#include "Marlin.h" #ifdef HAVE_TMC2130_DRIVERS #include "tmc2130.h" #include //externals for debuging extern float current_position[4]; extern void st_get_position_xy(long &x, long &y); //chipselect pins uint8_t tmc2130_cs[4] = { X_TMC2130_CS, Y_TMC2130_CS, Z_TMC2130_CS, E0_TMC2130_CS }; //holding currents uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H; //running currents uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R; //axis stalled flags uint8_t tmc2130_axis_stalled[4] = {0, 0, 0, 0}; //last homing stalled uint8_t tmc2130_LastHomingStalled = 0; uint8_t sg_homing_axis = 0xff; uint8_t sg_homing_delay = 0; uint32_t tmc2130_read(uint8_t cs, uint8_t address); void tmc2130_write(uint8_t cs, uint8_t address, uint8_t wval1, uint8_t wval2, uint8_t wval3, uint8_t wval4); uint8_t tmc2130_read8(uint8_t cs, uint8_t address); uint32_t tmc2130_readRegister(uint8_t cs, uint8_t address); uint16_t tmc2130_readSG(uint8_t cs); uint16_t tmc2130_readTStep(uint8_t cs); void tmc2130_chopconf(uint8_t cs, bool extrapolate256 = 0, uint16_t microstep_resolution = 16); void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale = PWM_AUTOSCALE, uint8_t PWMfreq = PWM_FREQ, uint8_t PWMgrad = PWM_GRAD, uint8_t PWMampl = PWM_AMPL); void tmc2130_PWMthreshold(uint8_t cs); void tmc2130_disable_motor(uint8_t driver); void tmc2130_init() { MYSERIAL.println("tmc2130_init"); WRITE(X_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH); WRITE(E0_TMC2130_CS, HIGH); SET_OUTPUT(X_TMC2130_CS); SET_OUTPUT(Y_TMC2130_CS); SET_OUTPUT(Z_TMC2130_CS); SET_OUTPUT(E0_TMC2130_CS); SPI.begin(); for (int i = 0; i < 3; i++) //X Y Z axes { tmc2130_write(tmc2130_cs[i], 0x00, 0, 0, 0, 0x04); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_write(tmc2130_cs[i], 0x10, 0, 15, tmc2130_current_r[i], tmc2130_current_h[i]); //0x10 IHOLD_IRUN tmc2130_write(tmc2130_cs[i], 0x11, 0, 0, 0, 0); tmc2130_PWMconf(tmc2130_cs[i]); //address=0x70 PWM_CONF //reset default=0x00050480 //tmc2130_PWMthreshold(tmc2130_cs[i]); tmc2130_chopconf(tmc2130_cs[i], 1, 16); } for (int i = 3; i < 4; i++) //E axis { tmc2130_write(tmc2130_cs[i], 0x00, 0, 0, 0, 0x00); //address=0x0 GCONF - bit 2 activate stealthChop tmc2130_write(tmc2130_cs[i], 0x10, 0, 15, tmc2130_current_r[i], tmc2130_current_h[i]); //0x10 IHOLD_IRUN tmc2130_write(tmc2130_cs[i], 0x11, 0, 0, 0, 0); tmc2130_chopconf(tmc2130_cs[i], 1, 16); } } bool tmc2130_update_sg() { if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS)) { uint8_t cs = tmc2130_cs[sg_homing_axis]; uint16_t tstep = tmc2130_readTStep(cs); if (tstep < TCOOLTHRS) { if(sg_homing_delay < 10) // wait for a few tens microsteps until stallGuard is used //todo: read out microsteps directly, instead of delay counter sg_homing_delay++; else { uint16_t sg = tmc2130_readSG(cs); if (sg==0) { tmc2130_axis_stalled[sg_homing_axis] = true; tmc2130_LastHomingStalled = true; } else tmc2130_axis_stalled[sg_homing_axis] = false; } } else tmc2130_axis_stalled[sg_homing_axis] = false; return true; } else { tmc2130_axis_stalled[X_AXIS] = false; tmc2130_axis_stalled[Y_AXIS] = false; } return false; } void tmc2130_check_overtemp() { const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP "; static uint32_t checktime = 0; //drivers_disabled[0] = 1; //TEST if( millis() - checktime > 1000 ) { for(int i = 0; i < 4; i++) { uint32_t drv_status = tmc2130_read(tmc2130_cs[i], 0x6F); //0x6F DRV_STATUS if (drv_status & ((uint32_t)1<<26)) { // BIT 26 - over temp prewarning ~120C (+-20C) SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG); SERIAL_ECHOLN(i); for(int x = 0; x < 4; x++) tmc2130_disable_motor(x); kill(TMC_OVERTEMP_MSG); } } checktime = millis(); } } void tmc2130_home_enter(uint8_t axis) { MYSERIAL.print("tmc2130_home_enter "); MYSERIAL.println((int)axis); uint8_t cs = tmc2130_cs[axis]; sg_homing_axis = axis; sg_homing_delay = 0; tmc2130_axis_stalled[X_AXIS] = false; tmc2130_axis_stalled[Y_AXIS] = false; //Configuration to spreadCycle //tmc2130_write(cs, 0x0, 0, 0, 0, 0x01); tmc2130_write(cs, 0x0, 0, 0, 0, 0x00); tmc2130_write(cs, 0x6D, 0, (axis == X_AXIS)?SG_THRESHOLD_X:SG_THRESHOLD_Y,0,0); tmc2130_write(cs, 0x14, 0, 0, 0, TCOOLTHRS); } void tmc2130_home_exit() { MYSERIAL.println("tmc2130_home_exit"); if ((sg_homing_axis == X_AXIS) || (sg_homing_axis == Y_AXIS)) { // Configuration back to stealthChop tmc2130_write(tmc2130_cs[sg_homing_axis], 0x0, 0, 0, 0, 0x04); sg_homing_axis = 0xff; } } extern uint8_t tmc2130_didLastHomingStall() { uint8_t ret = tmc2130_LastHomingStalled; tmc2130_LastHomingStalled = false; return ret; } void tmc2130_set_current_h(uint8_t axis, uint8_t current) { MYSERIAL.print("tmc2130_set_current_h "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)current); if (current > 15) current = 15; //current>15 is unsafe tmc2130_current_h[axis] = current; tmc2130_write(tmc2130_cs[axis], 0x10, 0, 15, tmc2130_current_r[axis], tmc2130_current_h[axis]); //0x10 IHOLD_IRUN } void tmc2130_set_current_r(uint8_t axis, uint8_t current) { MYSERIAL.print("tmc2130_set_current_r "); MYSERIAL.print((int)axis); MYSERIAL.print(" "); MYSERIAL.println((int)current); if (current > 15) current = 15; //current>15 is unsafe tmc2130_current_r[axis] = current; tmc2130_write(tmc2130_cs[axis], 0x10, 0, 15, tmc2130_current_r[axis], tmc2130_current_h[axis]); //0x10 IHOLD_IRUN } void tmc2130_print_currents() { MYSERIAL.println("tmc2130_print_currents"); MYSERIAL.println("\tH\rR"); MYSERIAL.print("X\t"); MYSERIAL.print((int)tmc2130_current_h[0]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[0]); MYSERIAL.print("Y\t"); MYSERIAL.print((int)tmc2130_current_h[1]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[1]); MYSERIAL.print("Z\t"); MYSERIAL.print((int)tmc2130_current_h[2]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[2]); MYSERIAL.print("E\t"); MYSERIAL.print((int)tmc2130_current_h[3]); MYSERIAL.print("\t"); MYSERIAL.println((int)tmc2130_current_r[3]); } uint32_t tmc2130_read(uint8_t cs, uint8_t address) { uint32_t val32; uint8_t val0; uint8_t val1; uint8_t val2; uint8_t val3; uint8_t val4; //datagram1 - read request (address + dummy write) SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); SPI.transfer(address); SPI.transfer(0); SPI.transfer(0); SPI.transfer(0); SPI.transfer(0); digitalWrite(cs, HIGH); SPI.endTransaction(); //datagram2 - response SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); val0 = SPI.transfer(0); val1 = SPI.transfer(0); val2 = SPI.transfer(0); val3 = SPI.transfer(0); val4 = SPI.transfer(0); digitalWrite(cs, HIGH); SPI.endTransaction(); #ifdef TMC_DBG_READS MYSERIAL.print("SPIRead 0x"); MYSERIAL.print(address,HEX); MYSERIAL.print(" Status:"); MYSERIAL.print(val0 & 0b00000111,BIN); MYSERIAL.print(" "); MYSERIAL.print(val1,BIN); MYSERIAL.print(" "); MYSERIAL.print(val2,BIN); MYSERIAL.print(" "); MYSERIAL.print(val3,BIN); MYSERIAL.print(" "); MYSERIAL.print(val4,BIN); #endif val32 = (uint32_t)val1<<24 | (uint32_t)val2<<16 | (uint32_t)val3<<8 | (uint32_t)val4; #ifdef TMC_DBG_READS MYSERIAL.print(" 0x"); MYSERIAL.println(val32,HEX); #endif return val32; } void tmc2130_write(uint8_t cs, uint8_t address,uint8_t wval1,uint8_t wval2,uint8_t wval3,uint8_t wval4) { uint32_t val32; uint8_t val0; uint8_t val1; uint8_t val2; uint8_t val3; uint8_t