/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "temperature.h"
#include "stepper.h"
#include "ultralcd.h"
#include "menu.h"
#include "sound.h"
#include "fancheck.h"
#include "messages.h"
#include "language.h"
#include "SdFatUtil.h"
#include
#include
#include "adc.h"
#include "ConfigurationStore.h"
#include "Timer.h"
#include "Configuration_var.h"
#include "Prusa_farm.h"
#if (ADC_OVRSAMPL != OVERSAMPLENR)
#error "ADC_OVRSAMPL oversampling must match OVERSAMPLENR"
#endif
#ifdef SYSTEM_TIMER_2
#define ENABLE_SOFT_PWM_INTERRUPT() TIMSK2 |= (1< 3
# error Unsupported number of extruders
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
#ifdef BED_MINTEMP
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#ifdef AMBIENT_MINTEMP
static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
#endif
#ifdef AMBIENT_MAXTEMP
static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
#endif
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
#ifdef AMBIENT_MAXTEMP
static float analog2tempAmbient(int raw);
#endif
static void updateTemperatures();
enum TempRunawayStates : uint8_t
{
TempRunaway_INACTIVE = 0,
TempRunaway_PREHEAT = 1,
TempRunaway_ACTIVE = 2,
};
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
static uint8_t temp_runaway_status[1 + EXTRUDERS];
static float temp_runaway_target[1 + EXTRUDERS];
static uint32_t temp_runaway_timer[1 + EXTRUDERS];
static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
static void temp_runaway_stop(bool isPreheat, bool isBed);
#endif
// return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
bool checkAllHotends(void)
{
bool result=false;
for(int i=0;i -1)
unsigned long extruder_autofan_last_check = _millis();
#endif
if ((extruder >= EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif
){
SERIAL_ECHOLNPGM("PID Autotune failed. Bad extruder number.");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
SERIAL_ECHOLNPGM("PID Autotune start");
if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
timer02_set_pwm0(soft_pwm_bed << 1);
bias = d = (MAX_BED_POWER)/2;
target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
}
for(;;) {
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
if(temp_meas_ready == true) { // temp sample ready
updateTemperatures();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max=max(max,input);
min=min(min,input);
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
if(_millis() - extruder_autofan_last_check > 2500) {
checkExtruderAutoFans();
extruder_autofan_last_check = _millis();
}
#endif
if(heating == true && input > temp) {
if(_millis() - t2 > 5000) {
heating=false;
if (extruder<0)
{
soft_pwm_bed = (bias - d) >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=_millis();
t_high=t1 - t2;
max=temp;
}
}
if(heating == false && input < temp) {
if(_millis() - t1 > 5000) {
heating=true;
t2=_millis();
t_low=t2 - t1;
if(pid_cycle > 0) {
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
else d = bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
if(pid_cycle > 2) {
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
Tu = ((float)(t_low + t_high)/1000.0);
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
_Kp = 0.6*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/8;
SERIAL_PROTOCOLLNPGM(" Classic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
/*
_Kp = 0.33*Ku;
_Ki = _Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
_Kp = 0.2*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
*/
}
}
if (extruder<0)
{
soft_pwm_bed = (bias + d) >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
soft_pwm[extruder] = (bias + d) >> 1;
pid_cycle++;
min=temp;
}
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(_millis() - temp_millis > 2000) {
int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("B:");
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("T:");
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(p);
if (safety_check_cycles == 0) { //save ambient temp
temp_ambient = input;
//SERIAL_ECHOPGM("Ambient T: ");
//MYSERIAL.println(temp_ambient);
safety_check_cycles++;
}
else if (safety_check_cycles < safety_check_cycles_count) { //delay
safety_check_cycles++;
}
else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
safety_check_cycles++;
//SERIAL_ECHOPGM("Time from beginning: ");
//MYSERIAL.print(safety_check_cycles_count * 2);
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
//MYSERIAL.println(input - temp_ambient);
if (fabs(input - temp_ambient) < 5.0) {
temp_runaway_stop(false, (extruder<0));
pid_tuning_finished = true;
return;
}
}
temp_millis = _millis();
}
if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(pid_cycle > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
lcd_update(0);
}
}
void updatePID()
{
// TODO: iState_sum_max and PID values should be synchronized for temp_mgr_isr
#ifdef PIDTEMP
for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
}
#endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
#endif
}
int getHeaterPower(int heater) {
if (heater<0)
return soft_pwm_bed;
return soft_pwm[heater];
}
// reset PID state after changing target_temperature
void resetPID(uint8_t extruder _UNUSED) {}
enum class TempErrorSource : uint8_t
{
hotend,
bed,
#ifdef AMBIENT_THERMISTOR
ambient,
#endif
};
// thermal error type (in order of decreasing priority!)
