#ifndef MESH_BED_CALIBRATION_H #define MESH_BED_CALIBRATION_H // Exact positions of the print head above the bed reference points, in the world coordinates. // The world coordinates match the machine coordinates only in case, when the machine // is built properly, the end stops are at the correct positions and the axes are perpendicular. extern const float bed_ref_points[] PROGMEM; // Is the world2machine correction activated? enum World2MachineCorrectionMode { WORLD2MACHINE_CORRECTION_NONE = 0, WORLD2MACHINE_CORRECTION_SHIFT = 1, WORLD2MACHINE_CORRECTION_SKEW = 2, }; extern uint8_t world2machine_correction_mode; // 2x2 transformation matrix from the world coordinates to the machine coordinates. // Corrects for the rotation and skew of the machine axes. // Used by the planner's plan_buffer_line() and plan_set_position(). extern float world2machine_rotation_and_skew[2][2]; extern float world2machine_rotation_and_skew_inv[2][2]; // Shift of the machine zero point, in the machine coordinates. extern float world2machine_shift[2]; // Resets the transformation to identity. extern void world2machine_reset(); // Loads the transformation from the EEPROM, if available. extern void world2machine_initialize(); // When switching from absolute to corrected coordinates, // this will apply an inverse world2machine transformation // to current_position[x,y]. extern void world2machine_update_current(); inline void world2machine(const float &x, const float &y, float &out_x, float &out_y) { if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) { // No correction. out_x = x; out_y = y; } else { if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) { // Firs the skew & rotation correction. out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y; out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y; } if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) { // Then add the offset. out_x += world2machine_shift[0]; out_y += world2machine_shift[1]; } } } inline void world2machine(float &x, float &y) { if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) { // No correction. } else { if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) { // Firs the skew & rotation correction. float out_x = world2machine_rotation_and_skew[0][0] * x + world2machine_rotation_and_skew[0][1] * y; float out_y = world2machine_rotation_and_skew[1][0] * x + world2machine_rotation_and_skew[1][1] * y; x = out_x; y = out_y; } if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) { // Then add the offset. x += world2machine_shift[0]; y += world2machine_shift[1]; } } } inline void machine2world(float x, float y, float &out_x, float &out_y) { if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) { // No correction. out_x = x; out_y = y; } else { if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) { // Then add the offset. x -= world2machine_shift[0]; y -= world2machine_shift[1]; } if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) { // Firs the skew & rotation correction. out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y; out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y; } } } inline void machine2world(float &x, float &y) { if (world2machine_correction_mode == WORLD2MACHINE_CORRECTION_NONE) { // No correction. } else { if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SHIFT) { // Then add the offset. x -= world2machine_shift[0]; y -= world2machine_shift[1]; } if (world2machine_correction_mode & WORLD2MACHINE_CORRECTION_SKEW) { // Firs the skew & rotation correction. float out_x = world2machine_rotation_and_skew_inv[0][0] * x + world2machine_rotation_and_skew_inv[0][1] * y; float out_y = world2machine_rotation_and_skew_inv[1][0] * x + world2machine_rotation_and_skew_inv[1][1] * y; x = out_x; y = out_y; } } } inline bool world2machine_clamp(float &x, float &y) { bool clamped = false; float tmpx, tmpy; world2machine(x, y, tmpx, tmpy); if (tmpx < X_MIN_POS) { tmpx = X_MIN_POS; clamped = true; } if (tmpy < Y_MIN_POS) { tmpy = Y_MIN_POS; clamped = true; } if (tmpx > X_MAX_POS) { tmpx = X_MAX_POS; clamped = true; } if (tmpy > Y_MAX_POS) { tmpy = Y_MAX_POS; clamped = true; } if (clamped) machine2world(tmpx, tmpy, x, y); return clamped; } extern bool find_bed_induction_sensor_point_z(float minimum_z = -10.f, uint8_t n_iter = 3); extern bool find_bed_induction_sensor_point_xy(); // Positive or zero: ok // Negative: failed enum BedSkewOffsetDetectionResultType { // Detection failed, some point was not found. BED_SKEW_OFFSET_DETECTION_FAILED = -1, // Detection finished with success. BED_SKEW_OFFSET_DETECTION_PERFECT = 0, BED_SKEW_OFFSET_DETECTION_SKEW_MILD = 1, BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME = 2, // Detection finished with success, but it is recommended to fix the printer mechanically. BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR = 4, BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR = 8, BED_SKEW_OFFSET_DETECTION_FRONT_BOTH_FAR = BED_SKEW_OFFSET_DETECTION_FRONT_LEFT_FAR | BED_SKEW_OFFSET_DETECTION_FRONT_RIGHT_FAR, }; extern BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level); extern BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8_t verbosity_level); extern void reset_bed_offset_and_skew(); extern bool is_bed_z_jitter_data_valid(); // Scan the mesh bed induction points one by one by a left-right zig-zag movement, // write the trigger coordinates to the serial line. // Useful for visualizing the behavior of the bed induction detector. extern bool scan_bed_induction_points(int8_t verbosity_level); #endif /* MESH_BED_CALIBRATION_H */