/* temperature.h - temperature controller Part of Marlin Copyright (c) 2011 Erik van der Zalm Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #ifndef temperature_h #define temperature_h #include "Marlin.h" #include "planner.h" #ifdef PID_ADD_EXTRUSION_RATE #include "stepper.h" #endif // public functions void tp_init(); //initialize the heating void manage_heater(); //it is critical that this is called periodically. #ifdef FILAMENT_SENSOR // For converting raw Filament Width to milimeters float analog2widthFil(); // For converting raw Filament Width to an extrusion ratio int widthFil_to_size_ratio(); #endif // low level conversion routines // do not use these routines and variables outside of temperature.cpp extern int target_temperature[EXTRUDERS]; extern float current_temperature[EXTRUDERS]; #ifdef SHOW_TEMP_ADC_VALUES extern int current_temperature_raw[EXTRUDERS]; extern int current_temperature_bed_raw; #endif extern int target_temperature_bed; extern float current_temperature_bed; #ifdef TEMP_SENSOR_1_AS_REDUNDANT extern float redundant_temperature; #endif #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 extern unsigned char soft_pwm_bed; #endif #ifdef PIDTEMP extern int pid_cycle, pid_number_of_cycles; extern float Kp,Ki,Kd,Kc,_Kp,_Ki,_Kd; extern bool pid_tuning_finished; float scalePID_i(float i); float scalePID_d(float d); float unscalePID_i(float i); float unscalePID_d(float d); #endif #ifdef PIDTEMPBED extern float bedKp,bedKi,bedKd; #endif #ifdef BABYSTEPPING extern volatile int babystepsTodo[3]; #endif inline void babystepsTodoZadd(int n) { if (n != 0) { CRITICAL_SECTION_START babystepsTodo[Z_AXIS] += n; CRITICAL_SECTION_END } } inline void babystepsTodoZsubtract(int n) { if (n != 0) { CRITICAL_SECTION_START babystepsTodo[Z_AXIS] -= n; CRITICAL_SECTION_END } } //high level conversion routines, for use outside of temperature.cpp //inline so that there is no performance decrease. //deg=degreeCelsius FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }; #ifdef SHOW_TEMP_ADC_VALUES FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }; FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }; #endif FORCE_INLINE float degBed() { return current_temperature_bed; }; FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }; FORCE_INLINE float degTargetBed() { return target_temperature_bed; }; FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }; FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }; FORCE_INLINE bool isHeatingHotend(uint8_t extruder){ return target_temperature[extruder] > current_temperature[extruder]; }; FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }; FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }; FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }; #define degHotend0() degHotend(0) #define degTargetHotend0() degTargetHotend(0) #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0) #define isHeatingHotend0() isHeatingHotend(0) #define isCoolingHotend0() isCoolingHotend(0) #if EXTRUDERS > 1 #define degHotend1() degHotend(1) #define degTargetHotend1() degTargetHotend(1) #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1) #define isHeatingHotend1() isHeatingHotend(1) #define isCoolingHotend1() isCoolingHotend(1) #else #define setTargetHotend1(_celsius) do{}while(0) #endif #if EXTRUDERS > 2 #define degHotend2() degHotend(2) #define degTargetHotend2() degTargetHotend(2) #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2) #define isHeatingHotend2() isHeatingHotend(2) #define isCoolingHotend2() isCoolingHotend(2) #else #define setTargetHotend2(_celsius) do{}while(0) #endif #if EXTRUDERS > 3 #error Invalid number of extruders #endif #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0) static float temp_runaway_status[4]; static float temp_runaway_target[4]; static float temp_runaway_timer[4]; static int temp_runaway_error_counter[4]; void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed); void temp_runaway_stop(bool isPreheat, bool isBed); #endif int getHeaterPower(int heater); void disable_heater(); void setWatch(); void updatePID(); FORCE_INLINE void autotempShutdown(){ #ifdef AUTOTEMP if(autotemp_enabled) { autotemp_enabled=false; if(degTargetHotend(active_extruder)>autotemp_min) setTargetHotend(0,active_extruder); } #endif } void PID_autotune(float temp, int extruder, int ncycles); void setExtruderAutoFanState(int pin, bool state); void checkExtruderAutoFans(); void countFanSpeed(); void checkFanSpeed(); void fanSpeedError(unsigned char _fan); #endif