress, 3, true, 0);
+		_result = lcd_selfcheck_pulleys(Y_AXIS);
+	}
+
+
+	if (_result)
+	{
+		current_position[X_AXIS] = current_position[X_AXIS] - 3;
+		current_position[Y_AXIS] = current_position[Y_AXIS] - 14;
+		_progress = lcd_selftest_screen(4, _progress, 3, true, 1500);
+		_result = lcd_selfcheck_axis(2, Z_MAX_POS);
+		enquecommand_P(PSTR("G28 W"));
+		enquecommand_P(PSTR("G1 Z15"));
+	}
+
+	if (_result)
+	{		
+		_progress = lcd_selftest_screen(5, _progress, 3, true, 2000);
+		_result = lcd_selfcheck_check_heater(true);
+	}
+	if (_result)
+	{
+		_progress = lcd_selftest_screen(6, _progress, 3, true, 5000);
+	}
+	else
+	{
+		_progress = lcd_selftest_screen(7, _progress, 3, true, 5000);
+	}
+	lcd_reset_alert_level();
+	enquecommand_P(PSTR("M84"));
+	lcd_implementation_clear();
+	lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
+
+	if (_result)
+	{
+		LCD_ALERTMESSAGERPGM(MSG_SELFTEST_OK);				
+	}
+	else
+	{
+		LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
+	}
+}
+
+static bool lcd_selfcheck_axis(int _axis, int _travel)
+{
+	bool _stepdone = false;
+	bool _stepresult = false;
+	int _progress = 0;
+	int _travel_done = 0;
+	int _err_endstop = 0;
+	int _lcd_refresh = 0;
+	_travel = _travel + (_travel / 10);
+
+	do {
+		current_position[_axis] = current_position[_axis] - 1;
+
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
+		st_synchronize();
+
+		if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
+		{
+			if (_axis == 0)
+			{
+				_stepresult = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? true : false;
+				_err_endstop = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? 1 : 2;
+				
+			}
+			if (_axis == 1)
+			{
+				_stepresult = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? true : false;
+				_err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 2;
+				
+			}
+			if (_axis == 2)
+			{
+				_stepresult = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? true : false;
+				_err_endstop = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? 0 : 1;
+				/*disable_x();
+				disable_y();
+				disable_z();*/
+			}
+			_stepdone = true;
+		}
+
+		if (_lcd_refresh < 6)
+		{
+			_lcd_refresh++;
+		}
+		else
+		{
+			_progress = lcd_selftest_screen(2 + _axis, _progress, 3, false, 0);
+			_lcd_refresh = 0;
+		}
+
+		manage_heater();
+		manage_inactivity(true);
+
+		//delay(100);
+		(_travel_done <= _travel) ? _travel_done++ : _stepdone = true;
+
+	} while (!_stepdone);
+
+
+	//current_position[_axis] = current_position[_axis] + 15;
+	//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
+
+	if (!_stepresult)
+	{
+		const char *_error_1;
+		const char *_error_2;
+
+		if (_axis == X_AXIS) _error_1 = "X";
+		if (_axis == Y_AXIS) _error_1 = "Y";
+		if (_axis == Z_AXIS) _error_1 = "Z";
+
+		if (_err_endstop == 0) _error_2 = "X";
+		if (_err_endstop == 1) _error_2 = "Y";
+		if (_err_endstop == 2) _error_2 = "Z";
+
+		if (_travel_done >= _travel)
+		{
+			lcd_selftest_error(5, _error_1, _error_2);
+		}
+		else
+		{
+			lcd_selftest_error(4, _error_1, _error_2);
+		}
+	}
+
+	return _stepresult;
+}
+
+static bool lcd_selfcheck_pulleys(int axis)
+{
+	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
+	float current_position_init;
+	float move;
+	bool endstop_triggered = false;
+	bool result = true;
+	int i;
+	unsigned long timeout_counter;
+	refresh_cmd_timeout();
+	manage_inactivity(true);
+
+	if (axis == 0) move = 50; //X_AXIS 
+		else move = 50; //Y_AXIS
+
+		current_position_init = current_position[axis];
+				
+		current_position[axis] += 2;
+		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
+		for (i = 0; i < 5; i++) {
+			refresh_cmd_timeout();
+			current_position[axis] = current_position[axis] + move;
+			digipot_current(0, 850); //set motor current higher
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 200, active_extruder);
+			st_synchronize();
+			if (SilentModeMenu == 1) digipot_current(0, tmp_motor[0]); //set back to normal operation currents
+			else digipot_current(0, tmp_motor_loud[0]); //set motor current back			
+			current_position[axis] = current_position[axis] - move;
+			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 50, active_extruder);
+			st_synchronize();
+			if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) || (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1)) {
+				lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
+				return(false);
+			}
+		}
+		timeout_counter = millis() + 2500;
+		endstop_triggered = false;
+		manage_inactivity(true);
+		while (!endstop_triggered) {
