|
@@ -9,7 +9,6 @@
|
|
|
#include "temperature.h"
|
|
|
#include "sm4.h"
|
|
|
|
|
|
-
|
|
|
#define XYZCAL_PINDA_HYST_MIN 20 //50um
|
|
|
#define XYZCAL_PINDA_HYST_MAX 100 //250um
|
|
|
#define XYZCAL_PINDA_HYST_DIF 5 //12.5um
|
|
@@ -30,13 +29,97 @@
|
|
|
#define _Z ((int16_t)count_position[Z_AXIS])
|
|
|
#define _E ((int16_t)count_position[E_AXIS])
|
|
|
|
|
|
-#define _PI 3.14159265F
|
|
|
+#ifndef M_PI
|
|
|
+const constexpr float M_PI = 3.1415926535897932384626433832795f;
|
|
|
+#endif
|
|
|
+
|
|
|
+const constexpr uint8_t X_PLUS = 0;
|
|
|
+const constexpr uint8_t X_MINUS = 1;
|
|
|
+const constexpr uint8_t Y_PLUS = 0;
|
|
|
+const constexpr uint8_t Y_MINUS = 1;
|
|
|
+const constexpr uint8_t Z_PLUS = 0;
|
|
|
+const constexpr uint8_t Z_MINUS = 1;
|
|
|
+
|
|
|
+/// Max. jerk in PrusaSlicer, 10000 = 1 mm/s
|
|
|
+const constexpr uint16_t MAX_DELAY = 10000;
|
|
|
+const constexpr float MIN_SPEED = 0.01f / (MAX_DELAY * 0.000001f);
|
|
|
+/// 200 = 50 mm/s
|
|
|
+const constexpr uint16_t Z_MIN_DELAY = 200;
|
|
|
+const constexpr uint16_t Z_ACCEL = 1000;
|
|
|
+
|
|
|
+/// \returns positive value always
|
|
|
+#define ABS(a) \
|
|
|
+ ({ __typeof__ (a) _a = (a); \
|
|
|
+ _a >= 0 ? _a : (-_a); })
|
|
|
+
|
|
|
+/// \returns maximum of the two
|
|
|
+#define MAX(a, b) \
|
|
|
+ ({ __typeof__ (a) _a = (a); \
|
|
|
+ __typeof__ (b) _b = (b); \
|
|
|
+ _a >= _b ? _a : _b; })
|
|
|
+
|
|
|
+/// \returns minimum of the two
|
|
|
+#define MIN(a, b) \
|
|
|
+ ({ __typeof__ (a) _a = (a); \
|
|
|
+ __typeof__ (b) _b = (b); \
|
|
|
+ _a <= _b ? _a : _b; })
|
|
|
+
|
|
|
+/// swap values
|
|
|
+#define SWAP(a, b) \
|
|
|
+ ({ __typeof__ (a) c = (a); \
|
|
|
+ a = (b); \
|
|
|
+ b = c; })
|
|
|
+
|
|
|
+/// Saturates value
|
|
|
+/// \returns min if value is less than min
|
|
|
+/// \returns max if value is more than min
|
|
|
+/// \returns value otherwise
|
|
|
+#define CLAMP(value, min, max) \
|
|
|
+ ({ __typeof__ (value) a_ = (value); \
|
|
|
+ __typeof__ (min) min_ = (min); \
|
|
|
+ __typeof__ (max) max_ = (max); \
|
|
|
+ ( a_ < min_ ? min_ : (a_ <= max_ ? a_ : max_)); })
|
|
|
+
|
|
|
+/// \returns square of the value
|
|
|
+#define SQR(a) \
|
|
|
+ ({ __typeof__ (a) a_ = (a); \
|
|
|
+ (a_ * a_); })
|
|
|
+
|
|
|
+/// position types
|
|
|
+typedef int16_t pos_i16_t;
|
|
|
+typedef long pos_i32_t;
|
|
|
+typedef float pos_mm_t;
|
|
|
+typedef int16_t usteps_t;
|
|
|
|
|
|
uint8_t check_pinda_0();
|
|
|
uint8_t check_pinda_1();
|
|
|
void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
|
|
|
uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd);
|
|
|
|
|
|
+uint8_t round_to_u8(float f){
|
|
|
+ return (uint8_t)(f + .5f);
|
|
|
+}
|
|
|
+
|
|
|
+uint16_t round_to_u16(float f){
|
|
|
+ return (uint16_t)(f + .5f);
|
|
|
+}
|
|
|
+
|
|
|
+int16_t round_to_i16(float f){
|
|
|
+ return (int16_t)(f + .5f);
|
|
|
+}
|
|
|
+
|
|
|
+/// converts millimeters to integer position
|
|
|
+pos_i16_t mm_2_pos(pos_mm_t mm){
|
|
|
+ return (pos_i16_t)(0.5f + mm * 100);
|
|
|
+}
|
|
|
+
|
|
|
+/// converts integer position to millimeters
|
|
|
+pos_mm_t pos_2_mm(pos_i16_t pos){
|
|
|
+ return pos * 0.01f;
|
|
|
+}
|
|
|
+pos_mm_t pos_2_mm(float pos){
|
|
|
+ return pos * 0.01f;
|
|
|
+}
|
|
|
|
|
|
void xyzcal_meassure_enter(void)
|
|
|
{
|
|
@@ -142,6 +225,7 @@ uint16_t xyzcal_calc_delay(uint16_t, uint16_t)
|
|
|
}
|
|
|
#endif //SM4_ACCEL_TEST
|
|
|
|
|
|
+/// Moves printer to absolute position [x,y,z] defined in integer position system
|
|
|
bool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda)
|
|
|
{
|
|
|
// DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d check=%d\n"), x, y, z, check_pinda);
|
|
@@ -152,17 +236,21 @@ bool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_
|
|
|
sm4_set_dir_bits(xyzcal_dm);
|
|
|
sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0;
|
|
|
xyzcal_sm4_delay = delay_us;
|
|
|
-// uint32_t u = _micros();
|
|
|
- bool ret = sm4_line_xyze_ui(abs(x), abs(y), abs(z), 0)?true:false;
|
|
|
-// u = _micros() - u;
|
|
|
+ // uint32_t u = _micros();
|
|
|
+ bool ret = sm4_line_xyze_ui(abs(x), abs(y), abs(z), 0) ? true : false;
|
|
|
+ // u = _micros() - u;
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
+/// Moves printer to absolute position [x,y,z] defined in millimeters
|
|
|
+bool xyzcal_lineXYZ_to_float(pos_mm_t x, pos_mm_t y, pos_mm_t z, uint16_t delay_us, int8_t check_pinda){
|
|
|
+ return xyzcal_lineXYZ_to(mm_2_pos(x), mm_2_pos(y), mm_2_pos(z), delay_us, check_pinda);
