/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#include "ultralcd.h"
#include "sound.h"
#include "temperature.h"
#include "cardreader.h"
#include "Sd2PinMap.h"
#include
#include "adc.h"
#include "ConfigurationStore.h"
#include "messages.h"
#include "Timer.h"
#include "Configuration_prusa.h"
#include "config.h"
//===========================================================================
//=============================public variables============================
//===========================================================================
int target_temperature[EXTRUDERS] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
#ifdef PINDA_THERMISTOR
uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
float current_temperature_pinda = 0.0;
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
int current_temperature_raw_ambient = 0 ;
float current_temperature_ambient = 0.0;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
int current_voltage_raw_pwr = 0;
#endif
#ifdef VOLT_BED_PIN
int current_voltage_raw_bed = 0;
#endif
#ifdef IR_SENSOR_ANALOG
uint16_t current_voltage_raw_IR = 0;
#endif //IR_SENSOR_ANALOG
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#ifdef PIDTEMP
float _Kp, _Ki, _Kd;
int pid_cycle, pid_number_of_cycles;
bool pid_tuning_finished = false;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc=DEFAULT_Kc;
#endif
#endif //PIDTEMP
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
#endif
#ifdef FANCHECK
volatile uint8_t fan_check_error = EFCE_OK;
#endif
unsigned char soft_pwm_bed;
#ifdef BABYSTEPPING
volatile int babystepsTodo[3]={0,0,0};
#endif
//===========================================================================
//=============================private variables============================
//===========================================================================
static volatile bool temp_meas_ready = false;
#ifdef PIDTEMP
//static cannot be external:
static float iState_sum[EXTRUDERS] = { 0 };
static float dState_last[EXTRUDERS] = { 0 };
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
//int output;
static float pid_error[EXTRUDERS];
static float iState_sum_min[EXTRUDERS];
static float iState_sum_max[EXTRUDERS];
// static float pid_input[EXTRUDERS];
// static float pid_output[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
#ifdef PIDTEMPBED
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
//int output;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
#else //PIDTEMPBED
static unsigned long previous_millis_bed_heater;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS];
#ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan;
#endif
uint8_t fanSpeedBckp = 255;
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
unsigned long extruder_autofan_last_check = _millis();
bool fan_measuring = false;
uint8_t fanState = 0;
#ifdef EXTRUDER_ALTFAN_DETECT
struct
{
uint8_t isAltfan : 1;
uint8_t altfanOverride : 1;
} altfanStatus;
#endif //EXTRUDER_ALTFAN_DETECT
#endif
#if EXTRUDERS > 3
# error Unsupported number of extruders
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif
static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
#ifdef BED_MINTEMP
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#ifdef AMBIENT_MINTEMP
static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
#endif
#ifdef AMBIENT_MAXTEMP
static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
#endif
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
static float analog2tempAmbient(int raw);
static void updateTemperaturesFromRawValues();
enum TempRunawayStates
{
TempRunaway_INACTIVE = 0,
TempRunaway_PREHEAT = 1,
TempRunaway_ACTIVE = 2,
};
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
static float temp_runaway_status[4];
static float temp_runaway_target[4];
static float temp_runaway_timer[4];
static int temp_runaway_error_counter[4];
static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
static void temp_runaway_stop(bool isPreheat, bool isBed);
#endif
#ifdef EXTRUDER_ALTFAN_DETECT
ISR(INT6_vect) {
fan_edge_counter[0]++;
}
bool extruder_altfan_detect()
{
setExtruderAutoFanState(3);
SET_INPUT(TACH_0);
uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
if (overrideVal == EEPROM_EMPTY_VALUE)
{
overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
}
altfanStatus.altfanOverride = overrideVal;
CRITICAL_SECTION_START;
EICRB &= ~(1 << ISC61);
EICRB |= (1 << ISC60);
EIMSK |= (1 << INT6);
fan_edge_counter[0] = 0;
CRITICAL_SECTION_END;
extruder_autofan_last_check = _millis();
_delay(1000);
EIMSK &= ~(1 << INT6);
countFanSpeed();
altfanStatus.isAltfan = fan_speed[0] > 100;
setExtruderAutoFanState(1);
return altfanStatus.isAltfan;
}
void altfanOverride_toggle()
{
altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
}
bool altfanOverride_get()
{
return altfanStatus.altfanOverride;
}
#endif //EXTRUDER_ALTFAN_DETECT
// return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
bool checkAllHotends(void)
{
bool result=false;
for(int i=0;i -1)
unsigned long extruder_autofan_last_check = _millis();
#endif
if ((extruder >= EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif
){
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
SERIAL_ECHOLN("PID Autotune start");
disable_heater(); // switch off all heaters.