+			if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) || (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1)) {
+				endstop_triggered = true;
+				if (current_position_init - 1 <= current_position[axis] && current_position_init + 1 >= current_position[axis]) {
+					current_position[axis] += 15;
+					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
+					st_synchronize();
+					return(true);
+				}
+				else {
+					lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
+					return(false);
+				}
+			}
+			else {
+				current_position[axis] -= 1;
+				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder);
+				st_synchronize();
+				if (millis() > timeout_counter) {
+					lcd_selftest_error(8, (axis == 0) ? "X" : "Y", "");
+					return(false);
+				}
+			}
+		}		
+}
+
+static bool lcd_selfcheck_endstops()
+{
+	bool _result = true;
+
+	if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
+	{
+		current_position[0] = (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? current_position[0] = current_position[0] + 10 : current_position[0];
+		current_position[1] = (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? current_position[1] = current_position[1] + 10 : current_position[1];
+		current_position[2] = (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? current_position[2] = current_position[2] + 10 : current_position[2];
+	}
+	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder);
+	delay(500);
+
+	if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1 || READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1 || READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)
+	{
+		_result = false;
+		char _error[4] = "";
+		if (READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) strcat(_error, "X");
+		if (READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) strcat(_error, "Y");
+		if (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) strcat(_error, "Z");
+		lcd_selftest_error(3, _error, "");
+	}
+	manage_heater();
+	manage_inactivity(true);
+	return _result;
+}
+
+static bool lcd_selfcheck_check_heater(bool _isbed)
+{
+	int _counter = 0;
+	int _progress = 0;
+	bool _stepresult = false;
+	bool _docycle = true;
+
+	int _checked_snapshot = (_isbed) ? degBed() : degHotend(0);
+	int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed();
+	int _cycles = (_isbed) ? 180 : 60; //~ 90s / 30s
+
+	target_temperature[0] = (_isbed) ? 0 : 200;
+	target_temperature_bed = (_isbed) ? 100 : 0;
+	manage_heater();
+	manage_inactivity(true);
+
+	do {
+		_counter++;
+		_docycle = (_counter < _cycles) ? true : false;
+
+		manage_heater();
+		manage_inactivity(true);
+		_progress = (_isbed) ? lcd_selftest_screen(5, _progress, 2, false, 400) : lcd_selftest_screen(1, _progress, 2, false, 400);
+		/*if (_isbed) {
+			MYSERIAL.print("Bed temp:");
+			MYSERIAL.println(degBed());
+		}
+		else {
+			MYSERIAL.print("Hotend temp:");
+			MYSERIAL.println(degHotend(0));
+		}*/
+
+	} while (_docycle); 
+
+	target_temperature[0] = 0;
+	target_temperature_bed = 0;
+	manage_heater();
+
+	int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot;
+	int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot;
+	/*
+	MYSERIAL.println("");
+	MYSERIAL.print("Checked result:");
+	MYSERIAL.println(_checked_result);
+	MYSERIAL.print("Opposite result:");
+	MYSERIAL.println(_opposite_result);
+	*/
+	if (_opposite_result < ((_isbed) ? 10 : 3))
+	{
+		if (_checked_result >= ((_isbed) ? 3 : 10))
+		{
+			_stepresult = true;
+		}
+		else
+		{
+			lcd_selftest_error(1, "", "");
+		}
+	}
+	else
+	{
+		lcd_selftest_error(2, "", "");
+	}
+
+	manage_heater();
+	manage_inactivity(true);
+	return _stepresult;
+
+}
+static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2)
+{
+	lcd_implementation_quick_feedback();
+
+	target_temperature[0] = 0;
+	target_temperature_bed = 0;
+	manage_heater();
+	manage_inactivity();
+
+	lcd_implementation_clear();
+
+	lcd.setCursor(0, 0);
+	lcd_printPGM(MSG_SELFTEST_ERROR);
+	lcd.setCursor(0, 1);
+	lcd_printPGM(MSG_SELFTEST_PLEASECHECK);
+
+	switch (_error_no)
+	{
+	case 1:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_HEATERTHERMISTOR);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_NOTCONNECTED);
+		break;
+	case 2:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_BEDHEATER);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
+		break;
+	case 3:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_ENDSTOPS);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
+		lcd.setCursor(17, 3);
+		lcd.print(_error_1);
+		break;