enum class TempErrorType : uint8_t
{
max,
min,
preheat,
runaway,
#ifdef TEMP_MODEL
model,
#endif
};
// error state (updated via set_temp_error from isr context)
volatile static union
{
uint8_t v;
struct
{
uint8_t error: 1; // error condition
uint8_t assert: 1; // error is still asserted
uint8_t source: 2; // source
uint8_t index: 1; // source index
uint8_t type: 3; // error type
};
} temp_error_state;
// set the error type from within the temp_mgr isr to be handled in manager_heater
// - immediately disable all heaters and turn on all fans at full speed
// - prevent the user to set temperatures until all errors are cleared
void set_temp_error(TempErrorSource source, uint8_t index, TempErrorType type)
{
// save the original target temperatures for recovery before disabling heaters
if(!temp_error_state.error && !saved_printing) {
saved_bed_temperature = target_temperature_bed;
saved_extruder_temperature = target_temperature[index];
saved_fan_speed = fanSpeed;
}
// keep disabling heaters and keep fans on as long as the condition is asserted
disable_heater();
hotendFanSetFullSpeed();
// set the initial error source to the highest priority error
if(!temp_error_state.error || (uint8_t)type < temp_error_state.type) {
temp_error_state.source = (uint8_t)source;
temp_error_state.index = index;
temp_error_state.type = (uint8_t)type;
}
// always set the error state
temp_error_state.error = true;
temp_error_state.assert = true;
}
bool get_temp_error()
{
return temp_error_state.v;
}
void handle_temp_error();
void manage_heater()
{
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
// limit execution to the same rate as temp_mgr (low-level fault handling is already handled -
// any remaining error handling is just user-facing and can wait one extra cycle)
if(!temp_meas_ready)
return;
// syncronize temperatures with isr
updateTemperatures();
#ifdef TEMP_MODEL
// handle model warnings first, so not to override the error handler
if(temp_model::warning_state.warning)
temp_model::handle_warning();
#endif
// handle temperature errors
if(temp_error_state.v)
handle_temp_error();
// periodically check fans
checkFans();
#ifdef TEMP_MODEL_DEBUG
temp_model::log_usr();
#endif
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
if(e >= EXTRUDERS)
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
kill(NULL, 6);
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
#endif
if(heater_ttbl_map[e] != NULL)
{
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i raw)
{
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
static float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
float celsius = 0;
byte i;
for (i=1; i raw)
{
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
// temperature offset adjustment
#ifdef BED_OFFSET
float _offset = BED_OFFSET;
float _offset_center = BED_OFFSET_CENTER;
float _offset_start = BED_OFFSET_START;
float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
float _second_koef = (_offset / 2) / (100 - _offset_center);
if (celsius >= _offset_start && celsius <= _offset_center)
{
celsius = celsius + (_first_koef * (celsius - _offset_start));
}
else if (celsius > _offset_center && celsius <= 100)
{
celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
}
else if (celsius > 100)
{
celsius = celsius + _offset;
}
#endif
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
return 0;
#endif
}
#ifdef AMBIENT_THERMISTOR
static float analog2tempAmbient(int raw)
{
float celsius = 0;
byte i;
for (i=1; i raw)
{
celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
return celsius;
}
#endif //AMBIENT_THERMISTOR
void soft_pwm_init()
{
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1< -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if defined(FAN_PIN) && (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
#endif
#endif
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
SET_OUTPUT(SCK_PIN);
WRITE(SCK_PIN,0);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
#endif
/* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
//Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN,0);
pinMode(MAX6675_SS, OUTPUT);
digitalWrite(MAX6675_SS,1);
#endif
#ifdef HEATER_0_MINTEMP
minttemp[0] = HEATER_0_MINTEMP;
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
minttemp_raw[0] += OVERSAMPLENR;
#else
minttemp_raw[0] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP
#ifdef HEATER_0_MAXTEMP
maxttemp[0] = HEATER_0_MAXTEMP;
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
maxttemp_raw[0] -= OVERSAMPLENR;
#else
maxttemp_raw[0] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
minttemp_raw[1] -= OVERSAMPLENR;
#endif
}
#endif // MINTEMP 1
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
maxttemp[1] = HEATER_1_MAXTEMP;
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
maxttemp_raw[1] -= OVERSAMPLENR;
#else
maxttemp_raw[1] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else
minttemp_raw[2] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP 2
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
maxttemp[2] = HEATER_2_MAXTEMP;
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
maxttemp_raw[2] -= OVERSAMPLENR;
#else
maxttemp_raw[2] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 2
#ifdef BED_MINTEMP
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
#ifdef AMBIENT_MINTEMP
while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
ambient_minttemp_raw += OVERSAMPLENR;
#else
ambient_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //AMBIENT_MINTEMP
#ifdef AMBIENT_MAXTEMP
while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP
ambient_maxttemp_raw -= OVERSAMPLENR;
#else
ambient_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //AMBIENT_MAXTEMP
timer0_init(); //enables the heatbed timer.
// timer2 already enabled earlier in the code
// now enable the COMPB temperature interrupt
OCR2B = 128;
ENABLE_SOFT_PWM_INTERRUPT();
timer4_init(); //for tone and Hotend fan PWM
}
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
{
float __delta;
float __hysteresis = 0;
uint16_t __timeout = 0;
bool temp_runaway_check_active = false;
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
static uint8_t __preheat_counter[2] = { 0,0};
static uint8_t __preheat_errors[2] = { 0,0};
if (_millis() - temp_runaway_timer[_heater_id] > 2000)
{
#ifdef TEMP_RUNAWAY_BED_TIMEOUT
if (_isbed)
{
__hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
__timeout = TEMP_RUNAWAY_BED_TIMEOUT;
}
#endif
#ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
if (!_isbed)
{
__hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
__timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
}
