/* stepper.c - stepper motor driver: executes motion plans using stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "Marlin.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "cardreader.h" #include "speed_lookuptable.h" #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #include #endif #ifdef TMC2130 #include "tmc2130.h" #endif //TMC2130 #if defined(FILAMENT_SENSOR) && defined(PAT9125) #include "fsensor.h" int fsensor_counter; //counter for e-steps #endif //FILAMENT_SENSOR #include "mmu.h" #include "ConfigurationStore.h" #ifdef DEBUG_STACK_MONITOR uint16_t SP_min = 0x21FF; #endif //DEBUG_STACK_MONITOR /* * Stepping macros */ #define _STEP_PIN_X_AXIS X_STEP_PIN #define _STEP_PIN_Y_AXIS Y_STEP_PIN #define _STEP_PIN_Z_AXIS Z_STEP_PIN #define _STEP_PIN_E_AXIS E0_STEP_PIN #ifdef DEBUG_XSTEP_DUP_PIN #define _STEP_PIN_X_DUP_AXIS DEBUG_XSTEP_DUP_PIN #endif #ifdef DEBUG_YSTEP_DUP_PIN #define _STEP_PIN_Y_DUP_AXIS DEBUG_YSTEP_DUP_PIN #endif #ifdef Y_DUAL_STEPPER_DRIVERS #error Y_DUAL_STEPPER_DRIVERS not fully implemented #define _STEP_PIN_Y2_AXIS Y2_STEP_PIN #endif #ifdef Z_DUAL_STEPPER_DRIVERS #error Z_DUAL_STEPPER_DRIVERS not fully implemented #define _STEP_PIN_Z2_AXIS Z2_STEP_PIN #endif #ifdef TMC2130 #define STEPPER_MINIMUM_PULSE TMC2130_MINIMUM_PULSE #define STEPPER_SET_DIR_DELAY TMC2130_SET_DIR_DELAY #define STEPPER_MINIMUM_DELAY TMC2130_MINIMUM_DELAY #else #define STEPPER_MINIMUM_PULSE 2 #define STEPPER_SET_DIR_DELAY 100 #define STEPPER_MINIMUM_DELAY delayMicroseconds(STEPPER_MINIMUM_PULSE) #endif #ifdef TMC2130_DEDGE_STEPPING static_assert(TMC2130_MINIMUM_DELAY 1, // this will fail to compile when non-empty "DEDGE implies/requires an empty TMC2130_MINIMUM_DELAY"); #define STEP_NC_HI(axis) TOGGLE(_STEP_PIN_##axis) #define STEP_NC_LO(axis) //NOP #else #define _STEP_HI_X_AXIS !INVERT_X_STEP_PIN #define _STEP_LO_X_AXIS INVERT_X_STEP_PIN #define _STEP_HI_Y_AXIS !INVERT_Y_STEP_PIN #define _STEP_LO_Y_AXIS INVERT_Y_STEP_PIN #define _STEP_HI_Z_AXIS !INVERT_Z_STEP_PIN #define _STEP_LO_Z_AXIS INVERT_Z_STEP_PIN #define _STEP_HI_E_AXIS !INVERT_E_STEP_PIN #define _STEP_LO_E_AXIS INVERT_E_STEP_PIN #define STEP_NC_HI(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_HI_##axis) #define STEP_NC_LO(axis) WRITE_NC(_STEP_PIN_##axis, _STEP_LO_##axis) #endif //TMC2130_DEDGE_STEPPING //=========================================================================== //=============================public variables ============================ //=========================================================================== block_t *current_block; // A pointer to the block currently being traced //=========================================================================== //=============================private variables ============================ //=========================================================================== //static makes it inpossible to be called from outside of this file by extern.! // Variables used by The Stepper Driver Interrupt static unsigned char out_bits; // The next stepping-bits to be output static dda_isteps_t counter_x, // Counter variables for the bresenham line tracer counter_y, counter_z, counter_e; volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block static uint32_t acceleration_time, deceleration_time; static uint16_t acc_step_rate; // needed for deccelaration start point static uint8_t step_loops; static uint16_t OCR1A_nominal; static uint8_t step_loops_nominal; volatile long endstops_trigsteps[3]={0,0,0}; static volatile uint8_t endstop_hit = 0; #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED bool abort_on_endstop_hit = false; #endif #ifdef MOTOR_CURRENT_PWM_XY_PIN int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; #endif static uint8_t endstop = 0; static uint8_t old_endstop = 0; static bool check_endstops = true; static bool check_z_endstop = false; static bool z_endstop_invert = false; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; #ifdef LIN_ADVANCE void advance_isr_scheduler(); void advance_isr(); static const uint16_t ADV_NEVER = 0xFFFF; static const uint8_t ADV_INIT = 0b01; // initialize LA static const uint8_t ADV_ACC_VARY = 0b10; // varying acceleration phase static uint16_t nextMainISR; static uint16_t nextAdvanceISR; static uint16_t main_Rate; static uint16_t eISR_Rate; static uint32_t