+	case 4:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_MOTOR);
+		lcd.setCursor(18, 2);
+		lcd.print(_error_1);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_ENDSTOP);
+		lcd.setCursor(18, 3);
+		lcd.print(_error_2);
+		break;
+	case 5:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_ENDSTOP_NOTHIT);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_MOTOR);
+		lcd.setCursor(18, 3);
+		lcd.print(_error_1);
+		break;
+	case 6:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
+		lcd.setCursor(18, 3);
+		lcd.print(_error_1);
+		break;
+	case 7:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_WIRINGERROR);
+		lcd.setCursor(18, 3);
+		lcd.print(_error_1);
+		break;
+	case 8:
+		lcd.setCursor(0, 2);
+		lcd_printPGM(MSG_LOOSE_PULLEY);
+		lcd.setCursor(0, 3);
+		lcd_printPGM(MSG_SELFTEST_MOTOR);
+		lcd.setCursor(18, 3);
+		lcd.print(_error_1);
+		break;
+	}
+
+	delay(1000);
+	lcd_implementation_quick_feedback();
+
+	do {
+		delay(100);
+		manage_heater();
+		manage_inactivity();
+	} while (!lcd_clicked());
+
+	LCD_ALERTMESSAGERPGM(MSG_SELFTEST_FAILED);
+	lcd_return_to_status();
+
+}
+
+static bool lcd_selftest_fan_dialog(int _fan)
+{
+	bool _result = false;
+	int _errno = 0;
+	lcd_implementation_clear();
+
+	lcd.setCursor(0, 0); lcd_printPGM(MSG_SELFTEST_FAN);
+	switch (_fan)
+	{
+	case 1:
+		// extruder cooling fan
+		lcd.setCursor(0, 1); lcd_printPGM(MSG_SELFTEST_EXTRUDER_FAN);
+		SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
+		WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
+		_errno = 7;
+		break;
+	case 2:
+		// object cooling fan
+		lcd.setCursor(0, 1); lcd_printPGM(MSG_SELFTEST_COOLING_FAN);
+		SET_OUTPUT(FAN_PIN);
+		analogWrite(FAN_PIN, 255);
+		_errno = 6;
+		break;
+	}
+	delay(500);
+
+	lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
+	lcd.setCursor(0, 3); lcd.print(">");
+	lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
+
+	int8_t enc_dif = 0;
+	do
+	{
+		switch (_fan)
+		{
+		case 1:
+			// extruder cooling fan
+			SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
+			WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
+			break;
+		case 2:
+			// object cooling fan
+			SET_OUTPUT(FAN_PIN);
+			analogWrite(FAN_PIN, 255);
+			break;
+		}
+		if (abs((enc_dif - encoderDiff)) > 2) {
+			if (enc_dif > encoderDiff) {
+				_result = true;
+				lcd.setCursor(0, 2); lcd.print(">");
+				lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
+				lcd.setCursor(0, 3); lcd.print(" ");
+				lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
+			}
+
+			if (enc_dif < encoderDiff) {
+				_result = false;
+				lcd.setCursor(0, 2); lcd.print(" ");
+				lcd.setCursor(1, 2); lcd_printPGM(MSG_SELFTEST_FAN_YES);
+				lcd.setCursor(0, 3); lcd.print(">");
+				lcd.setCursor(1, 3); lcd_printPGM(MSG_SELFTEST_FAN_NO);
+			}
+			enc_dif = 0;
+			encoderDiff = 0;
+		}
+
+
+		manage_heater();
+		delay(100);
+
+	} while (!lcd_clicked());
+
+	SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
+	WRITE(EXTRUDER_0_AUTO_FAN_PIN, 0);
+	SET_OUTPUT(FAN_PIN);
+	analogWrite(FAN_PIN, 0);
+
+	fanSpeed = 0;
+	manage_heater();
+
+	if (!_result)
+	{
+		const char *_err;
+		lcd_selftest_error(_errno, _err, _err);
+	}
+
+	return _result;
+
+}
+
+static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bool _clear, int _delay)
+{
+	
+	lcd_next_update_millis = millis() + (LCD_UPDATE_INTERVAL * 10000);
+
+	int _step_block = 0;
+	const char *_indicator = (_progress > _progress_scale) ? "-" : "|";
+
+	if (_clear) lcd_implementation_clear();
+
+
+	lcd.setCursor(0, 0);
+
+	if (_step == -1) lcd_printPGM(MSG_SELFTEST_START);
+	if (_step == 0) lcd_printPGM(MSG_SELFTEST_CHECK_ENDSTOPS);
+	if (_step == 1) lcd_printPGM(MSG_SELFTEST_CHECK_HOTEND);
+	if (_step == 2) lcd_printPGM(MSG_SELFTEST_CHECK_X);
+	if (_step == 3) lcd_printPGM(MSG_SELFTEST_CHECK_Y);
+	if (_step == 4) lcd_printPGM(MSG_SELFTEST_CHECK_Z);
+	if (_step == 5) lcd_printPGM(MSG_SELFTEST_CHECK_BED);
+	if (_step == 6) lcd_printPGM(MSG_SELFTEST_CHECK_ALLCORRECT);
+	if (_step == 7) lcd_printPGM(MSG_SELFTEST_FAILED);
+
+	lcd.setCursor(0, 1);
+	lcd.print("--------------------");
+
+	if (_step != 7)
+	{
+		_step_block = 1;
+		lcd_selftest_screen_step(3, 9, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Hotend", _indicator);
+
+		_step_block = 2;
+		lcd_selftest_screen_step(2, 2, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "X", _indicator);
+
+		_step_block = 3;
+		lcd_selftest_screen_step(2, 8, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Y", _indicator);
+
+		_step_block = 4;