#endif
temp_runaway_timer[_heater_id] = _millis();
if (_output == 0)
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (temp_runaway_target[_heater_id] != _target_temperature)
{
if (_target_temperature > 0)
{
temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
temp_runaway_target[_heater_id] = _target_temperature;
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
else
{
temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
temp_runaway_target[_heater_id] = _target_temperature;
}
}
if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
{
__preheat_counter[_heater_id]++;
if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
SERIAL_ECHOPGM(" T:");
MYSERIAL.print(_current_temperature);
SERIAL_ECHOPGM(" Tstart:");
MYSERIAL.print(__preheat_start[_heater_id]);
SERIAL_ECHOPGM(" delta:");
MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
//-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
//-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
__delta=2.0;
if(_isbed)
{
__delta=3.0;
if(_current_temperature>90.0) __delta=2.0;
if(_current_temperature>105.0) __delta=0.6;
}
if (_current_temperature - __preheat_start[_heater_id] < __delta) {
__preheat_errors[_heater_id]++;
/*SERIAL_ECHOPGM(" Preheat errors:");
MYSERIAL.println(__preheat_errors[_heater_id]);*/
}
else {
//SERIAL_ECHOLNPGM("");
__preheat_errors[_heater_id] = 0;
}
if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::preheat);
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
}
//-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
MYSERIAL.println(" ->tempRunaway");*/
temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (_output > 0)
{
temp_runaway_check_active = true;
}
if (temp_runaway_check_active)
{
// we are in range
if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
else
{
if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
{
temp_runaway_error_counter[_heater_id]++;
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::runaway);
}
}
}
}
}
static void temp_runaway_stop(bool isPreheat, bool isBed)
{
if(IsStopped() == false) {
if (isPreheat) {
lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
SERIAL_ERROR_START;
if (isBed) {
SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)");
} else {
SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
}
} else {
lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
SERIAL_ERROR_START;
if (isBed) {
SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY");
} else {
SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
}
}
prusa_statistics(0);
prusa_statistics(isPreheat? 91 : 90);
}
ThermalStop();
}
#endif
//! signal a temperature error on both the lcd and serial
//! @param type short error abbreviation (PROGMEM)
//! @param e optional extruder index for hotend errors
static void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
{
char msg[LCD_WIDTH];
strcpy_P(msg, PSTR("Err: "));
strcat_P(msg, type);
lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
SERIAL_ERROR_START;
if(e != EXTRUDERS) {
SERIAL_ERROR((int)e);
SERIAL_ERRORPGM(": ");
}
SERIAL_ERRORPGM("Heaters switched off. ");
SERIAL_ERRORRPGM(type);
SERIAL_ERRORLNPGM(" triggered!");
}
static void max_temp_error(uint8_t e) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP"), e);
prusa_statistics(93);
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
ThermalStop();
#endif
}
static void min_temp_error(uint8_t e) {
static const char err[] PROGMEM = "MINTEMP";
if(IsStopped() == false) {
temp_error_messagepgm(err, e);
prusa_statistics(92);
}
ThermalStop();
}
static void bed_max_temp_error(void) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP BED"));
}
ThermalStop();
}
static void bed_min_temp_error(void) {
static const char err[] PROGMEM = "MINTEMP BED";
if(IsStopped() == false) {
temp_error_messagepgm(err);
}
ThermalStop();
}
#ifdef AMBIENT_THERMISTOR
static void ambient_max_temp_error(void) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP AMB"));
}
ThermalStop();
}
static void ambient_min_temp_error(void) {
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MINTEMP AMB"));
}
ThermalStop();
}
#endif
#ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000;
int read_max6675()
{
if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = _millis();
max6675_temp = 0;
#ifdef PRR
PRR &= ~(1<> 3;
}
return max6675_temp;
}
#endif
#ifdef BABYSTEPPING
FORCE_INLINE static void applyBabysteps() {
for(uint8_t axis=0;axis<3;axis++)
{
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if(curTodo>0)
{
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
}
}
else
if(curTodo<0)
{
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
}
}
}
}
#endif //BABYSTEPPING
FORCE_INLINE static void soft_pwm_core()
{
static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
static uint8_t soft_pwm_0;
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_0 = 0;
static unsigned char state_timer_heater_0 = 0;
#endif
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
static unsigned char soft_pwm_1;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_1 = 0;
static unsigned char state_timer_heater_1 = 0;
#endif
#endif
#if EXTRUDERS > 2
static unsigned char soft_pwm_2;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_2 = 0;
static unsigned char state_timer_heater_2 = 0;
#endif
#endif
#if HEATER_BED_PIN > -1
// @@DR static unsigned char soft_pwm_b;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_b = 0;
static unsigned char state_timer_heater_b = 0;
#endif
#endif
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
#endif
#ifndef SLOW_PWM_HEATERS
/*
* standard PWM modulation
*/
if (pwm_count == 0)
{
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0)
{
WRITE(HEATER_0_PIN,1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,1);
#endif
} else WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
#endif
}
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
#if 0 // @@DR vypnuto pro hw pwm bedu
// tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
// teoreticky by se tato cast uz vubec nemusela poustet
if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
{
soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
# ifndef SYSTEM_TIMER_2
// tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
// jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
// 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
// Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
// to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
//if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
# endif //SYSTEM_TIMER_2
}
#endif
#endif
#ifdef FAN_SOFT_PWM
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