|
|
|
+}
|
|
|
+
|
|
|
bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
|
|
|
{
|
|
|
bool ret = false;
|
|
|
float r = 0; //radius
|
|
|
- uint8_t n = 0; //point number
|
|
|
uint16_t ad = 0; //angle [deg]
|
|
|
float ar; //angle [rad]
|
|
|
uint8_t dad = 0; //delta angle [deg]
|
|
@@ -171,7 +259,13 @@ bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radi
|
|
|
uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant
|
|
|
ad = 0;
|
|
|
if (pad) ad = *pad % 720;
|
|
|
+
|
|
|
DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
|
|
|
+ // lcd_set_cursor(0, 4);
|
|
|
+ // char text[10];
|
|
|
+ // snprintf(text, 10, "%4d", z0);
|
|
|
+ // lcd_print(text);
|
|
|
+
|
|
|
for (; ad < 720; ad++)
|
|
|
{
|
|
|
if (radius > 0)
|
|
@@ -184,11 +278,9 @@ bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radi
|
|
|
dad = dad_max - ((719 - ad) / k);
|
|
|
r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720;
|
|
|
}
|
|
|
- ar = (ad + rotation)* (float)_PI / 180;
|
|
|
- float _cos = cos(ar);
|
|
|
- float _sin = sin(ar);
|
|
|
- int x = (int)(cx + (_cos * r));
|
|
|
- int y = (int)(cy + (_sin * r));
|
|
|
+ ar = (ad + rotation)* (float)M_PI / 180;
|
|
|
+ int x = (int)(cx + (cos(ar) * r));
|
|
|
+ int y = (int)(cy + (sin(ar) * r));
|
|
|
int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720));
|
|
|
if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda))
|
|
|
{
|
|
@@ -196,10 +288,13 @@ bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radi
|
|
|
ret = true;
|
|
|
break;
|
|
|
}
|
|
|
- n++;
|
|
|
ad += dad;
|
|
|
}
|
|
|
if (pad) *pad = ad;
|
|
|
+ // if(ret){
|
|
|
+ // lcd_set_cursor(0, 4);
|
|
|
+ // lcd_print(" ");
|
|
|
+ // }
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
@@ -275,427 +370,224 @@ int8_t xyzcal_meassure_pinda_hysterezis(int16_t min_z, int16_t max_z, uint16_t d
|
|
|
}
|
|
|
#endif //XYZCAL_MEASSURE_PINDA_HYSTEREZIS
|
|
|
|
|
|
+/// Accelerate up to max.speed (defined by @min_delay_us)
|
|
|
+void accelerate(uint8_t axis, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us){
|
|
|
+ sm4_do_step(axis);
|
|
|
|
|
|
-void xyzcal_scan_pixels_32x32(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t* pixels)
|
|
|
-{
|
|
|
- DBG(_n("xyzcal_scan_pixels_32x32 cx=%d cy=%d min_z=%d max_z=%d\n"), cx, cy, min_z, max_z);
|
|
|
-// xyzcal_lineXYZ_to(cx - 1024, cy - 1024, max_z, 2*delay_us, 0);
|
|
|
-// xyzcal_lineXYZ_to(cx, cy, max_z, delay_us, 0);
|
|
|
- int16_t z = (int16_t)count_position[2];
|
|
|
- xyzcal_lineXYZ_to(cx, cy, z, 2*delay_us, 0);
|
|
|
- for (uint8_t r = 0; r < 32; r++)
|
|
|
- {
|
|
|
-// int8_t _pinda = _PINDA;
|
|
|
- xyzcal_lineXYZ_to((r&1)?(cx+1024):(cx-1024), cy - 1024 + r*64, z, 2*delay_us, 0);
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);
|
|
|
- z = (int16_t)count_position[2];
|
|
|
- sm4_set_dir(X_AXIS, (r&1)?1:0);
|
|
|
- for (uint8_t c = 0; c < 32; c++)
|
|
|
- {
|
|
|
- uint16_t sum = 0;
|
|
|
- int16_t z_sum = 0;
|
|
|
- for (uint8_t i = 0; i < 64; i++)
|
|
|
- {
|
|
|
- int8_t pinda = _PINDA;
|
|
|
- int16_t pix = z - min_z;
|
|
|
- pix += (pinda)?23:-24;
|
|
|
- if (pix < 0) pix = 0;
|
|
|
- if (pix > 255) pix = 255;
|
|
|
- sum += pix;
|
|
|
- z_sum += z;
|
|
|
-// if (_pinda != pinda)
|
|
|
-// {
|
|
|
-// if (pinda)
|
|
|
-// DBG(_n("!1 x=%d z=%d\n"), c*64+i, z+23);
|
|
|
-// else
|
|
|
-// DBG(_n("!0 x=%d z=%d\n"), c*64+i, z-24);
|
|
|
-// }
|
|
|
- sm4_set_dir(Z_AXIS, !pinda);
|
|
|
- if (!pinda)
|
|
|
- {
|
|
|
- if (z > min_z)
|
|
|
- {
|
|
|
- sm4_do_step(Z_AXIS_MASK);
|
|
|
- z--;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if (z < max_z)
|
|
|
- {
|
|
|
- sm4_do_step(Z_AXIS_MASK);
|
|
|
- z++;
|
|
|
- }
|
|
|
- }
|
|
|
- sm4_do_step(X_AXIS_MASK);
|
|
|
- delayMicroseconds(600);
|
|
|
-// _pinda = pinda;
|
|
|
- }
|
|
|
- sum >>= 6; //div 64
|
|
|
- if (z_sum < 0)
|
|
|
- {
|
|
|
- z_sum = -z_sum;
|
|
|
- z_sum >>= 6; //div 64
|
|
|
- z_sum = -z_sum;
|
|
|
- }
|
|
|
- else
|
|
|
- z_sum >>= 6; //div 64
|
|
|
- if (pixels) pixels[((uint16_t)r<<5) + ((r&1)?(31-c):c)] = sum;
|
|
|
-// DBG(_n("c=%d r=%d l=%d z=%d\n"), c, r, sum, z_sum);
|
|
|
- count_position[0] += (r&1)?-64:64;
|
|
|
- count_position[2] = z;
|
|
|
- }
|
|
|
- if (pixels)
|
|
|
- for (uint8_t c = 0; c < 32; c++)
|
|
|
- DBG(_n("%02x"), pixels[((uint16_t)r<<5) + c]);
|
|
|
- DBG(_n("\n"));
|
|
|
+ /// keep max speed (avoid extra computation)
|
|
|
+ if (acc > 0 && delay_us == min_delay_us){