if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
timer02_set_pwm0(soft_pwm_bed << 1);
bias = d = (MAX_BED_POWER)/2;
target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
}
for(;;) {
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
if(temp_meas_ready == true) { // temp sample ready
updateTemperaturesFromRawValues();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max=max(max,input);
min=min(min,input);
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
if(_millis() - extruder_autofan_last_check > 2500) {
checkExtruderAutoFans();
extruder_autofan_last_check = _millis();
}
#endif
if(heating == true && input > temp) {
if(_millis() - t2 > 5000) {
heating=false;
if (extruder<0)
{
soft_pwm_bed = (bias - d) >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=_millis();
t_high=t1 - t2;
max=temp;
}
}
if(heating == false && input < temp) {
if(_millis() - t1 > 5000) {
heating=true;
t2=_millis();
t_low=t2 - t1;
if(pid_cycle > 0) {
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
else d = bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
if(pid_cycle > 2) {
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
Tu = ((float)(t_low + t_high)/1000.0);
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
_Kp = 0.6*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/8;
SERIAL_PROTOCOLLNPGM(" Classic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
/*
_Kp = 0.33*Ku;
_Ki = _Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
_Kp = 0.2*Ku;
_Ki = 2*_Kp/Tu;
_Kd = _Kp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
*/
}
}
if (extruder<0)
{
soft_pwm_bed = (bias + d) >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
soft_pwm[extruder] = (bias + d) >> 1;
pid_cycle++;
min=temp;
}
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(_millis() - temp_millis > 2000) {
int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("B:");
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("T:");
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(p);
if (safety_check_cycles == 0) { //save ambient temp
temp_ambient = input;
//SERIAL_ECHOPGM("Ambient T: ");
//MYSERIAL.println(temp_ambient);
safety_check_cycles++;
}
else if (safety_check_cycles < safety_check_cycles_count) { //delay
safety_check_cycles++;
}
else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
safety_check_cycles++;
//SERIAL_ECHOPGM("Time from beginning: ");
//MYSERIAL.print(safety_check_cycles_count * 2);
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
//MYSERIAL.println(input - temp_ambient);
if (abs(input - temp_ambient) < 5.0) {
temp_runaway_stop(false, (extruder<0));
pid_tuning_finished = true;
return;
}
}
temp_millis = _millis();
}
if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
if(pid_cycle > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
pid_tuning_finished = true;
pid_cycle = 0;
return;
}
lcd_update(0);
}
}
void updatePID()
{
#ifdef PIDTEMP
for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
}
#endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
#endif
}
int getHeaterPower(int heater) {
if (heater<0)
return soft_pwm_bed;
return soft_pwm[heater];
}
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
#if defined(FAN_PIN) && FAN_PIN > -1
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif
void setExtruderAutoFanState(uint8_t state)
{
//If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
//the fan to either On or Off during certain tests/errors.
fanState = state;
uint8_t newFanSpeed = 0;
if (fanState & 0x01)
{
#ifdef EXTRUDER_ALTFAN_DETECT
if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
#else //EXTRUDER_ALTFAN_DETECT
newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
#endif //EXTRUDER_ALTFAN_DETECT
}
timer4_set_fan0(newFanSpeed);
}
#if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
void countFanSpeed()
{
//SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
/*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
SERIAL_ECHOLNPGM(" ");*/
fan_edge_counter[0] = 0;
fan_edge_counter[1] = 0;
}
void checkFanSpeed()
{
uint8_t max_print_fan_errors = 0;
uint8_t max_extruder_fan_errors = 0;
#ifdef FAN_SOFT_PWM
max_print_fan_errors = 3; //15 seconds
max_extruder_fan_errors = 2; //10seconds
#else //FAN_SOFT_PWM
max_print_fan_errors = 15; //15 seconds
max_extruder_fan_errors = 5; //5 seconds
#endif //FAN_SOFT_PWM
if(fans_check_enabled != false)
fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
static unsigned char fan_speed_errors[2] = { 0,0 };
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
else{
fan_speed_errors[0] = 0;
host_keepalive();
}
#endif
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
else fan_speed_errors[1] = 0;
#endif
// drop the fan_check_error flag when both fans are ok
if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
// we may even send some info to the LCD from here
fan_check_error = EFCE_FIXED;
}
if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
lcd_reset_alert_level(); //for another fan speed error
}
if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
fan_speed_errors[0] = 0;
fanSpeedError(0); //extruder fan
}
if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
fan_speed_errors[1] = 0;
fanSpeedError(1); //print fan
}
}
//! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
//! Extracted from fanSpeedError to save some space.
//! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
//! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
SERIAL_ECHOLNRPGM(serialMsg);
if (get_message_level() == 0) {
Sound_MakeCustom(200,0,true);
LCD_ALERTMESSAGERPGM(lcdMsg);
}
}
void fanSpeedError(unsigned char _fan) {
if (get_message_level() != 0 && isPrintPaused) return;
//to ensure that target temp. is not set to zero in case that we are resuming print
if (card.sdprinting || is_usb_printing) {
if (heating_status != 0) {
lcd_print_stop();
}
else {
fan_check_error = EFCE_DETECTED; //plans error for next processed command
}
}
else {
// SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
setTargetHotend0(0);
heating_status = 0;
fan_check_error = EFCE_REPORTED;
}
switch (_fan) {
case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
break;
case 1:
fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
break;
}
// SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
}
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
void checkExtruderAutoFans()
{
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
if (!(fanState & 0x02))
{
fanState &= ~1;
fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
}
setExtruderAutoFanState(fanState);
#endif
}
#endif // any extruder auto fan pins set
// ready for eventually parameters adjusting
void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
//void resetPID(uint8_t extruder)
{
}
void manage_heater()
{
#ifdef WATCHDOG
wdt_reset();
#endif //WATCHDOG
float pid_input;
float pid_output;
if(temp_meas_ready != true) //better readability
return;
// more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
// ADC values need to be converted before checking: converted values are later used in MINTEMP
updateTemperaturesFromRawValues();
check_max_temp();
check_min_temp();
#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
#endif
for(int e = 0; e < EXTRUDERS; e++)
{
#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
#endif
#ifdef PIDTEMP
pid_input = current_temperature[e];
#ifndef PID_OPENLOOP
if(target_temperature[e] == 0) {
pid_output = 0;
pid_reset[e] = true;
} else {
pid_error[e] = target_temperature[e] - pid_input;
if(pid_reset[e]) {
iState_sum[e] = 0.0;
dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
pid_reset[e] = false;
}
#ifndef PonM
pTerm[e] = cs.Kp * pid_error[e];
iState_sum[e] += pid_error[e];
iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
iTerm[e] = cs.Ki * iState_sum[e];
// PID_K1 defined in Configuration.h in the PID settings
#define K2 (1.0-PID_K1)
dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
if (pid_output > PID_MAX) {
if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
pid_output=PID_MAX;
} else if (pid_output < 0) {
if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
pid_output=0;
}
#else // PonM ("Proportional on Measurement" method)
iState_sum[e] += cs.Ki * pid_error[e];
iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
pid_output = constrain(pid_output, 0, PID_MAX);
#endif // PonM
}
dState_last[e] = pid_input;
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_DEBUG ");
SERIAL_ECHO(e);
SERIAL_ECHO(": Input ");
SERIAL_ECHO(pid_input);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHOLN(-dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = 0;
if(current_temperature[e] < target_temperature[e]) {
pid_output = PID_MAX;
}
#endif
// Check if temperature is within the correct range
if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
{
soft_pwm[e] = (int)pid_output >> 1;
}
else
{
soft_pwm[e] = 0;
}
} // End extruder for loop
#define FAN_CHECK_PERIOD 5000 //5s
#define FAN_CHECK_DURATION 100 //100ms
#ifndef DEBUG_DISABLE_FANCHECK
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
#ifdef FAN_SOFT_PWM
#ifdef FANCHECK
if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
extruder_autofan_last_check = _millis();
fanSpeedBckp = fanSpeedSoftPwm;
if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
// printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
fanSpeedSoftPwm = 255;
}
fan_measuring = true;
}
if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
countFanSpeed();
checkFanSpeed();
//printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
fanSpeedSoftPwm = fanSpeedBckp;
//printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
extruder_autofan_last_check = _millis();
fan_measuring = false;
}
#endif //FANCHECK
checkExtruderAutoFans();
#else //FAN_SOFT_PWM
if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
{
#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
countFanSpeed();
checkFanSpeed();
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
checkExtruderAutoFans();
extruder_autofan_last_check = _millis();
}
#endif //FAN_SOFT_PWM
#endif
#endif //DEBUG_DISABLE_FANCHECK
#ifndef PIDTEMPBED
if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = _millis();
#endif
#if TEMP_SENSOR_BED != 0
#ifdef PIDTEMPBED
pid_input = current_temperature_bed;
#ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - pid_input;
