#include "Marlin.h" #ifdef HAVE_TMC2130_DRIVERS #include "tmc2130.h" #include uint32_t tmc2130_read(uint8_t chipselect, uint8_t address) { uint32_t val32; uint8_t val0; uint8_t val1; uint8_t val2; uint8_t val3; uint8_t val4; //datagram1 - read request (address + dummy write) SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); SPI.transfer(address); SPI.transfer(0); SPI.transfer(0); SPI.transfer(0); SPI.transfer(0); digitalWrite(chipselect, HIGH); SPI.endTransaction(); //datagram2 - response SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); val0 = SPI.transfer(0); val1 = SPI.transfer(0); val2 = SPI.transfer(0); val3 = SPI.transfer(0); val4 = SPI.transfer(0); digitalWrite(chipselect, HIGH); SPI.endTransaction(); #ifdef TMC_DBG_READS MYSERIAL.print("SPIRead 0x"); MYSERIAL.print(address,HEX); MYSERIAL.print(" Status:"); MYSERIAL.print(val0 & 0b00000111,BIN); MYSERIAL.print(" "); MYSERIAL.print(val1,BIN); MYSERIAL.print(" "); MYSERIAL.print(val2,BIN); MYSERIAL.print(" "); MYSERIAL.print(val3,BIN); MYSERIAL.print(" "); MYSERIAL.print(val4,BIN); #endif val32 = (uint32_t)val1<<24 | (uint32_t)val2<<16 | (uint32_t)val3<<8 | (uint32_t)val4; #ifdef TMC_DBG_READS MYSERIAL.print(" 0x"); MYSERIAL.println(val32,HEX); #endif return val32; } void tmc2130_write(uint8_t chipselect, uint8_t address,uint8_t wval1,uint8_t wval2,uint8_t wval3,uint8_t wval4) { uint32_t val32; uint8_t val0; uint8_t val1; uint8_t val2; uint8_t val3; uint8_t val4; //datagram1 - write SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); SPI.transfer(address+0x80); SPI.transfer(wval1); SPI.transfer(wval2); SPI.transfer(wval3); SPI.transfer(wval4); digitalWrite(chipselect, HIGH); SPI.endTransaction(); //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); val0 = SPI.transfer(0); val1 = SPI.transfer(0); val2 = SPI.transfer(0); val3 = SPI.transfer(0); val4 = SPI.transfer(0); digitalWrite(chipselect, HIGH); SPI.endTransaction(); #ifdef TMC_DBG_WRITE MYSERIAL.print("WriteRead 0x"); MYSERIAL.print(address,HEX); MYSERIAL.print(" Status:"); MYSERIAL.print(val0 & 0b00000111,BIN); MYSERIAL.print(" "); MYSERIAL.print(val1,BIN); MYSERIAL.print(" "); MYSERIAL.print(val2,BIN); MYSERIAL.print(" "); MYSERIAL.print(val3,BIN); MYSERIAL.print(" "); MYSERIAL.print(val4,BIN); val32 = (uint32_t)val1<<24 | (uint32_t)val2<<16 | (uint32_t)val3<<8 | (uint32_t)val4; MYSERIAL.print(" 0x"); MYSERIAL.println(val32,HEX); #endif //TMC_DBG_READS } uint8_t tmc2130_read8(uint8_t chipselect, uint8_t address) { //datagram1 - write SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); SPI.transfer(address); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); digitalWrite(chipselect, HIGH); SPI.endTransaction(); uint8_t val0; //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); val0 = SPI.transfer(0); digitalWrite(chipselect, HIGH); SPI.endTransaction(); return val0; } uint32_t tmc2130_readRegister(uint8_t chipselect, uint8_t address) { //datagram1 - write SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); SPI.transfer(address); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); digitalWrite(chipselect, HIGH); SPI.endTransaction(); uint32_t val0; //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(chipselect,LOW); SPI.transfer(0); // ignore