/* temperature.c - temperature control Part of Marlin Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #include "ultralcd.h" #include "sound.h" #include "temperature.h" #include "cardreader.h" #include "Sd2PinMap.h" #include #include "adc.h" #include "ConfigurationStore.h" #include "messages.h" #include "Timer.h" #include "Configuration_prusa.h" #include "config.h" //=========================================================================== //=============================public variables============================ //=========================================================================== int target_temperature[EXTRUDERS] = { 0 }; int target_temperature_bed = 0; int current_temperature_raw[EXTRUDERS] = { 0 }; float current_temperature[EXTRUDERS] = { 0.0 }; #ifdef PINDA_THERMISTOR uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc float current_temperature_pinda = 0.0; #endif //PINDA_THERMISTOR #ifdef AMBIENT_THERMISTOR int current_temperature_raw_ambient = 0 ; float current_temperature_ambient = 0.0; #endif //AMBIENT_THERMISTOR #ifdef VOLT_PWR_PIN int current_voltage_raw_pwr = 0; #endif #ifdef VOLT_BED_PIN int current_voltage_raw_bed = 0; #endif #ifdef IR_SENSOR_ANALOG uint16_t current_voltage_raw_IR = 0; #endif //IR_SENSOR_ANALOG int current_temperature_bed_raw = 0; float current_temperature_bed = 0.0; #ifdef PIDTEMP float _Kp, _Ki, _Kd; int pid_cycle, pid_number_of_cycles; bool pid_tuning_finished = false; #ifdef PID_ADD_EXTRUSION_RATE float Kc=DEFAULT_Kc; #endif #endif //PIDTEMP #ifdef FAN_SOFT_PWM unsigned char fanSpeedSoftPwm; #endif #ifdef FANCHECK volatile uint8_t fan_check_error = EFCE_OK; #endif unsigned char soft_pwm_bed; #ifdef BABYSTEPPING volatile int babystepsTodo[3]={0,0,0}; #endif //=========================================================================== //=============================private variables============================ //=========================================================================== static volatile bool temp_meas_ready = false; #ifdef PIDTEMP //static cannot be external: static float iState_sum[EXTRUDERS] = { 0 }; static float dState_last[EXTRUDERS] = { 0 }; static float pTerm[EXTRUDERS]; static float iTerm[EXTRUDERS]; static float dTerm[EXTRUDERS]; //int output; static float pid_error[EXTRUDERS]; static float iState_sum_min[EXTRUDERS]; static float iState_sum_max[EXTRUDERS]; // static float pid_input[EXTRUDERS]; // static float pid_output[EXTRUDERS]; static bool pid_reset[EXTRUDERS]; #endif //PIDTEMP #ifdef PIDTEMPBED //static cannot be external: static float temp_iState_bed = { 0 }; static float temp_dState_bed = { 0 }; static float pTerm_bed; static float iTerm_bed; static float dTerm_bed; //int output; static float pid_error_bed; static float temp_iState_min_bed; static float temp_iState_max_bed; #else //PIDTEMPBED static unsigned long previous_millis_bed_heater; #endif //PIDTEMPBED static unsigned char soft_pwm[EXTRUDERS]; #ifdef FAN_SOFT_PWM static unsigned char soft_pwm_fan; #endif uint8_t fanSpeedBckp = 255; #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) unsigned long extruder_autofan_last_check = _millis(); bool fan_measuring = false; uint8_t fanState = 0; #ifdef EXTRUDER_ALTFAN_DETECT bool extruderFanIsAltfan = false; //set to Noctua #endif //EXTRUDER_ALTFAN_DETECT #endif #if EXTRUDERS > 3 # error Unsupported number of extruders #elif EXTRUDERS > 2 # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 } #elif EXTRUDERS > 1 # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 } #else # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 } #endif static ShortTimer oTimer4minTempHeater,oTimer4minTempBed; // Init min and max temp with extreme values to prevent false errors during startup static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP ); static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP ); static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 ); static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 ); #ifdef BED_MINTEMP static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; #endif #ifdef BED_MAXTEMP static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; #endif static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE ); static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN ); static float analog2temp(int raw, uint8_t e); static float analog2tempBed(int raw); static float analog2tempAmbient(int raw); static void updateTemperaturesFromRawValues(); enum TempRunawayStates { TempRunaway_INACTIVE = 0, TempRunaway_PREHEAT = 1, TempRunaway_ACTIVE = 2, }; #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif //=========================================================================== //============================= functions ============================ //=========================================================================== #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0) static float temp_runaway_status[4]; static float temp_runaway_target[4]; static float temp_runaway_timer[4]; static int temp_runaway_error_counter[4]; static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed); static void temp_runaway_stop(bool isPreheat, bool isBed); #endif #ifdef EXTRUDER_ALTFAN_DETECT ISR(INT6_vect) { fan_edge_counter[0]++; } bool extruder_altfan_detect() { setExtruderAutoFanState(3); SET_INPUT(TACH_0); CRITICAL_SECTION_START; EICRB &= ~(1 << ISC61); EICRB |= (1 << ISC60); EIMSK |= (1 << INT6); fan_edge_counter[0] = 0; CRITICAL_SECTION_END; extruder_autofan_last_check = _millis(); _delay(1000); EIMSK &= ~(1 << INT6); countFanSpeed(); extruderFanIsAltfan = fan_speed[0] > 100; setExtruderAutoFanState(1); return extruderFanIsAltfan; } #endif //EXTRUDER_ALTFAN_DETECT // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on') bool checkAllHotends(void) { bool result=false; for(int i=0;i -1) unsigned long extruder_autofan_last_check = _millis(); #endif if ((extruder >= EXTRUDERS) #if (TEMP_BED_PIN <= -1) ||(extruder < 0) #endif ){ SERIAL_ECHOLN("PID Autotune failed. Bad extruder number."); pid_tuning_finished = true; pid_cycle = 0; return; } SERIAL_ECHOLN("PID Autotune start"); disable_heater(); // switch off all heaters. if (extruder<0) { soft_pwm_bed = (MAX_BED_POWER)/2; timer02_set_pwm0(soft_pwm_bed << 1); bias = d = (MAX_BED_POWER)/2; target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen } else { soft_pwm[extruder] = (PID_MAX)/2; bias = d = (PID_MAX)/2; target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen } for(;;) { #ifdef WATCHDOG wdt_reset(); #endif //WATCHDOG if(temp_meas_ready == true) { // temp sample ready updateTemperaturesFromRawValues(); input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; max=max(max,input); min=min(min,input); #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) if(_millis() - extruder_autofan_last_check > 2500) { checkExtruderAutoFans(); extruder_autofan_last_check = _millis(); } #endif if(heating == true && input > temp) { if(_millis() - t2 > 5000) { heating=false; if (extruder<0) { soft_pwm_bed = (bias - d) >> 1; timer02_set_pwm0(soft_pwm_bed << 1); } else soft_pwm[extruder] = (bias - d) >> 1; t1=_millis(); t_high=t1 - t2; max=temp; } } if(heating == false && input < temp) { if(_millis() - t1 > 5000) { heating=true; t2=_millis(); t_low=t2 - t1; if(pid_cycle > 0) { bias += (d*(t_high - t_low))/(t_low + t_high); bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20); if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias; else d = bias; SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d); SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min); SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max); if(pid_cycle > 2) { Ku = (4.0*d)/(3.14159*(max-min)/2.0); Tu = ((float)(t_low + t_high)/1000.0); SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku); SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu); _Kp = 0.6*Ku; _Ki = 2*_Kp/Tu; _Kd = _Kp*Tu/8; SERIAL_PROTOCOLLNPGM(" Classic PID "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd); /* _Kp = 0.33*Ku; _Ki = _Kp/Tu; _Kd = _Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" Some overshoot "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd); _Kp = 0.2*Ku; _Ki = 2*_Kp/Tu; _Kd = _Kp*Tu/3; SERIAL_PROTOCOLLNPGM(" No overshoot "); SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp); SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki); SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd); */ } } if (extruder<0) { soft_pwm_bed = (bias + d) >> 1; timer02_set_pwm0(soft_pwm_bed << 1); } else soft_pwm[extruder] = (bias + d) >> 1; pid_cycle++; min=temp; } } } if(input > (temp + 20)) { SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high"); pid_tuning_finished = true; pid_cycle = 0; return; } if(_millis() - temp_millis > 2000) { int p; if (extruder<0){ p=soft_pwm_bed; SERIAL_PROTOCOLPGM("B:"); }else{ p=soft_pwm[extruder]; SERIAL_PROTOCOLPGM("T:"); } SERIAL_PROTOCOL(input); SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLLN(p); if (safety_check_cycles == 0) { //save ambient temp temp_ambient = input; //SERIAL_ECHOPGM("Ambient T: "); //MYSERIAL.println(temp_ambient); safety_check_cycles++; } else if (safety_check_cycles < safety_check_cycles_count) { //delay safety_check_cycles++; } else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising safety_check_cycles++; //SERIAL_ECHOPGM("Time from beginning: "); //MYSERIAL.print(safety_check_cycles_count * 2); //SERIAL_ECHOPGM("s. Difference between current and ambient T: "); //MYSERIAL.println(input - temp_ambient); if (abs(input - temp_ambient) < 5.0) { temp_runaway_stop(false, (extruder<0)); pid_tuning_finished = true; return; } } temp_millis = _millis(); } if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) { SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout"); pid_tuning_finished = true; pid_cycle = 0; return; } if(pid_cycle > ncycles) { SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h"); pid_tuning_finished = true; pid_cycle = 0; return; } lcd_update(0); } } void updatePID() { #ifdef PIDTEMP for(uint_least8_t e = 0; e < EXTRUDERS; e++) { iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki; } #endif #ifdef PIDTEMPBED temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi; #endif } int getHeaterPower(int heater) { if (heater<0) return soft_pwm_bed; return soft_pwm[heater]; } #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) #if defined(FAN_PIN) && FAN_PIN > -1 #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN" #endif #endif void setExtruderAutoFanState(uint8_t state) { //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing //the fan to either On or Off during certain tests/errors. fanState = state; uint8_t newFanSpeed = 0; if (fanState & 0x01) { #ifdef EXTRUDER_ALTFAN_DETECT if (extruderFanIsAltfan) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT; else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED; #else //EXTRUDER_ALTFAN_DETECT newFanSpeed = EXTRUDER_AUTO_FAN_SPEED; #endif //EXTRUDER_ALTFAN_DETECT } timer4_set_fan0(newFanSpeed); } #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))) void countFanSpeed() { //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]); fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check))); fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check))); /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check); SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]); SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]); SERIAL_ECHOLNPGM(" ");*/ fan_edge_counter[0] = 0; fan_edge_counter[1] = 0; } void checkFanSpeed() { uint8_t max_print_fan_errors = 0; uint8_t max_extruder_fan_errors = 0; #ifdef FAN_SOFT_PWM max_print_fan_errors = 3; //15 seconds max_extruder_fan_errors = 2; //10seconds #else //FAN_SOFT_PWM max_print_fan_errors = 15; //15 seconds max_extruder_fan_errors = 5; //5 seconds #endif //FAN_SOFT_PWM if(fans_check_enabled != false) fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0); static unsigned char fan_speed_errors[2] = { 0,0 }; #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1)) if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;} else{ fan_speed_errors[0] = 0; host_keepalive(); } #endif #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1)) if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++; else fan_speed_errors[1] = 0; #endif // drop the fan_check_error flag when both fans are ok if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){ // we may even send some info to the LCD from here fan_check_error = EFCE_FIXED; } if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){ fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately. lcd_reset_alert_level(); //for another fan speed error } if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) { fan_speed_errors[0] = 0; fanSpeedError(0); //extruder fan } if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) { fan_speed_errors[1] = 0; fanSpeedError(1); //print fan } } //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps. //! Extracted from fanSpeedError to save some space. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){ SERIAL_ECHOLNRPGM(serialMsg); if (get_message_level() == 0) { Sound_MakeCustom(200,0,true); LCD_ALERTMESSAGERPGM(lcdMsg); } } void fanSpeedError(unsigned char _fan) { if (get_message_level() != 0 && isPrintPaused) return; //to ensure that target temp. is not set to zero in case that we are resuming print if (card.sdprinting || is_usb_printing) { if (heating_status != 0) { lcd_print_stop(); } else { fan_check_error = EFCE_DETECTED; //plans error for next processed command } } else { // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this. setTargetHotend0(0); heating_status = 0; fan_check_error = EFCE_REPORTED; } switch (_fan) { case 0: // extracting the same code from case 0 and case 1 into a function saves 72B fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER); break; case 1: fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT); break; } // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint. } #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1) void checkExtruderAutoFans() { #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1 if (!(fanState & 0x02)) { fanState &= ~1; fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE; } setExtruderAutoFanState(fanState); #endif } #endif // any extruder auto fan pins set // ready for eventually parameters adjusting void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing) //void resetPID(uint8_t extruder) { } void manage_heater() { #ifdef WATCHDOG wdt_reset(); #endif //WATCHDOG float pid_input; float pid_output; if(temp_meas_ready != true) //better readability return; // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms) updateTemperaturesFromRawValues(); check_max_temp(); check_min_temp(); #ifdef TEMP_RUNAWAY_BED_HYSTERESIS temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true); #endif for(int e = 0; e < EXTRUDERS; e++) { #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false); #endif #ifdef PIDTEMP pid_input = current_temperature[e]; #ifndef PID_OPENLOOP if(target_temperature[e] == 0) { pid_output = 0; pid_reset[e] = true; } else { pid_error[e] = target_temperature[e] - pid_input; if(pid_reset[e]) { iState_sum[e] = 0.0; dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement) pid_reset[e] = false; } #ifndef PonM pTerm[e] = cs.Kp * pid_error[e]; iState_sum[e] += pid_error[e]; iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]); iTerm[e] = cs.Ki * iState_sum[e]; // PID_K1 defined in Configuration.h in the PID settings #define K2 (1.0-PID_K1) dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used) if (pid_output > PID_MAX) { if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration pid_output=PID_MAX; } else if (pid_output < 0) { if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration pid_output=0; } #else // PonM ("Proportional on Measurement" method) iState_sum[e] += cs.Ki * pid_error[e]; iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]); iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX); dTerm[e] = cs.Kd * (pid_input - dState_last[e]); pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used) pid_output = constrain(pid_output, 0, PID_MAX); #endif // PonM } dState_last[e] = pid_input; #else pid_output = constrain(target_temperature[e], 0, PID_MAX); #endif //PID_OPENLOOP #ifdef PID_DEBUG SERIAL_ECHO_START; SERIAL_ECHO(" PID_DEBUG "); SERIAL_ECHO(e); SERIAL_ECHO(": Input "); SERIAL_ECHO(pid_input); SERIAL_ECHO(" Output "); SERIAL_ECHO(pid_output); SERIAL_ECHO(" pTerm "); SERIAL_ECHO(pTerm[e]); SERIAL_ECHO(" iTerm "); SERIAL_ECHO(iTerm[e]); SERIAL_ECHO(" dTerm "); SERIAL_ECHOLN(-dTerm[e]); #endif //PID_DEBUG #else /* PID off */ pid_output = 0; if(current_temperature[e] < target_temperature[e]) { pid_output = PID_MAX; } #endif // Check if temperature is within the correct range if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0)) { soft_pwm[e] = (int)pid_output >> 1; } else { soft_pwm[e] = 0; } } // End extruder for loop #define FAN_CHECK_PERIOD 5000 //5s #define FAN_CHECK_DURATION 100 //100ms #ifndef DEBUG_DISABLE_FANCHECK #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) #ifdef FAN_SOFT_PWM #ifdef FANCHECK if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) { extruder_autofan_last_check = _millis(); fanSpeedBckp = fanSpeedSoftPwm; if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm); fanSpeedSoftPwm = 255; } fan_measuring = true; } if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) { countFanSpeed(); checkFanSpeed(); //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm); fanSpeedSoftPwm = fanSpeedBckp; //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]); extruder_autofan_last_check = _millis(); fan_measuring = false; } #endif //FANCHECK checkExtruderAutoFans(); #else //FAN_SOFT_PWM if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently { #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))) countFanSpeed(); checkFanSpeed(); #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1) checkExtruderAutoFans(); extruder_autofan_last_check = _millis(); } #endif //FAN_SOFT_PWM #endif #endif //DEBUG_DISABLE_FANCHECK #ifndef PIDTEMPBED if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) return; previous_millis_bed_heater = _millis(); #endif #if TEMP_SENSOR_BED != 0 #ifdef PIDTEMPBED pid_input = current_temperature_bed; #ifndef PID_OPENLOOP pid_error_bed = target_temperature_bed - pid_input; pTerm_bed = cs.bedKp * pid_error_bed; temp_iState_bed += pid_error_bed; temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); iTerm_bed = cs.bedKi * temp_iState_bed; //PID_K1 defined in