val4; //datagram1 - write SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); SPI.transfer(address+0x80); SPI.transfer(wval1); SPI.transfer(wval2); SPI.transfer(wval3); SPI.transfer(wval4); digitalWrite(cs, HIGH); SPI.endTransaction(); //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); val0 = SPI.transfer(0); val1 = SPI.transfer(0); val2 = SPI.transfer(0); val3 = SPI.transfer(0); val4 = SPI.transfer(0); digitalWrite(cs, HIGH); SPI.endTransaction(); #ifdef TMC_DBG_WRITE MYSERIAL.print("WriteRead 0x"); MYSERIAL.print(address,HEX); MYSERIAL.print(" Status:"); MYSERIAL.print(val0 & 0b00000111,BIN); MYSERIAL.print(" "); MYSERIAL.print(val1,BIN); MYSERIAL.print(" "); MYSERIAL.print(val2,BIN); MYSERIAL.print(" "); MYSERIAL.print(val3,BIN); MYSERIAL.print(" "); MYSERIAL.print(val4,BIN); val32 = (uint32_t)val1<<24 | (uint32_t)val2<<16 | (uint32_t)val3<<8 | (uint32_t)val4; MYSERIAL.print(" 0x"); MYSERIAL.println(val32,HEX); #endif //TMC_DBG_READS } uint8_t tmc2130_read8(uint8_t cs, uint8_t address) { //datagram1 - write SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); SPI.transfer(address); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); digitalWrite(cs, HIGH); SPI.endTransaction(); uint8_t val0; //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); val0 = SPI.transfer(0); digitalWrite(cs, HIGH); SPI.endTransaction(); return val0; } uint32_t tmc2130_readRegister(uint8_t cs, uint8_t address) { //datagram1 - write SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); SPI.transfer(address); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); SPI.transfer(0x00); digitalWrite(cs, HIGH); SPI.endTransaction(); uint32_t val0; //datagram2 - response SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3)); digitalWrite(cs,LOW); SPI.transfer(0); // ignore status bits val0 = SPI.transfer(0); // MSB val0 = (val0 << 8) | SPI.transfer(0); val0 = (val0 << 8) | SPI.transfer(0); val0 = (val0 << 8) | SPI.transfer(0); //LSB digitalWrite(cs, HIGH); SPI.endTransaction(); return val0; } uint16_t tmc2130_readSG(uint8_t cs) { uint8_t address = 0x6F; uint32_t registerValue = tmc2130_readRegister(cs, address); uint16_t val0 = registerValue & 0x3ff; return val0; } uint16_t tmc2130_readTStep(uint8_t cs) { uint8_t address = 0x12; uint32_t registerValue = tmc2130_readRegister(cs, address); uint16_t val0 = 0; if(registerValue & 0x000f0000) val0 = 0xffff; else val0 = registerValue & 0xffff; return val0; } void tmc2130_chopconf(uint8_t cs, bool extrapolate256, uint16_t microstep_resolution) { uint8_t mres = 0b0100; if(microstep_resolution == 256) mres = 0b0000; if(microstep_resolution == 128) mres = 0b0001; if(microstep_resolution == 64) mres = 0b0010; if(microstep_resolution == 32) mres = 0b0011; if(microstep_resolution == 16) mres = 0b0100; if(microstep_resolution == 8) mres = 0b0101; if(microstep_resolution == 4) mres = 0b0110; if(microstep_resolution == 2) mres = 0b0111; if(microstep_resolution == 1) mres = 0b1000; mres |= extrapolate256 << 4; //bit28 intpol //tmc2130_write(cs, 0x6C, mres, 0x01, 0x00, 0xD3); tmc2130_write(cs, 0x6C, mres, 0x01, 0x00, 0xC3); } void tmc2130_PWMconf(uint8_t cs, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl) { tmc2130_write(cs, 0x70, 0x00, (PWMautoScale+PWMfreq), PWMgrad, PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq } void tmc2130_PWMthreshold(uint8_t cs) { tmc2130_write(cs, 0x13, 0x00, 0x00, 0x00, 0x00); // TMC LJ -> Adds possibility to swtich from stealthChop to spreadCycle automatically } void tmc2130_disable_motor(uint8_t driver) { tmc2130_write(tmc2130_cs[driver], 0x6C, 0, 01, 0, 0); } #endif //HAVE_TMC2130_DRIVERS