{
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
#endif
if(soft_pwm_0 < pwm_count)
{
WRITE(HEATER_0_PIN,0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,0);
#endif
}
#if EXTRUDERS > 1
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
#endif
#if 0 // @@DR
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
//WRITE(HEATER_BED_PIN,0);
}
//WRITE(HEATER_BED_PIN, pwm_count & 1 );
#endif
#endif
#ifdef FAN_SOFT_PWM
if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else //ifndef SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
if (slow_pwm_count == 0) {
// EXTRUDER 0
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 0) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 1;
WRITE(HEATER_0_PIN, 1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 1);
#endif
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
soft_pwm_1 = soft_pwm[1];
if (soft_pwm_1 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 0) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 1;
WRITE(HEATER_1_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
soft_pwm_2 = soft_pwm[2];
if (soft_pwm_2 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 0) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 1;
WRITE(HEATER_2_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
soft_pwm_b = soft_pwm_bed;
if (soft_pwm_b > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 0) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 1;
//WRITE(HEATER_BED_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
} // if (slow_pwm_count == 0)
// EXTRUDER 0
if (soft_pwm_0 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
if (soft_pwm_1 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
if (soft_pwm_2 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
if (soft_pwm_b < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
#ifdef FAN_SOFT_PWM
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// Extruder 0
if (state_timer_heater_0 > 0) {
state_timer_heater_0--;
}
#if EXTRUDERS > 1
// Extruder 1
if (state_timer_heater_1 > 0)
state_timer_heater_1--;
#endif
#if EXTRUDERS > 2
// Extruder 2
if (state_timer_heater_2 > 0)
state_timer_heater_2--;
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// Bed
if (state_timer_heater_b > 0)
state_timer_heater_b--;
#endif
} //if ((pwm_count % 64) == 0) {
#endif //ifndef SLOW_PWM_HEATERS
}
FORCE_INLINE static void soft_pwm_isr()
{
lcd_buttons_update();
soft_pwm_core();
#ifdef BABYSTEPPING
applyBabysteps();
#endif //BABYSTEPPING
// Check if a stack overflow happened
if (!SdFatUtil::test_stack_integrity()) stack_error();
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
readFanTach();
#endif //(defined(TACH_0))
}
// Timer2 (originaly timer0) is shared with millies
#ifdef SYSTEM_TIMER_2
ISR(TIMER2_COMPB_vect)
#else //SYSTEM_TIMER_2
ISR(TIMER0_COMPB_vect)
#endif //SYSTEM_TIMER_2
{
DISABLE_SOFT_PWM_INTERRUPT();
NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {
soft_pwm_isr();
}
ENABLE_SOFT_PWM_INTERRUPT();
}
void check_max_temp_raw()
{
//heater
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
#else
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
#endif
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::max);
}
//bed
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
#else
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
#endif
set_temp_error(TempErrorSource::bed, 0, TempErrorType::max);
}
#endif
//ambient
#if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
#else
if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
#endif
set_temp_error(TempErrorSource::ambient, 0, TempErrorType::max);
}
#endif
}
//! number of repeating the same state with consecutive step() calls
//! used to slow down text switching
struct alert_automaton_mintemp {
const char *m2;
alert_automaton_mintemp(const char *m2):m2(m2){}
private:
enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
States state = States::Init;
uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
void substep(const char* next_msg, States next_state){
if( repeat == 0 ){
state = next_state; // advance to the next state
lcd_setalertstatuspgm(next_msg, LCD_STATUS_CRITICAL);
repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
} else {
--repeat;
}
}
public:
//! brief state automaton step routine
//! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
//! @param mintemp minimal temperature including hysteresis to check current_temp against
void step(float current_temp, float mintemp){
static const char m1[] PROGMEM = "Please restart";
switch(state){
case States::Init: // initial state - check hysteresis
if( current_temp > mintemp ){
lcd_setalertstatuspgm(m2, LCD_STATUS_CRITICAL);
state = States::TempAboveMintemp;
}
// otherwise keep the Err MINTEMP alert message on the display,
// i.e. do not transfer to state 1
break;
case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
case States::ShowMintemp: // displaying "MINTEMP fixed"
substep(m1, States::ShowPleaseRestart);
break;
case States::ShowPleaseRestart: // displaying "Please restart"
substep(m2, States::ShowMintemp);
break;
}
}
};
static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
void check_min_temp_heater0()
{
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] >= minttemp_raw[0]) {
#else
if (current_temperature_raw[0] <= minttemp_raw[0]) {
#endif
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::min);
}
}
void check_min_temp_bed()
{
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw >= bed_minttemp_raw) {
#else
if (current_temperature_bed_raw <= bed_minttemp_raw) {
#endif
set_temp_error(TempErrorSource::bed, 0, TempErrorType::min);
}
}
#ifdef AMBIENT_MINTEMP
void check_min_temp_ambient()
{
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
#else
if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
#endif
set_temp_error(TempErrorSource::ambient, 0, TempErrorType::min);
}
}
#endif
void handle_temp_error()
{
// relay to the original handler
switch((TempErrorType)temp_error_state.type) {
case TempErrorType::min:
switch((TempErrorSource)temp_error_state.source) {
case TempErrorSource::hotend:
if(temp_error_state.assert) {
min_temp_error(temp_error_state.index);
} else {
// no recovery, just force the user to restart the printer
// which is a safer variant than just continuing printing
// The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
// we shall signalize, that MINTEMP has been fixed
// Code notice: normally the alert_automaton instance would have been placed here
// as static alert_automaton_mintemp alert_automaton_hotend, but
alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
}
break;