Configuration.h in the PID settings #define K2 (1.0-PID_K1) dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed); temp_dState_bed = pid_input; pid_output = pTerm_bed + iTerm_bed - dTerm_bed; if (pid_output > MAX_BED_POWER) { if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output=MAX_BED_POWER; } else if (pid_output < 0){ if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration pid_output=0; } #else pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); #endif //PID_OPENLOOP if(current_temperature_bed < BED_MAXTEMP) { soft_pwm_bed = (int)pid_output >> 1; timer02_set_pwm0(soft_pwm_bed << 1); } else { soft_pwm_bed = 0; timer02_set_pwm0(soft_pwm_bed << 1); } #elif !defined(BED_LIMIT_SWITCHING) // Check if temperature is within the correct range if(current_temperature_bed < BED_MAXTEMP) { if(current_temperature_bed >= target_temperature_bed) { soft_pwm_bed = 0; timer02_set_pwm0(soft_pwm_bed << 1); } else { soft_pwm_bed = MAX_BED_POWER>>1; timer02_set_pwm0(soft_pwm_bed << 1); } } else { soft_pwm_bed = 0; timer02_set_pwm0(soft_pwm_bed << 1); WRITE(HEATER_BED_PIN,LOW); } #else //#ifdef BED_LIMIT_SWITCHING // Check if temperature is within the correct band if(current_temperature_bed < BED_MAXTEMP) { if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS) { soft_pwm_bed = 0; timer02_set_pwm0(soft_pwm_bed << 1); } else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS) { soft_pwm_bed = MAX_BED_POWER>>1; timer02_set_pwm0(soft_pwm_bed << 1); } } else { soft_pwm_bed = 0; timer02_set_pwm0(soft_pwm_bed << 1); WRITE(HEATER_BED_PIN,LOW); } #endif if(target_temperature_bed==0) { soft_pwm_bed = 0; timer02_set_pwm0(soft_pwm_bed << 1); } #endif host_keepalive(); } #define PGM_RD_W(x) (short)pgm_read_word(&x) // Derived from RepRap FiveD extruder::getTemperature() // For hot end temperature measurement. static float analog2temp(int raw, uint8_t e) { if(e >= EXTRUDERS) { SERIAL_ERROR_START; SERIAL_ERROR((int)e); SERIAL_ERRORLNPGM(" - Invalid extruder number !"); kill(NULL, 6); return 0.0; } #ifdef HEATER_0_USES_MAX6675 if (e == 0) { return 0.25 * raw; } #endif if(heater_ttbl_map[e] != NULL) { float celsius = 0; uint8_t i; short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); for (i=1; i raw) { celsius = PGM_RD_W((*tt)[i-1][1]) + (raw - PGM_RD_W((*tt)[i-1][0])) * (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) / (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]); return celsius; } return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; } // Derived from RepRap FiveD extruder::getTemperature() // For bed temperature measurement. static float analog2tempBed(int raw) { #ifdef BED_USES_THERMISTOR float celsius = 0; byte i; for (i=1; i raw) { celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) + (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) * (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) / (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]); // temperature offset adjustment #ifdef BED_OFFSET float _offset = BED_OFFSET; float _offset_center = BED_OFFSET_CENTER; float _offset_start = BED_OFFSET_START; float _first_koef = (_offset / 2) / (_offset_center - _offset_start); float _second_koef = (_offset / 2) / (100 - _offset_center); if (celsius >= _offset_start && celsius <= _offset_center) { celsius = celsius + (_first_koef * (celsius - _offset_start)); } else if (celsius > _offset_center && celsius <= 100) { celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ; } else if (celsius > 100) { celsius = celsius + _offset; } #endif return celsius; #elif defined BED_USES_AD595 return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET; #else return 0; #endif } #ifdef AMBIENT_THERMISTOR static float analog2tempAmbient(int raw) { float celsius = 0; byte i; for (i=1; i raw) { celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) + (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) * (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) / (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])); break; } } // Overflow: Set to last value in the table if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]); return celsius; } #endif //AMBIENT_THERMISTOR /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context, and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */ static void updateTemperaturesFromRawValues() { for(uint8_t e=0;e> 2; current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); #endif #ifdef AMBIENT_THERMISTOR current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000) #endif #ifdef DEBUG_HEATER_BED_SIM current_temperature_bed = target_temperature_bed; #else //DEBUG_HEATER_BED_SIM current_temperature_bed = analog2tempBed(current_temperature_bed_raw); #endif //DEBUG_HEATER_BED_SIM CRITICAL_SECTION_START; temp_meas_ready = false; CRITICAL_SECTION_END; } void tp_init() { #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector MCUCR=(1< -1) SET_OUTPUT(HEATER_0_PIN); #endif #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1) SET_OUTPUT(HEATER_1_PIN); #endif #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1) SET_OUTPUT(HEATER_2_PIN); #endif #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1) SET_OUTPUT(HEATER_BED_PIN); #endif #if defined(FAN_PIN) && (FAN_PIN > -1) SET_OUTPUT(FAN_PIN); #ifdef FAST_PWM_FAN setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 #endif #ifdef FAN_SOFT_PWM soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS)); #endif #endif #ifdef HEATER_0_USES_MAX6675 #ifndef SDSUPPORT SET_OUTPUT(SCK_PIN); WRITE(SCK_PIN,0); SET_OUTPUT(MOSI_PIN); WRITE(MOSI_PIN,1); SET_INPUT(MISO_PIN); WRITE(MISO_PIN,1); #endif /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */ //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card pinMode(SS_PIN, OUTPUT); digitalWrite(SS_PIN,0); pinMode(MAX6675_SS, OUTPUT); digitalWrite(MAX6675_SS,1); #endif adc_init(); timer0_init(); OCR2B = 128; TIMSK2 |= (1< HEATER_0_MAXTEMP) { #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP maxttemp_raw[0] -= OVERSAMPLENR; #else maxttemp_raw[0] += OVERSAMPLENR; #endif } #endif //MAXTEMP #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP) minttemp[1] = HEATER_1_MINTEMP; while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) { #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP minttemp_raw[1] += OVERSAMPLENR; #else minttemp_raw[1] -= OVERSAMPLENR; #endif } #endif // MINTEMP 1 #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP) maxttemp[1] = HEATER_1_MAXTEMP; while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) { #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP maxttemp_raw[1] -= OVERSAMPLENR; #else maxttemp_raw[1] += OVERSAMPLENR; #endif } #endif //MAXTEMP 1 #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP) minttemp[2] = HEATER_2_MINTEMP; while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) { #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP minttemp_raw[2] += OVERSAMPLENR; #else minttemp_raw[2] -= OVERSAMPLENR; #endif } #endif //MINTEMP 2 #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP) maxttemp[2] = HEATER_2_MAXTEMP; while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) { #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP maxttemp_raw[2] -= OVERSAMPLENR; #else maxttemp_raw[2] += OVERSAMPLENR; #endif } #endif //MAXTEMP 2 #ifdef BED_MINTEMP /* No bed MINTEMP error implemented?!? */ while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_minttemp_raw += OVERSAMPLENR; #else bed_minttemp_raw -= OVERSAMPLENR; #endif } #endif //BED_MINTEMP #ifdef BED_MAXTEMP while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) { #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP bed_maxttemp_raw -= OVERSAMPLENR; #else bed_maxttemp_raw += OVERSAMPLENR; #endif } #endif //BED_MAXTEMP } #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0) void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed) { float __delta; float __hysteresis = 0; int __timeout = 0; bool temp_runaway_check_active = false; static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder static int __preheat_counter[2] = { 0,0}; static int __preheat_errors[2] = { 0,0}; if (_millis() - temp_runaway_timer[_heater_id] > 2000) { #ifdef TEMP_RUNAWAY_BED_TIMEOUT if (_isbed) { __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS; __timeout = TEMP_RUNAWAY_BED_TIMEOUT; } #endif #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT if (!_isbed) { __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS; __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT; } #endif temp_runaway_timer[_heater_id] = _millis(); if (_output == 0) { temp_runaway_check_active = false; temp_runaway_error_counter[_heater_id] = 0; } if (temp_runaway_target[_heater_id] != _target_temperature) { if (_target_temperature > 0) { temp_runaway_status[_heater_id] = TempRunaway_PREHEAT; temp_runaway_target[_heater_id] = _target_temperature; __preheat_start[_heater_id] = _current_temperature; __preheat_counter[_heater_id] = 0; } else { temp_runaway_status[_heater_id] = TempRunaway_INACTIVE; temp_runaway_target[_heater_id] = _target_temperature; } } if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)) { __preheat_counter[_heater_id]++; if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes { /*SERIAL_ECHOPGM("Heater:"); MYSERIAL.print(_heater_id); SERIAL_ECHOPGM(" T:"); MYSERIAL.print(_current_temperature); SERIAL_ECHOPGM(" Tstart:"); MYSERIAL.print(__preheat_start[_heater_id]); SERIAL_ECHOPGM(" delta:"); MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/ //-// if (_current_temperature - __preheat_start[_heater_id] < 2) { //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) { __delta=2.0; if(_isbed) { __delta=3.0; if(_current_temperature>90.0) __delta=2.0; if(_current_temperature>105.0) __delta=0.6; } if (_current_temperature - __preheat_start[_heater_id] < __delta) { __preheat_errors[_heater_id]++; /*SERIAL_ECHOPGM(" Preheat errors:"); MYSERIAL.println(__preheat_errors[_heater_id]);*/ } else { //SERIAL_ECHOLNPGM(""); __preheat_errors[_heater_id] = 0; } if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5)) { if (farm_mode) { prusa_statistics(0); } temp_runaway_stop(true, _isbed); if (farm_mode) { prusa_statistics(91); } } __preheat_start[_heater_id] = _current_temperature; __preheat_counter[_heater_id] = 0; } } //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT) if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT) { /*SERIAL_ECHOPGM("Heater:"); MYSERIAL.print(_heater_id); MYSERIAL.println(" ->tempRunaway");*/ temp_runaway_status[_heater_id] = TempRunaway_ACTIVE; temp_runaway_check_active = false; temp_runaway_error_counter[_heater_id] = 0; } if (_output > 0) { temp_runaway_check_active = true; } if (temp_runaway_check_active) { // we are in range if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis))) { temp_runaway_check_active = false; temp_runaway_error_counter[_heater_id] = 0; } else { if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT) { temp_runaway_error_counter[_heater_id]++; if (temp_runaway_error_counter[_heater_id] * 2 > __timeout) { if (farm_mode) { prusa_statistics(0); } temp_runaway_stop(false, _isbed); if (farm_mode) { prusa_statistics(90); } } } } } } } void temp_runaway_stop(bool isPreheat, bool isBed) { cancel_heatup = true; quickStop(); if (card.sdprinting) { card.sdprinting = false; card.closefile(); } // Clean the input command queue // This is necessary, because in command queue there can be commands which would later set heater or bed temperature. cmdqueue_reset(); disable_heater(); disable_x(); disable_y(); disable_e0(); disable_e1(); disable_e2(); manage_heater(); lcd_update(0); Sound_MakeCustom(200,0,true); if (isPreheat) { Stop(); isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR"); SERIAL_ERROR_START; isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)"); #ifdef EXTRUDER_ALTFAN_DETECT extruderFanIsAltfan = false; //full speed #endif //EXTRUDER_ALTFAN_DETECT setExtruderAutoFanState(3); SET_OUTPUT(FAN_PIN); #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 255; #else //FAN_SOFT_PWM analogWrite(FAN_PIN, 255); #endif //FAN_SOFT_PWM fanSpeed = 255; delayMicroseconds(2000); } else { isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY"); SERIAL_ERROR_START; isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY"); } } #endif void disable_heater() { setAllTargetHotends(0); setTargetBed(0); #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 target_temperature[0]=0; soft_pwm[0]=0; #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 WRITE(HEATER_0_PIN,LOW); #endif #endif #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1 target_temperature[1]=0; soft_pwm[1]=0; #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 WRITE(HEATER_1_PIN,LOW); #endif #endif #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2 target_temperature[2]=0; soft_pwm[2]=0; #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 WRITE(HEATER_2_PIN,LOW); #endif #endif #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 target_temperature_bed=0; soft_pwm_bed=0; timer02_set_pwm0(soft_pwm_bed << 1); bedPWMDisabled = 0; #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 //WRITE(HEATER_BED_PIN,LOW); #endif #endif } //! codes of alert messages for the LCD - it is shorter to compare an uin8_t //! than raw const char * of the messages themselves. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART }; //! remember the last alert message sent to the LCD //! to prevent flicker and improve speed uint8_t last_alert_sent_to_lcd = LCDALERT_NONE; void max_temp_error(uint8_t e) { disable_heater(); if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLN((int)e); SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !"); LCD_ALERTMESSAGEPGM("Err: MAXTEMP"); } #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE Stop(); #endif SET_OUTPUT(FAN_PIN); SET_OUTPUT(BEEPER); WRITE(FAN_PIN, 1); WRITE(BEEPER, 1); #ifdef EXTRUDER_ALTFAN_DETECT extruderFanIsAltfan = false; //full speed #endif //EXTRUDER_ALTFAN_DETECT setExtruderAutoFanState(3); // fanSpeed will consumed by the check_axes_activity() routine. fanSpeed=255; if (farm_mode) { prusa_statistics(93); } } void min_temp_error(uint8_t e) { #ifdef DEBUG_DISABLE_MINTEMP return; #endif //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return; disable_heater(); static const char err[] PROGMEM = "Err: MINTEMP"; if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLN((int)e); SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !"); lcd_setalertstatuspgm(err); last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP; } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time) // we are already stopped due to some error, only update the status message without flickering lcd_updatestatuspgm(err); last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP; } #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP; // lcd_print_stop(); // } Stop(); #endif if (farm_mode) { prusa_statistics(92); } } void bed_max_temp_error(void) { #if HEATER_BED_PIN > -1 //WRITE(HEATER_BED_PIN, 0); #endif if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !"); LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED"); } #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE Stop(); #endif } void bed_min_temp_error(void) { #ifdef DEBUG_DISABLE_MINTEMP return; #endif //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return; #if HEATER_BED_PIN > -1 //WRITE(HEATER_BED_PIN, 0); #endif static const char err[] PROGMEM = "Err: MINTEMP BED"; if(IsStopped() == false) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !"); lcd_setalertstatuspgm(err); last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP; } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time) // we are already stopped due to some error, only update the status message without flickering lcd_updatestatuspgm(err); last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP; } #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE Stop(); #endif } #ifdef HEATER_0_USES_MAX6675 #define MAX6675_HEAT_INTERVAL 250 long max6675_previous_millis = MAX6675_HEAT_INTERVAL; int max6675_temp = 2000; int read_max6675() { if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL) return max6675_temp; max6675_previous_millis = _millis(); max6675_temp = 0; #ifdef PRR PRR &= ~(1<> 3; } return max6675_temp; } #endif extern "C" { void adc_ready(void) //callback from adc when sampling finished { current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater #ifdef PINDA_THERMISTOR current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)]; #endif //PINDA_THERMISTOR current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)]; #ifdef VOLT_PWR_PIN current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)]; #endif #ifdef AMBIENT_THERMISTOR current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6 #endif //AMBIENT_THERMISTOR #ifdef VOLT_BED_PIN current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9 #endif #ifdef IR_SENSOR_ANALOG current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)]; #endif //IR_SENSOR_ANALOG temp_meas_ready = true; } } // extern "C" // Timer2 (originaly timer0) is shared with millies #ifdef SYSTEM_TIMER_2 ISR(TIMER2_COMPB_vect) #else //SYSTEM_TIMER_2 ISR(TIMER0_COMPB_vect) #endif //SYSTEM_TIMER_2 { static bool _lock = false; if (_lock) return; _lock = true; asm("sei"); if (!temp_meas_ready) adc_cycle(); lcd_buttons_update(); static uint8_t pwm_count = (1 << SOFT_PWM_SCALE); static uint8_t soft_pwm_0; #ifdef SLOW_PWM_HEATERS static unsigned char slow_pwm_count = 0; static unsigned char state_heater_0 = 0; static unsigned char state_timer_heater_0 = 0; #endif #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL) static unsigned char soft_pwm_1; #ifdef SLOW_PWM_HEATERS static unsigned char state_heater_1 = 0; static unsigned char state_timer_heater_1 = 0; #endif #endif #if EXTRUDERS > 2 static unsigned char soft_pwm_2; #ifdef SLOW_PWM_HEATERS static unsigned char state_heater_2 = 0; static unsigned char state_timer_heater_2 = 0; #endif #endif #if HEATER_BED_PIN > -1 // @@DR static unsigned char soft_pwm_b; #ifdef SLOW_PWM_HEATERS static unsigned char state_heater_b = 0; static unsigned char state_timer_heater_b = 0; #endif #endif #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1) static unsigned long raw_filwidth_value = 0; //added for filament width sensor #endif #ifndef SLOW_PWM_HEATERS /* * standard PWM modulation */ if (pwm_count == 0) { soft_pwm_0 = soft_pwm[0]; if(soft_pwm_0 > 0) { WRITE(HEATER_0_PIN,1); #ifdef HEATERS_PARALLEL WRITE(HEATER_1_PIN,1); #endif } else WRITE(HEATER_0_PIN,0); #if EXTRUDERS > 1 soft_pwm_1 = soft_pwm[1]; if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0); #endif #if EXTRUDERS > 2 soft_pwm_2 = soft_pwm[2]; if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0); #endif } #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 #if 0 // @@DR vypnuto pro hw pwm bedu // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat // teoreticky by se tato cast uz vubec nemusela poustet if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0) { soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS); # ifndef SYSTEM_TIMER_2 // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci) // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0); # endif //SYSTEM_TIMER_2 } #endif #endif #ifdef FAN_SOFT_PWM if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0) { soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS)); if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0); } #endif if(soft_pwm_0 < pwm_count) { WRITE(HEATER_0_PIN,0); #ifdef HEATERS_PARALLEL WRITE(HEATER_1_PIN,0); #endif } #if EXTRUDERS > 1 if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0); #endif #if EXTRUDERS > 2 if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0); #endif #if 0 // @@DR #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){ //WRITE(HEATER_BED_PIN,0); } //WRITE(HEATER_BED_PIN, pwm_count & 1 ); #endif #endif #ifdef FAN_SOFT_PWM if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0); #endif pwm_count += (1 << SOFT_PWM_SCALE); pwm_count &= 0x7f; #else //ifndef SLOW_PWM_HEATERS /* * SLOW PWM HEATERS * * for heaters drived by relay */ #ifndef MIN_STATE_TIME #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds #endif if (slow_pwm_count == 0) { // EXTRUDER 0 soft_pwm_0 = soft_pwm[0]; if (soft_pwm_0 > 0) { // turn ON heather only if the minimum time is up if (state_timer_heater_0 == 0) { // if change state set timer if (state_heater_0 == 0) { state_timer_heater_0 = MIN_STATE_TIME; } state_heater_0 = 1; WRITE(HEATER_0_PIN, 1); #ifdef HEATERS_PARALLEL WRITE(HEATER_1_PIN, 1); #endif } } else { // turn OFF heather only if the minimum time is up if (state_timer_heater_0 == 0) { // if change state set timer if (state_heater_0 == 1) { state_timer_heater_0 = MIN_STATE_TIME; } state_heater_0 = 0; WRITE(HEATER_0_PIN, 0); #ifdef HEATERS_PARALLEL WRITE(HEATER_1_PIN, 0); #endif } } #if EXTRUDERS > 1 // EXTRUDER 1 soft_pwm_1 = soft_pwm[1]; if (soft_pwm_1 > 0) { // turn ON heather only if the minimum time is up if (state_timer_heater_1 == 0) { // if change state set timer if (state_heater_1 == 0) { state_timer_heater_1 = MIN_STATE_TIME; } state_heater_1 = 1; WRITE(HEATER_1_PIN, 1); } } else { // turn OFF heather only if the minimum time is up if (state_timer_heater_1 == 0) { // if change state set timer if (state_heater_1 == 1) { state_timer_heater_1 = MIN_STATE_TIME; } state_heater_1 = 0; WRITE(HEATER_1_PIN, 0); } } #endif #if EXTRUDERS > 2 // EXTRUDER 2 soft_pwm_2 = soft_pwm[2]; if (soft_pwm_2 > 0) { // turn ON heather only if the minimum time is up if (state_timer_heater_2 == 0) { // if change state set timer if (state_heater_2 == 0) { state_timer_heater_2 = MIN_STATE_TIME; } state_heater_2 = 1; WRITE(HEATER_2_PIN, 1); } } else { // turn OFF heather only if the minimum time is up if (state_timer_heater_2 == 0) { // if change state set timer if (state_heater_2 == 1) { state_timer_heater_2 = MIN_STATE_TIME; } state_heater_2 = 0; WRITE(HEATER_2_PIN, 0); } } #endif #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 // BED soft_pwm_b = soft_pwm_bed; if (soft_pwm_b > 0) { // turn ON heather only if the minimum time is up if (state_timer_heater_b == 0) { // if change state set timer if (state_heater_b == 0) { state_timer_heater_b = MIN_STATE_TIME; } state_heater_b = 1; //WRITE(HEATER_BED_PIN, 1); } } else { // turn OFF heather only if the minimum time is up if (state_timer_heater_b == 0) { // if change state set timer if (state_heater_b == 1) { state_timer_heater_b = MIN_STATE_TIME; } state_heater_b = 0; WRITE(HEATER_BED_PIN, 0); } } #endif } // if (slow_pwm_count == 0) // EXTRUDER 0 if (soft_pwm_0 < slow_pwm_count) { // turn OFF heather only if the minimum time is up if (state_timer_heater_0 == 0) { // if change state set timer if (state_heater_0 == 1) { state_timer_heater_0 = MIN_STATE_TIME; } state_heater_0 = 0; WRITE(HEATER_0_PIN, 0); #ifdef HEATERS_PARALLEL WRITE(HEATER_1_PIN, 0); #endif } } #if EXTRUDERS > 1 // EXTRUDER 1 if (soft_pwm_1 < slow_pwm_count) { // turn OFF heather only if the minimum time is up if (state_timer_heater_1 == 0) { // if change state set timer if (state_heater_1 == 1) { state_timer_heater_1 = MIN_STATE_TIME; } state_heater_1 = 0; WRITE(HEATER_1_PIN, 0); } } #endif #if EXTRUDERS > 2 // EXTRUDER 2 if (soft_pwm_2 < slow_pwm_count) { // turn OFF heather only if the minimum time is up if (state_timer_heater_2 == 0) { // if change state set timer if (state_heater_2 == 1) { state_timer_heater_2 = MIN_STATE_TIME; } state_heater_2 = 0; WRITE(HEATER_2_PIN, 0); } } #endif #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 // BED if (soft_pwm_b < slow_pwm_count) { // turn OFF heather only if the minimum time is up if (state_timer_heater_b == 0) { // if change state set timer if (state_heater_b == 1) { state_timer_heater_b = MIN_STATE_TIME; } state_heater_b = 0; WRITE(HEATER_BED_PIN, 0); } } #endif #ifdef FAN_SOFT_PWM if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0) soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS)); if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0); } if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0); #endif pwm_count += (1 << SOFT_PWM_SCALE); pwm_count &= 0x7f; // increment slow_pwm_count only every 64 pwm_count circa 65.5ms if ((pwm_count % 64) == 0) { slow_pwm_count++; slow_pwm_count &= 0x7f; // Extruder 0 if (state_timer_heater_0 > 0) { state_timer_heater_0--; } #if EXTRUDERS > 1 // Extruder 1 if (state_timer_heater_1 > 0) state_timer_heater_1--; #endif #if EXTRUDERS > 2 // Extruder 2 if (state_timer_heater_2 > 0) state_timer_heater_2--; #endif #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 // Bed if (state_timer_heater_b > 0) state_timer_heater_b--; #endif } //if ((pwm_count % 64) == 0) { #endif //ifndef SLOW_PWM_HEATERS #ifdef BABYSTEPPING for(uint8_t