|
@@ -2791,8 +2791,7 @@ void process_commands()
|
|
|
while (degBed() < PINDA_MIN_T) delay_keep_alive(1000);
|
|
|
|
|
|
//enquecommand_P(PSTR("M190 S50"));
|
|
|
-
|
|
|
- delay_keep_alive(PINDA_HEAT_T * 1000);
|
|
|
+ for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
|
|
|
|
|
|
current_position[Z_AXIS] = 5;
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
@@ -2822,7 +2821,7 @@ void process_commands()
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
st_synchronize();
|
|
|
while (degBed() < t_c) delay_keep_alive(1000);
|
|
|
- delay_keep_alive(PINDA_HEAT_T * 1000);
|
|
|
+ for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
|
|
|
current_position[Z_AXIS] = 5;
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
|
|
|
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
|
|
@@ -2890,7 +2889,7 @@ void process_commands()
|
|
|
enquecommand_front_P((PSTR("G28 W0")));
|
|
|
break;
|
|
|
}
|
|
|
-
|
|
|
+ temp_compensation_start();
|
|
|
// Save custom message state, set a new custom message state to display: Calibrating point 9.
|
|
|
bool custom_message_old = custom_message;
|
|
|
unsigned int custom_message_type_old = custom_message_type;
|
|
@@ -5880,7 +5879,7 @@ void calculate_volumetric_multipliers() {
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
-void delay_keep_alive(int ms)
|
|
|
+void delay_keep_alive(unsigned int ms)
|
|
|
{
|
|
|
for (;;) {
|
|
|
manage_heater();
|
|
@@ -6147,12 +6146,7 @@ void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_
|
|
|
|
|
|
}
|
|
|
|
|
|
-void temp_compensation_apply() {
|
|
|
- int i_add;
|
|
|
- int compensation_value;
|
|
|
- int z_shift = 0;
|
|
|
- float z_shift_mm;
|
|
|
-
|
|
|
+void temp_compensation_start() {
|
|
|
current_position[X_AXIS] = PINDA_PREHEAT_X;
|
|
|
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
|
|
|
current_position[Z_AXIS] = 0;
|
|
@@ -6161,7 +6155,16 @@ void temp_compensation_apply() {
|
|
|
|
|
|
while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
|
|
|
|
|
|
- delay_keep_alive(PINDA_HEAT_T * 1000);
|
|
|
+ for(int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
|
|
|
+
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+void temp_compensation_apply() {
|
|
|
+ int i_add;
|
|
|
+ int compensation_value;
|
|
|
+ int z_shift = 0;
|
|
|
+ float z_shift_mm;
|
|
|
|
|
|
if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
|
|
|
i_add = (target_temperature_bed - 60) / 10;
|
|
@@ -6170,7 +6173,7 @@ void temp_compensation_apply() {
|
|
|
}
|
|
|
else {
|
|
|
//interpolation
|
|
|
- z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
|
|
+ //z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
|
|
|
}
|
|
|
SERIAL_PROTOCOLPGM("\n");
|
|
|
SERIAL_PROTOCOLPGM("Z shift applied:");
|