case TempErrorSource::bed:
if(temp_error_state.assert) {
bed_min_temp_error();
} else {
// no recovery, just force the user to restart the printer
// which is a safer variant than just continuing printing
alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
}
break;
#ifdef AMBIENT_THERMISTOR
case TempErrorSource::ambient:
ambient_min_temp_error();
break;
#endif
}
break;
case TempErrorType::max:
switch((TempErrorSource)temp_error_state.source) {
case TempErrorSource::hotend:
max_temp_error(temp_error_state.index);
break;
case TempErrorSource::bed:
bed_max_temp_error();
break;
#ifdef AMBIENT_THERMISTOR
case TempErrorSource::ambient:
ambient_max_temp_error();
break;
#endif
}
break;
case TempErrorType::preheat:
case TempErrorType::runaway:
switch((TempErrorSource)temp_error_state.source) {
case TempErrorSource::hotend:
case TempErrorSource::bed:
temp_runaway_stop(
((TempErrorType)temp_error_state.type == TempErrorType::preheat),
((TempErrorSource)temp_error_state.source == TempErrorSource::bed));
break;
#ifdef AMBIENT_THERMISTOR
case TempErrorSource::ambient:
// not needed
break;
#endif
}
break;
#ifdef TEMP_MODEL
case TempErrorType::model:
if(temp_error_state.assert) {
if(IsStopped() == false) {
SERIAL_ECHOLNPGM("TM: error triggered!");
}
ThermalStop(true);
WRITE(BEEPER, HIGH);
} else {
temp_error_state.v = 0;
WRITE(BEEPER, LOW);
menu_unset_block(MENU_BLOCK_THERMAL_ERROR);
// hotend error was transitory and disappeared, re-enable bed
if (!target_temperature_bed)
target_temperature_bed = saved_bed_temperature;
SERIAL_ECHOLNPGM("TM: error cleared");
}
break;
#endif
}
}
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i)
{
return i*PID_dT;
}
float unscalePID_i(float i)
{
return i/PID_dT;
}
float scalePID_d(float d)
{
return d/PID_dT;
}
float unscalePID_d(float d)
{
return d*PID_dT;
}
#endif //PIDTEMP
#ifdef PINDA_THERMISTOR
//! @brief PINDA thermistor detected
//!
//! @retval true firmware should do temperature compensation and allow calibration
//! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
//! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
//!
bool has_temperature_compensation()
{
#ifdef SUPERPINDA_SUPPORT
#ifdef PINDA_TEMP_COMP
uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
{
#endif //PINDA_TEMP_COMP
return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
#ifdef PINDA_TEMP_COMP
}
else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
else return false; //Overwritten via LCD menu SuperPINDA [YES]
#endif //PINDA_TEMP_COMP
#else
return true;
#endif
}
#endif //PINDA_THERMISTOR
// RAII helper class to run a code block with temp_mgr_isr disabled
class TempMgrGuard
{
bool temp_mgr_state;
public:
TempMgrGuard() {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
temp_mgr_state = TEMP_MGR_INTERRUPT_STATE();
DISABLE_TEMP_MGR_INTERRUPT();
}
}
~TempMgrGuard() throw() {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
if(temp_mgr_state) ENABLE_TEMP_MGR_INTERRUPT();
}
}
};
void temp_mgr_init()
{
// initialize the ADC and start a conversion
adc_init();
adc_start_cycle();
// initialize temperature timer
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
// CTC
TCCRxB &= ~(1< PID_MAX) {
if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
pid_output=PID_MAX;
} else if (pid_output < 0) {
if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
pid_output=0;
}
#else // PonM ("Proportional on Measurement" method)
iState_sum[e] += cs.Ki * pid_error[e];
iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
pid_output = constrain(pid_output, 0, PID_MAX);
#endif // PonM
}
dState_last[e] = pid_input;
#else //PID_OPENLOOP
pid_output = constrain(target[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_DEBUG ");
SERIAL_ECHO(e);
SERIAL_ECHO(": Input ");
SERIAL_ECHO(pid_input);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHOLN(-dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = 0;
if(current[e] < target[e]) {
pid_output = PID_MAX;
}
#endif
// Check if temperature is within the correct range
if((current < maxttemp[e]) && (target != 0))
soft_pwm[e] = (int)pid_output >> 1;
else
soft_pwm[e] = 0;
}
static void pid_bed(const float current, const int target)
{
float pid_input;
float pid_output;
#ifndef PIDTEMPBED
if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = _millis();
#endif
#if TEMP_SENSOR_BED != 0
#ifdef PIDTEMPBED
pid_input = current;
#ifndef PID_OPENLOOP
pid_error_bed = target - pid_input;
pTerm_bed = cs.bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = cs.bedKi * temp_iState_bed;
//PID_K1 defined in Configuration.h in the PID settings
#define K2 (1.0-PID_K1)
dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
temp_dState_bed = pid_input;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=MAX_BED_POWER;
} else if (pid_output < 0){
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=0;
}
#else
pid_output = constrain(target, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
if(current < BED_MAXTEMP)
{
soft_pwm_bed = (int)pid_output >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
if(current < BED_MAXTEMP)
{
if(current >= target)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
{
soft_pwm_bed = MAX_BED_POWER>>1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
WRITE(HEATER_BED_PIN,LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if(current < BED_MAXTEMP)
{
if(current > target + BED_HYSTERESIS)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else if(current <= target - BED_HYSTERESIS)
{
soft_pwm_bed = MAX_BED_POWER>>1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
WRITE(HEATER_BED_PIN,LOW);
}
#endif //BED_LIMIT_SWITCHING
if(target==0)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
#endif //TEMP_SENSOR_BED
}
// ISR-safe temperatures
static volatile bool adc_values_ready = false;
float current_temperature_isr[EXTRUDERS];
int target_temperature_isr[EXTRUDERS];
float current_temperature_bed_isr;
int target_temperature_bed_isr;
#ifdef PINDA_THERMISTOR
float current_temperature_pinda_isr;
#endif
#ifdef AMBIENT_THERMISTOR
float current_temperature_ambient_isr;
#endif
// ISR callback from adc when sampling finished
void adc_callback()
{
current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
#ifdef PINDA_THERMISTOR
current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
#endif
#ifdef VOLT_BED_PIN
current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
#endif
#ifdef IR_SENSOR_ANALOG
current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
#endif //IR_SENSOR_ANALOG
adc_values_ready = true;
}
static void setCurrentTemperaturesFromIsr()
{
for(uint8_t e=0;e -1 && EXTRUDERS > 0
WRITE(HEATER_0_PIN,LOW);
#endif
