// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // License: GPL #ifndef MARLIN_H #define MARLIN_H #define FORCE_INLINE __attribute__((always_inline)) inline #include #include #include #include #include #include #include #include #include #include "fastio.h" #include "Configuration.h" #include "pins.h" #ifndef AT90USB #define HardwareSerial_h // trick to disable the standard HWserial #endif #if (ARDUINO >= 100) # include "Arduino.h" #else # include "WProgram.h" #endif // Arduino < 1.0.0 does not define this, so we need to do it ourselves #ifndef analogInputToDigitalPin # define analogInputToDigitalPin(p) ((p) + A0) #endif #ifdef AT90USB #include "HardwareSerial.h" #endif #include "MarlinSerial.h" #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif #include "WString.h" #ifdef AT90USB #ifdef BTENABLED #define MYSERIAL bt #else #define MYSERIAL Serial #endif // BTENABLED #else #define MYSERIAL MSerial #endif #define SERIAL_PROTOCOL(x) (MYSERIAL.print(x)) #define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y)) #define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x))) #define SERIAL_PROTOCOLRPGM(x) (serialprintPGM((x))) #define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n')) #define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n')) #define SERIAL_PROTOCOLLNRPGM(x) (serialprintPGM((x)),MYSERIAL.write('\n')) extern const char errormagic[] PROGMEM; extern const char echomagic[] PROGMEM; #define SERIAL_ERROR_START (serialprintPGM(errormagic)) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORRPGM(x) SERIAL_PROTOCOLRPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ERRORLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x) #define SERIAL_ECHO_START (serialprintPGM(echomagic)) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHORPGM(x) SERIAL_PROTOCOLRPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHOLNRPGM(x) SERIAL_PROTOCOLLNRPGM(x) #define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value))) void serial_echopair_P(const char *s_P, float v); void serial_echopair_P(const char *s_P, double v); void serial_echopair_P(const char *s_P, unsigned long v); //Things to write to serial from Program memory. Saves 400 to 2k of RAM. FORCE_INLINE void serialprintPGM(const char *str) { char ch=pgm_read_byte(str); while(ch) { MYSERIAL.write(ch); ch=pgm_read_byte(++str); } } void get_command(); void process_commands(); void manage_inactivity(bool ignore_stepper_queue=false); #if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \ && defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 #define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0) #define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0) #elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) #define disable_x() { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } #else #define enable_x() ; #define disable_x() ; #endif #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #ifdef Y_DUAL_STEPPER_DRIVERS #define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); } #define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #else #define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) #define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #endif #else #define enable_y() ; #define disable_y() ; #endif #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 #if defined(Z_AXIS_ALWAYS_ON) #ifdef Z_DUAL_STEPPER_DRIVERS #define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); } #define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #else #define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) #define disable_z() ; #endif #else #ifdef Z_DUAL_STEPPER_DRIVERS #define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); } #define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #else #define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) #define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #endif #endif #else #define enable_z() ; #define disable_z() ; #endif //#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 //#ifdef Z_DUAL_STEPPER_DRIVERS //#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); } //#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } //#else //#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON) //#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } //#endif //#else //#define enable_z() ; //#define disable_z() ; //#endif #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) #define enable_e0() WRITE(E0_ENABLE_PIN, E_ENABLE_ON) #define disable_e0() WRITE(E0_ENABLE_PIN,!E_ENABLE_ON) #else #define enable_e0() /* nothing */ #define disable_e0() /* nothing */ #endif #if (EXTRUDERS > 1) && defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) #define enable_e1() WRITE(E1_ENABLE_PIN, E_ENABLE_ON) #define disable_e1() WRITE(E1_ENABLE_PIN,!E_ENABLE_ON) #else #define enable_e1() /* nothing */ #define disable_e1() /* nothing */ #endif #if (EXTRUDERS > 2) && defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) #define enable_e2() WRITE(E2_ENABLE_PIN, E_ENABLE_ON) #define disable_e2() WRITE(E2_ENABLE_PIN,!E_ENABLE_ON) #else #define enable_e2() /* nothing */ #define disable_e2() /* nothing */ #endif enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; void FlushSerialRequestResend(); void ClearToSend(); void get_coordinates(); #ifdef DELTA void calculate_delta(float cartesian[3]); extern float delta[3]; #endif #ifdef SCARA void calculate_delta(float cartesian[3]); void calculate_SCARA_forward_Transform(float f_scara[3]); #endif void prepare_move(); void kill(); void Stop(); bool IsStopped(); void enquecommand(const char *cmd); //put an ASCII command at the end of the current buffer. void enquecommand_P(const char *cmd); //put an ASCII command at the end of the current buffer, read from flash void prepare_arc_move(char isclockwise); void clamp_to_software_endstops(float target[3]); void refresh_cmd_timeout(void); #ifdef FAST_PWM_FAN void setPwmFrequency(uint8_t pin, int val); #endif #ifndef CRITICAL_SECTION_START #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli(); #define CRITICAL_SECTION_END SREG = _sreg; #endif //CRITICAL_SECTION_START extern float homing_feedrate[]; extern bool axis_relative_modes[]; extern int feedmultiply; extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders extern bool volumetric_enabled; extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float current_position[NUM_AXIS] ; extern float destination[NUM_AXIS] ; extern float add_homing[3]; #ifdef DELTA extern float endstop_adj[3]; extern float delta_radius; extern float delta_diagonal_rod; extern float delta_segments_per_second; void recalc_delta_settings(float radius, float diagonal_rod); #endif #ifdef SCARA extern float axis_scaling[3]; // Build size scaling #endif extern float min_pos[3]; extern float max_pos[3]; extern bool axis_known_position[3]; extern float zprobe_zoffset; extern int fanSpeed; #ifdef BARICUDA extern int ValvePressure; extern int EtoPPressure; #endif #ifdef FAN_SOFT_PWM extern unsigned char fanSpeedSoftPwm; #endif #ifdef FILAMENT_SENSOR extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75 extern bool filament_sensor; //indicates that filament sensor readings should control extrusion extern float filament_width_meas; //holds the filament diameter as accurately measured extern signed char measurement_delay[]; //ring buffer to delay measurement extern int delay_index1, delay_index2; //index into ring buffer extern float delay_dist; //delay distance counter extern int meas_delay_cm; //delay distance #endif #ifdef FWRETRACT extern bool autoretract_enabled; extern bool retracted[EXTRUDERS]; extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate; #endif extern unsigned long starttime; extern unsigned long stoptime; extern bool is_usb_printing; extern unsigned int usb_printing_counter; extern unsigned long total_filament_used; void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time); extern unsigned int heating_status; extern unsigned int heating_status_counter; extern bool custom_message; extern unsigned int custom_message_type; extern unsigned int custom_message_state; // Handling multiple extruders pins extern uint8_t active_extruder; #ifdef DIGIPOT_I2C extern void digipot_i2c_set_current( int channel, float current ); extern void digipot_i2c_init(); #endif #endif extern void calculate_volumetric_multipliers(); // Similar to the default Arduino delay function, // but it keeps the background tasks running. extern void delay_keep_alive(int ms);