|
|
|
+ delayMicroseconds(delay_us);
|
|
|
+ return;
|
|
|
}
|
|
|
-// xyzcal_lineXYZ_to(cx, cy, z, 2*delay_us, 0);
|
|
|
-}
|
|
|
-
|
|
|
-void xyzcal_histo_pixels_32x32(uint8_t* pixels, uint16_t* histo)
|
|
|
-{
|
|
|
- for (uint8_t l = 0; l < 16; l++)
|
|
|
- histo[l] = 0;
|
|
|
- for (uint8_t r = 0; r < 32; r++)
|
|
|
- for (uint8_t c = 0; c < 32; c++)
|
|
|
- {
|
|
|
- uint8_t pix = pixels[((uint16_t)r<<5) + c];
|
|
|
- histo[pix >> 4]++;
|
|
|
- }
|
|
|
- for (uint8_t l = 0; l < 16; l++)
|
|
|
- DBG(_n(" %2d %d\n"), l, histo[l]);
|
|
|
-}
|
|
|
|
|
|
-void xyzcal_adjust_pixels(uint8_t* pixels, uint16_t* histo)
|
|
|
-{
|
|
|
- uint8_t l;
|
|
|
- uint16_t max_c = histo[1];
|
|
|
- uint8_t max_l = 1;
|
|
|
- for (l = 1; l < 16; l++)
|
|
|
- {
|
|
|
- uint16_t c = histo[l];
|
|
|
- if (c > max_c)
|
|
|
- {
|
|
|
- max_c = c;
|
|
|
- max_l = l;
|
|
|
- }
|
|
|
- }
|
|
|
- DBG(_n("max_c=%2d max_l=%d\n"), max_c, max_l);
|
|
|
- for (l = 14; l > 8; l--)
|
|
|
- if (histo[l] >= 10)
|
|
|
- break;
|
|
|
- uint8_t pix_min = 0;
|
|
|
- uint8_t pix_max = l << 4;
|
|
|
- if (histo[0] < (32*32 - 144))
|
|
|
- {
|
|
|
- pix_min = (max_l << 4) / 2;
|
|
|
+ // v1 = v0 + a * t
|
|
|
+ // 0.01 = length of a step
|
|
|
+ const float t0 = delay_us * 0.000001f;
|
|
|
+ const float v1 = (0.01f / t0 + acc * t0);
|
|
|
+ uint16_t t1;
|
|
|
+ if (v1 <= 0.16f){ ///< slowest speed convertible to uint16_t delay
|
|
|
+ t1 = MAX_DELAY; ///< already too slow so it wants to move back
|
|
|
+ } else {
|
|
|
+ /// don't exceed max.speed
|
|
|
+ t1 = MAX(min_delay_us, round_to_u16(0.01f / v1 * 1000000.f));
|
|
|
}
|
|
|
- uint8_t pix_dif = pix_max - pix_min;
|
|
|
- DBG(_n(" min=%d max=%d dif=%d\n"), pix_min, pix_max, pix_dif);
|
|
|
- for (int16_t i = 0; i < 32*32; i++)
|
|
|
- {
|
|
|
- uint16_t pix = pixels[i];
|
|
|
- if (pix > pix_min) pix -= pix_min;
|
|
|
- else pix = 0;
|
|
|
- pix <<= 8;
|
|
|
- pix /= pix_dif;
|
|
|
-// if (pix < 0) pix = 0;
|
|
|
- if (pix > 255) pix = 255;
|
|
|
- pixels[i] = (uint8_t)pix;
|
|
|
+
|
|
|
+ /// make sure delay has changed a bit at least
|
|
|
+ if (t1 == delay_us && acc != 0){
|
|
|
+ if (acc > 0)
|
|
|
+ t1--;
|
|
|
+ else
|
|
|
+ t1++;
|
|
|
}
|
|
|
- for (uint8_t r = 0; r < 32; r++)
|
|
|
- {
|
|
|
- for (uint8_t c = 0; c < 32; c++)
|
|
|
- DBG(_n("%02x"), pixels[((uint16_t)r<<5) + c]);
|
|
|
- DBG(_n("\n"));
|
|
|
+
|
|
|
+ //DBG(_n("%d "), t1);
|
|
|
+
|
|
|
+ delayMicroseconds(t1);
|
|
|
+ delay_us = t1;
|
|
|
+}
|
|
|
+
|
|
|
+void go_and_stop(uint8_t axis, int16_t dec, uint16_t &delay_us, uint16_t &steps){
|
|
|
+ if (steps <= 0 || dec <= 0)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /// deceleration distance in steps, s = 1/2 v^2 / a
|
|
|
+ uint16_t s = round_to_u16(100 * 0.5f * SQR(0.01f) / (SQR((float)delay_us) * dec));
|
|
|
+ if (steps > s){
|
|
|
+ /// go steady
|
|
|
+ sm4_do_step(axis);
|
|
|
+ delayMicroseconds(delay_us);
|
|
|
+ } else {
|
|
|
+ /// decelerate
|
|
|
+ accelerate(axis, -dec, delay_us, delay_us);
|
|
|
}
|
|
|
+ --steps;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
-void xyzcal_draw_pattern_12x12_in_32x32(uint8_t* pattern, uint32_t* pixels, int w, int h, uint8_t x, uint8_t y, uint32_t and, uint32_t or)
|
|
|
-{
|
|
|
- for (int i = 0; i < 8; i++)
|
|
|
- for (int j = 0; j < 8; j++)
|
|
|
- {
|
|
|
- int idx = (x + j) + w * (y + i);
|
|
|
- if (pattern[i] & (1 << j))
|
|
|
- {
|
|
|
- pixels[idx] &= and;
|
|
|
- pixels[idx] |= or;
|
|
|
+void xyzcal_scan_pixels_32x32_Zhop(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t* pixels){
|
|
|
+ if (!pixels)
|
|
|
+ return;
|
|
|
+ int16_t z = _Z;
|
|
|
+ int16_t z_trig;
|
|
|
+ uint16_t line_buffer[32];
|
|
|
+ uint16_t current_delay_us = MAX_DELAY; ///< defines current speed
|
|
|
+ xyzcal_lineXYZ_to(cx - 1024, cy - 1024, min_z, delay_us, 0);
|
|
|
+ int16_t start_z;
|
|
|
+ uint16_t steps_to_go;
|
|
|
+
|
|
|
+ for (uint8_t r = 0; r < 32; r++){ ///< Y axis
|
|
|
+ xyzcal_lineXYZ_to(_X, cy - 1024 + r * 64, z, delay_us, 0);
|
|
|
+ for (int8_t d = 0; d < 2; ++d){ ///< direction
|
|
|
+ xyzcal_lineXYZ_to((d & 1) ? (cx + 1024) : (cx - 1024), _Y, min_z, delay_us, 0);
|
|
|
+
|
|
|
+ z = _Z;
|
|
|
+ sm4_set_dir(X_AXIS, d);
|
|
|
+ for (uint8_t c = 0; c < 32; c++){ ///< X axis
|
|
|
+
|
|
|
+ z_trig = min_z;
|
|
|
+
|
|
|
+ /// move up to un-trigger (surpress hysteresis)
|
|
|
+ sm4_set_dir(Z_AXIS, Z_PLUS);
|
|
|
+ /// speed up from stop, go half the way
|
|
|