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 && EXTRUDERS > 1
WRITE(HEATER_1_PIN,LOW);
#endif
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 && EXTRUDERS > 2
WRITE(HEATER_2_PIN,LOW);
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// TODO: this doesn't take immediate effect!
timer02_set_pwm0(0);
bedPWMDisabled = 0;
#endif
}
}
static void check_min_temp_raw()
{
static bool bCheckingOnHeater = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
static bool bCheckingOnBed = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
static ShortTimer oTimer4minTempHeater;
static ShortTimer oTimer4minTempBed;
#ifdef AMBIENT_THERMISTOR
#ifdef AMBIENT_MINTEMP
// we need to check ambient temperature
check_min_temp_ambient();
#endif
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
#else
if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
#endif
{
// ambient temperature is low
#endif //AMBIENT_THERMISTOR
// *** 'common' part of code for MK2.5 & MK3
// * nozzle checking
if(target_temperature_isr[active_extruder]>minttemp[active_extruder]) {
// ~ nozzle heating is on
bCheckingOnHeater=bCheckingOnHeater||(current_temperature_isr[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater) {
bCheckingOnHeater=true; // not necessary
check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else {
// ~ nozzle heating is off
oTimer4minTempHeater.start();
bCheckingOnHeater=false;
}
// * bed checking
if(target_temperature_bed_isr>BED_MINTEMP) {
// ~ bed heating is on
bCheckingOnBed=bCheckingOnBed||(current_temperature_bed_isr>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed) {
bCheckingOnBed=true; // not necessary
check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else {
// ~ bed heating is off
oTimer4minTempBed.start();
bCheckingOnBed=false;
}
// *** end of 'common' part
#ifdef AMBIENT_THERMISTOR
}
else {
// ambient temperature is standard
check_min_temp_heater0();
check_min_temp_bed();
}
#endif //AMBIENT_THERMISTOR
}
static void check_temp_raw()
{
// order is relevant: check_min_temp_raw requires max to be reliable due to
// ambient temperature being used for low handling temperatures
check_max_temp_raw();
check_min_temp_raw();
}
#ifdef TEMP_MODEL
namespace temp_model {
void model_data::reset(uint8_t heater_pwm _UNUSED, uint8_t fan_pwm _UNUSED,
float heater_temp _UNUSED, float ambient_temp _UNUSED)
{
// pre-compute invariant values
C_i = (TEMP_MGR_INTV / C);
warn_s = warn * TEMP_MGR_INTV;
err_s = err * TEMP_MGR_INTV;
// initial values
for(uint8_t i = 0; i != TEMP_MODEL_LAG_SIZE; ++i)
dT_lag_buf[i] = NAN;
dT_lag_idx = 0;
dT_err_prev = 0;
T_prev = NAN;
// clear the initialization flag
flag_bits.uninitialized = false;
}
static constexpr float iir_mul(const float a, const float b, const float f, const float nanv)
{
const float a_ = !isnan(a) ? a : nanv;
return (a_ * (1.f - f)) + (b * f);
}
void model_data::step(uint8_t heater_pwm, uint8_t fan_pwm, float heater_temp, float ambient_temp)
{
constexpr float soft_pwm_inv = 1. / ((1 << 7) - 1);
// input values
const float heater_scale = soft_pwm_inv * heater_pwm;
const float cur_heater_temp = heater_temp;
const float cur_ambient_temp = ambient_temp + Ta_corr;
const float cur_R = R[fan_pwm]; // resistance at current fan power (K/W)
float dP = P * heater_scale; // current power [W]
float dPl = (cur_heater_temp - cur_ambient_temp) / cur_R; // [W] leakage power
float dT = (dP - dPl) * C_i; // expected temperature difference (K)
// filter and lag dT
uint8_t dT_next_idx = (dT_lag_idx == (TEMP_MODEL_LAG_SIZE - 1) ? 0: dT_lag_idx + 1);
float dT_lag = dT_lag_buf[dT_next_idx];
float dT_lag_prev = dT_lag_buf[dT_lag_idx];
float dT_f = iir_mul(dT_lag_prev, dT, TEMP_MODEL_fS, dT);
dT_lag_buf[dT_next_idx] = dT_f;
dT_lag_idx = dT_next_idx;
// calculate and filter dT_err
float dT_err = (cur_heater_temp - T_prev) - dT_lag;
float dT_err_f = iir_mul(dT_err_prev, dT_err, TEMP_MODEL_fE, 0.);
T_prev = cur_heater_temp;
dT_err_prev = dT_err_f;
// check and trigger errors
flag_bits.error = (fabsf(dT_err_f) > err_s);
flag_bits.warning = (fabsf(dT_err_f) > warn_s);
}
// verify calibration status and trigger a model reset if valid
void setup()
{
if(!calibrated()) enabled = false;
data.flag_bits.uninitialized = true;
}
bool calibrated()
{
if(!(data.P >= 0)) return false;
if(!(data.C >= 0)) return false;
if(!(data.Ta_corr != NAN)) return false;
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i) {
if(!(temp_model::data.R[i] >= 0))
return false;
}
if(!(data.warn != NAN)) return false;
if(!(data.err != NAN)) return false;
return true;
}
void check()
{
if(!enabled) return;
uint8_t heater_pwm = soft_pwm[0];
uint8_t fan_pwm = soft_pwm_fan;
float heater_temp = current_temperature_isr[0];
float ambient_temp = current_temperature_ambient_isr;
// check if a reset is required to seed the model: this needs to be done with valid
// ADC values, so we can't do that directly in init()
if(data.flag_bits.uninitialized)
data.reset(heater_pwm, fan_pwm, heater_temp, ambient_temp);
// step the model
data.step(heater_pwm, fan_pwm, heater_temp, ambient_temp);
// handle errors
if(data.flag_bits.error)
set_temp_error(TempErrorSource::hotend, 0, TempErrorType::model);
// handle warning conditions as lower-priority but with greater feedback
warning_state.assert = data.flag_bits.warning;
if(warning_state.assert) {
warning_state.warning = true;
warning_state.dT_err = temp_model::data.dT_err_prev;
}
}
void handle_warning()
{
// update values
float warn = data.warn;
float dT_err;
{
TempMgrGuard temp_mgr_guard;
dT_err = warning_state.dT_err;
}
dT_err /= TEMP_MGR_INTV; // per-sample => K/s
printf_P(PSTR("TM: error |%f|>%f\n"), (double)dT_err, (double)warn);
static bool first = true;
if(warning_state.assert) {
if (first) {
if(warn_beep) {
lcd_setalertstatuspgm(_T(MSG_THERMAL_ANOMALY), LCD_STATUS_INFO);
WRITE(BEEPER, HIGH);
}
} else {
if(warn_beep) TOGGLE(BEEPER);
}
} else {
// warning cleared, reset state
warning_state.warning = false;
if(warn_beep) WRITE(BEEPER, LOW);
first = true;
}
}
#ifdef TEMP_MODEL_DEBUG
void log_usr()
{
if(!log_buf.enabled) return;
uint8_t counter = log_buf.entry.counter;
if (counter == log_buf.serial) return;
int8_t delta_ms;
uint8_t cur_pwm;
// avoid strict-aliasing warnings
union { float cur_temp; uint32_t cur_temp_b; };
union { float cur_amb; uint32_t cur_amb_b; };
{
TempMgrGuard temp_mgr_guard;
delta_ms = log_buf.entry.delta_ms;
counter = log_buf.entry.counter;
cur_pwm = log_buf.entry.cur_pwm;
cur_temp = log_buf.entry.cur_temp;
cur_amb = log_buf.entry.cur_amb;
}
uint8_t d = counter - log_buf.serial;
log_buf.serial = counter;
printf_P(PSTR("TML %d %d %x %lx %lx\n"), (unsigned)d - 1, (int)delta_ms + 1,