pTerm_bed = cs.bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = cs.bedKi * temp_iState_bed;
//PID_K1 defined in Configuration.h in the PID settings
#define K2 (1.0-PID_K1)
dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
temp_dState_bed = pid_input;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=MAX_BED_POWER;
} else if (pid_output < 0){
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
if(current_temperature_bed < BED_MAXTEMP)
{
soft_pwm_bed = (int)pid_output >> 1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else {
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
if(current_temperature_bed < BED_MAXTEMP)
{
if(current_temperature_bed >= target_temperature_bed)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else
{
soft_pwm_bed = MAX_BED_POWER>>1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
WRITE(HEATER_BED_PIN,LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if(current_temperature_bed < BED_MAXTEMP)
{
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
{
soft_pwm_bed = MAX_BED_POWER>>1;
timer02_set_pwm0(soft_pwm_bed << 1);
}
}
else
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
WRITE(HEATER_BED_PIN,LOW);
}
#endif
if(target_temperature_bed==0)
{
soft_pwm_bed = 0;
timer02_set_pwm0(soft_pwm_bed << 1);
}
#endif
host_keepalive();
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
if(e >= EXTRUDERS)
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
kill(NULL, 6);
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
#endif
if(heater_ttbl_map[e] != NULL)
{
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i raw)
{
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
static float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
float celsius = 0;
byte i;
for (i=1; i raw)
{
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
// temperature offset adjustment
#ifdef BED_OFFSET
float _offset = BED_OFFSET;
float _offset_center = BED_OFFSET_CENTER;
float _offset_start = BED_OFFSET_START;
float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
float _second_koef = (_offset / 2) / (100 - _offset_center);
if (celsius >= _offset_start && celsius <= _offset_center)
{
celsius = celsius + (_first_koef * (celsius - _offset_start));
}
else if (celsius > _offset_center && celsius <= 100)
{
celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
}
else if (celsius > 100)
{
celsius = celsius + _offset;
}
#endif
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
return 0;
#endif
}
#ifdef AMBIENT_THERMISTOR
static float analog2tempAmbient(int raw)
{
float celsius = 0;
byte i;
for (i=1; i raw)
{
celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
return celsius;
}
#endif //AMBIENT_THERMISTOR
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
static void updateTemperaturesFromRawValues()
{
for(uint8_t e=0;e> 2;
current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
#endif
#ifdef AMBIENT_THERMISTOR
current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
#endif
#ifdef DEBUG_HEATER_BED_SIM
current_temperature_bed = target_temperature_bed;
#else //DEBUG_HEATER_BED_SIM
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#endif //DEBUG_HEATER_BED_SIM
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
}
void tp_init()
{
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1< -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if defined(FAN_PIN) && (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
#endif
#endif
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
SET_OUTPUT(SCK_PIN);
WRITE(SCK_PIN,0);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
#endif
/* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
//Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN,0);
pinMode(MAX6675_SS, OUTPUT);
digitalWrite(MAX6675_SS,1);
#endif
adc_init();
timer0_init();
OCR2B = 128;
TIMSK2 |= (1< HEATER_0_MAXTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
maxttemp_raw[0] -= OVERSAMPLENR;
#else
maxttemp_raw[0] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
minttemp_raw[1] -= OVERSAMPLENR;
#endif
}
#endif // MINTEMP 1
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
maxttemp[1] = HEATER_1_MAXTEMP;
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
maxttemp_raw[1] -= OVERSAMPLENR;
#else
maxttemp_raw[1] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else
minttemp_raw[2] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP 2
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
maxttemp[2] = HEATER_2_MAXTEMP;
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
maxttemp_raw[2] -= OVERSAMPLENR;
#else
maxttemp_raw[2] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP 2
#ifdef BED_MINTEMP
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
#ifdef AMBIENT_MINTEMP
while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
#if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
ambient_minttemp_raw += OVERSAMPLENR;
#else
ambient_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //AMBIENT_MINTEMP
#ifdef AMBIENT_MAXTEMP
while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