+ current_delay_us = MAX_DELAY;
|
|
|
+ for (start_z = z; z < (max_z + start_z) / 2; ++z){
|
|
|
+ if (!_PINDA){
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ accelerate(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
|
|
|
+ }
|
|
|
+
|
|
|
+ if(_PINDA){
|
|
|
+ uint16_t steps_to_go = MAX(0, max_z - z);
|
|
|
+ while (_PINDA && z < max_z){
|
|
|
+ go_and_stop(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);
|
|
|
+ ++z;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /// slow down to stop
|
|
|
+ while (current_delay_us < MAX_DELAY){
|
|
|
+ accelerate(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);
|
|
|
+ ++z;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// move down to trigger
|
|
|
+ sm4_set_dir(Z_AXIS, Z_MINUS);
|
|
|
+ /// speed up
|
|
|
+ current_delay_us = MAX_DELAY;
|
|
|
+ for (start_z = z; z > (min_z + start_z) / 2; --z){
|
|
|
+ if (_PINDA){
|
|
|
+ z_trig = z;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ accelerate(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
|
|
|
+ }
|
|
|
+ /// slow down
|
|
|
+ if(!_PINDA){
|
|
|
+ steps_to_go = MAX(0, z - min_z);
|
|
|
+ while (!_PINDA && z > min_z){
|
|
|
+ go_and_stop(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);
|
|
|
+ --z;
|
|
|
+ }
|
|
|
+ z_trig = z;
|
|
|
+ }
|
|
|
+ /// slow down to stop
|
|
|
+ while (z > min_z && current_delay_us < MAX_DELAY){
|
|
|
+ accelerate(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);
|
|
|
+ --z;
|
|
|
+ }
|
|
|
+
|
|
|
+ count_position[2] = z;
|
|
|
+ if (d == 0){
|
|
|
+ line_buffer[c] = (uint16_t)(z_trig - min_z);
|
|
|
+ } else {
|
|
|
+ /// data reversed in X
|
|
|
+ // DBG(_n("%04x"), (line_buffer[31 - c] + (z - min_z)) / 2);
|
|
|
+ /// save average of both directions
|
|
|
+ pixels[(uint16_t)r * 32 + (31 - c)] = (uint8_t)MIN((uint32_t)255, ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// move to the next point and move Z up diagonally (if needed)
|
|
|
+ current_delay_us = MAX_DELAY;
|
|
|
+ // const int8_t dir = (d & 1) ? -1 : 1;
|
|
|
+ const int16_t end_x = ((d & 1) ? 1 : -1) * (64 * (16 - c) - 32) + cx;
|
|
|
+ const int16_t length_x = ABS(end_x - _X);
|
|
|
+ const int16_t half_x = length_x / 2;
|
|
|
+ int16_t x = 0;
|
|
|
+ /// don't go up if PINDA not triggered
|
|
|
+ const bool up = _PINDA;
|
|
|
+ int8_t axis = up ? X_AXIS_MASK | Z_AXIS_MASK : X_AXIS_MASK;
|
|
|
+
|
|
|
+ sm4_set_dir(Z_AXIS, Z_PLUS);
|
|
|
+ /// speed up
|
|
|
+ for (x = 0; x <= half_x; ++x){
|
|
|
+ accelerate(axis, Z_ACCEL, current_delay_us, Z_MIN_DELAY);
|
|
|
+ if (up)
|
|
|
+ ++z;
|
|
|
+ }
|
|
|
+ /// slow down
|
|
|
+ steps_to_go = length_x - x;
|
|
|
+ for (; x < length_x; ++x){
|
|
|
+ go_and_stop(axis, Z_ACCEL, current_delay_us, steps_to_go);
|
|
|
+ if (up)
|
|
|
+ ++z;
|
|
|
+ }
|
|
|
+ count_position[0] = end_x;
|
|
|
+ count_position[2] = z;
|
|
|
}
|
|
|
}
|
|
|
+ // DBG(_n("\n\n"));
|
|
|
+ }
|
|
|
}
|
|
|
-*/
|
|
|
|
|
|
-int16_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r)
|
|
|
-{
|
|
|
+/// Returns rate of match
|
|
|
+/// max match = 132, min match = 0
|
|
|
+uint8_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r){
|
|
|
uint8_t thr = 16;
|
|
|
- int16_t match = 0;
|
|
|
- for (uint8_t i = 0; i < 12; i++)
|
|
|
- for (uint8_t j = 0; j < 12; j++)
|
|
|
- {
|
|
|
- if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue; //skip corners
|
|
|
+ uint8_t match = 0;
|
|
|
+ for (uint8_t i = 0; i < 12; ++i){
|
|
|
+ for (uint8_t j = 0; j < 12; ++j){
|
|
|
+ /// skip corners (3 pixels in each)
|
|
|
+ if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue;
|
|
|
if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue;
|
|
|
- uint16_t idx = (c + j) + 32 * (r + i);
|
|
|
- uint8_t val = pixels[idx];
|
|
|
- if (pattern[i] & (1 << j))
|
|
|
- {
|
|
|
- if (val > thr) match ++;
|
|
|
- else match --;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if (val <= thr) match ++;
|
|
|
- else match --;
|
|
|
- }
|
|
|
+ const uint16_t idx = (c + j) + 32 * ((uint16_t)r + i);
|
|
|
+ const bool high_pix = pixels[idx] > thr;
|
|
|
+ const bool high_pat = pattern[i] & (1 << j);
|
|
|
+ if (high_pix == high_pat)
|
|
|
+ match++;
|
|
|
}
|
|
|
+ }
|
|
|
return match;
|
|
|
}
|
|
|
|
|
|
-int16_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr)
|
|
|
-{
|
|
|
+/// Searches for best match of pattern by shifting it
|
|
|
+/// Returns rate of match and the best location
|
|
|
+/// max match = 132, min match = 0