(int)cur_pwm, (unsigned long)cur_temp_b, (unsigned long)cur_amb_b);
}
void log_isr()
{
if(!log_buf.enabled) return;
uint32_t stamp = _millis();
uint8_t delta_ms = stamp - log_buf.entry.stamp - (uint32_t)(TEMP_MGR_INTV * 1000);
log_buf.entry.stamp = stamp;
++log_buf.entry.counter;
log_buf.entry.delta_ms = delta_ms;
log_buf.entry.cur_pwm = soft_pwm[0];
log_buf.entry.cur_temp = current_temperature_isr[0];
log_buf.entry.cur_amb = current_temperature_ambient_isr;
}
#endif
} // namespace temp_model
static void temp_model_reset_enabled(bool enabled)
{
TempMgrGuard temp_mgr_guard;
temp_model::enabled = enabled;
temp_model::data.flag_bits.uninitialized = true;
}
void temp_model_set_enabled(bool enabled)
{
// set the enabled flag
{
TempMgrGuard temp_mgr_guard;
temp_model::enabled = enabled;
temp_model::setup();
}
// verify that the model has been enabled
if(enabled && !temp_model::enabled)
SERIAL_ECHOLNPGM("TM: invalid parameters, cannot enable");
}
void temp_model_set_warn_beep(bool enabled)
{
temp_model::warn_beep = enabled;
}
void temp_model_set_params(float C, float P, float Ta_corr, float warn, float err)
{
TempMgrGuard temp_mgr_guard;
if(!isnan(C) && C > 0) temp_model::data.C = C;
if(!isnan(P) && P > 0) temp_model::data.P = P;
if(!isnan(Ta_corr)) temp_model::data.Ta_corr = Ta_corr;
if(!isnan(err) && err > 0) temp_model::data.err = err;
if(!isnan(warn) && warn > 0) temp_model::data.warn = warn;
// ensure warn <= err
if (temp_model::data.warn > temp_model::data.err)
temp_model::data.warn = temp_model::data.err;
temp_model::setup();
}
void temp_model_set_resistance(uint8_t index, float R)
{
if(index >= TEMP_MODEL_R_SIZE || R <= 0)
return;
TempMgrGuard temp_mgr_guard;
temp_model::data.R[index] = R;
temp_model::setup();
}
void temp_model_report_settings()
{
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Temperature Model settings:");
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
printf_P(PSTR("%S M310 I%u R%.2f\n"), echomagic, (unsigned)i, (double)temp_model::data.R[i]);
printf_P(PSTR("%S M310 P%.2f C%.2f S%u B%u E%.2f W%.2f T%.2f\n"),
echomagic, (double)temp_model::data.P, (double)temp_model::data.C,
(unsigned)temp_model::enabled, (unsigned)temp_model::warn_beep,
(double)temp_model::data.err, (double)temp_model::data.warn,
(double)temp_model::data.Ta_corr);
}
void temp_model_reset_settings()
{
TempMgrGuard temp_mgr_guard;
temp_model::data.P = TEMP_MODEL_P;
temp_model::data.C = TEMP_MODEL_C;
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
temp_model::data.R[i] = pgm_read_float(TEMP_MODEL_R_DEFAULT + i);
temp_model::data.Ta_corr = TEMP_MODEL_Ta_corr;
temp_model::data.warn = TEMP_MODEL_W;
temp_model::data.err = TEMP_MODEL_E;
temp_model::warn_beep = true;
temp_model::enabled = true;
}
void temp_model_load_settings()
{
static_assert(TEMP_MODEL_R_SIZE == 16); // ensure we don't desync with the eeprom table
TempMgrGuard temp_mgr_guard;
temp_model::enabled = eeprom_read_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE);
temp_model::data.P = eeprom_read_float((float*)EEPROM_TEMP_MODEL_P);
temp_model::data.C = eeprom_read_float((float*)EEPROM_TEMP_MODEL_C);
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
temp_model::data.R[i] = eeprom_read_float((float*)EEPROM_TEMP_MODEL_R + i);
temp_model::data.Ta_corr = eeprom_read_float((float*)EEPROM_TEMP_MODEL_Ta_corr);
temp_model::data.warn = eeprom_read_float((float*)EEPROM_TEMP_MODEL_W);
temp_model::data.err = eeprom_read_float((float*)EEPROM_TEMP_MODEL_E);
if(!temp_model::calibrated()) {
SERIAL_ECHOLNPGM("TM: stored calibration invalid, resetting");
temp_model_reset_settings();
}
temp_model::setup();
}
void temp_model_save_settings()
{
eeprom_update_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE, temp_model::enabled);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_P, temp_model::data.P);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_C, temp_model::data.C);
for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)
eeprom_update_float((float*)EEPROM_TEMP_MODEL_R + i, temp_model::data.R[i]);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_Ta_corr, temp_model::data.Ta_corr);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_W, temp_model::data.warn);
eeprom_update_float((float*)EEPROM_TEMP_MODEL_E, temp_model::data.err);
}
namespace temp_model_cal {
// set current fan speed for both front/backend
static __attribute__((noinline)) void set_fan_speed(uint8_t fan_speed)
{
fanSpeed = fan_speed;
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = fan_speed;
#endif
}
static void waiting_handler()
{
manage_heater();
host_keepalive();
host_autoreport();
checkFans();
lcd_update(0);
}
static void wait(unsigned ms)
{
unsigned long mark = _millis() + ms;
while(_millis() < mark) {
if(temp_error_state.v) break;
waiting_handler();
}
}
static void __attribute__((noinline)) wait_temp()
{
while(current_temperature[0] < (target_temperature[0] - TEMP_HYSTERESIS)) {
if(temp_error_state.v) break;
waiting_handler();
}
}
static void cooldown(float temp)
{
uint8_t old_speed = fanSpeed;
set_fan_speed(255);
while(current_temperature[0] >= temp) {
if(temp_error_state.v) break;
float ambient = current_temperature_ambient + temp_model::data.Ta_corr;
if(current_temperature[0] < (ambient + TEMP_HYSTERESIS)) {
// do not get stuck waiting very close to ambient temperature
break;
}
waiting_handler();
}
set_fan_speed(old_speed);
}
static uint16_t record(uint16_t samples = REC_BUFFER_SIZE) {
TempMgrGuard temp_mgr_guard;
uint16_t pos = 0;
while(pos < samples) {
if(!TEMP_MGR_INT_FLAG_STATE()) {
// temperatures not ready yet, just manage heaters while waiting to reduce jitter
manage_heater();
continue;
}
TEMP_MGR_INT_FLAG_CLEAR();
// manually repeat what the regular isr would do
if(adc_values_ready != true) continue;
adc_values_ready = false;
adc_start_cycle();
temp_mgr_isr();
// stop recording for an hard error condition
if(temp_error_state.v)
return 0;
// record a new entry
rec_entry& entry = rec_buffer[pos];
entry.temp = current_temperature_isr[0];
entry.pwm = soft_pwm[0];
++pos;
// it's now safer to give regular serial/lcd updates a shot
waiting_handler();
}
return pos;
}
static float cost_fn(uint16_t samples, float* const var, float v, uint8_t fan_pwm, float ambient)
{
*var = v;
temp_model::data.reset(rec_buffer[0].pwm, fan_pwm, rec_buffer[0].temp, ambient);
float err = 0;
uint16_t cnt = 0;
for(uint16_t i = 1; i < samples; ++i) {
temp_model::data.step(rec_buffer[i].pwm, fan_pwm, rec_buffer[i].temp, ambient);
float err_v = temp_model::data.dT_err_prev;
if(!isnan(err_v)) {
err += err_v * err_v;
++cnt;
}
}
