//! @file #include "Marlin.h" #ifdef TMC2130 #include "tmc2130.h" #include "ultralcd.h" #include "language.h" #include "spi.h" #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull]) #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop //mode uint8_t tmc2130_mode = TMC2130_MODE_NORMAL; uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H; //running currents uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R; //running currents for homing uint8_t tmc2130_current_r_home[4] = TMC2130_CURRENTS_R_HOME; //pwm_ampl uint8_t tmc2130_pwm_ampl[4] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y, TMC2130_PWM_AMPL_Z, TMC2130_PWM_AMPL_E}; //pwm_grad uint8_t tmc2130_pwm_grad[4] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y, TMC2130_PWM_GRAD_Z, TMC2130_PWM_GRAD_E}; //pwm_auto uint8_t tmc2130_pwm_auto[4] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y, TMC2130_PWM_AUTO_Z, TMC2130_PWM_AUTO_E}; //pwm_freq uint8_t tmc2130_pwm_freq[4] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y, TMC2130_PWM_FREQ_Z, TMC2130_PWM_FREQ_E}; uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E}; uint8_t tmc2130_sg_thr_home[4] = TMC2130_SG_THRS_HOME; uint8_t tmc2130_sg_homing_axes_mask = 0x00; const char eMotorCurrentScalingEnabled[] PROGMEM = "E-motor current scaling enabled"; uint8_t tmc2130_sg_meassure = 0xff; uint32_t tmc2130_sg_meassure_cnt = 0; uint32_t tmc2130_sg_meassure_val = 0; uint8_t tmc2130_home_enabled = 0; uint8_t tmc2130_home_origin[2] = {0, 0}; uint8_t tmc2130_home_bsteps[2] = {48, 48}; uint8_t tmc2130_home_fsteps[2] = {48, 48}; uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0}; tmc2130_chopper_config_t tmc2130_chopper_config[4] = { {TMC2130_TOFF_XYZ, 5, 1, 2, 0}, {TMC2130_TOFF_XYZ, 5, 1, 2, 0}, {TMC2130_TOFF_XYZ, 5, 1, 2, 0}, {TMC2130_TOFF_E, 5, 1, 2, 0} }; bool tmc2130_sg_stop_on_crash = true; uint8_t tmc2130_sg_diag_mask = 0x00; uint8_t tmc2130_sg_crash = 0; uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0}; uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0}; #ifdef DEBUG_CRASHDET_COUNTERS bool tmc2130_sg_change = false; #endif bool skip_debug_msg = false; #define DBG(args...) //printf_P(args) #ifndef _n #define _n PSTR #endif //_n #ifndef _i #define _i PSTR #endif //_i //TMC2130 registers #define TMC2130_REG_GCONF 0x00 // 17 bits #define TMC2130_REG_GSTAT 0x01 // 3 bits #define TMC2130_REG_IOIN 0x04 // 8+8 bits #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits #define TMC2130_REG_TSTEP 0x12 // 20 bits #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits #define TMC2130_REG_THIGH 0x15 // 20 bits #define TMC2130_REG_XDIRECT 0x2d // 32 bits #define TMC2130_REG_VDCMIN 0x33 // 23 bits #define TMC2130_REG_MSLUT0 0x60 // 32 bits #define TMC2130_REG_MSLUT1 0x61 // 32 bits #define TMC2130_REG_MSLUT2 0x62 // 32 bits #define TMC2130_REG_MSLUT3 0x63 // 32 bits #define TMC2130_REG_MSLUT4 0x64 // 32 bits #define TMC2130_REG_MSLUT5 0x65 // 32 bits #define TMC2130_REG_MSLUT6 0x66 // 32 bits #define TMC2130_REG_MSLUT7 0x67 // 32 bits #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits #define TMC2130_REG_MSCNT 0x6a // 10 bits #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits #define TMC2130_REG_CHOPCONF 0x6c // 32 bits #define TMC2130_REG_COOLCONF 0x6d // 25 bits #define TMC2130_REG_DCCTRL 0x6e // 24 bits #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits #define TMC2130_REG_PWMCONF 0x70 // 22 bits #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits uint16_t tmc2130_rd_TSTEP(uint8_t axis); uint16_t tmc2130_rd_MSCNT(uint8_t axis); uint32_t tmc2130_rd_MSCURACT(uint8_t axis); void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0); void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel); void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32); void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32); #define tmc2130_rd(axis, addr, rval) tmc2130_rx(axis, addr, rval) #define tmc2130_wr(axis, addr, wval) tmc2130_tx(axis, (addr) | 0x80, wval) static void tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval); static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval); void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r); uint16_t __tcoolthrs(uint8_t axis) { switch (axis) { case X_AXIS: return TMC2130_TCOOLTHRS_X; case Y_AXIS: return TMC2130_TCOOLTHRS_Y; case Z_AXIS: return TMC2130_TCOOLTHRS_Z; } return 0; } void tmc2130_init(TMCInitParams params) { // DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL")); WRITE(X_TMC2130_CS, HIGH); WRITE(Y_TMC2130_CS, HIGH); WRITE(Z_TMC2130_CS, HIGH); WRITE(E0_TMC2130_CS, HIGH); SET_OUTPUT(X_TMC2130_CS); SET_OUTPUT(Y_TMC2130_CS); SET_OUTPUT(Z_TMC2130_CS); SET_OUTPUT(E0_TMC2130_CS); SET_INPUT(X_TMC2130_DIAG); SET_INPUT(Y_TMC2130_DIAG); SET_INPUT(Z_TMC2130_DIAG); SET_INPUT(E0_TMC2130_DIAG); for (uint_least8_t axis = 0; axis < 2; axis++) // X Y axes { tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis)); tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS); //tmc2130_wr_THIGH(axis, TMC2130_THIGH); } for (uint_least8_t axis = 2; axis < 3; axis++) // Z axis { tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000); #ifndef TMC2130_STEALTH_Z tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); #else //TMC2130_STEALTH_Z tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis)); tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS); #endif //TMC2130_STEALTH_Z } for (uint_least8_t axis = 3; axis < 4; axis++) // E axis { tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000); #ifndef TMC2130_STEALTH_E if( ! params.enableECool ){ tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); } else { tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); tmc2130_wr_PWMCONF(axis, TMC2130_PWM_AMPL_Ecool, TMC2130_PWM_GRAD_Ecool, tmc2130_pwm_freq[axis], TMC2130_PWM_AUTO_Ecool, 0, 0); tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS_E); SERIAL_ECHOLNRPGM(eMotorCurrentScalingEnabled); } #else //TMC2130_STEALTH_E tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS); #endif //TMC2130_STEALTH_E } tmc2130_sg_err[0] = 0; tmc2130_sg_err[1] = 0; tmc2130_sg_err[2] = 0; tmc2130_sg_err[3] = 0; tmc2130_sg_cnt[0] = 0; tmc2130_sg_cnt[1] = 0; tmc2130_sg_cnt[2] = 0; tmc2130_sg_cnt[3] = 0; #ifdef TMC2130_LINEARITY_CORRECTION #ifdef TMC2130_LINEARITY_CORRECTION_XYZ tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]); tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]); tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]); #endif //TMC2130_LINEARITY_CORRECTION_XYZ tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]); #endif //TMC2130_LINEARITY_CORRECTION #ifdef PSU_Delta if(!params.bSuppressFlag) check_force_z(); #endif // PSU_Delta } uint8_t tmc2130_sample_diag() { uint8_t mask = 0; if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK; if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK; // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK; // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK; return mask; } extern bool is_usb_printing; void tmc2130_st_isr() { if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return; uint8_t crash = 0; uint8_t diag_mask = tmc2130_sample_diag(); // for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++) for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) { uint8_t mask = (X_AXIS_MASK << axis); if (diag_mask & mask) tmc2130_sg_err[axis]++; else if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--; if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis]) { tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis]; #ifdef DEBUG_CRASHDET_COUNTERS tmc2130_sg_change = true; #endif uint8_t sg_thr = 64; // if (axis == Y_AXIS) sg_thr = 64; if (tmc2130_sg_err[axis] >= sg_thr) { tmc2130_sg_err[axis] = 0; crash |= mask; } } } if (tmc2130_sg_homing_axes_mask == 0) { if (tmc2130_sg_stop_on_crash && crash) { tmc2130_sg_crash = crash; tmc2130_sg_stop_on_crash = false; crashdet_stop_and_save_print(); } } } bool tmc2130_update_sg() { if (tmc2130_sg_meassure <= E_AXIS) { uint32_t val32 = 0; tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32); tmc2130_sg_meassure_val += (val32 & 0x3ff); tmc2130_sg_meassure_cnt++; return true; } return false; } void