|
|
|
+uint8_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr){
|
|
|
+ if (!pixels || !pattern || !pc || !pr)
|
|
|
+ return -1;
|
|
|
uint8_t max_c = 0;
|
|
|
uint8_t max_r = 0;
|
|
|
- int16_t max_match = 0;
|
|
|
- for (uint8_t r = 0; r < (32 - 12); r++)
|
|
|
- for (uint8_t c = 0; c < (32 - 12); c++)
|
|
|
- {
|
|
|
- int16_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);
|
|
|
- if (max_match < match)
|
|
|
- {
|
|
|
+ uint8_t max_match = 0;
|
|
|
+
|
|
|
+ // DBG(_n("Matching:\n"));
|
|
|
+ /// pixel precision
|
|
|
+ for (uint8_t r = 0; r < (32 - 12); ++r){
|
|
|
+ for (uint8_t c = 0; c < (32 - 12); ++c){
|
|
|
+ const uint8_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);
|
|
|
+ if (max_match < match){
|
|
|
max_c = c;
|
|
|
max_r = r;
|
|
|
max_match = match;
|
|
|
}
|
|
|
+ // DBG(_n("%d "), match);
|
|
|
}
|
|
|
- DBG(_n("max_c=%d max_r=%d max_match=%d\n"), max_c, max_r, max_match);
|
|
|
- if (pc) *pc = max_c;
|
|
|
- if (pr) *pr = max_r;
|
|
|
- return max_match;
|
|
|
-}
|
|
|
-
|
|
|
-#define MAX_DIAMETR 600
|
|
|
-#define XYZCAL_FIND_CENTER_DIAGONAL
|
|
|
-int8_t xyzcal_find_point_center2A(int16_t x0, int16_t y0, int16_t z0, uint16_t delay_us);
|
|
|
-int8_t xyzcal_find_point_center2(uint16_t delay_us)
|
|
|
-{
|
|
|
- printf_P(PSTR("xyzcal_find_point_center2\n"));
|
|
|
- int16_t x0 = _X;
|
|
|
- int16_t y0 = _Y;
|
|
|
- int16_t z0 = _Z;
|
|
|
- printf_P(PSTR(" x0=%d\n"), x0);
|
|
|
- printf_P(PSTR(" y0=%d\n"), y0);
|
|
|
- printf_P(PSTR(" z0=%d\n"), z0);
|
|
|
-
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, z0 + 400, 500, -1);
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, z0 - 400, 500, 1);
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, z0 + 400, 500, -1);
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, z0 - 400, 500, 1);
|
|
|
-
|
|
|
- if (has_temperature_compensation()){
|
|
|
- z0 = _Z - 20; // normal PINDA
|
|
|
- return xyzcal_find_point_center2A(x0, y0, z0, delay_us);
|
|
|
- } else {
|
|
|
- // try searching harder, each PINDA is different
|
|
|
- int8_t rv = 0;
|
|
|
- for(z0 = _Z - 20; z0 <= _Z + 140; z0 += 20 ){ // alternate PINDA
|
|
|
- rv = xyzcal_find_point_center2A(x0, y0, z0, delay_us);
|
|
|
- printf_P(PSTR(" z0=%d"), z0);
|
|
|
- if( rv != 0 ){
|
|
|
- puts_P(PSTR("ok"));
|
|
|
- break;
|
|
|
- } else {
|
|
|
- puts_P(PSTR("fail"));
|
|
|
- }
|
|
|
- }
|
|
|
- return rv;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-int8_t xyzcal_find_point_center2A(int16_t x0, int16_t y0, int16_t z0, uint16_t delay_us){
|
|
|
- xyzcal_lineXYZ_to(_X, _Y, z0, 500, 0);
|
|
|
-
|
|
|
-// xyzcal_lineXYZ_to(x0, y0, z0 - 100, 500, 1);
|
|
|
-// z0 = _Z;
|
|
|
-// printf_P(PSTR(" z0=%d\n"), z0);
|
|
|
-// xyzcal_lineXYZ_to(x0, y0, z0 + 100, 500, -1);
|
|
|
-// z0 += _Z;
|
|
|
-// z0 /= 2;
|
|
|
- printf_P(PSTR(" z0=%d\n"), z0);
|
|
|
-// xyzcal_lineXYZ_to(x0, y0, z0 - 100, 500, 1);
|
|
|
-// z0 = _Z - 10;
|
|
|
-
|
|
|
- int8_t ret = 1;
|
|
|
-
|
|
|
-#ifdef XYZCAL_FIND_CENTER_DIAGONAL
|
|
|
- int32_t xc = 0;
|
|
|
- int32_t yc = 0;
|
|
|
- int16_t ad = 45;
|
|
|
- for (; ad < 360; ad += 90)
|
|
|
- {
|
|
|
- float ar = (float)ad * _PI / 180;
|
|
|
- int16_t x = x0 + MAX_DIAMETR * cos(ar);
|
|
|
- int16_t y = y0 + MAX_DIAMETR * sin(ar);
|
|
|
- if (!xyzcal_lineXYZ_to(x, y, z0, delay_us, -1))
|
|
|
- {
|
|
|
- printf_P(PSTR("ERROR ad=%d\n"), ad);
|
|
|
- ret = 0;
|
|
|
- break;
|
|
|
- }
|
|
|
- xc += _X;
|
|
|
- yc += _Y;
|
|
|
- xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
|
|
|
- }
|
|
|
- if (ret)
|
|
|
- {
|
|
|
- printf_P(PSTR("OK\n"), ad);
|
|
|
- x0 = xc / 4;
|
|
|
- y0 = yc / 4;
|
|
|
- printf_P(PSTR(" x0=%d\n"), x0);
|
|
|
- printf_P(PSTR(" y0=%d\n"), y0);
|
|
|
+ // DBG(_n("\n"));
|
|
|
}
|
|
|
+ DBG(_n("max_c=%d max_r=%d max_match=%d pixel\n"), max_c, max_r, max_match);
|
|
|
|
|
|
-#else //XYZCAL_FIND_CENTER_DIAGONAL
|
|
|
- xyzcal_lineXYZ_to(x0 - MAX_DIAMETR, y0, z0, delay_us, -1);
|
|
|
- int16_t dx1 = x0 - _X;
|
|
|
- if (dx1 >= MAX_DIAMETR)
|
|
|
- {
|
|
|
- printf_P(PSTR("!!! dx1 = %d\n"), dx1);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
|
|
|
- xyzcal_lineXYZ_to(x0 + MAX_DIAMETR, y0, z0, delay_us, -1);
|
|
|
- int16_t dx2 = _X - x0;
|
|
|
- if (dx2 >= MAX_DIAMETR)
|
|
|
- {
|
|
|
- printf_P(PSTR("!!! dx2 = %d\n"), dx2);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
|
|
|
- xyzcal_lineXYZ_to(x0 , y0 - MAX_DIAMETR, z0, delay_us, -1);
|
|
|
- int16_t dy1 = y0 - _Y;