+		lcd_selftest_screen_step(2, 14, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Z", _indicator);
+
+		_step_block = 5;
+		lcd_selftest_screen_step(3, 0, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Bed", _indicator);
+	}
+
+	if (_delay > 0) delay(_delay);
+	_progress++;
+
+	return (_progress > _progress_scale * 2) ? 0 : _progress;
+}
+static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator)
+{
+	lcd.setCursor(_col, _row);
+
+	switch (_state)
+	{
+	case 1:
+		lcd.print(_name);
+		lcd.setCursor(_col + strlen(_name), _row);
+		lcd.print(":");
+		lcd.setCursor(_col + strlen(_name) + 1, _row);
+		lcd.print(_indicator);
+		break;
+	case 2:
+		lcd.print(_name);
+		lcd.setCursor(_col + strlen(_name), _row);
+		lcd.print(":");
+		lcd.setCursor(_col + strlen(_name) + 1, _row);
+		lcd.print("OK");
+		break;
+	default:
+		lcd.print(_name);
+	}
+}
+
+
+/** End of menus **/
+
+static void lcd_quick_feedback()
+{
+  lcdDrawUpdate = 2;
+  button_pressed = false;  
+  lcd_implementation_quick_feedback();
+}
+
+/** Menu action functions **/
+static void menu_action_back(menuFunc_t data) {
+  lcd_goto_menu(data);
+}
+static void menu_action_submenu(menuFunc_t data) {
+  lcd_goto_menu(data);
+}
+static void menu_action_gcode(const char* pgcode) {
+  enquecommand_P(pgcode);
+}
+static void menu_action_setlang(unsigned char lang) {
+  lcd_set_lang(lang);
+}
+static void menu_action_function(menuFunc_t data) {
+  (*data)();
+}
+static void menu_action_sdfile(const char* filename, char* longFilename)
+{
+  loading_flag = false;
+  char cmd[30];
+  char* c;
+  sprintf_P(cmd, PSTR("M23 %s"), filename);
+  for (c = &cmd[4]; *c; c++)
+    *c = tolower(*c);
+  enquecommand(cmd);
+  enquecommand_P(PSTR("M24"));
+  lcd_return_to_status();
+}
+static void menu_action_sddirectory(const char* filename, char* longFilename)
+{
+  card.chdir(filename);
+  encoderPosition = 0;
+}
+static void menu_action_setting_edit_bool(const char* pstr, bool* ptr)
+{
+  *ptr = !(*ptr);
+}
+/*
+static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback)
+{
+  menu_action_setting_edit_bool(pstr, ptr);
+  (*callback)();
+}
+*/
+#endif//ULTIPANEL
+
+/** LCD API **/
+
+void lcd_init()
+{
+  lcd_implementation_init();
+
+#ifdef NEWPANEL
+  SET_INPUT(BTN_EN1);
+  SET_INPUT(BTN_EN2);
+  WRITE(BTN_EN1, HIGH);
+  WRITE(BTN_EN2, HIGH);
+#if BTN_ENC > 0
+  SET_INPUT(BTN_ENC);
+  WRITE(BTN_ENC, HIGH);
+#endif
+#ifdef REPRAPWORLD_KEYPAD
+  pinMode(SHIFT_CLK, OUTPUT);
+  pinMode(SHIFT_LD, OUTPUT);
+  pinMode(SHIFT_OUT, INPUT);
+  WRITE(SHIFT_OUT, HIGH);
+  WRITE(SHIFT_LD, HIGH);
+#endif
+#else  // Not NEWPANEL
+#ifdef SR_LCD_2W_NL // Non latching 2 wire shift register
+  pinMode (SR_DATA_PIN, OUTPUT);
+  pinMode (SR_CLK_PIN, OUTPUT);
+#elif defined(SHIFT_CLK)
+  pinMode(SHIFT_CLK, OUTPUT);
+  pinMode(SHIFT_LD, OUTPUT);
+  pinMode(SHIFT_EN, OUTPUT);
+  pinMode(SHIFT_OUT, INPUT);
+  WRITE(SHIFT_OUT, HIGH);
+  WRITE(SHIFT_LD, HIGH);
+  WRITE(SHIFT_EN, LOW);
+#else
+#ifdef ULTIPANEL
+#error ULTIPANEL requires an encoder
+#endif
+#endif // SR_LCD_2W_NL
+#endif//!NEWPANEL
+
+#if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0)
+  pinMode(SDCARDDETECT, INPUT);
+  WRITE(SDCARDDETECT, HIGH);
+  lcd_oldcardstatus = IS_SD_INSERTED;
+#endif//(SDCARDDETECT > 0)
+#ifdef LCD_HAS_SLOW_BUTTONS
+  slow_buttons = 0;
+#endif
+  lcd_buttons_update();
+#ifdef ULTIPANEL
+  encoderDiff = 0;
+#endif
+}
+
+
+
+
+//#include <avr/pgmspace.h>
+
+static volatile bool lcd_update_enabled = true;
+unsigned long lcd_timeoutToStatus = 0;
+
+void lcd_update_enable(bool enabled)
+{
+    if (lcd_update_enabled != enabled) {
+        lcd_update_enabled = enabled;
+        if (enabled) {
+            // Reset encoder position. This is equivalent to re-entering a menu.
+            encoderPosition = 0;
+            encoderDiff = 0;
+            // Enabling the normal LCD update procedure.
+            // Reset the timeout interval.
+            lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
+            // Force the keypad update now.
+            lcd_next_update_millis = millis() - 1;
+            // Full update.
+            lcd_implementation_clear();
+      #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+            lcd_set_custom_characters(currentMenu == lcd_status_screen);
+      #else
+            if (currentMenu == lcd_status_screen)
+                lcd_set_custom_characters_degree();
+            else
+                lcd_set_custom_characters_arrows();
+      #endif
+            lcd_update(2);
+        } else {
+            // Clear the LCD always, or let it to the caller?