eISR_Err; static uint16_t current_adv_steps; static uint16_t target_adv_steps; static int8_t e_steps; // scheduled e-steps during each isr loop static uint8_t e_step_loops; // e-steps to execute at most in each isr loop static uint8_t e_extruding; // current move is an extrusion move static int8_t LA_phase; // LA compensation phase #define _NEXT_ISR(T) main_Rate = nextMainISR = T #else #define _NEXT_ISR(T) OCR1A = T #endif #ifdef DEBUG_STEPPER_TIMER_MISSED extern bool stepper_timer_overflow_state; extern uint16_t stepper_timer_overflow_last; #endif /* DEBUG_STEPPER_TIMER_MISSED */ //=========================================================================== //=============================functions ============================ //=========================================================================== void checkHitEndstops() { if( endstop_hit) { SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT); if(endstop_hit & _BV(X_AXIS)) { SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]); // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X"))); } if(endstop_hit & _BV(Y_AXIS)) { SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]); // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y"))); } if(endstop_hit & _BV(Z_AXIS)) { SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]); // LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z"))); } SERIAL_ECHOLN(""); endstop_hit = 0; #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT) if (abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickStop(); setTargetHotend0(0); setTargetHotend1(0); setTargetHotend2(0); } #endif } } bool endstops_hit_on_purpose() { uint8_t old = endstop_hit; endstop_hit = 0; return old; } bool endstop_z_hit_on_purpose() { bool hit = endstop_hit & _BV(Z_AXIS); CRITICAL_SECTION_START; endstop_hit &= ~_BV(Z_AXIS); CRITICAL_SECTION_END; return hit; } bool enable_endstops(bool check) { bool old = check_endstops; check_endstops = check; return old; } bool enable_z_endstop(bool check) { bool old = check_z_endstop; check_z_endstop = check; CRITICAL_SECTION_START; endstop_hit &= ~_BV(Z_AXIS); CRITICAL_SECTION_END; return old; } void invert_z_endstop(bool endstop_invert) { z_endstop_invert = endstop_invert; } // __________________________ // /| |\ _________________ ^ // / | | \ /| |\ | // / | | \ / | | \ s // / | | | | | \ p // / | | | | | \ e // +-----+------------------------+---+--+---------------+----+ e // | BLOCK 1 | BLOCK 2 | d // // time -----> // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { #ifdef DEBUG_STACK_MONITOR uint16_t sp = SPL + 256 * SPH; if (sp < SP_min) SP_min = sp; #endif //DEBUG_STACK_MONITOR #ifdef LIN_ADVANCE advance_isr_scheduler(); #else isr(); #endif // Don't run the ISR faster than possible // Is there a 8us time left before the next interrupt triggers? if (OCR1A < TCNT1 + 16) { #ifdef DEBUG_STEPPER_TIMER_MISSED // Verify whether the next planned timer interrupt has not been missed already. // This debugging test takes < 1.125us // This skews the profiling slightly as the fastest stepper timer // interrupt repeats at a 100us rate (10kHz). if (OCR1A + 40 < TCNT1) { // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate). // Give a warning. stepper_timer_overflow_state = true; stepper_timer_overflow_last = TCNT1 - OCR1A; // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread. WRITE(BEEPER, HIGH); } #endif // Fix the next interrupt to be executed after 8us from now. OCR1A = TCNT1 + 16; } } uint8_t last_dir_bits = 0; #ifdef BACKLASH_X uint8_t st_backlash_x = 0; #endif //BACKLASH_X #ifdef BACKLASH_Y uint8_t st_backlash_y = 0; #endif //BACKLASH_Y FORCE_INLINE void stepper_next_block() { // Anything in the buffer? //WRITE_NC(LOGIC_ANALYZER_CH2, true); current_block = plan_get_current_block(); if (current_block != NULL) { #ifdef BACKLASH_X if (current_block->steps_x.wide) { //X-axis movement if ((current_block->direction_bits ^ last_dir_bits) & 1) { printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x); if (current_block->direction_bits & 1) WRITE_NC(X_DIR_PIN, INVERT_X_DIR); else WRITE_NC(X_DIR_PIN, !INVERT_X_DIR); delayMicroseconds(STEPPER_SET_DIR_DELAY); for (uint8_t i = 0; i < st_backlash_x; i++) { STEP_NC_HI(X_AXIS); STEPPER_MINIMUM_DELAY; STEP_NC_LO(X_AXIS); _delay_us(900); // hard-coded jerk! *bad* } } last_dir_bits &= ~1; last_dir_bits |= current_block->direction_bits & 1; } #endif #ifdef BACKLASH_Y if (current_block->steps_y.wide) { //Y-axis movement if ((current_block->direction_bits ^ last_dir_bits) & 2) { printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y); if (current_block->direction_bits & 2) WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR); else WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR); delayMicroseconds(STEPPER_SET_DIR_DELAY); for (uint8_t i = 0; i < st_backlash_y; i++) { STEP_NC_HI(Y_AXIS); STEPPER_MINIMUM_DELAY; STEP_NC_LO(Y_AXIS); _delay_us(900); // hard-coded jerk! *bad* } } last_dir_bits &= ~2; last_dir_bits |= current_block->direction_bits & 2; } #endif // The busy flag is set by the plan_get_current_block() call. // current_block->busy = true; // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. deceleration_time = 0; // Set the nominal step loops to zero to indicate, that the timer value is not known yet. // That means, delay the initialization of nominal step rate and step loops until the steady // state is reached. step_loops_nominal = 0; acc_step_rate = uint16_t(current_block->initial_rate); acceleration_time = calc_timer(acc_step_rate, step_loops); #ifdef LIN_ADVANCE if (current_block->use_advance_lead) { target_adv_steps = current_block->max_adv_steps; } e_steps = 0; nextAdvanceISR = ADV_NEVER; LA_phase = -1; #endif if (current_block->flag & BLOCK_FLAG_E_RESET) { count_position[E_AXIS] = 0; } if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) { counter_x.lo = -(current_block->step_event_count.lo >> 1); counter_y.lo = counter_x.lo; counter_z.lo = counter_x.lo; counter_e.lo = counter_x.lo; #ifdef LIN_ADVANCE e_extruding = current_block->steps_e.lo != 0; #endif } else { counter_x.wide = -(current_block->step_event_count.wide >> 1); counter_y.wide = counter_x.wide; counter_z.wide = counter_x.wide; counter_e.wide = counter_x.wide; #ifdef LIN_ADVANCE e_extruding = current_block->steps_e.wide != 0; #endif } step_events_completed.wide = 0; // Set directions. out_bits = current_block->direction_bits; // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) if((out_bits & (1< -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on SET_BIT_TO(_endstop, X_AXIS, (READ(X_TMC2130_DIAG) != 0)); #else // Normal homing SET_BIT_TO(_endstop, X_AXIS, (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING)); #endif if((_endstop & _old_endstop & _BV(X_AXIS)) && (current_block->steps_x.wide > 0)) { endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; _endstop_hit |= _BV(X_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } #endif } else { // +direction #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on SET_BIT_TO(_endstop, X_AXIS + 4, (READ(X_TMC2130_DIAG) != 0)); #else // Normal homing SET_BIT_TO(_endstop, X_AXIS + 4, (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING)); #endif if((_endstop & _old_endstop & _BV(X_AXIS + 4)) && (current_block->steps_x.wide > 0)){ endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; _endstop_hit |= _BV(X_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } #endif } #ifndef COREXY if ((out_bits & (1< -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on SET_BIT_TO(_endstop, Y_AXIS, (READ(Y_TMC2130_DIAG) != 0)); #else // Normal homing SET_BIT_TO(_endstop, Y_AXIS, (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING)); #endif if((_endstop & _old_endstop & _BV(Y_AXIS)) && (current_block->steps_y.wide > 0)) { endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; _endstop_hit |= _BV(Y_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } #endif } else { // +direction #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on SET_BIT_TO(_endstop, Y_AXIS + 4, (READ(Y_TMC2130_DIAG) != 0)); #else // Normal homing SET_BIT_TO(_endstop, Y_AXIS + 4, (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING)); #endif if((_endstop & _old_endstop & _BV(Y_AXIS + 4)) && (current_block->steps_y.wide > 0)){ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; _endstop_hit |= _BV(Y_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } #endif } if ((out_bits & (1< -1) && !defined(DEBUG_DISABLE_ZMINLIMIT) if (! check_z_endstop) { #ifdef TMC2130_SG_HOMING // Stall guard homing turned on #ifdef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04)) SET_BIT_TO(_endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)); else #endif //TMC2130_STEALTH_Z SET_BIT_TO(_endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0)); #else SET_BIT_TO(_endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)); #endif //TMC2130_SG_HOMING if((_endstop & _old_endstop & _BV(Z_AXIS)) && (current_block->steps_z.wide > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; _endstop_hit |= _BV(Z_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } } #endif } else { // +direction #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT) #ifdef TMC2130_SG_HOMING // Stall guard homing turned on #ifdef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04)) SET_BIT_TO(_endstop, Z_AXIS + 4, 0); else #endif //TMC2130_STEALTH_Z SET_BIT_TO(_endstop, Z_AXIS + 4, (READ(Z_TMC2130_DIAG) != 0)); #else SET_BIT_TO(_endstop, Z_AXIS + 4, (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING)); #endif //TMC2130_SG_HOMING if((_endstop & _old_endstop & _BV(Z_AXIS + 4)) && (current_block->steps_z.wide > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; _endstop_hit |= _BV(Z_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } #endif } } // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT) if (check_z_endstop) { // Check the Z min end-stop no matter what. // Good for searching for the center of an induction target. #ifdef TMC2130_SG_HOMING // Stall guard homing turned on #ifdef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04)) SET_BIT_TO(_endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)); else #endif //TMC2130_STEALTH_Z SET_BIT_TO(_endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0)); #else SET_BIT_TO(_endstop, Z_AXIS, (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)); #endif //TMC2130_SG_HOMING if(_endstop & _old_endstop & _BV(Z_AXIS)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; _endstop_hit |= _BV(Z_AXIS); step_events_completed.wide = current_block->step_event_count.wide; } } #endif endstop = _endstop; old_endstop = _endstop; //apply current endstop state to the old endstop endstop_hit = _endstop_hit; } FORCE_INLINE void stepper_tick_lowres() { for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves) MSerial.checkRx(); // Check for serial chars. // Step in X axis counter_x.lo += current_block->steps_x.lo; if (counter_x.lo > 0) { STEP_NC_HI(X_AXIS); #ifdef DEBUG_XSTEP_DUP_PIN STEP_NC_HI(X_DUP_AXIS); #endif //DEBUG_XSTEP_DUP_PIN counter_x.lo -= current_block->step_event_count.lo; count_position[X_AXIS]+=count_direction[X_AXIS]; STEP_NC_LO(X_AXIS); #ifdef DEBUG_XSTEP_DUP_PIN STEP_NC_LO(X_DUP_AXIS); #endif //DEBUG_XSTEP_DUP_PIN } // Step in Y axis counter_y.lo += current_block->steps_y.lo; if (counter_y.lo > 0) { STEP_NC_HI(Y_AXIS); #ifdef DEBUG_YSTEP_DUP_PIN STEP_NC_HI(Y_DUP_AXIS); #endif //DEBUG_YSTEP_DUP_PIN counter_y.lo -= current_block->step_event_count.lo; count_position[Y_AXIS]+=count_direction[Y_AXIS]; STEP_NC_LO(Y_AXIS); #ifdef DEBUG_YSTEP_DUP_PIN STEP_NC_LO(Y_DUP_AXIS); #endif //DEBUG_YSTEP_DUP_PIN } // Step in Z axis counter_z.lo += current_block->steps_z.lo; if (counter_z.lo > 0) { STEP_NC_HI(Z_AXIS); counter_z.lo -= current_block->step_event_count.lo; count_position[Z_AXIS]+=count_direction[Z_AXIS]; STEP_NC_LO(Z_AXIS); } // Step in E axis counter_e.lo += current_block->steps_e.lo; if (counter_e.lo > 0) { #ifndef LIN_ADVANCE STEP_NC_HI(E_AXIS); #endif /* LIN_ADVANCE */ counter_e.lo -= current_block->step_event_count.lo; count_position[E_AXIS] += count_direction[E_AXIS]; #ifdef LIN_ADVANCE e_steps += count_direction[E_AXIS]; #else #ifdef FILAMENT_SENSOR fsensor_counter += count_direction[E_AXIS]; #endif //FILAMENT_SENSOR STEP_NC_LO(E_AXIS); #endif } if(++ step_events_completed.lo >= current_block->step_event_count.lo) break; } } FORCE_INLINE void stepper_tick_highres() { for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves) MSerial.checkRx(); // Check for serial chars. // Step in X axis counter_x.wide += current_block->steps_x.wide; if (counter_x.wide > 0) { STEP_NC_HI(X_AXIS); #ifdef DEBUG_XSTEP_DUP_PIN STEP_NC_HI(X_DUP_AXIS); #endif //DEBUG_XSTEP_DUP_PIN counter_x.wide -= current_block->step_event_count.wide; count_position[X_AXIS]+=count_direction[X_AXIS]; STEP_NC_LO(X_AXIS); #ifdef DEBUG_XSTEP_DUP_PIN STEP_NC_LO(X_DUP_AXIS); #endif //DEBUG_XSTEP_DUP_PIN } // Step in Y axis counter_y.wide += current_block->steps_y.wide; if (counter_y.wide > 0) { STEP_NC_HI(Y_AXIS); #ifdef DEBUG_YSTEP_DUP_PIN STEP_NC_HI(Y_DUP_AXIS); #endif //DEBUG_YSTEP_DUP_PIN counter_y.wide -= current_block->step_event_count.wide; count_position[Y_AXIS]+=count_direction[Y_AXIS]; STEP_NC_LO(Y_AXIS); #ifdef DEBUG_YSTEP_DUP_PIN STEP_NC_LO(Y_DUP_AXIS); #endif //DEBUG_YSTEP_DUP_PIN } // Step in Z axis counter_z.wide += current_block->steps_z.wide; if (counter_z.wide > 0) { STEP_NC_HI(Z_AXIS); counter_z.wide -= current_block->step_event_count.wide; count_position[Z_AXIS]+=count_direction[Z_AXIS]; STEP_NC_LO(Z_AXIS); } // Step in E axis counter_e.wide += current_block->steps_e.wide; if (counter_e.wide > 0) { #ifndef LIN_ADVANCE STEP_NC_HI(E_AXIS); #endif /* LIN_ADVANCE */ counter_e.wide -= current_block->step_event_count.wide; count_position[E_AXIS]+=count_direction[E_AXIS]; #ifdef LIN_ADVANCE e_steps += count_direction[E_AXIS]; #else #ifdef FILAMENT_SENSOR fsensor_counter += count_direction[E_AXIS]; #endif //FILAMENT_SENSOR STEP_NC_LO(E_AXIS); #endif } if(++ step_events_completed.wide >= current_block->step_event_count.wide) break; } } #ifdef LIN_ADVANCE // @wavexx: fast uint16_t division for small dividends<5 // q/3 based on "Hacker's delight" formula FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d) { if(d != 3) return q >> (d / 2); else return ((uint32_t)0xAAAB * q) >> 17; } FORCE_INLINE void advance_spread(uint16_t timer) { eISR_Err += timer; uint8_t ticks = 0; while(eISR_Err >= current_block->advance_rate) { ++ticks; eISR_Err -= current_block->advance_rate; } if(!ticks) { eISR_Rate = timer; nextAdvanceISR = timer; return; } if (ticks <= 3) eISR_Rate = fastdiv(timer, ticks + 1); else { // >4 ticks are still possible on slow moves eISR_Rate = timer / (ticks + 1); } nextAdvanceISR = eISR_Rate; } #endif FORCE_INLINE void isr() { //WRITE_NC(LOGIC_ANALYZER_CH0, true); //if (UVLO) uvlo(); // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) stepper_next_block(); if (current_block != NULL) { stepper_check_endstops(); if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) stepper_tick_lowres(); else stepper_tick_highres(); #ifdef LIN_ADVANCE if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR); uint8_t la_state = 0; #endif // Calculate new timer value // 13.38-14.63us for steady state, // 25.12us for acceleration / deceleration. { //WRITE_NC(LOGIC_ANALYZER_CH1, true); if (step_events_completed.wide <= current_block->accelerate_until) { // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate acc_step_rate = MUL24x24R24(acceleration_time, current_block->acceleration_rate); acc_step_rate += uint16_t(current_block->initial_rate); // upper limit if(acc_step_rate > uint16_t(current_block->nominal_rate)) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval uint16_t timer = calc_timer(acc_step_rate, step_loops); _NEXT_ISR(timer); acceleration_time += timer; #ifdef LIN_ADVANCE if (current_block->use_advance_lead) { if (step_events_completed.wide <= (unsigned long int)step_loops) { la_state = ADV_INIT | ADV_ACC_VARY; if (e_extruding && current_adv_steps > target_adv_steps) target_adv_steps = current_adv_steps; } } #endif } else if (step_events_completed.wide > current_block->decelerate_after) { uint16_t step_rate = MUL24x24R24(deceleration_time, current_block->acceleration_rate); if (step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = uint16_t(current_block->final_rate); } else { step_rate = acc_step_rate - step_rate; // Decelerate from acceleration end point. // lower limit if (step_rate < current_block->final_rate) step_rate = uint16_t(current_block->final_rate); } // Step_rate to timer interval. uint16_t timer = calc_timer(step_rate, step_loops); _NEXT_ISR(timer); deceleration_time += timer; #ifdef LIN_ADVANCE if (current_block->use_advance_lead) { if (step_events_completed.wide <= current_block->decelerate_after + step_loops) { target_adv_steps = current_block->final_adv_steps; la_state = ADV_INIT | ADV_ACC_VARY; if (e_extruding && current_adv_steps < target_adv_steps) target_adv_steps = current_adv_steps; } } #endif } else { if (! step_loops_nominal) { // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower // the initial interrupt blocking. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops); step_loops_nominal = step_loops; #ifdef LIN_ADVANCE if(current_block->use_advance_lead) { // Due to E-jerk, there can be discontinuities in pressure state where an // acceleration or deceleration can be skipped or joined with the previous block. // If LA was not previously active, re-check the pressure level la_state = ADV_INIT; if (e_extruding) target_adv_steps = current_adv_steps; } #endif } _NEXT_ISR(OCR1A_nominal); } //WRITE_NC(LOGIC_ANALYZER_CH1, false); } #ifdef LIN_ADVANCE // avoid multiple instances or function calls to advance_spread if (la_state & ADV_INIT) { LA_phase = -1; if (current_adv_steps == target_adv_steps) { // nothing to be done in this phase, cancel any pending eisr la_state = 0; nextAdvanceISR = ADV_NEVER; } else { // reset error and iterations per loop for this phase eISR_Err = current_block->advance_rate; e_step_loops = current_block->advance_step_loops; if ((la_state & ADV_ACC_VARY) && e_extruding && (current_adv_steps > target_adv_steps)) { // LA could reverse the direction of extrusion in this phase eISR_Err += current_block->advance_rate; LA_phase = 0; } } } if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) { // update timers & phase for the next iteration advance_spread(main_Rate); if (LA_phase >= 0) { if (step_loops == e_step_loops) LA_phase = (current_block->advance_rate < main_Rate); else { // avoid overflow through division. warning: we need to _guarantee_ step_loops // and e_step_loops are <= 4 due to fastdiv's limit auto adv_rate_n = fastdiv(current_block->advance_rate, step_loops); auto main_rate_n = fastdiv(main_Rate, e_step_loops); LA_phase = (adv_rate_n < main_rate_n); } } } // Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the // entire isr, making this spot a much better choice than checking during esteps MSerial.checkRx(); #endif // If current block is finished, reset pointer if (step_events_completed.wide >= current_block->step_event_count.wide) { #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR) fsensor_st_block_chunk(fsensor_counter); fsensor_counter = 0; #endif //FILAMENT_SENSOR current_block = NULL; plan_discard_current_block(); } #if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR) else if ((abs(fsensor_counter) >= fsensor_chunk_len)) { fsensor_st_block_chunk(fsensor_counter); fsensor_counter = 0; } #endif //FILAMENT_SENSOR } #ifdef TMC2130 tmc2130_st_isr(); #endif //TMC2130 //WRITE_NC(LOGIC_ANALYZER_CH0, false); } #ifdef LIN_ADVANCE // Timer interrupt for E. e_steps is set in the main routine. FORCE_INLINE void advance_isr() { if (current_adv_steps > target_adv_steps) { // decompression if (e_step_loops != 1) { uint16_t d_steps = current_adv_steps - target_adv_steps; if (d_steps < e_step_loops) e_step_loops = d_steps; } e_steps -= e_step_loops; if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR); current_adv_steps -= e_step_loops; } else if (current_adv_steps < target_adv_steps) { // compression if (e_step_loops != 1) { uint16_t d_steps = target_adv_steps - current_adv_steps; if (d_steps < e_step_loops) e_step_loops = d_steps; } e_steps += e_step_loops; if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR); current_adv_steps += e_step_loops; } if (current_adv_steps == target_adv_steps) { // advance steps completed nextAdvanceISR = ADV_NEVER; } else { // schedule another tick nextAdvanceISR = eISR_Rate; } } FORCE_INLINE void advance_isr_scheduler() { // Integrate the final timer value, accounting for scheduling adjustments if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER) { if(nextAdvanceISR > OCR1A) nextAdvanceISR -= OCR1A; else nextAdvanceISR = 0; } if(nextMainISR > OCR1A) nextMainISR -= OCR1A; else nextMainISR = 0; // Run main stepping ISR if flagged if (!nextMainISR) { #ifdef LA_DEBUG_LOGIC WRITE_NC(LOGIC_ANALYZER_CH0, true); #endif isr(); #ifdef LA_DEBUG_LOGIC WRITE_NC(LOGIC_ANALYZER_CH0, false); #endif } // Run the next advance isr if triggered bool eisr = !nextAdvanceISR; if (eisr) { #ifdef LA_DEBUG_LOGIC WRITE_NC(LOGIC_ANALYZER_CH1, true); #endif advance_isr(); #ifdef LA_DEBUG_LOGIC WRITE_NC(LOGIC_ANALYZER_CH1, false); #endif } // Tick E steps if any if (e_steps && (LA_phase < 0 || LA_phase == eisr)) { uint8_t max_ticks = (eisr? e_step_loops: step_loops); max_ticks = min(abs(e_steps), max_ticks); bool rev = (e_steps < 0); do { STEP_NC_HI(E_AXIS); e_steps += (rev? 1: -1); STEP_NC_LO(E_AXIS); #if defined(FILAMENT_SENSOR) && defined(PAT9125) fsensor_counter += (rev? -1: 1); #endif } while(--max_ticks); #if defined(FILAMENT_SENSOR) && defined(PAT9125) if (abs(fsensor_counter) >= fsensor_chunk_len) { fsensor_st_block_chunk(fsensor_counter); fsensor_counter = 0; } #endif } // Schedule the next closest tick, ignoring advance if scheduled too // soon in order to avoid skewing the regular stepper acceleration if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + 40) < nextMainISR) OCR1A = nextAdvanceISR; else OCR1A = nextMainISR; } #endif // LIN_ADVANCE void st_init() { #ifdef TMC2130 tmc2130_init(TMCInitParams(false, FarmOrUserECool())); #endif //TMC2130 st_current_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins //Initialize Dir Pins #if defined(X_DIR_PIN) && X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 SET_OUTPUT(X2_DIR_PIN); #endif #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1) SET_OUTPUT(Y2_DIR_PIN); #endif #endif #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) SET_OUTPUT(Z2_DIR_PIN); #endif #endif #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 SET_OUTPUT(E0_DIR_PIN); #endif #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) SET_OUTPUT(E1_DIR_PIN); #endif #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1) SET_OUTPUT(E2_DIR_PIN); #endif //Initialize Enable Pins - steppers default to disabled. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 SET_OUTPUT(X2_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH); #endif #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) SET_OUTPUT(Y2_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH); #endif #endif #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) SET_OUTPUT(Z2_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); #endif #endif #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) SET_OUTPUT(E0_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); #endif #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) SET_OUTPUT(E1_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); #endif #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) SET_OUTPUT(E2_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); #endif //endstops and pullups #ifdef TMC2130_SG_HOMING SET_INPUT(X_TMC2130_DIAG); WRITE(X_TMC2130_DIAG,HIGH); SET_INPUT(Y_TMC2130_DIAG); WRITE(Y_TMC2130_DIAG,HIGH); SET_INPUT(Z_TMC2130_DIAG); WRITE(Z_TMC2130_DIAG,HIGH); SET_INPUT(E0_TMC2130_DIAG); WRITE(E0_TMC2130_DIAG,HIGH); #endif #if defined(X_MIN_PIN) && X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); #ifdef ENDSTOPPULLUP_XMIN WRITE(X_MIN_PIN,HIGH); #endif #endif #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); #ifdef ENDSTOPPULLUP_YMIN WRITE(Y_MIN_PIN,HIGH); #endif #endif #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); #ifdef ENDSTOPPULLUP_ZMIN WRITE(Z_MIN_PIN,HIGH); #endif #endif #if defined(X_MAX_PIN) && X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); #ifdef ENDSTOPPULLUP_XMAX WRITE(X_MAX_PIN,HIGH); #endif #endif #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); #ifdef ENDSTOPPULLUP_YMAX WRITE(Y_MAX_PIN,HIGH); #endif #endif #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); #ifdef ENDSTOPPULLUP_ZMAX WRITE(Z_MAX_PIN,HIGH); #endif #endif #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1)) SET_INPUT(TACH_0); #ifdef TACH0PULLUP WRITE(TACH_0, HIGH); #endif #endif //Initialize Step Pins #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN SET_OUTPUT(DEBUG_XSTEP_DUP_PIN); WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN); #endif //DEBUG_XSTEP_DUP_PIN disable_x(); #endif #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) SET_OUTPUT(X2_STEP_PIN); WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN); disable_x(); #endif #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN SET_OUTPUT(DEBUG_YSTEP_DUP_PIN); WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN); #endif //DEBUG_YSTEP_DUP_PIN #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1) SET_OUTPUT(Y2_STEP_PIN); WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN); #endif disable_y(); #endif #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) SET_OUTPUT(Z2_STEP_PIN); WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); #endif #ifdef PSU_Delta