|
|
|
- if (dy1 >= MAX_DIAMETR)
|
|
|
- {
|
|
|
- printf_P(PSTR("!!! dy1 = %d\n"), dy1);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
|
|
|
- xyzcal_lineXYZ_to(x0, y0 + MAX_DIAMETR, z0, delay_us, -1);
|
|
|
- int16_t dy2 = _Y - y0;
|
|
|
- if (dy2 >= MAX_DIAMETR)
|
|
|
- {
|
|
|
- printf_P(PSTR("!!! dy2 = %d\n"), dy2);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- printf_P(PSTR("dx1=%d\n"), dx1);
|
|
|
- printf_P(PSTR("dx2=%d\n"), dx2);
|
|
|
- printf_P(PSTR("dy1=%d\n"), dy1);
|
|
|
- printf_P(PSTR("dy2=%d\n"), dy2);
|
|
|
-
|
|
|
- x0 += (dx2 - dx1) / 2;
|
|
|
- y0 += (dy2 - dy1) / 2;
|
|
|
-
|
|
|
- printf_P(PSTR(" x0=%d\n"), x0);
|
|
|
- printf_P(PSTR(" y0=%d\n"), y0);
|
|
|
-
|
|
|
-#endif //XYZCAL_FIND_CENTER_DIAGONAL
|
|
|
-
|
|
|
- xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef XYZCAL_FIND_POINT_CENTER
|
|
|
-int8_t xyzcal_find_point_center(int16_t x0, int16_t y0, int16_t z0, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t turns)
|
|
|
-{
|
|
|
- uint8_t n;
|
|
|
- uint16_t ad;
|
|
|
- float ar;
|
|
|
- float _cos;
|
|
|
- float _sin;
|
|
|
- int16_t r_min = 0;
|
|
|
- int16_t r_max = 0;
|
|
|
- int16_t x_min = 0;
|
|
|
- int16_t x_max = 0;
|
|
|
- int16_t y_min = 0;
|
|
|
- int16_t y_max = 0;
|
|
|
- int16_t r = 10;
|
|
|
- int16_t x = x0;
|
|
|
- int16_t y = y0;
|
|
|
- int16_t z = z0;
|
|
|
- int8_t _pinda = _PINDA;
|
|
|
- for (n = 0; n < turns; n++)
|
|
|
- {
|
|
|
- uint32_t r_sum = 0;
|
|
|
- for (ad = 0; ad < 720; ad++)
|
|
|
- {
|
|
|
- ar = ad * _PI / 360;
|
|
|
- _cos = cos(ar);
|
|
|
- _sin = sin(ar);
|
|
|
- x = x0 + (int)(_cos * r);
|
|
|
- y = y0 + (int)(_sin * r);
|
|
|
- xyzcal_lineXYZ_to(x, y, z, 1000, 0);
|
|
|
- int8_t pinda = _PINDA;
|
|
|
- if (pinda)
|
|
|
- r += 1;
|
|
|
- else
|
|
|
- {
|
|
|
- r -= 1;
|
|
|
- ad--;
|
|
|
- r_sum -= r;
|
|
|
- }
|
|
|
- if (ad == 0)
|
|
|
- {
|
|
|
- x_min = x0;
|
|
|
- x_max = x0;
|
|
|
- y_min = y0;
|
|
|
- y_max = y0;
|
|
|
- r_min = r;
|
|
|
- r_max = r;
|
|
|
- }
|
|
|
- else if (pinda)
|
|
|
- {
|
|
|
- if (x_min > x) x_min = (2*x + x_min) / 3;
|
|
|
- if (x_max < x) x_max = (2*x + x_max) / 3;
|
|
|
- if (y_min > y) y_min = (2*y + y_min) / 3;
|
|
|
- if (y_max < y) y_max = (2*y + y_max) / 3;
|
|
|
-/* if (x_min > x) x_min = x;
|
|
|
- if (x_max < x) x_max = x;
|
|
|
- if (y_min > y) y_min = y;
|
|
|
- if (y_max < y) y_max = y;*/
|
|
|
- if (r_min > r) r_min = r;
|
|
|
- if (r_max < r) r_max = r;
|
|
|
- }
|
|
|
- r_sum += r;
|
|
|
-/* if (_pinda != pinda)
|
|
|
- {
|
|
|
- if (pinda)
|
|
|
- DBG(_n("!1 x=%d y=%d\n"), x, y);
|
|
|
- else
|
|
|
- DBG(_n("!0 x=%d y=%d\n"), x, y);
|
|
|
- }*/
|
|
|
- _pinda = pinda;
|
|
|
-// DBG(_n("x=%d y=%d rx=%d ry=%d\n"), x, y, rx, ry);
|
|
|
- }
|
|
|
- DBG(_n("x_min=%d x_max=%d y_min=%d y_max=%d r_min=%d r_max=%d r_avg=%d\n"), x_min, x_max, y_min, y_max, r_min, r_max, r_sum / 720);
|
|
|
- if ((n > 2) && (n & 1))
|
|
|
- {
|
|
|
- x0 += (x_min + x_max);
|
|
|
- y0 += (y_min + y_max);
|
|
|
- x0 /= 3;
|
|
|
- y0 /= 3;
|
|
|
- int rx = (x_max - x_min) / 2;
|
|
|
- int ry = (y_max - y_min) / 2;
|
|
|
- r = (rx + ry) / 3;//(rx < ry)?rx:ry;
|
|
|
- DBG(_n("x0=%d y0=%d r=%d\n"), x0, y0, r);
|
|
|
- }
|
|
|
- }
|
|
|
- xyzcal_lineXYZ_to(x0, y0, z, 200, 0);
|
|
|
+ *pc = max_c;
|
|
|
+ *pr = max_r;
|
|
|
+ return max_match;
|
|
|
}
|
|
|
-#endif //XYZCAL_FIND_POINT_CENTER
|
|
|
-
|
|
|
|
|
|
uint8_t xyzcal_xycoords2point(int16_t x, int16_t y)
|
|
|
{
|
|
@@ -744,91 +636,222 @@ bool xyzcal_searchZ(void)
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
-bool xyzcal_scan_and_process(void)
|
|
|
-{
|
|
|
+/// returns value of any location within data
|
|
|
+/// uses bilinear interpolation
|
|
|
+float get_value(uint8_t * matrix_32x32, float c, float r){
|
|
|
+ if (c <= 0 || r <= 0 || c >= 31 || r >= 31)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /// calculate weights of nearby points
|
|
|
+ const float wc1 = c - floor(c);
|
|
|
+ const float wr1 = r - floor(r);
|
|
|
+ const float wc0 = 1 - wc1;
|
|
|
+ const float wr0 = 1 - wr1;
|
|
|
+
|
|
|
+ const float w00 = wc0 * wr0;
|
|
|
+ const float w01 = wc0 * wr1;
|
|
|
+ const float w10 = wc1 * wr0;
|
|
|
+ const float w11 = wc1 * wr1;
|
|
|
+
|
|
|
+ const uint16_t c0 = c;
|
|
|
+ const uint16_t c1 = c0 + 1;
|
|
|
+ const uint16_t r0 = r;
|
|
|
+ const uint16_t r1 = r0 + 1;
|
|
|
+
|
|
|
+ const uint16_t idx00 = c0 + 32 * r0;
|
|
|
+ const uint16_t idx01 = c0 + 32 * r1;
|
|
|