#if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
ambient_maxttemp_raw -= OVERSAMPLENR;
#else
ambient_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //AMBIENT_MAXTEMP
}
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
{
float __delta;
float __hysteresis = 0;
int __timeout = 0;
bool temp_runaway_check_active = false;
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
static int __preheat_counter[2] = { 0,0};
static int __preheat_errors[2] = { 0,0};
if (_millis() - temp_runaway_timer[_heater_id] > 2000)
{
#ifdef TEMP_RUNAWAY_BED_TIMEOUT
if (_isbed)
{
__hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
__timeout = TEMP_RUNAWAY_BED_TIMEOUT;
}
#endif
#ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
if (!_isbed)
{
__hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
__timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
}
#endif
temp_runaway_timer[_heater_id] = _millis();
if (_output == 0)
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (temp_runaway_target[_heater_id] != _target_temperature)
{
if (_target_temperature > 0)
{
temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
temp_runaway_target[_heater_id] = _target_temperature;
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
else
{
temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
temp_runaway_target[_heater_id] = _target_temperature;
}
}
if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
{
__preheat_counter[_heater_id]++;
if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
SERIAL_ECHOPGM(" T:");
MYSERIAL.print(_current_temperature);
SERIAL_ECHOPGM(" Tstart:");
MYSERIAL.print(__preheat_start[_heater_id]);
SERIAL_ECHOPGM(" delta:");
MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
//-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
//-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
__delta=2.0;
if(_isbed)
{
__delta=3.0;
if(_current_temperature>90.0) __delta=2.0;
if(_current_temperature>105.0) __delta=0.6;
}
if (_current_temperature - __preheat_start[_heater_id] < __delta) {
__preheat_errors[_heater_id]++;
/*SERIAL_ECHOPGM(" Preheat errors:");
MYSERIAL.println(__preheat_errors[_heater_id]);*/
}
else {
//SERIAL_ECHOLNPGM("");
__preheat_errors[_heater_id] = 0;
}
if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
{
if (farm_mode) { prusa_statistics(0); }
temp_runaway_stop(true, _isbed);
if (farm_mode) { prusa_statistics(91); }
}
__preheat_start[_heater_id] = _current_temperature;
__preheat_counter[_heater_id] = 0;
}
}
//-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
{
/*SERIAL_ECHOPGM("Heater:");
MYSERIAL.print(_heater_id);
MYSERIAL.println(" ->tempRunaway");*/
temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
if (_output > 0)
{
temp_runaway_check_active = true;
}
if (temp_runaway_check_active)
{
// we are in range
if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
{
temp_runaway_check_active = false;
temp_runaway_error_counter[_heater_id] = 0;
}
else
{
if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
{
temp_runaway_error_counter[_heater_id]++;
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
{
if (farm_mode) { prusa_statistics(0); }
temp_runaway_stop(false, _isbed);
if (farm_mode) { prusa_statistics(90); }
}
}
}
}
}
}
void temp_runaway_stop(bool isPreheat, bool isBed)
{
cancel_heatup = true;
quickStop();
if (card.sdprinting)
{
card.sdprinting = false;
card.closefile();
}
// Clean the input command queue
// This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
cmdqueue_reset();
disable_heater();
disable_x();
disable_y();
disable_e0();
disable_e1();
disable_e2();
manage_heater();
lcd_update(0);
Sound_MakeCustom(200,0,true);
if (isPreheat)
{
Stop();
isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
SERIAL_ERROR_START;
isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
#ifdef EXTRUDER_ALTFAN_DETECT
altfanStatus.altfanOverride = 1; //full speed
#endif //EXTRUDER_ALTFAN_DETECT
setExtruderAutoFanState(3);
SET_OUTPUT(FAN_PIN);
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = 255;
#else //FAN_SOFT_PWM
analogWrite(FAN_PIN, 255);
#endif //FAN_SOFT_PWM
fanSpeed = 255;
delayMicroseconds(2000);
}
else
{
isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
SERIAL_ERROR_START;
isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
}
}
#endif
void disable_heater()
{
setAllTargetHotends(0);
setTargetBed(0);
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
target_temperature[0]=0;
soft_pwm[0]=0;
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
target_temperature[1]=0;
soft_pwm[1]=0;
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
target_temperature[2]=0;
soft_pwm[2]=0;
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
target_temperature_bed=0;
soft_pwm_bed=0;
timer02_set_pwm0(soft_pwm_bed << 1);
bedPWMDisabled = 0;
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
//WRITE(HEATER_BED_PIN,LOW);
#endif
#endif
}
//! codes of alert messages for the LCD - it is shorter to compare an uin8_t
//! than raw const char * of the messages themselves.
//! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
//! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
//! remember the last alert message sent to the LCD
//! to prevent flicker and improve speed
uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
//! update the current temperature error message
//! @param type short error abbreviation (PROGMEM)
//! @param func optional lcd update function (lcd_setalertstatus when first setting the error)
void temp_update_messagepgm(const char* PROGMEM type, void (*func)(const char*) = lcd_updatestatus)
{
char msg[LCD_WIDTH];
strcpy_P(msg, PSTR("Err: "));
strcat_P(msg, type);
(*func)(msg);
}
//! signal a temperature error on both the lcd and serial
//! @param type short error abbreviation (PROGMEM)
//! @param e optional extruder index for hotend errors
void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
{
temp_update_messagepgm(type, lcd_setalertstatus);
SERIAL_ERROR_START;
if(e != EXTRUDERS) {
SERIAL_ERROR((int)e);
SERIAL_ERRORPGM(": ");
}
SERIAL_ERRORPGM("Heaters switched off. ");
SERIAL_ERRORRPGM(type);
SERIAL_ERRORLNPGM(" triggered!");
}
void max_temp_error(uint8_t e) {
disable_heater();
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP"), e);
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
SET_OUTPUT(FAN_PIN);
SET_OUTPUT(BEEPER);
WRITE(FAN_PIN, 1);
WRITE(BEEPER, 1);
#ifdef EXTRUDER_ALTFAN_DETECT
altfanStatus.altfanOverride = 1; //full speed
#endif //EXTRUDER_ALTFAN_DETECT
setExtruderAutoFanState(3);
// fanSpeed will consumed by the check_axes_activity() routine.
fanSpeed=255;
if (farm_mode) { prusa_statistics(93); }
}
void min_temp_error(uint8_t e) {
#ifdef DEBUG_DISABLE_MINTEMP
return;
#endif
disable_heater();
//if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
static const char err[] PROGMEM = "MINTEMP";
if(IsStopped() == false) {
temp_error_messagepgm(err, e);
last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
} else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
// we are already stopped due to some error, only update the status message without flickering
temp_update_messagepgm(err);
last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
// if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
// last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
// lcd_print_stop();
// }
Stop();
#endif
if (farm_mode) { prusa_statistics(92); }
}
void bed_max_temp_error(void) {
disable_heater();
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP BED"));
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
void bed_min_temp_error(void) {
#ifdef DEBUG_DISABLE_MINTEMP
return;
#endif
disable_heater();
static const char err[] PROGMEM = "MINTEMP BED";
if(IsStopped() == false) {
temp_error_messagepgm(err);
last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
} else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
// we are already stopped due to some error, only update the status message without flickering
temp_update_messagepgm(err);
last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
#ifdef AMBIENT_THERMISTOR
void ambient_max_temp_error(void) {
disable_heater();
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MAXTEMP AMB"));
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
void ambient_min_temp_error(void) {
#ifdef DEBUG_DISABLE_MINTEMP
return;
#endif
disable_heater();
if(IsStopped() == false) {
temp_error_messagepgm(PSTR("MINTEMP AMB"));
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
#endif
#ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000;
int read_max6675()
{
if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = _millis();
max6675_temp = 0;
#ifdef PRR
PRR &= ~(1<> 3;
}
return max6675_temp;
}
#endif
extern "C" {
void adc_ready(void) //callback from adc when sampling finished
{
current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
#ifdef PINDA_THERMISTOR
current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
#endif //PINDA_THERMISTOR
current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
#ifdef VOLT_PWR_PIN
current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
#endif
#ifdef AMBIENT_THERMISTOR
current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_BED_PIN
current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
#endif
#ifdef IR_SENSOR_ANALOG
current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
#endif //IR_SENSOR_ANALOG
temp_meas_ready = true;
}
} // extern "C"
FORCE_INLINE static void temperature_isr()
{
if (!temp_meas_ready) adc_cycle();
lcd_buttons_update();
static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
static uint8_t soft_pwm_0;
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_0 = 0;
static unsigned char state_timer_heater_0 = 0;
#endif
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
static unsigned char soft_pwm_1;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_1 = 0;
static unsigned char state_timer_heater_1 = 0;
#endif
#endif
#if EXTRUDERS > 2
static unsigned char soft_pwm_2;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_2 = 0;
static unsigned char state_timer_heater_2 = 0;
#endif
#endif
#if HEATER_BED_PIN > -1
// @@DR static unsigned char soft_pwm_b;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_b = 0;
