//pat9125.c #include "pat9125.h" #include #include #include "config.h" #include //PAT9125 registers #define PAT9125_PID1 0x00 #define PAT9125_PID2 0x01 #define PAT9125_MOTION 0x02 #define PAT9125_DELTA_XL 0x03 #define PAT9125_DELTA_YL 0x04 #define PAT9125_MODE 0x05 #define PAT9125_CONFIG 0x06 #define PAT9125_WP 0x09 #define PAT9125_SLEEP1 0x0a #define PAT9125_SLEEP2 0x0b #define PAT9125_RES_X 0x0d #define PAT9125_RES_Y 0x0e #define PAT9125_DELTA_XYH 0x12 #define PAT9125_SHUTTER 0x14 #define PAT9125_FRAME 0x17 #define PAT9125_ORIENTATION 0x19 #define PAT9125_BANK_SELECTION 0x7f #if defined(PAT9125_SWSPI) #include "swspi.h" #elif defined(PAT9125_SWI2C) #include "swi2c.h" #elif defined(PAT9125_I2C) #include "twi.h" #else #error unknown PAT9125 communication method #endif uint8_t pat9125_PID1 = 0; uint8_t pat9125_PID2 = 0; int16_t pat9125_x = 0; int16_t pat9125_y = 0; uint8_t pat9125_b = 0; uint8_t pat9125_s = 0; // Init sequence, address & value. const PROGMEM uint8_t pat9125_init_seq1[] = { // Disable write protect. PAT9125_WP, 0x5a, // Set the X resolution to zero to let the sensor know that it could safely ignore movement in the X axis. PAT9125_RES_X, PAT9125_XRES, // Set the Y resolution to a maximum (or nearly a maximum). PAT9125_RES_Y, PAT9125_YRES, // Set 12-bit X/Y data format. PAT9125_ORIENTATION, 0x04, // PAT9125_ORIENTATION, 0x04 | (xinv?0x08:0) | (yinv?0x10:0), //!? direction switching does not work // Now continues the magic sequence from the PAT912EL Application Note: Firmware Guides for Tracking Optimization. 0x5e, 0x08, 0x20, 0x64, 0x2b, 0x6d, 0x32, 0x2f, // stopper 0x0ff }; // Init sequence, address & value. const PROGMEM uint8_t pat9125_init_seq2[] = { // Magic sequence to enforce full frame rate of the sensor. 0x06, 0x028, 0x33, 0x0d0, 0x36, 0x0c2, 0x3e, 0x001, 0x3f, 0x015, 0x41, 0x032, 0x42, 0x03b, 0x43, 0x0f2, 0x44, 0x03b, 0x45, 0x0f2, 0x46, 0x022, 0x47, 0x03b, 0x48, 0x0f2, 0x49, 0x03b, 0x4a, 0x0f0, 0x58, 0x098, 0x59, 0x00c, 0x5a, 0x008, 0x5b, 0x00c, 0x5c, 0x008, 0x61, 0x010, 0x67, 0x09b, 0x6e, 0x022, 0x71, 0x007, 0x72, 0x008, // stopper 0x0ff }; uint8_t pat9125_rd_reg(uint8_t addr); void pat9125_wr_reg(uint8_t addr, uint8_t data); uint8_t pat9125_wr_reg_verify(uint8_t addr, uint8_t data); extern FILE _uartout; #define uartout (&_uartout) uint8_t pat9125_probe() { #if defined(PAT9125_SWSPI) swspi_init(); #error not implemented #elif defined(PAT9125_SWI2C) swi2c_init(); return swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL); #elif defined(PAT9125_I2C) twi_init(); #ifdef IR_SENSOR // NOTE: this is called from the MK3S variant, so it should be kept minimal uint8_t data; return (twi_r8(PAT9125_I2C_ADDR,PAT9125_PID1,&data) == 0); #else return (pat9125_rd_reg(PAT9125_PID1) != 0); #endif #endif } uint8_t pat9125_init(void) { if (!pat9125_probe()) return 0; // Verify that the sensor responds with its correct product ID. pat9125_PID1 = pat9125_rd_reg(PAT9125_PID1); pat9125_PID2 = pat9125_rd_reg(PAT9125_PID2); if ((pat9125_PID1 != 0x31) || (pat9125_PID2 != 0x91)) { pat9125_PID1 = pat9125_rd_reg(PAT9125_PID1); pat9125_PID2 = pat9125_rd_reg(PAT9125_PID2); if ((pat9125_PID1 != 0x31) || (pat9125_PID2 != 0x91)) return 0; } #ifdef PAT9125_NEW_INIT // Switch to bank0, not allowed to perform OTS_RegWriteRead. pat9125_wr_reg(PAT9125_BANK_SELECTION, 0); // Software reset (i.e. set bit7 to 1). It will reset to 0 automatically. // After the reset, OTS_RegWriteRead is not allowed. pat9125_wr_reg(PAT9125_CONFIG, 0x97); // Wait until the sensor reboots. // Delay 1ms. _delay_us(1000); { const uint8_t *ptr = pat9125_init_seq1; for (;;) { const uint8_t addr = pgm_read_byte_near(ptr ++); if (addr == 0x0ff) break; if (! pat9125_wr_reg_verify(addr, pgm_read_byte_near(ptr ++))) // Verification of the register write failed. return 0; } } // Delay 10ms. _delay_ms(10); // Switch to bank1, not allowed to perform OTS_RegWrite. pat9125_wr_reg(PAT9125_BANK_SELECTION, 0x01); { const uint8_t *ptr = pat9125_init_seq2; for (;;) { const uint8_t addr = pgm_read_byte_near(ptr ++); if (addr == 0x0ff) break; if (! pat9125_wr_reg_verify(addr, pgm_read_byte_near(ptr ++))) // Verification of the register write failed. return 0; } } // Switch to bank0, not allowed to perform OTS_RegWriteRead. pat9125_wr_reg(PAT9125_BANK_SELECTION, 0x00); // Enable write protect. pat9125_wr_reg(PAT9125_WP, 0x00); pat9125_PID1 = pat9125_rd_reg(PAT9125_PID1); pat9125_PID2 = pat9125_rd_reg(PAT9125_PID2); #endif //PAT9125_NEW_INIT pat9125_wr_reg(PAT9125_RES_X, PAT9125_XRES); pat9125_wr_reg(PAT9125_RES_Y, PAT9125_YRES); fprintf_P(uartout, PSTR("PAT9125_RES_X=%hhu\n"), pat9125_rd_reg(PAT9125_RES_X)); fprintf_P(uartout, PSTR("PAT9125_RES_Y=%hhu\n"), pat9125_rd_reg(PAT9125_RES_Y)); return 1; } uint8_t pat9125_update(void) { if ((pat9125_PID1 == 0x31) && (pat9125_PID2 == 0x91)) { uint8_t ucMotion = pat9125_rd_reg(PAT9125_MOTION); pat9125_b = pat9125_rd_reg(PAT9125_FRAME); pat9125_s = pat9125_rd_reg(PAT9125_SHUTTER); if (pat9125_PID1 == 0xff) return 0; if (ucMotion & 0x80) { uint16_t ucXL = pat9125_rd_reg(PAT9125_DELTA_XL); uint16_t ucYL = pat9125_rd_reg(PAT9125_DELTA_YL); uint16_t ucXYH = pat9125_rd_reg(PAT9125_DELTA_XYH); if (pat9125_PID1 == 0xff) return 0; int16_t iDX = ucXL | ((ucXYH << 4) & 0xf00); int16_t iDY = ucYL | ((ucXYH << 8) & 0xf00); if (iDX & 0x800) iDX -= 4096; if (iDY & 0x800) iDY -= 4096; pat9125_x += iDX; pat9125_y -= iDY; //negative number, because direction switching does not work } return 1; } return 0; } uint8_t pat9125_update_y(void) { if ((pat9125_PID1 == 0x31) && (pat9125_PID2 == 0x91)) { uint8_t ucMotion = pat9125_rd_reg(PAT9125_MOTION); if (pat9125_PID1 == 0xff) return 0; if (ucMotion & 0x80) { uint16_t ucYL = pat9125_rd_reg(PAT9125_DELTA_YL); uint16_t ucXYH = pat9125_rd_reg(PAT9125_DELTA_XYH); if (pat9125_PID1 == 0xff) return 0; int16_t iDY = ucYL | ((ucXYH << 8) & 0xf00); if (iDY & 0x800) iDY -= 4096; pat9125_y -= iDY; //negative number, because direction switching does not work } return 1; } return 0; } uint8_t pat9125_update_bs(void) { if ((pat9125_PID1 == 0x31) && (pat9125_PID2 == 0x91)) { pat9125_b = pat9125_rd_reg(PAT9125_FRAME); pat9125_s = pat9125_rd_reg(PAT9125_SHUTTER); if (pat9125_PID1 == 0xff) return 0; return 1; } return 0; } uint8_t pat9125_rd_reg(uint8_t addr) { uint8_t data = 0; #if defined(PAT9125_SWSPI) swspi_start(); swspi_tx(addr & 0x7f); data = swspi_rx(); swspi_stop(); #elif defined(PAT9125_SWI2C) if (!swi2c_readByte_A8(PAT9125_I2C_ADDR, addr, &data)) //NO ACK error goto error; #elif defined(PAT9125_I2C) if (twi_r8(PAT9125_I2C_ADDR,addr,&data)) goto error; #endif return data; error: pat9125_PID1 = 0xff; pat9125_PID2 = 0xff; return 0; } void pat9125_wr_reg(uint8_t addr, uint8_t data) { #if defined(PAT9125_SWSPI) swspi_start(); swspi_tx(addr | 0x80); swspi_tx(data); swspi_stop(); #elif defined(PAT9125_SWI2C) if (!swi2c_writeByte_A8(PAT9125_I2C_ADDR, addr, &data)) //NO ACK error goto error; #elif defined(PAT9125_I2C) if (twi_w8(PAT9125_I2C_ADDR,addr,data)) goto error; #endif return; error: pat9125_PID1 = 0xff; pat9125_PID2 = 0xff; return; } uint8_t pat9125_wr_reg_verify(uint8_t addr, uint8_t data) { pat9125_wr_reg(addr, data); return pat9125_rd_reg(addr) == data; }