status bits val0 = SPI.transfer(0); // MSB val0 = (val0 << 8) | SPI.transfer(0); val0 = (val0 << 8) | SPI.transfer(0); val0 = (val0 << 8) | SPI.transfer(0); //LSB digitalWrite(chipselect, HIGH); SPI.endTransaction(); return val0; } uint16_t tmc2130_readSG(uint8_t chipselect) { uint8_t address = 0x6F; uint32_t registerValue = tmc2130_readRegister(chipselect, address); uint16_t val0 = registerValue & 0x3ff; return val0; } uint16_t tmc2130_readTStep(uint8_t chipselect) { uint8_t address = 0x12; uint32_t registerValue = tmc2130_readRegister(chipselect, address); uint16_t val0 = 0; if(registerValue & 0x000f0000) val0 = 0xffff; else val0 = registerValue & 0xffff; return val0; } void tmc2130_chopconf(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_resolution = 16) { uint8_t mres=0b0100; if(microstep_resolution == 256) mres = 0b0000; if(microstep_resolution == 128) mres = 0b0001; if(microstep_resolution == 64) mres = 0b0010; if(microstep_resolution == 32) mres = 0b0011; if(microstep_resolution == 16) mres = 0b0100; if(microstep_resolution == 8) mres = 0b0101; if(microstep_resolution == 4) mres = 0b0110; if(microstep_resolution == 2) mres = 0b0111; if(microstep_resolution == 1) mres = 0b1000; mres |= extrapolate256 << 4; //bit28 intpol //tmc2130_write(cs,0x6C,mres,0x01,0x00,0xD3); tmc2130_write(cs,0x6C,mres,0x01,0x00,0xC3); } void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale = PWM_AUTOSCALE, uint8_t PWMfreq = PWM_FREQ, uint8_t PWMgrad = PWM_GRAD, uint8_t PWMampl = PWM_AMPL) { tmc2130_write(cs,0x70,0x00,(PWMautoScale+PWMfreq),PWMgrad,PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq } void tmc2130_PWMthreshold(uint8_t cs) { tmc2130_write(cs,0x13,0x00,0x00,0x00,0x00); // TMC LJ -> Adds possibility to swtich from stealthChop to spreadCycle automatically } uint8_t st_didLastHomingStall() { uint8_t returnValue = sg_lastHomingStalled; sg_lastHomingStalled = false; return returnValue; } void tmc2130_disable_motor(uint8_t driver) { uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS }; tmc2130_write(cs[driver],0x6C,0,01,0,0); } void tmc2130_check_overtemp() { const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP "; uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS }; static uint32_t checktime = 0; //drivers_disabled[0] = 1; //TEST if( millis() - checktime > 1000 ) { for(int i=0;i<4;i++) { uint32_t drv_status = tmc2130_read(cs[i], 0x6F); //0x6F DRV_STATUS if (drv_status & ((uint32_t)1<<26)) { // BIT 26 - over temp prewarning ~120C (+-20C) SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG); SERIAL_ECHOLN(i); for(int x=0; x<4;x++) tmc2130_disable_motor(x); kill(TMC_OVERTEMP_MSG); } } checktime = millis(); } } void tmc2130_init() { uint8_t cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS }; // uint8_t current[4] = { 31, 31, 31, 31 }; // uint8_t current_h[4] = { 12, 12, 12, 12 }; // uint8_t current_r[4] = { 24, 24, 24, 24 }; // uint8_t current_r[4] = { 32, 32, 32, 32 }; // uint8_t current_h[4] = { 14, 14, 14, 14 }; uint8_t current_h[4] = { 2, 2, 2, 4 }; uint8_t current_r[4] = { 6, 6, 8, 8 }; WRITE(X_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH); WRITE(E0_TMC2130_CS, HIGH); SET_OUTPUT(X_TMC2130_CS); SET_OUTPUT(Y_TMC2130_CS); SET_OUTPUT(Z_TMC2130_CS); SET_OUTPUT(E0_TMC2130_CS); SPI.begin(); /* for(int i=0;i<4;i++) { //tmc2130_write(cs[i],0x6C,0b10100,01,00,0xC5); tmc2130_chopconf(cs[i],1,16); tmc2130_write(cs[i],0x10,0,15,current_h[i],current_r[i]); //0x10 IHOLD_IRUN //tmc2130_write(cs[i],0x0,0,0,0,0x05); //address=0x0 GCONF EXT VREF tmc2130_write(cs[i],0x0,0,0,0,0x05); //address=0x0 GCONF EXT VREF - activate stealthChop //tmc2130_write(cs[i],0x11,0,0,0,0xA); // Uncomment lines below to use a different configuration (pwm_autoscale = 0) for XY axes if(i==0 || i==1) tmc2130_PWMconf(cs[i],PWM_AUTOSCALE_XY,PWM_FREQ_XY,PWM_GRAD_XY,PWM_AMPL_XY); //address=0x70 PWM_CONF //reset default=0x00050480 else tmc2130_PWMconf(cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480 tmc2130_PWMthreshold(cs[i]); } */ #ifdef MK3_TEST1 for (int i=0;i<4;i++) { tmc2130_write(cs[i],0x0,0,0,0,0x00); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_write(cs[i],0x10,0,15,current_r[i],current_h[i]); //0x10 IHOLD_IRUN tmc2130_chopconf(cs[i],0,16); } #else //MK3_TEST1 for (int i=0;i<3;i++) { tmc2130_write(cs[i],0x0,0,0,0,0x04); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_write(cs[i],0x10,0,15,current_r[i],current_h[i]); //0x10 IHOLD_IRUN tmc2130_write(cs[i],0x11,0,0,0,0); tmc2130_PWMconf(cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480 // tmc2130_PWMthreshold(cs[i]); tmc2130_chopconf(cs[i],1,16); } for (int i=3;i<4;i++) { tmc2130_write(cs[i],0x0,0,0,0,0x00); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_write(cs[i],0x10,0,15,current_r[i],current_h[i]); //0x10 IHOLD_IRUN tmc2130_write(cs[i],0x11,0,0,0,0); tmc2130_chopconf(cs[i],1,16); } #endif //MK3_TEST1 } void tmc2130_st_synchronize() { uint8_t delay = 0; if(sg_homing_axis == X_AXIS || sg_homing_axis == Y_AXIS) { uint8_t axis; if(sg_homing_axis == X_AXIS) axis = X_TMC2130_CS; else axis = Y_TMC2130_CS; uint16_t tstep = tmc2130_readTStep(axis); // SERIAL_PROTOCOLLN(tstep); if(tstep < TCOOLTHRS) { if(delay < 255) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter delay++; else { uint16_t sg = tmc2130_readSG(axis); if(sg==0) { sg_axis_stalled[sg_homing_axis] = true; sg_lastHomingStalled = true; } else sg_axis_stalled[sg_homing_axis] = false; // SERIAL_PROTOCOLLN(sg); } } else { sg_axis_stalled[sg_homing_axis] = false; delay = 0; } } else { sg_axis_stalled[X_AXIS] = false; sg_axis_stalled[Y_AXIS] = false; } } void tmc2130_st_home_enter(uint8_t axis) { sg_homing_axis = axis; // Configuration to spreadCycle // tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x01); tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x0,0,0,0,0x00); tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x6D,0,(axis == X_AXIS)?SG_THRESHOLD_X:SG_THRESHOLD_Y,0,0); tmc2130_write((axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS,0x14,0,0,0,TCOOLTHRS); } void tmc2130_st_home_exit() { if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == X_AXIS)) { // Configuration back to stealthChop tmc2130_write((sg_homing_axis == X_AXIS)? X_TMC2130_CS : Y_TMC2130_CS, 0x0, 0, 0, 0, 0x04); sg_homing_axis = 0xff; sg_axis_stalled[X_AXIS] = false; sg_axis_stalled[Y_AXIS] = false; } } #endif //HAVE_TMC2130_DRIVERS