static unsigned char state_timer_heater_b = 0;
#endif
#endif
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
#endif
#ifndef SLOW_PWM_HEATERS
/*
* standard PWM modulation
*/
if (pwm_count == 0)
{
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0)
{
WRITE(HEATER_0_PIN,1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,1);
#endif
} else WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
#endif
}
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
#if 0 // @@DR vypnuto pro hw pwm bedu
// tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
// teoreticky by se tato cast uz vubec nemusela poustet
if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
{
soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
# ifndef SYSTEM_TIMER_2
// tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
// jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
// 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
// Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
// to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
//if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
# endif //SYSTEM_TIMER_2
}
#endif
#endif
#ifdef FAN_SOFT_PWM
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
{
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
#endif
if(soft_pwm_0 < pwm_count)
{
WRITE(HEATER_0_PIN,0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,0);
#endif
}
#if EXTRUDERS > 1
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
#endif
#if 0 // @@DR
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
//WRITE(HEATER_BED_PIN,0);
}
//WRITE(HEATER_BED_PIN, pwm_count & 1 );
#endif
#endif
#ifdef FAN_SOFT_PWM
if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else //ifndef SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
if (slow_pwm_count == 0) {
// EXTRUDER 0
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 0) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 1;
WRITE(HEATER_0_PIN, 1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 1);
#endif
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
soft_pwm_1 = soft_pwm[1];
if (soft_pwm_1 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 0) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 1;
WRITE(HEATER_1_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
soft_pwm_2 = soft_pwm[2];
if (soft_pwm_2 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 0) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 1;
WRITE(HEATER_2_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
soft_pwm_b = soft_pwm_bed;
if (soft_pwm_b > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 0) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 1;
//WRITE(HEATER_BED_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
} // if (slow_pwm_count == 0)
// EXTRUDER 0
if (soft_pwm_0 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
if (soft_pwm_1 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
if (soft_pwm_2 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
if (soft_pwm_b < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
#ifdef FAN_SOFT_PWM
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// Extruder 0
if (state_timer_heater_0 > 0) {
state_timer_heater_0--;
}
#if EXTRUDERS > 1
// Extruder 1
if (state_timer_heater_1 > 0)
state_timer_heater_1--;
#endif
#if EXTRUDERS > 2
// Extruder 2
if (state_timer_heater_2 > 0)
state_timer_heater_2--;
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// Bed
if (state_timer_heater_b > 0)
state_timer_heater_b--;
#endif
} //if ((pwm_count % 64) == 0) {
#endif //ifndef SLOW_PWM_HEATERS
#ifdef BABYSTEPPING
for(uint8_t axis=0;axis<3;axis++)
{
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if(curTodo>0)
{
asm("cli");
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
asm("sei");
}
else
if(curTodo<0)
{
asm("cli");
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
asm("sei");
}
}
#endif //BABYSTEPPING
#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
check_fans();
#endif //(defined(TACH_0))
}
// Timer2 (originaly timer0) is shared with millies
#ifdef SYSTEM_TIMER_2
ISR(TIMER2_COMPB_vect)
#else //SYSTEM_TIMER_2
ISR(TIMER0_COMPB_vect)
#endif //SYSTEM_TIMER_2
{
static bool _lock = false;
if (!_lock)
{
_lock = true;
sei();
temperature_isr();
cli();
_lock = false;
}
}
void check_max_temp()
{
//heater
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
#else
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
#endif
max_temp_error(0);
}
//bed
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
#else
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
#endif
bed_max_temp_error();
}
#endif
//ambient
#if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
#else
if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
#endif
ambient_max_temp_error();
}
#endif
}
//! number of repeating the same state with consecutive step() calls
//! used to slow down text switching
struct alert_automaton_mintemp {
const char *m2;
alert_automaton_mintemp(const char *m2):m2(m2){}
private:
enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
States state = States::Init;
uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
void substep(States next_state){
if( repeat == 0 ){
state = next_state; // advance to the next state
repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
} else {
--repeat;
}
}
public:
//! brief state automaton step routine
//! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
//! @param mintemp minimal temperature including hysteresis to check current_temp against
void step(float current_temp, float mintemp){
static const char m1[] PROGMEM = "Please restart";
switch(state){
case States::Init: // initial state - check hysteresis
if( current_temp > mintemp ){
state = States::TempAboveMintemp;
}
// otherwise keep the Err MINTEMP alert message on the display,
// i.e. do not transfer to state 1
break;
case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
lcd_setalertstatuspgm(m2);
substep(States::ShowMintemp);
last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
break;
case States::ShowPleaseRestart: // displaying "Please restart"
lcd_updatestatuspgm(m1);
substep(States::ShowMintemp);
last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
break;
case States::ShowMintemp: // displaying "MINTEMP fixed"
lcd_updatestatuspgm(m2);
substep(States::ShowPleaseRestart);
last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
break;
}
}
};
static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
void check_min_temp_heater0()
{
//heater
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if (current_temperature_raw[0] >= minttemp_raw[0]) {
#else
if (current_temperature_raw[0] <= minttemp_raw[0]) {
#endif
menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
min_temp_error(0);
} else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
// no recovery, just force the user to restart the printer
// which is a safer variant than just continuing printing
// The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
// we shall signalize, that MINTEMP has been fixed
// Code notice: normally the alert_automaton instance would have been placed here
// as static alert_automaton_mintemp alert_automaton_hotend, but
// due to stupid compiler that takes 16 more bytes.
alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
}
}
void check_min_temp_bed()
{
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if (current_temperature_bed_raw >= bed_minttemp_raw) {
#else
if (current_temperature_bed_raw <= bed_minttemp_raw) {
#endif
menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
bed_min_temp_error();
} else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
// no recovery, just force the user to restart the printer
// which is a safer variant than just continuing printing
alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
}
}
#ifdef AMBIENT_MINTEMP
void check_min_temp_ambient()
{
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
#else
if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
#endif
ambient_min_temp_error();
}
}
#endif
void check_min_temp()
{
static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
#ifdef AMBIENT_THERMISTOR
#ifdef AMBIENT_MINTEMP
check_min_temp_ambient();
#endif
#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
#else
if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
#endif
{ // ambient temperature is low
#endif //AMBIENT_THERMISTOR
// *** 'common' part of code for MK2.5 & MK3
// * nozzle checking
if(target_temperature[active_extruder]>minttemp[active_extruder])
{ // ~ nozzle heating is on
bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
{
bCheckingOnHeater=true; // not necessary
check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else { // ~ nozzle heating is off
oTimer4minTempHeater.start();
bCheckingOnHeater=false;
}
// * bed checking
if(target_temperature_bed>BED_MINTEMP)
{ // ~ bed heating is on
bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
{
bCheckingOnBed=true; // not necessary
check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
}
}
else { // ~ bed heating is off
oTimer4minTempBed.start();
bCheckingOnBed=false;
}
// *** end of 'common' part
#ifdef AMBIENT_THERMISTOR
}
else { // ambient temperature is standard
check_min_temp_heater0();
check_min_temp_bed();
}
#endif //AMBIENT_THERMISTOR
}
#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
void check_fans() {
#ifdef FAN_SOFT_PWM
if (READ(TACH_0) != fan_state[0]) {
if(fan_measuring) fan_edge_counter[0] ++;
fan_state[0] = !fan_state[0];
}
if (READ(TACH_1) != fan_state[1]) {
if(fan_measuring) fan_edge_counter[1] ++;
fan_state[1] = !fan_state[1];
}
#else //FAN_SOFT_PWM
if (READ(TACH_0) != fan_state[0]) {
fan_edge_counter[0] ++;
fan_state[0] = !fan_state[0];
}
if (READ(TACH_1) != fan_state[1]) {
fan_edge_counter[1] ++;
fan_state[1] = !fan_state[1];
}
#endif
}
#endif //TACH_0
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i)
{
return i*PID_dT;
}
float unscalePID_i(float i)
{
return i/PID_dT;
}
float scalePID_d(float d)
{
return d/PID_dT;
}
float unscalePID_d(float d)
{
return d*PID_dT;
}
#endif //PIDTEMP
#ifdef PINDA_THERMISTOR
//! @brief PINDA thermistor detected
//!
//! @retval true firmware should do temperature compensation and allow calibration
//! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
//!
bool has_temperature_compensation()
{
#ifdef DETECT_SUPERPINDA
return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
#else
return true;
#endif
}
#endif //PINDA_THERMISTOR