tmc2130_home_enter(uint8_t axes_mask) { printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask); #ifdef TMC2130_SG_HOMING if (axes_mask & 0x03) //X or Y tmc2130_wait_standstill_xy(1000); for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes { uint8_t mask = (X_AXIS_MASK << axis); if (axes_mask & mask) { tmc2130_sg_homing_axes_mask |= mask; //Configuration to spreadCycle tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16)); // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis)); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]); if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK)) tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull } } #endif //TMC2130_SG_HOMING } void tmc2130_home_exit() { printf_P(PSTR("tmc2130_home_exit tmc2130_sg_homing_axes_mask=0x%02x\n"), tmc2130_sg_homing_axes_mask); #ifdef TMC2130_SG_HOMING if (tmc2130_sg_homing_axes_mask & 0x03) //X or Y tmc2130_wait_standstill_xy(1000); if (tmc2130_sg_homing_axes_mask) { for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes { uint8_t mask = (X_AXIS_MASK << axis); if (tmc2130_sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK)) { #ifndef TMC2130_STEALTH_Z if ((tmc2130_mode == TMC2130_MODE_SILENT) && (axis != Z_AXIS)) #else //TMC2130_STEALTH_Z if (tmc2130_mode == TMC2130_MODE_SILENT) #endif //TMC2130_STEALTH_Z { tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0); // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0); } else { // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24)); tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16)); tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis)); tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); } } } tmc2130_sg_homing_axes_mask = 0x00; } tmc2130_sg_crash = false; #endif } void tmc2130_sg_meassure_start(uint8_t axis) { tmc2130_sg_meassure = axis; tmc2130_sg_meassure_cnt = 0; tmc2130_sg_meassure_val = 0; } uint16_t tmc2130_sg_meassure_stop() { tmc2130_sg_meassure = 0xff; return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt; } bool tmc2130_wait_standstill_xy(int timeout) { // DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout); bool standstill = false; while (!standstill && (timeout > 0)) { uint32_t drv_status_x = 0; uint32_t drv_status_y = 0; tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x); tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y); // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y); standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000); tmc2130_check_overtemp(); timeout--; } return standstill; } void tmc2130_check_overtemp() { static uint32_t checktime = 0; if (_millis() - checktime > 1000 ) { for (uint_least8_t i = 0; i < 4; i++) { uint32_t drv_status = 0; skip_debug_msg = true; tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status); if (drv_status & ((uint32_t)1 << 26)) { // BIT 26 - over temp prewarning ~120C (+-20C) SERIAL_ERRORRPGM(MSG_TMC_OVERTEMP); SERIAL_ECHOLN(i); for (uint_least8_t j = 0; j < 4; j++) tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000); kill(MSG_TMC_OVERTEMP); } } checktime = _millis(); #ifdef DEBUG_CRASHDET_COUNTERS tmc2130_sg_change = true; #endif } #ifdef DEBUG_CRASHDET_COUNTERS if (tmc2130_sg_change) { for (int i = 0; i < 4; i++) { tmc2130_sg_change = false; lcd_set_cursor(0 + i*4, 3); lcd_print(itostr3(tmc2130_sg_cnt[i])); lcd_print(' '); } } #endif //DEBUG_CRASHDET_COUNTERS } void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r) { uint8_t intpol = (mres != 0); // intpol to 256 only if microsteps aren't 256 #ifdef TMC2130_DEDGE_STEPPING uint8_t dedge = 1; #else uint8_t dedge = 0; #endif uint8_t toff = tmc2130_chopper_config[axis].toff; // toff = 3 (fchop = 27.778kHz) uint8_t hstrt = tmc2130_chopper_config[axis].hstr; //initial 4, modified to 5 uint8_t hend = tmc2130_chopper_config[axis].hend; //original value = 1 uint8_t fd3 = 0; uint8_t rndtf = 0; //random off time uint8_t chm = 0; //spreadCycle uint8_t tbl = tmc2130_chopper_config[axis].tbl; //blanking time, original value = 2 if (axis == E_AXIS) { #if defined(TMC2130_INTPOL_E) && (TMC2130_INTPOL_E == 