return cnt ? (err / cnt) : NAN;
}
constexpr float GOLDEN_RATIO = 0.6180339887498949;
static void update_section(float points[2], const float bounds[2])
{
float d = GOLDEN_RATIO * (bounds[1] - bounds[0]);
points[0] = bounds[0] + d;
points[1] = bounds[1] - d;
}
static float estimate(uint16_t samples,
float* const var, float min, float max,
float thr, uint16_t max_itr,
uint8_t fan_pwm, float ambient)
{
// during estimation we alter the model values without an extra copy to conserve memory
// so we cannot keep the main checker active until a value has been found
bool was_enabled = temp_model::enabled;
temp_model_reset_enabled(false);
float orig = *var;
float e = NAN;
float points[2];
float bounds[2] = {min, max};
update_section(points, bounds);
for(uint8_t it = 0; it != max_itr; ++it) {
float c1 = cost_fn(samples, var, points[0], fan_pwm, ambient);
float c2 = cost_fn(samples, var, points[1], fan_pwm, ambient);
bool dir = (c2 < c1);
bounds[dir] = points[!dir];
update_section(points, bounds);
float x = points[!dir];
e = (1-GOLDEN_RATIO) * fabsf((bounds[0]-bounds[1]) / x);
printf_P(PSTR("TM iter:%u v:%.2f e:%.3f\n"), it, x, e);
if(e < thr) {
if(x == min || x == max) {
// real value likely outside of the search boundaries
break;
}
*var = x;
temp_model_reset_enabled(was_enabled);
return e;
}
}
SERIAL_ECHOLNPGM("TM estimation did not converge");
*var = orig;
temp_model_reset_enabled(was_enabled);
return NAN;
}
static bool autotune(int16_t cal_temp)
{
uint16_t samples;
float e;
char tm_message[LCD_WIDTH+1];
// bootstrap C/R values without fan
set_fan_speed(0);
for(uint8_t i = 0; i != 2; ++i) {
const char* PROGMEM verb = (i == 0? PSTR("initial"): PSTR("refine"));
target_temperature[0] = 0;
if(current_temperature[0] >= TEMP_MODEL_CAL_Tl) {
sprintf_P(tm_message, PSTR("TM: cool down <%dC"), TEMP_MODEL_CAL_Tl);
lcd_setstatus_serial(tm_message);
cooldown(TEMP_MODEL_CAL_Tl);
wait(10000);
}
sprintf_P(tm_message, PSTR("TM: %S C est."), verb);
lcd_setstatus_serial(tm_message);
target_temperature[0] = cal_temp;
samples = record();
if(temp_error_state.v || !samples)
return true;
// we need a high R value for the initial C guess
if(isnan(temp_model::data.R[0]))
temp_model::data.R[0] = TEMP_MODEL_Rh;
e = estimate(samples, &temp_model::data.C,
TEMP_MODEL_Cl, TEMP_MODEL_Ch, TEMP_MODEL_C_thr, TEMP_MODEL_C_itr,
0, current_temperature_ambient);
if(isnan(e))
return true;
wait_temp();
if(i) break; // we don't need to refine R
wait(30000); // settle PID regulation
sprintf_P(tm_message, PSTR("TM: %S R %dC"), verb, cal_temp);
lcd_setstatus_serial(tm_message);
samples = record();
if(temp_error_state.v || !samples)
return true;
e = estimate(samples, &temp_model::data.R[0],
TEMP_MODEL_Rl, TEMP_MODEL_Rh, TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
0, current_temperature_ambient);
if(isnan(e))
return true;
}
// Estimate fan losses at regular intervals, starting from full speed to avoid low-speed
// kickstart issues, although this requires us to wait more for the PID stabilization.
// Normally exhibits logarithmic behavior with the stock fan+shroud, so the shorter interval
// at lower speeds is helpful to increase the resolution of the interpolation.
set_fan_speed(255);
wait(30000);
for(int8_t i = TEMP_MODEL_R_SIZE - 1; i > 0; i -= TEMP_MODEL_CAL_R_STEP) {
// always disable the checker while estimating fan resistance as the difference
// (esp with 3rd-party blowers) can be massive
temp_model::data.R[i] = NAN;
uint8_t speed = 256 / TEMP_MODEL_R_SIZE * (i + 1) - 1;
set_fan_speed(speed);
wait(10000);
sprintf_P(tm_message, PSTR("TM: R[%u] estimat."), (unsigned)i);
lcd_setstatus_serial(tm_message);
samples = record();
if(temp_error_state.v || !samples)
return true;
// a fixed fan pwm (the norminal value) is used here, as soft_pwm_fan will be modified
// during fan measurements and we'd like to include that skew during normal operation.
e = estimate(samples, &temp_model::data.R[i],
TEMP_MODEL_Rl, temp_model::data.R[0], TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,
i, current_temperature_ambient);
if(isnan(e))
return true;
}
// interpolate remaining steps to speed-up calibration
// TODO: verify that the sampled values are monotically increasing?
int8_t next = TEMP_MODEL_R_SIZE - 1;
for(uint8_t i = TEMP_MODEL_R_SIZE - 2; i != 0; --i) {
if(!((TEMP_MODEL_R_SIZE - i - 1) % TEMP_MODEL_CAL_R_STEP)) {
next = i;
continue;
}
int8_t prev = next - TEMP_MODEL_CAL_R_STEP;
if(prev < 0) prev = 0;
float f = (float)(i - prev) / TEMP_MODEL_CAL_R_STEP;
float d = (temp_model::data.R[next] - temp_model::data.R[prev]);
temp_model::data.R[i] = temp_model::data.R[prev] + d * f;
}
return false;
}
} // namespace temp_model_cal
static bool temp_model_autotune_err = true;
void temp_model_autotune(int16_t temp, bool selftest)
{
float orig_C, orig_R[TEMP_MODEL_R_SIZE];
bool orig_enabled;
static_assert(sizeof(orig_R) == sizeof(temp_model::data.R));
// fail-safe error state
temp_model_autotune_err = true;
char tm_message[LCD_WIDTH+1];
if(moves_planned() || printer_active()) {
sprintf_P(tm_message, PSTR("TM: Cal. NOT IDLE"));
lcd_setstatus_serial(tm_message);
return;
}
// lockout the printer during calibration
KEEPALIVE_STATE(IN_PROCESS);
menu_set_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
lcd_return_to_status();
// save the original model data and set the model checking state during self-calibration
orig_C = temp_model::data.C;
memcpy(orig_R, temp_model::data.R, sizeof(temp_model::data.R));
orig_enabled = temp_model::enabled;
temp_model_reset_enabled(selftest);
// autotune
SERIAL_ECHOLNPGM("TM: calibration start");
temp_model_autotune_err = temp_model_cal::autotune(temp > 0 ? temp : TEMP_MODEL_CAL_Th);
// always reset temperature
disable_heater();
if(temp_model_autotune_err) {
sprintf_P(tm_message, PSTR("TM: calibr. failed!"));
lcd_setstatus_serial(tm_message);
if(temp_error_state.v)
temp_model_cal::set_fan_speed(255);
// show calibrated values before overwriting them
temp_model_report_settings();
// restore original state
temp_model::data.C = orig_C;
memcpy(temp_model::data.R, orig_R, sizeof(temp_model::data.R));
temp_model_set_enabled(orig_enabled);
} else {
lcd_setstatuspgm(MSG_WELCOME);
temp_model_cal::set_fan_speed(0);
temp_model_set_enabled(orig_enabled);
temp_model_report_settings();
}
lcd_consume_click();
menu_unset_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);
}
bool temp_model_autotune_result()
{
return !temp_model_autotune_err;
}
#ifdef TEMP_MODEL_DEBUG
void temp_model_log_enable(bool enable)
{
if(enable) {
TempMgrGuard temp_mgr_guard;
temp_model::log_buf.entry.stamp = _millis();
}
temp_model::log_buf.enabled = enable;
}
#endif
#endif