+ const uint16_t idx10 = c1 + 32 * r0;
|
|
|
+ const uint16_t idx11 = c1 + 32 * r1;
|
|
|
+
|
|
|
+ /// bilinear resampling
|
|
|
+ return w00 * matrix_32x32[idx00] + w01 * matrix_32x32[idx01] + w10 * matrix_32x32[idx10] + w11 * matrix_32x32[idx11];
|
|
|
+}
|
|
|
+
|
|
|
+const constexpr float m_infinity = -1000.f;
|
|
|
+
|
|
|
+/// replaces the highest number by m_infinity
|
|
|
+void remove_highest(float *points, const uint8_t num_points){
|
|
|
+ if (num_points <= 0)
|
|
|
+ return;
|
|
|
+
|
|
|
+ float max = points[0];
|
|
|
+ uint8_t max_i = 0;
|
|
|
+ for (uint8_t i = 0; i < num_points; ++i){
|
|
|
+ if (max < points[i]){
|
|
|
+ max = points[i];
|
|
|
+ max_i = i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ points[max_i] = m_infinity;
|
|
|
+}
|
|
|
+
|
|
|
+/// return the highest number in the list
|
|
|
+float highest(float *points, const uint8_t num_points){
|
|
|
+ if (num_points <= 0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ float max = points[0];
|
|
|
+ for (uint8_t i = 0; i < num_points; ++i){
|
|
|
+ if (max < points[i]){
|
|
|
+ max = points[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return max;
|
|
|
+}
|
|
|
+
|
|
|
+/// Searches for circle iteratively
|
|
|
+/// Uses points on the perimeter. If point is high it pushes circle out of the center (shift or change of radius),
|
|
|
+/// otherwise to the center.
|
|
|
+/// Algorithm is stopped after fixed number of iterations. Move is limited to 0.5 px per iteration.
|
|
|
+void dynamic_circle(uint8_t *matrix_32x32, float &x, float &y, float &r, uint8_t iterations){
|
|
|
+ /// circle of 10.5 diameter has 33 in circumference, don't go much above
|
|
|
+ const constexpr uint8_t num_points = 33;
|
|
|
+ float points[num_points];
|
|
|
+ float pi_2_div_num_points = 2 * M_PI / num_points;
|
|
|
+ const constexpr uint8_t target_z = 32; ///< target z height of the circle
|
|
|
+ float norm;
|
|
|
+ float angle;
|
|
|
+ float max_val = 0.5f;
|
|
|
+ const uint8_t blocks = 7;
|
|
|
+ float shifts_x[blocks];
|
|
|
+ float shifts_y[blocks];
|
|
|
+ float shifts_r[blocks];
|
|
|
+
|
|
|
+ for (int8_t i = iterations; i > 0; --i){
|
|
|
+
|
|
|
+ // DBG(_n(" [%f, %f][%f] circle\n"), x, y, r);
|
|
|
+
|
|
|
+ /// read points on the circle
|
|
|
+ for (uint8_t p = 0; p < num_points; ++p){
|
|
|
+ angle = p * pi_2_div_num_points;
|
|
|
+ points[p] = get_value(matrix_32x32, r * cos(angle) + x, r * sin(angle) + y) - target_z;
|
|
|
+ // DBG(_n("%f "), points[p]);
|
|
|
+ }
|
|
|
+ // DBG(_n(" points\n"));
|
|
|
+
|
|
|
+ /// sum blocks
|
|
|
+ for (uint8_t j = 0; j < blocks; ++j){
|
|
|
+ shifts_x[j] = shifts_y[j] = shifts_r[j] = 0;
|
|
|
+ /// first part
|
|
|
+ for (uint8_t p = 0; p < num_points * 3 / 4; ++p){
|
|
|
+ uint8_t idx = (p + j * num_points / blocks) % num_points;
|
|
|
+
|
|
|
+ angle = idx * pi_2_div_num_points;
|
|
|
+ shifts_x[j] += cos(angle) * points[idx];
|
|
|
+ shifts_y[j] += sin(angle) * points[idx];
|
|
|
+ shifts_r[j] += points[idx];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// remove extreme values (slow but simple)
|
|
|
+ for (uint8_t j = 0; j < blocks / 2; ++j){
|
|
|
+ remove_highest(shifts_x, blocks);
|
|
|
+ remove_highest(shifts_y, blocks);
|
|
|
+ remove_highest(shifts_r, blocks);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// median is the highest now
|
|
|
+ norm = 1.f / (32.f * (num_points * 3 / 4));
|
|
|
+ x += CLAMP(highest(shifts_x, blocks) * norm, -max_val, max_val);
|
|
|
+ y += CLAMP(highest(shifts_y, blocks) * norm, -max_val, max_val);
|
|
|
+ r += CLAMP(highest(shifts_r, blocks) * norm, -max_val, max_val);
|
|
|
+
|
|
|
+ r = MAX(2, r);
|
|
|
+
|
|
|
+ }
|
|
|
+ DBG(_n(" [%f, %f][%f] final circle\n"), x, y, r);
|
|
|
+}
|
|
|
+
|
|
|
+/// Prints matrix in hex to debug output (serial line)
|
|
|
+void print_image(uint8_t *matrix_32x32){
|
|
|
+ for (uint8_t y = 0; y < 32; ++y){
|
|
|
+ const uint16_t idx_y = y * 32;
|
|
|
+ for (uint8_t x = 0; x < 32; ++x){
|
|
|
+ DBG(_n("%02x"), matrix_32x32[idx_y + x]);
|
|
|
+ }
|
|
|
+ DBG(_n("\n"));
|
|
|
+ }
|
|
|
+ DBG(_n("\n"));
|
|
|
+}
|
|
|
+
|
|
|
+/// scans area around the current head location and
|
|
|
+/// searches for the center of the calibration pin
|
|
|
+bool xyzcal_scan_and_process(void){
|
|
|
DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
-// DBG(_n("sizeof(pixels)=%d\n"), 32*32);
|
|
|
-// DBG(_n("sizeof(histo)=%d\n"), 2*16);
|
|
|
-// DBG(_n("sizeof(pattern)=%d\n"), 2*12);
|
|
|