init_force_z(); #endif // PSU_Delta disable_z(); #endif #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) SET_OUTPUT(E0_STEP_PIN); WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); disable_e0(); #endif #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) SET_OUTPUT(E1_STEP_PIN); WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); disable_e1(); #endif #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) SET_OUTPUT(E2_STEP_PIN); WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); disable_e2(); #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1< -1 void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example { digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(value); digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip: //_delay(10); } #endif void st_current_init() //Initialize Digipot Motor Current { #ifdef MOTOR_CURRENT_PWM_XY_PIN uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); SilentModeMenu = SilentMode; SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN); SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN); SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN); if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){ motor_current_setting[0] = motor_current_setting_loud[0]; motor_current_setting[1] = motor_current_setting_loud[1]; motor_current_setting[2] = motor_current_setting_loud[2]; }else{ motor_current_setting[0] = motor_current_setting_silent[0]; motor_current_setting[1] = motor_current_setting_silent[1]; motor_current_setting[2] = motor_current_setting_silent[2]; } st_current_set(0, motor_current_setting[0]); st_current_set(1, motor_current_setting[1]); st_current_set(2, motor_current_setting[2]); //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise) TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50); #endif } #ifdef MOTOR_CURRENT_PWM_XY_PIN void st_current_set(uint8_t driver, int current) { if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); } #else //MOTOR_CURRENT_PWM_XY_PIN void st_current_set(uint8_t, int ){} #endif //MOTOR_CURRENT_PWM_XY_PIN void microstep_init() { #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN); #endif #if defined(X_MS1_PIN) && X_MS1_PIN > -1 const uint8_t microstep_modes[] = MICROSTEP_MODES; SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN); SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN); SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN); SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN); for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]); #endif } #ifndef TMC2130 void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { if(ms1 > -1) switch(driver) { case 0: WRITE( X_MS1_PIN,ms1); break; case 1: WRITE( Y_MS1_PIN,ms1); break; case 2: WRITE( Z_MS1_PIN,ms1); break; case 3: WRITE(E0_MS1_PIN,ms1); break; #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 case 4: WRITE(E1_MS1_PIN,ms1); break; #endif } if(ms2 > -1) switch(driver) { case 0: WRITE( X_MS2_PIN,ms2); break; case 1: WRITE( Y_MS2_PIN,ms2); break; case 2: WRITE( Z_MS2_PIN,ms2); break; case 3: WRITE(E0_MS2_PIN,ms2); break; #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1 case 4: WRITE(E1_MS2_PIN,ms2); break; #endif } } void microstep_mode(uint8_t driver, uint8_t stepping_mode) { switch(stepping_mode) { case 1: microstep_ms(driver,MICROSTEP1); break; case 2: microstep_ms(driver,MICROSTEP2); break; case 4: microstep_ms(driver,MICROSTEP4); break; case 8: microstep_ms(driver,MICROSTEP8); break; case 16: microstep_ms(driver,MICROSTEP16); break; } } void microstep_readings() { SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL( READ(X_MS1_PIN)); SERIAL_PROTOCOLLN( READ(X_MS2_PIN)); SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL( READ(Y_MS1_PIN)); SERIAL_PROTOCOLLN( READ(Y_MS2_PIN)); SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL( READ(Z_MS1_PIN)); SERIAL_PROTOCOLLN( READ(Z_MS2_PIN)); SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL( READ(E0_MS1_PIN)); SERIAL_PROTOCOLLN( READ(E0_MS2_PIN)); #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL( READ(E1_MS1_PIN)); SERIAL_PROTOCOLLN( READ(E1_MS2_PIN)); #endif } #endif //TMC2130 #if defined(FILAMENT_SENSOR) && defined(PAT9125) void st_reset_fsensor() { CRITICAL_SECTION_START; fsensor_counter = 0; CRITICAL_SECTION_END; } #endif //FILAMENT_SENSOR