+        }
+    }
+}
+
+void lcd_update(uint8_t lcdDrawUpdateOverride)
+{
+
+	if (lcdDrawUpdate < lcdDrawUpdateOverride)
+		lcdDrawUpdate = lcdDrawUpdateOverride;
+
+	if (!lcd_update_enabled)
+		return;
+
+#ifdef LCD_HAS_SLOW_BUTTONS
+  slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
+#endif
+  
+  lcd_buttons_update();
+
+#if (SDCARDDETECT > 0)
+  if ((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()))
+  {
+	  lcdDrawUpdate = 2;
+	  lcd_oldcardstatus = IS_SD_INSERTED;
+	  lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+		  currentMenu == lcd_status_screen
+#endif
+	  );
+
+	  if (lcd_oldcardstatus)
+	  {
+		  card.initsd();
+		  LCD_MESSAGERPGM(MSG_SD_INSERTED);
+		  //get_description();
+	  }
+	  else
+	  {
+		  card.release();
+		  LCD_MESSAGERPGM(MSG_SD_REMOVED);
+	  }
+  }
+#endif//CARDINSERTED
+
+  if (lcd_next_update_millis < millis())
+  {
+#ifdef ULTIPANEL
+#ifdef REPRAPWORLD_KEYPAD
+	  if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
+		  reprapworld_keypad_move_z_up();
+	  }
+	  if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
+		  reprapworld_keypad_move_z_down();
+	  }
+	  if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
+		  reprapworld_keypad_move_x_left();
+	  }
+	  if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
+		  reprapworld_keypad_move_x_right();
+	  }
+	  if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
+		  reprapworld_keypad_move_y_down();
+	  }
+	  if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
+		  reprapworld_keypad_move_y_up();
+	  }
+	  if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
+		  reprapworld_keypad_move_home();
+	  }
+#endif
+	  if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP)
+	  {
+      if (lcdDrawUpdate == 0)
+		    lcdDrawUpdate = 1;
+		  encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP;
+		  encoderDiff = 0;
+		  lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
+	  }
+
+	  if (LCD_CLICKED) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
+#endif//ULTIPANEL
+
+#ifdef DOGLCD        // Changes due to different driver architecture of the DOGM display
+	  blink++;     // Variable for fan animation and alive dot
+	  u8g.firstPage();
+	  do
+	  {
+		  u8g.setFont(u8g_font_6x10_marlin);
+		  u8g.setPrintPos(125, 0);
+		  if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
+		  u8g.drawPixel(127, 63); // draw alive dot
+		  u8g.setColorIndex(1); // black on white
+		  (*currentMenu)();
+		  if (!lcdDrawUpdate)  break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
+	  } while (u8g.nextPage());
+#else
+	  (*currentMenu)();
+#endif
+
+#ifdef LCD_HAS_STATUS_INDICATORS
+	  lcd_implementation_update_indicators();
+#endif
+
+#ifdef ULTIPANEL
+	  if (lcd_timeoutToStatus < millis() && currentMenu != lcd_status_screen)
+	  {
+      // Exiting a menu. Let's call the menu function the last time with menuExiting flag set to true
+      // to give it a chance to save its state.
+      // This is useful for example, when the babystep value has to be written into EEPROM.
+      if (currentMenu != NULL) {
+        menuExiting = true;
+        (*currentMenu)();
+        menuExiting = false;
+      }
+		  lcd_return_to_status();
+		  lcdDrawUpdate = 2;
+	  }
+#endif//ULTIPANEL
+	  if (lcdDrawUpdate == 2) lcd_implementation_clear();
+	  if (lcdDrawUpdate) lcdDrawUpdate--;
+	  lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
+	  }
+	if (!SdFatUtil::test_stack_integrity()) stack_error();
+	lcd_ping(); //check that we have received ping command if we are in farm mode
+}
+
+void lcd_printer_connected() {
+	printer_connected = true;
+}
+
+void lcd_ping() { //chceck if printer is connected to monitoring when in farm mode
+	if (farm_mode) {
+		bool empty = is_buffer_empty();
+		if ((millis() - PingTime) * 0.001 > (empty ? PING_TIME : PING_TIME_LONG)) { //if commands buffer is empty use shorter time period
+																							  //if there are comamnds in buffer, some long gcodes can delay execution of ping command
+																							  //therefore longer period is used
+			printer_connected = false;
+			//lcd_ping_allert(); //acustic signals
+		}
+		else {
+			lcd_printer_connected();
+		}
+	}
+}
+void lcd_ignore_click(bool b)
+{
+  ignore_click = b;
+  wait_for_unclick = false;