- DBG(_n("sizeof(total)=%d\n"), 32*32+2*16+2*12);
|
|
|
bool ret = false;
|
|
|
int16_t x = _X;
|
|
|
int16_t y = _Y;
|
|
|
int16_t z = _Z;
|
|
|
|
|
|
- uint8_t* pixels = (uint8_t*)block_buffer;
|
|
|
- xyzcal_scan_pixels_32x32(x, y, z - 72, 2400, 200, pixels);
|
|
|
+ uint8_t *matrix32 = (uint8_t *)block_buffer;
|
|
|
+ uint16_t *pattern = (uint16_t *)(matrix32 + 32 * 32);
|
|
|
|
|
|
- uint16_t* histo = (uint16_t*)(pixels + 32*32);
|
|
|
- xyzcal_histo_pixels_32x32(pixels, histo);
|
|
|
+ xyzcal_scan_pixels_32x32_Zhop(x, y, z - 72, 2400, 200, matrix32);
|
|
|
+ print_image(matrix32);
|
|
|
|
|
|
- xyzcal_adjust_pixels(pixels, histo);
|
|
|
-
|
|
|
- uint16_t* pattern = (uint16_t*)(histo + 2*16);
|
|
|
- for (uint8_t i = 0; i < 12; i++)
|
|
|
- {
|
|
|
+ for (uint8_t i = 0; i < 12; i++){
|
|
|
pattern[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern + i));
|
|
|
// DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]);
|
|
|
}
|
|
|
- uint8_t c = 0;
|
|
|
- uint8_t r = 0;
|
|
|
- if (xyzcal_find_pattern_12x12_in_32x32(pixels, pattern, &c, &r) > 66) //total pixels=144, corner=12 (1/2 = 66)
|
|
|
- {
|
|
|
- DBG(_n(" pattern found at %d %d\n"), c, r);
|
|
|
- c += 6;
|
|
|
- r += 6;
|
|
|
- x += ((int16_t)c - 16) << 6;
|
|
|
- y += ((int16_t)r - 16) << 6;
|
|
|
- DBG(_n(" x=%d y=%d z=%d\n"), x, y, z);
|
|
|
+
|
|
|
+ /// SEARCH FOR BINARY CIRCLE
|
|
|
+ uint8_t uc = 0;
|
|
|
+ uint8_t ur = 0;
|
|
|
+ /// max match = 132, 1/2 good = 66, 2/3 good = 88
|
|
|
+ if (xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern, &uc, &ur) >= 88){
|
|
|
+ /// find precise circle
|
|
|
+ /// move to the center of the pattern (+5.5)
|
|
|
+ float xf = uc + 5.5f;
|
|
|
+ float yf = ur + 5.5f;
|
|
|
+ float radius = 5; ///< default radius
|
|
|
+ const uint8_t iterations = 20;
|
|
|
+ dynamic_circle(matrix32, xf, yf, radius, iterations);
|
|
|
+ if (ABS(xf - (uc + 5.5f)) > 3 || ABS(yf - (ur + 5.5f)) > 3 || ABS(radius - 5) > 3){
|
|
|
+ DBG(_n(" [%f %f][%f] mm divergence\n"), xf - (uc + 5.5f), yf - (ur + 5.5f), radius - 5);
|
|
|
+ /// dynamic algorithm diverged, use original position instead
|
|
|
+ xf = uc + 5.5f;
|
|
|
+ yf = ur + 5.5f;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// move to the center of area and convert to position
|
|
|
+ xf = (float)x + (xf - 15.5f) * 64;
|
|
|
+ yf = (float)y + (yf - 15.5f) * 64;
|
|
|
+ DBG(_n(" [%f %f] mm pattern center\n"), pos_2_mm(xf), pos_2_mm(yf));
|
|
|
+ x = round_to_i16(xf);
|
|
|
+ y = round_to_i16(yf);
|
|
|
xyzcal_lineXYZ_to(x, y, z, 200, 0);
|
|
|
ret = true;
|
|
|
}
|
|
|
+
|
|
|
+ /// wipe buffer
|
|
|
for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++)
|
|
|
- pixels[i] = 0;
|
|
|
+ matrix32[i] = 0;
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-bool xyzcal_find_bed_induction_sensor_point_xy(void)
|
|
|
-{
|
|
|
- DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
|
|
|
+bool xyzcal_find_bed_induction_sensor_point_xy(void){
|
|
|
bool ret = false;
|
|
|
+
|
|
|
+ DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
|
|
|
st_synchronize();
|
|
|
- int16_t x = _X;
|
|
|
- int16_t y = _Y;
|
|
|
- int16_t z = _Z;
|
|
|
+ pos_i16_t x = _X;
|
|
|
+ pos_i16_t y = _Y;
|
|
|
+ pos_i16_t z = _Z;
|
|
|
+
|
|
|
uint8_t point = xyzcal_xycoords2point(x, y);
|
|
|
- x = pgm_read_word((uint16_t*)(xyzcal_point_xcoords + point));
|
|
|
- y = pgm_read_word((uint16_t*)(xyzcal_point_ycoords + point));
|
|
|
+ x = pgm_read_word((uint16_t *)(xyzcal_point_xcoords + point));
|
|
|
+ y = pgm_read_word((uint16_t *)(xyzcal_point_ycoords + point));
|
|
|
DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z);
|
|
|
xyzcal_meassure_enter();
|
|
|
xyzcal_lineXYZ_to(x, y, z, 200, 0);
|
|
|
- if (xyzcal_searchZ())
|
|
|
- {
|
|
|
+
|
|
|
+ if (xyzcal_searchZ()){
|
|
|
int16_t z = _Z;
|
|
|
xyzcal_lineXYZ_to(x, y, z, 200, 0);
|
|
|
- if (xyzcal_scan_and_process())
|
|
|
- {
|
|
|
- if (xyzcal_find_point_center2(500))
|
|
|
- {
|
|
|
- uint32_t x_avg = 0;
|
|
|
- uint32_t y_avg = 0;
|
|
|
- uint8_t n; for (n = 0; n < 4; n++)
|
|
|
- {
|
|
|
- if (!xyzcal_find_point_center2(1000)) break;
|
|
|
- x_avg += _X;
|
|
|
- y_avg += _Y;
|
|
|
- }
|
|
|
- if (n == 4)
|
|
|
- {
|
|
|
- xyzcal_lineXYZ_to(x_avg >> 2, y_avg >> 2, _Z, 200, 0);
|
|
|
- ret = true;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ ret = xyzcal_scan_and_process();
|
|
|
}
|
|
|
xyzcal_meassure_leave();
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
#endif //NEW_XYZCAL
|