0) intpol = 0; #endif #ifdef TMC2130_CNSTOFF_E // fd = 0 (slow decay only) hstrt = 0; //fd0..2 fd3 = 0; //fd3 hend = 0; //sine wave offset chm = 1; // constant off time mod #endif //TMC2130_CNSTOFF_E // toff = TMC2130_TOFF_E; // toff = 3-5 // rndtf = 1; } #if defined(TMC2130_INTPOL_XY) && (TMC2130_INTPOL_XY == 0) else if (axis == X_AXIS || axis == Y_AXIS) { intpol = 0; } #endif #if defined(TMC2130_INTPOL_Z) && (TMC2130_INTPOL_Z == 0) else if (axis == Z_AXIS) { intpol = 0; } #endif // DBG(_n("tmc2130_setup_chopper(axis=%hhd, mres=%hhd, curh=%hhd, curr=%hhd\n"), axis, mres, current_h, current_r); // DBG(_n(" toff=%hhd, hstr=%hhd, hend=%hhd, tbl=%hhd\n"), toff, hstrt, hend, tbl); if (current_r <= 31) { tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, dedge, 0); tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f)); } else { tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 0, 0, 0, 0, mres, intpol, dedge, 0); tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f)); } } void tmc2130_set_current_h(uint8_t axis, uint8_t current) { // DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current); tmc2130_current_h[axis] = current; tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); } void tmc2130_set_current_r(uint8_t axis, uint8_t current) { // DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current); tmc2130_current_r[axis] = current; tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); } void tmc2130_print_currents() { printf_P(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"), tmc2130_current_h[0], tmc2130_current_r[0], tmc2130_current_h[1], tmc2130_current_r[1], tmc2130_current_h[2], tmc2130_current_r[2], tmc2130_current_h[3], tmc2130_current_r[3] ); } void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl) { // DBG(_n("tmc2130_set_pwm_ampl(axis=%hhd, pwm_ampl=%hhd\n"), axis, pwm_ampl); tmc2130_pwm_ampl[axis] = pwm_ampl; if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); } void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad) { // DBG(_n("tmc2130_set_pwm_grad(axis=%hhd, pwm_grad=%hhd\n"), axis, pwm_grad); tmc2130_pwm_grad[axis] = pwm_grad; if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT)) tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0); } uint16_t tmc2130_rd_TSTEP(uint8_t axis) { uint32_t val32 = 0; tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32); if (val32 & 0x000f0000) return 0xffff; return val32 & 0xffff; } uint16_t tmc2130_rd_MSCNT(uint8_t axis) { uint32_t val32 = 0; tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32); return val32 & 0x3ff; } uint32_t tmc2130_rd_MSCURACT(uint8_t axis) { uint32_t val32 = 0; tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32); return val32; } void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90) { uint32_t val = 0; val |= (uint32_t)start_sin; val |= ((uint32_t)start_sin90) << 16; tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val); //printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90); } void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3) { uint32_t val = 0; val |= ((uint32_t)w0); val |= ((uint32_t)w1) << 2; val |= ((uint32_t)w2) << 4; val |= ((uint32_t)w3) << 6; val |= ((uint32_t)x1) << 8; val |= ((uint32_t)x2) << 16; val |= ((uint32_t)x3) << 24; tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val); //printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3); } void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val) { tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val); //printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val); } void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g) { uint32_t val = 0; val |= (uint32_t)(toff & 15); val |= (uint32_t)(hstrt & 7) << 4; val |= (uint32_t)(hend & 15) << 7; val |= (uint32_t)(fd3 & 1) << 11; val |= (uint32_t)(disfdcc & 1) << 12; val |= (uint32_t)(rndtf & 1) << 13; val |= (uint32_t)(chm & 1) << 14; val |= (uint32_t)(tbl & 3) << 15; val |= (uint32_t)(vsense & 1) << 17; val |= (uint32_t)(vhighfs & 1) << 18; val |= (uint32_t)(vhighchm & 1) << 19; val |= (uint32_t)(sync & 15) << 20; val |= (uint32_t)(mres & 15) << 24; val |= (uint32_t)(intpol & 1) << 28; val |= (uint32_t)(dedge & 1) << 29; val |= (uint32_t)(diss2g & 1) << 30; tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val); } //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl) void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel) { uint32_t val = 0; val |= (uint32_t)(pwm_ampl & 255); val |= (uint32_t)(pwm_grad & 255) << 8; val |= (uint32_t)(pwm_freq & 3) << 16; val |= (uint32_t)(pwm_auto & 1) << 18; val |= (uint32_t)(pwm_symm & 1) << 19; val |= (uint32_t)(freewheel & 3) << 20; tmc2130_wr(axis, TMC2130_REG_PWMCONF, val); // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq } void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32) { tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32); } void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32) { tmc2130_wr(axis, TMC2130_REG_THIGH, val32); } uint8_t tmc2130_usteps2mres(uint16_t usteps) { uint8_t mres = 8; while (usteps >>= 1) mres--; return mres; } inline void tmc2130_cs_low(uint8_t axis) { switch (axis) { case X_AXIS: WRITE(X_TMC2130_CS, LOW); break; case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break; case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break; case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break; } } inline void tmc2130_cs_high(uint8_t axis) { switch (axis) { case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break; case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break; case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break; case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break; } } //spi #define TMC2130_SPI_ENTER() spi_setup(TMC2130_SPCR, TMC2130_SPSR) #define TMC2130_SPI_TXRX spi_txrx #define TMC2130_SPI_LEAVE() static void tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval) { //datagram1 - request TMC2130_SPI_ENTER(); tmc2130_cs_low(axis); TMC2130_SPI_TXRX(addr); // address TMC2130_SPI_TXRX((wval >> 24) & 0xff); // MSB TMC2130_SPI_TXRX((wval >> 16) & 0xff); TMC2130_SPI_TXRX((wval >> 8) & 0xff); TMC2130_SPI_TXRX(wval & 0xff); // LSB tmc2130_cs_high(axis); TMC2130_SPI_LEAVE(); } static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval) { //datagram1 - request TMC2130_SPI_ENTER(); tmc2130_cs_low(axis); TMC2130_SPI_TXRX(addr); // address TMC2130_SPI_TXRX(0); // MSB TMC2130_SPI_TXRX(0); TMC2130_SPI_TXRX(0); TMC2130_SPI_TXRX(0); // LSB tmc2130_cs_high(axis); TMC2130_SPI_LEAVE(); //datagram2 - response TMC2130_SPI_ENTER(); tmc2130_cs_low(axis); uint8_t stat = TMC2130_SPI_TXRX(0); // status uint32_t val32 = 0; val32 = TMC2130_SPI_TXRX(0); // MSB val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); // LSB tmc2130_cs_high(axis); TMC2130_SPI_LEAVE(); if (rval != 0) *rval = val32; return stat; } #define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON) #define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON) #define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON) #define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON) #define _SET_PWR_X(ena) WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON) #define _SET_PWR_Y(ena) WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON) #define _SET_PWR_Z(ena) WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON) #define _SET_PWR_E(ena) WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON) #define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR) #define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR) #define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR) #define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR) #define _SET_DIR_X(dir) WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR) #define _SET_DIR_Y(dir) WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR) #define _SET_DIR_Z(dir) WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR) #define _SET_DIR_E(dir) WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR) #ifdef TMC2130_DEDGE_STEPPING #define _DO_STEP_X TOGGLE(X_STEP_PIN) #define _DO_STEP_Y TOGGLE(Y_STEP_PIN) #define _DO_STEP_Z TOGGLE(Z_STEP_PIN) #define _DO_STEP_E