+}
+
+void lcd_finishstatus() {
+  int len = strlen(lcd_status_message);
+  if (len > 0) {
+    while (len < LCD_WIDTH) {
+      lcd_status_message[len++] = ' ';
+    }
+  }
+  lcd_status_message[LCD_WIDTH] = '\0';
+#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT)
+#if PROGRESS_MSG_EXPIRE > 0
+  messageTick =
+#endif
+    progressBarTick = millis();
+#endif
+  lcdDrawUpdate = 2;
+
+#ifdef FILAMENT_LCD_DISPLAY
+  message_millis = millis();  //get status message to show up for a while
+#endif
+}
+void lcd_setstatus(const char* message)
+{
+  if (lcd_status_message_level > 0)
+    return;
+  strncpy(lcd_status_message, message, LCD_WIDTH);
+  lcd_finishstatus();
+}
+void lcd_setstatuspgm(const char* message)
+{
+  if (lcd_status_message_level > 0)
+    return;
+  strncpy_P(lcd_status_message, message, LCD_WIDTH);
+  lcd_finishstatus();
+}
+void lcd_setalertstatuspgm(const char* message)
+{
+  lcd_setstatuspgm(message);
+  lcd_status_message_level = 1;
+#ifdef ULTIPANEL
+  lcd_return_to_status();
+#endif//ULTIPANEL
+}
+void lcd_reset_alert_level()
+{
+  lcd_status_message_level = 0;
+}
+
+#ifdef DOGLCD
+void lcd_setcontrast(uint8_t value)
+{
+  lcd_contrast = value & 63;
+  u8g.setContrast(lcd_contrast);
+}
+#endif
+
+#ifdef ULTIPANEL
+/* Warning: This function is called from interrupt context */
+void lcd_buttons_update()
+{
+#ifdef NEWPANEL
+  uint8_t newbutton = 0;
+  if (READ(BTN_EN1) == 0)  newbutton |= EN_A;
+  if (READ(BTN_EN2) == 0)  newbutton |= EN_B;
+#if BTN_ENC > 0
+  if (lcd_update_enabled == true) { //if we are in non-modal mode, long press can be used and short press triggers with button release
+	  if (READ(BTN_ENC) == 0) { //button is pressed	  
+		  lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
+		  if (millis() > button_blanking_time) {
+			  button_blanking_time = millis() + BUTTON_BLANKING_TIME;
+			  if (button_pressed == false && long_press_active == false) {
+				  if (currentMenu != lcd_move_z) {
+					  savedMenu = currentMenu;
+					  savedEncoderPosition = encoderPosition;
+				  }
+				  long_press_timer = millis();
+				  button_pressed = true;
+			  }
+			  else {
+				  if (millis() - long_press_timer > LONG_PRESS_TIME) { //long press activated
+
+					  long_press_active = true;
+					  move_menu_scale = 1.0;
+					  lcd_goto_menu(lcd_move_z);
+				  }
+			  }
+		  }
+	  }
+	  else { //button not pressed
+		  if (button_pressed) { //button was released
+			  button_blanking_time = millis() + BUTTON_BLANKING_TIME;
+
+			  if (long_press_active == false) { //button released before long press gets activated
+				  if (currentMenu == lcd_move_z) {
+					  //return to previously active menu and previous encoder position
+					  lcd_goto_menu(savedMenu, savedEncoderPosition);					  
+				  }
+				  else {
+					  newbutton |= EN_C;
+				  }
+			  }
+			  else if (currentMenu == lcd_move_z) lcd_quick_feedback(); 
+			  //button_pressed is set back to false via lcd_quick_feedback function
+		  }
+		  else {			  
+			  long_press_active = false;
+		  }
+	  }
+  }
+  else { //we are in modal mode
+	  if (READ(BTN_ENC) == 0)
+		  newbutton |= EN_C; 
+  }
+  
+#endif  
+  buttons = newbutton;
+#ifdef LCD_HAS_SLOW_BUTTONS
+  buttons |= slow_buttons;
+#endif
+#ifdef REPRAPWORLD_KEYPAD
+  // for the reprapworld_keypad
+  uint8_t newbutton_reprapworld_keypad = 0;
+  WRITE(SHIFT_LD, LOW);
+  WRITE(SHIFT_LD, HIGH);
+  for (int8_t i = 0; i < 8; i++) {
+    newbutton_reprapworld_keypad = newbutton_reprapworld_keypad >> 1;
+    if (READ(SHIFT_OUT))
+      newbutton_reprapworld_keypad |= (1 << 7);
+    WRITE(SHIFT_CLK, HIGH);
+    WRITE(SHIFT_CLK, LOW);
+  }
+  buttons_reprapworld_keypad = ~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
+#endif
+#else   //read it from the shift register
+  uint8_t newbutton = 0;
+  WRITE(SHIFT_LD, LOW);
+  WRITE(SHIFT_LD, HIGH);
+  unsigned char tmp_buttons = 0;
+  for (int8_t i = 0; i < 8; i++)
+  {
+    newbutton = newbutton >> 1;
+    if (READ(SHIFT_OUT))
+      newbutton |= (1 << 7);
+    WRITE(SHIFT_CLK, HIGH);
+    WRITE(SHIFT_CLK, LOW);
+  }
+  buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0
+#endif//!NEWPANEL
+
+  //manage encoder rotation
+  uint8_t enc = 0;
+  if (buttons & EN_A) enc |= B01;
+  if (buttons & EN_B) enc |= B10;
