#ifndef SPEED_LOOKUPTABLE_H #define SPEED_LOOKUPTABLE_H #include "Marlin.h" extern const uint16_t speed_lookuptable_fast[256][2] PROGMEM; extern const uint16_t speed_lookuptable_slow[256][2] PROGMEM; #ifndef _NO_ASM // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store the byte 1 of the 48bit result #define MultiU24X24toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) #else //_NO_ASM static inline void MultiU16X8toH16(uint16_t& intRes, uint8_t& charIn1, uint16_t& intIn2) { intRes = ((uint32_t)charIn1 * (uint32_t)intIn2) >> 16; } static inline void MultiU24X24toH16(uint16_t& intRes, uint32_t& longIn1, uint32_t& longIn2) { intRes = ((uint64_t)longIn1 * (uint64_t)longIn2) >> 24; } #endif //_NO_ASM FORCE_INLINE unsigned short calc_timer(uint16_t step_rate, uint8_t& step_loops) { uint16_t timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; } else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1)&0x7fff; step_loops = 2; } else { step_loops = 1; } if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); step_rate -= (F_CPU/500000); // Correct for minimal speed if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); uint16_t gain = (uint16_t)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if(timer < 100) { timer = 100; }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH c=0 r=0 return timer; } #endif