axis=0;axis<3;axis++) { int curTodo=babystepsTodo[axis]; //get rid of volatile for performance if(curTodo>0) { asm("cli"); babystep(axis,/*fwd*/true); babystepsTodo[axis]--; //less to do next time asm("sei"); } else if(curTodo<0) { asm("cli"); babystep(axis,/*fwd*/false); babystepsTodo[axis]++; //less to do next time asm("sei"); } } #endif //BABYSTEPPING #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1)) check_fans(); #endif //(defined(TACH_0)) _lock = false; } void check_max_temp() { //heater #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP if (current_temperature_raw[0] <= maxttemp_raw[0]) { #else if (current_temperature_raw[0] >= maxttemp_raw[0]) { #endif max_temp_error(0); } //bed #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0) #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP if (current_temperature_bed_raw <= bed_maxttemp_raw) { #else if (current_temperature_bed_raw >= bed_maxttemp_raw) { #endif target_temperature_bed = 0; bed_max_temp_error(); } #endif } //! number of repeating the same state with consecutive step() calls //! used to slow down text switching struct alert_automaton_mintemp { const char *m2; alert_automaton_mintemp(const char *m2):m2(m2){} private: enum { ALERT_AUTOMATON_SPEED_DIV = 5 }; enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp }; States state = States::Init; uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV; void substep(States next_state){ if( repeat == 0 ){ state = next_state; // advance to the next state repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too } else { --repeat; } } public: //! brief state automaton step routine //! @param current_temp current hotend/bed temperature (for computing simple hysteresis) //! @param mintemp minimal temperature including hysteresis to check current_temp against void step(float current_temp, float mintemp){ static const char m1[] PROGMEM = "Please restart"; switch(state){ case States::Init: // initial state - check hysteresis if( current_temp > mintemp ){ state = States::TempAboveMintemp; } // otherwise keep the Err MINTEMP alert message on the display, // i.e. do not transfer to state 1 break; case States::TempAboveMintemp: // the temperature has risen above the hysteresis check lcd_setalertstatuspgm(m2); substep(States::ShowMintemp); last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED; break; case States::ShowPleaseRestart: // displaying "Please restart" lcd_updatestatuspgm(m1); substep(States::ShowMintemp); last_alert_sent_to_lcd = LCDALERT_PLEASERESTART; break; case States::ShowMintemp: // displaying "MINTEMP fixed" lcd_updatestatuspgm(m2); substep(States::ShowPleaseRestart); last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED; break; } } }; static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed"; static const char m2bed[] PROGMEM = "MINTEMP BED fixed"; static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed); void check_min_temp_heater0() { //heater #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP if (current_temperature_raw[0] >= minttemp_raw[0]) { #else if (current_temperature_raw[0] <= minttemp_raw[0]) { #endif menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER); min_temp_error(0); } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) { // no recovery, just force the user to restart the printer // which is a safer variant than just continuing printing // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before // we shall signalize, that MINTEMP has been fixed // Code notice: normally the alert_automaton instance would have been placed here // as static alert_automaton_mintemp alert_automaton_hotend, but // due to stupid compiler that takes 16 more bytes. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS); } } void check_min_temp_bed() { #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP if (current_temperature_bed_raw >= bed_minttemp_raw) { #else if (current_temperature_bed_raw <= bed_minttemp_raw) { #endif menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED); bed_min_temp_error(); } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){ // no recovery, just force the user to restart the printer // which is a safer variant than just continuing printing alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS); } } void check_min_temp() { static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp) static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp) #ifdef AMBIENT_THERMISTOR if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-) { // ambient temperature is low #endif //AMBIENT_THERMISTOR // *** 'common' part of code for MK2.5 & MK3 // * nozzle checking if(target_temperature[active_extruder]>minttemp[active_extruder]) { // ~ nozzle heating is on bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater) { bCheckingOnHeater=true; // not necessary check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active } } else { // ~ nozzle heating is off oTimer4minTempHeater.start(); bCheckingOnHeater=false; } // * bed checking if(target_temperature_bed>BED_MINTEMP) { // ~ bed heating is on bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed) { bCheckingOnBed=true; // not necessary check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active } } else { // ~ bed heating is off oTimer4minTempBed.start(); bCheckingOnBed=false; } // *** end of 'common' part #ifdef AMBIENT_THERMISTOR } else { // ambient temperature is standard check_min_temp_heater0(); check_min_temp_bed(); } #endif //AMBIENT_THERMISTOR } #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1)) void check_fans() { #ifdef FAN_SOFT_PWM if (READ(TACH_0) != fan_state[0]) { if(fan_measuring) fan_edge_counter[0] ++; fan_state[0] = !fan_state[0]; } #else //FAN_SOFT_PWM if (READ(TACH_0) != fan_state[0]) { fan_edge_counter[0] ++; fan_state[0] = !fan_state[0]; } #endif //if (READ(TACH_1) != fan_state[1]) { // fan_edge_counter[1] ++; // fan_state[1] = !fan_state[1]; //} } #endif //TACH_0 #ifdef PIDTEMP // Apply the scale factors to the PID values float scalePID_i(float i) { return i*PID_dT; } float unscalePID_i(float i) { return i/PID_dT; } float scalePID_d(float d) { return d/PID_dT; } float unscalePID_d(float d) { return d*PID_dT; } #endif //PIDTEMP