//sm4.c - simple 4-axis stepper control #include "sm4.h" #include #include #include #include "Arduino.h" #include "boards.h" #define false 0 #define true 1 #include "Configuration_prusa.h" #ifdef NEW_XYZCAL // Signal pinouts // direction signal - MiniRambo //#define X_DIR_PIN 48 //PL1 (-) //#define Y_DIR_PIN 49 //PL0 (-) //#define Z_DIR_PIN 47 //PL2 (-) //#define E0_DIR_PIN 43 //PL6 (+) //direction signal - EinsyRambo //#define X_DIR_PIN 49 //PL0 (+) //#define Y_DIR_PIN 48 //PL1 (-) //#define Z_DIR_PIN 47 //PL2 (+) //#define E0_DIR_PIN 43 //PL6 (-) //step signal pinout - common for all rambo boards //#define X_STEP_PIN 37 //PC0 (+) //#define Y_STEP_PIN 36 //PC1 (+) //#define Z_STEP_PIN 35 //PC2 (+) //#define E0_STEP_PIN 34 //PC3 (+) sm4_stop_cb_t sm4_stop_cb = 0; sm4_update_pos_cb_t sm4_update_pos_cb = 0; sm4_calc_delay_cb_t sm4_calc_delay_cb = 0; uint16_t sm4_cpu_time = 0; uint8_t sm4_get_dir(uint8_t axis) { switch (axis) { #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3)) case 0: return (PORTL & 2)?0:1; case 1: return (PORTL & 1)?0:1; case 2: return (PORTL & 4)?0:1; case 3: return (PORTL & 64)?1:0; #elif ((MOTHERBOARD == BOARD_EINSY_1_0a)) case 0: return (PORTL & 1)?1:0; case 1: return (PORTL & 2)?0:1; case 2: return (PORTL & 4)?1:0; case 3: return (PORTL & 64)?0:1; #endif } return 0; } void sm4_set_dir(uint8_t axis, uint8_t dir) { switch (axis) { #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3)) case 0: if (!dir) PORTL |= 2; else PORTL &= ~2; break; case 1: if (!dir) PORTL |= 1; else PORTL &= ~1; break; case 2: if (!dir) PORTL |= 4; else PORTL &= ~4; break; case 3: if (dir) PORTL |= 64; else PORTL &= ~64; break; #elif ((MOTHERBOARD == BOARD_EINSY_1_0a)) case 0: if (dir) PORTL |= 1; else PORTL &= ~1; break; case 1: if (!dir) PORTL |= 2; else PORTL &= ~2; break; case 2: if (dir) PORTL |= 4; else PORTL &= ~4; break; case 3: if (!dir) PORTL |= 64; else PORTL &= ~64; break; #endif } asm("nop"); } uint8_t sm4_get_dir_bits(void) { register uint8_t dir_bits = 0; register uint8_t portL = PORTL; //TODO -optimize in asm #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3)) if (portL & 2) dir_bits |= 1; if (portL & 1) dir_bits |= 2; if (portL & 4) dir_bits |= 4; if (portL & 64) dir_bits |= 8; dir_bits ^= 0x07; //invert XYZ, do not invert E #elif ((MOTHERBOARD == BOARD_EINSY_1_0a)) if (portL & 1) dir_bits |= 1; if (portL & 2) dir_bits |= 2; if (portL & 4) dir_bits |= 4; if (portL & 64) dir_bits |= 8; dir_bits ^= 0x0a; //invert YE, do not invert XZ #endif return dir_bits; } void sm4_set_dir_bits(uint8_t dir_bits) { register uint8_t portL = PORTL; portL &= 0xb8; //set direction bits to zero //TODO -optimize in asm #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3)) dir_bits ^= 0x07; //invert XYZ, do not invert E if (dir_bits & 1) portL |= 2; //set X direction bit if (dir_bits & 2) portL |= 1; //set Y direction bit if (dir_bits & 4) portL |= 4; //set Z direction bit if (dir_bits & 8) portL |= 64; //set E direction bit #elif ((MOTHERBOARD == BOARD_EINSY_1_0a)) dir_bits ^= 0x0a; //invert YE, do not invert XZ if (dir_bits & 1) portL |= 1; //set X direction bit if (dir_bits & 2) portL |= 2; //set Y direction bit if (dir_bits & 4) portL |= 4; //set Z direction bit if (dir_bits & 8) portL |= 64; //set E direction bit #endif PORTL = portL; asm("nop"); } void sm4_do_step(uint8_t axes_mask) { #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3) || (MOTHERBOARD == BOARD_EINSY_1_0a)) #ifdef TMC2130_DEDGE_STEPPING PINC = (axes_mask & 0x0f); // toggle step signals by mask #else register uint8_t portC = PORTC & 0xf0; PORTC = portC | (axes_mask & 0x0f); //set step signals by mask asm("nop"); PORTC = portC; //set step signals to zero asm("nop"); #endif #endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3) || (MOTHERBOARD == BOARD_EINSY_1_0a)) } uint16_t sm4_line_xyze_ui(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de) { uint16_t dd = (uint16_t)(sqrt((float)(((uint32_t)dx)*dx + ((uint32_t)dy*dy) + ((uint32_t)dz*dz) + ((uint32_t)de*de))) + 0.5); uint16_t nd = dd; uint16_t cx = dd; uint16_t cy = dd; uint16_t cz = dd; uint16_t ce = dd; uint16_t x = 0; uint16_t y = 0; uint16_t z = 0; uint16_t e = 0; while (nd) { if (sm4_stop_cb && (*sm4_stop_cb)()) break; uint8_t sm = 0; //step mask if (cx <= dx) { sm |= 1; cx += dd; x++; } if (cy <= dy) { sm |= 2; cy += dd; y++; } if (cz <= dz) { sm |= 4; cz += dd; z++; } if (ce <= de) { sm |= 8; ce += dd; e++; } cx -= dx; cy -= dy; cz -= dz; ce -= de; sm4_do_step(sm); uint16_t delay = SM4_DEFDELAY; if (sm4_calc_delay_cb) delay = (*sm4_calc_delay_cb)(nd, dd); if (delay) delayMicroseconds(delay); nd--; } if (sm4_update_pos_cb) (*sm4_update_pos_cb)(x, y, z, e); return nd; } uint16_t sm4_line_xyz_ui(uint16_t dx, uint16_t dy, uint16_t dz){ uint16_t dd = (uint16_t)(sqrt((float)(((uint32_t)dx)*dx + ((uint32_t)dy*dy) + ((uint32_t)dz*dz))) + 0.5); uint16_t nd = dd; uint16_t cx = dd; uint16_t cy = dd; uint16_t cz = dd; uint16_t x = 0; uint16_t y = 0; uint16_t z = 0; while (nd){ if (sm4_stop_cb && (*sm4_stop_cb)()) break; uint8_t sm = 0; //step mask if (cx <= dx){ sm |= 1; cx += dd; x++; } if (cy <= dy){ sm |= 2; cy += dd; y++; } if (cz <= dz){ sm |= 4; cz += dd; z++; } cx -= dx; cy -= dy; cz -= dz; sm4_do_step(sm); uint16_t delay = SM4_DEFDELAY; if (sm4_calc_delay_cb) delay = (*sm4_calc_delay_cb)(nd, dd); if (delay) delayMicroseconds(delay); nd--; } if (sm4_update_pos_cb) (*sm4_update_pos_cb)(x, y, z, 0); return nd; } #endif //NEW_XYZCAL