+  if (enc != lastEncoderBits)
+  {
+    switch (enc)
+    {
+      case encrot0:
+        if (lastEncoderBits == encrot3)
+          encoderDiff++;
+        else if (lastEncoderBits == encrot1)
+          encoderDiff--;
+        break;
+      case encrot1:
+        if (lastEncoderBits == encrot0)
+          encoderDiff++;
+        else if (lastEncoderBits == encrot2)
+          encoderDiff--;
+        break;
+      case encrot2:
+        if (lastEncoderBits == encrot1)
+          encoderDiff++;
+        else if (lastEncoderBits == encrot3)
+          encoderDiff--;
+        break;
+      case encrot3:
+        if (lastEncoderBits == encrot2)
+          encoderDiff++;
+        else if (lastEncoderBits == encrot0)
+          encoderDiff--;
+        break;
+    }
+  }
+  lastEncoderBits = enc;
+}
+
+bool lcd_detected(void)
+{
+#if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
+  return lcd.LcdDetected() == 1;
+#else
+  return true;
+#endif
+}
+
+void lcd_buzz(long duration, uint16_t freq)
+{
+#ifdef LCD_USE_I2C_BUZZER
+  lcd.buzz(duration, freq);
+#endif
+}
+
+bool lcd_clicked()
+{
+	bool clicked = LCD_CLICKED;
+	if(clicked) button_pressed = false;
+    return clicked;
+}
+#endif//ULTIPANEL
+
+/********************************/
+/** Float conversion utilities **/
+/********************************/
+//  convert float to string with +123.4 format
+char conv[8];
+char *ftostr3(const float &x)
+{
+  return itostr3((int)x);
+}
+
+char *itostr2(const uint8_t &x)
+{
+  //sprintf(conv,"%5.1f",x);
+  int xx = x;
+  conv[0] = (xx / 10) % 10 + '0';
+  conv[1] = (xx) % 10 + '0';
+  conv[2] = 0;
+  return conv;
+}
+
+// Convert float to string with 123.4 format, dropping sign
+char *ftostr31(const float &x)
+{
+  int xx = x * 10;
+  conv[0] = (xx >= 0) ? '+' : '-';
+  xx = abs(xx);
+  conv[1] = (xx / 1000) % 10 + '0';
+  conv[2] = (xx / 100) % 10 + '0';
+  conv[3] = (xx / 10) % 10 + '0';
+  conv[4] = '.';
+  conv[5] = (xx) % 10 + '0';
+  conv[6] = 0;
+  return conv;
+}
+
+// Convert float to string with 123.4 format
+char *ftostr31ns(const float &x)
+{
+  int xx = x * 10;
+  //conv[0]=(xx>=0)?'+':'-';
+  xx = abs(xx);
+  conv[0] = (xx / 1000) % 10 + '0';
+  conv[1] = (xx / 100) % 10 + '0';
+  conv[2] = (xx / 10) % 10 + '0';
+  conv[3] = '.';
+  conv[4] = (xx) % 10 + '0';
+  conv[5] = 0;
+  return conv;
+}
+
+char *ftostr32(const float &x)
+{
+  long xx = x * 100;
+  if (xx >= 0)
+    conv[0] = (xx / 10000) % 10 + '0';
+  else
+    conv[0] = '-';
+  xx = abs(xx);
+  conv[1] = (xx / 1000) % 10 + '0';
+  conv[2] = (xx / 100) % 10 + '0';
+  conv[3] = '.';
+  conv[4] = (xx / 10) % 10 + '0';
+  conv[5] = (xx) % 10 + '0';
+  conv[6] = 0;
+  return conv;
+}
+
+//// Convert float to rj string with 123.45 format
+char *ftostr32ns(const float &x) {
+	long xx = abs(x);
+	conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
+	conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
+	conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : '0';
+	conv[3] = '.';
+	conv[4] = (xx / 10) % 10 + '0';
+	conv[5] = xx % 10 + '0';
+	return conv;
+}
+
+
+// Convert float to string with 1.234 format
+char *ftostr43(const float &x)
+{
+  long xx = x * 1000;
+  if (xx >= 0)
+    conv[0] = (xx / 1000) % 10 + '0';
+  else
+    conv[0] = '-';
+  xx = abs(xx);
+  conv[1] = '.';
+  conv[2] = (xx / 100) % 10 + '0';
+  conv[3] = (xx / 10) % 10 + '0';
+  conv[4] = (xx) % 10 + '0';
+  conv[5] = 0;
+  return conv;
+}
+
+//Float to string with 1.23 format
+char *ftostr12ns(const float &x)
+{
+  long xx = x * 100;
+
+  xx = abs(xx);
+  conv[0] = (xx / 100) % 10 + '0';
+  conv[1] = '.';
+  conv[2] = (xx / 10) % 10 + '0';
+  conv[3] = (xx) % 10 + '0';
+  conv[4] = 0;
+  return conv;
+}
+
+//Float to string with 1.234 format
+char *ftostr13ns(const float &x)
+{
+    long xx = x * 1000;
+    if (xx >= 0)
+        conv[0] = ' ';
+    else
+        conv[0] = '-';
+    xx = abs(xx);
+    conv[1] = (xx / 1000) % 10 + '0';
+    conv[2] = '.';
+    conv[3] = (xx / 100) % 10 + '0';
+    conv[4] = (xx / 10) % 10 + '0';
+    conv[5] = (xx) % 10 + '0';
+    conv[6] = 0;
+    return conv;
+}
+
+//  convert float to space-padded string with -_23.4_ format
+char *ftostr32sp(const float &x) {
+  long xx = abs(x * 100);
+  uint8_t dig;
+
+  if (x < 0) { // negative val = -_0
+    conv[0] = '-';
+    dig = (xx / 1000) % 10;
+    conv[1] = dig ? '0' + dig : ' ';
+  }
+  else { // positive val = __0
+    dig = (xx / 10000) % 10;
+    if (dig) {
+      conv[0] = '0' + dig;
+      conv[1] = '0' + (xx / 1000) % 10;
+    }
+    else {
+      conv[0] = ' ';
+      dig = (xx / 1000) % 10;
+      conv[1] = dig ? '0' + dig : ' ';
+    }
+  }
+
+  conv[2] = '0' + (xx / 100) % 10; // lsd always
+
+  dig = xx % 10;
+  if (dig) { // 2 decimal places
+    conv[5] = '0' + dig;
+    conv[4] = '0' + (xx / 10) % 10;
+    conv[3] = '.';
+  }
+  else { // 1 or 0 decimal place
+    dig = (xx / 10) % 10;
+    if (dig) {
+      conv[4] = '0' + dig;
+      conv[3] = '.';
+    }
+    else {
+      conv[3] = conv[4] = ' ';
+    }
+    conv[5] = ' ';
+  }
+  conv[6] = '\0';
+  return conv;
+}
+
+char *itostr31(const int &xx)
+{
+  conv[0] = (xx >= 0) ? '+' : '-';
+  conv[1] = (xx / 1000) % 10 + '0';
+  conv[2] = (xx / 100) % 10 + '0';
+  conv[3] = (xx / 10) % 10 + '0';
+  conv[4] = '.';
+  conv[5] = (xx) % 10 + '0';
+  conv[6] = 0;
+  return conv;
+}
+
+// Convert int to rj string with 123 or -12 format
+char *itostr3(const int &x)
+{
+  int xx = x;
+  if (xx < 0) {
+    conv[0] = '-';
+    xx = -xx;
+  } else if (xx >= 100)
+    conv[0] = (xx / 100) % 10 + '0';
+  else
+    conv[0] = ' ';
+  if (xx >= 10)
+    conv[1] = (xx / 10) % 10 + '0';
+  else
+    conv[1] = ' ';
+  conv[2] = (xx) % 10 + '0';
+  conv[3] = 0;
+  return conv;
+}
+
+// Convert int to lj string with 123 format
+char *itostr3left(const int &xx)
+{
+  if (xx >= 100)
+  {
+    conv[0] = (xx / 100) % 10 + '0';
+    conv[1] = (xx / 10) % 10 + '0';
+    conv[2] = (xx) % 10 + '0';
+    conv[3] = 0;
+  }
+  else if (xx >= 10)
+  {
+    conv[0] = (xx / 10) % 10 + '0';
+    conv[1] = (xx) % 10 + '0';
+    conv[2] = 0;
+  }
+  else
+  {
+    conv[0] = (xx) % 10 + '0';
+    conv[1] = 0;
+  }
+  return conv;
+}
+
+// Convert int to rj string with 1234 format
+char *itostr4(const int &xx) {
+  conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
+  conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
+  conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
+  conv[3] = xx % 10 + '0';
+  conv[4] = 0;
+  return conv;
+}
+
+// Convert float to rj string with 12345 format
+char *ftostr5(const float &x) {
+  long xx = abs(x);
+  conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
+  conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
+  conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
+  conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
+  conv[4] = xx % 10 + '0';
+  conv[5] = 0;
+  return conv;
+}
+
+// Convert float to string with +1234.5 format
+char *ftostr51(const float &x)
+{
+  long xx = x * 10;
+  conv[0] = (xx >= 0) ? '+' : '-';
+  xx = abs(xx);
+  conv[1] = (xx / 10000) % 10 + '0';
+  conv[2] = (xx / 1000) % 10 + '0';
+  conv[3] = (xx / 100) % 10 + '0';
+  conv[4] = (xx / 10) % 10 + '0';
+  conv[5] = '.';
+  conv[6] = (xx) % 10 + '0';
+  conv[7] = 0;
+  return conv;
+}
+
+// Convert float to string with +123.45 format
+char *ftostr52(const float &x)
+{
+  long xx = x * 100;
+  conv[0] = (xx >= 0) ? '+' : '-';
+  xx = abs(xx);
+  conv[1] = (xx / 10000) % 10 + '0';
+  conv[2] = (xx / 1000) % 10 + '0';
+  conv[3] = (xx / 100) % 10 + '0';
+  conv[4] = '.';
+  conv[5] = (xx / 10) % 10 + '0';
+  conv[6] = (xx) % 10 + '0';
+  conv[7] = 0;
+  return conv;
+}
+
+/*
+// Callback for after editing PID i value
+// grab the PID i value out of the temp variable; scale it; then update the PID driver
+void copy_and_scalePID_i()
+{
+#ifdef PIDTEMP
+  Ki = scalePID_i(raw_Ki);
+  updatePID();
+#endif
+}
+
+// Callback for after editing PID d value
+// grab the PID d value out of the temp variable; scale it; then update the PID driver
+void copy_and_scalePID_d()
+{
+#ifdef PIDTEMP
+  Kd = scalePID_d(raw_Kd);
+  updatePID();
+#endif
+}
+*/
+
 #endif //ULTRA_LCD

+ 5 - 1
Firmware/ultralcd_implementation_hitachi_HD44780.h

@@ -820,7 +820,11 @@ static void lcd_implementation_status_screen()
     lcd_printPGM(PSTR("  "));
 
 
-    //Print status line
+#ifdef DEBUG_DISABLE_LCD_STATUS_LINE
+	return;
+#endif //DEBUG_DISABLE_LCD_STATUS_LINE
+
+	//Print status line
     lcd.setCursor(0, 3);
 
     // If heating in progress, set flag