TOGGLE(E0_STEP_PIN) #else #define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); } #define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); } #define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); } #define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); } #endif uint16_t tmc2130_get_res(uint8_t axis) { return tmc2130_mres2usteps(tmc2130_mres[axis]); } void tmc2130_set_res(uint8_t axis, uint16_t res) { tmc2130_mres[axis] = tmc2130_usteps2mres(res); // uint32_t u = _micros(); tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); // u = _micros() - u; // printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u); } uint8_t tmc2130_get_pwr(uint8_t axis) { switch (axis) { case X_AXIS: return _GET_PWR_X; case Y_AXIS: return _GET_PWR_Y; case Z_AXIS: return _GET_PWR_Z; case E_AXIS: return _GET_PWR_E; } return 0; } //! @par pwr motor power //! * 0 disabled //! * non-zero enabled void tmc2130_set_pwr(uint8_t axis, uint8_t pwr) { switch (axis) { case X_AXIS: _SET_PWR_X(pwr); break; case Y_AXIS: _SET_PWR_Y(pwr); break; case Z_AXIS: _SET_PWR_Z(pwr); break; case E_AXIS: _SET_PWR_E(pwr); break; } delayMicroseconds(TMC2130_SET_PWR_DELAY); } uint8_t tmc2130_get_inv(uint8_t axis) { switch (axis) { case X_AXIS: return INVERT_X_DIR; case Y_AXIS: return INVERT_Y_DIR; case Z_AXIS: return INVERT_Z_DIR; case E_AXIS: return INVERT_E0_DIR; } return 0; } uint8_t tmc2130_get_dir(uint8_t axis) { switch (axis) { case X_AXIS: return _GET_DIR_X; case Y_AXIS: return _GET_DIR_Y; case Z_AXIS: return _GET_DIR_Z; case E_AXIS: return _GET_DIR_E; } return 0; } void tmc2130_set_dir(uint8_t axis, uint8_t dir) { switch (axis) { case X_AXIS: _SET_DIR_X(dir); break; case Y_AXIS: _SET_DIR_Y(dir); break; case Z_AXIS: _SET_DIR_Z(dir); break; case E_AXIS: _SET_DIR_E(dir); break; } delayMicroseconds(TMC2130_SET_DIR_DELAY); } void tmc2130_do_step(uint8_t axis) { switch (axis) { case X_AXIS: _DO_STEP_X; break; case Y_AXIS: _DO_STEP_Y; break; case Z_AXIS: _DO_STEP_Z; break; case E_AXIS: _DO_STEP_E; break; } } void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us) { if (tmc2130_get_dir(axis) != dir) tmc2130_set_dir(axis, dir); while (steps--) { tmc2130_do_step(axis); delayMicroseconds(delay_us); } } void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution) { printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution); uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256u >> shift)) break; uint16_t cnt = 4 * (1 << (8 - shift)); uint16_t mscnt = tmc2130_rd_MSCNT(axis); if (dir == 2) { dir = tmc2130_get_inv(axis)?0:1; int steps = (int)step - (int)(mscnt >> shift); if (steps > static_cast(cnt / 2)) { dir ^= 1; steps = cnt - steps; // This can create a negative step value } if (steps < 0) { dir ^= 1; steps = -steps; } cnt = steps; } tmc2130_set_dir(axis, dir); mscnt = tmc2130_rd_MSCNT(axis); while ((cnt--) && ((mscnt >> shift) != step)) { tmc2130_do_step(axis); delayMicroseconds(delay_us); mscnt = tmc2130_rd_MSCNT(axis); } } void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream) { uint8_t pwr = tmc2130_get_pwr(axis); tmc2130_set_pwr(axis, 0); tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_goto_step(axis, 0, 2, 100, 256); tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1); for (unsigned int i = 0; i <= 255; i++) { uint32_t val = tmc2130_rd_MSCURACT(axis); uint16_t mscnt = tmc2130_rd_MSCNT(axis); int curA = (val & 0xff) | ((val << 7) & 0x8000); if (stream) { if (mscnt == i) fprintf_P(stream, PSTR("%d\t%d\n"), i, curA); else //TODO - remove this check fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt); } if (data) *(data++) = curA; tmc2130_do_step(axis); delayMicroseconds(100); } tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]); tmc2130_set_pwr(axis, pwr); } void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac1000) { // TMC2130 wave compression algorithm // optimized for minimal memory requirements // printf_P(PSTR("tmc2130_set_wave %hhd %hhd\n"), axis, fac1000); if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0; if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX; float fac = 0; if (fac1000) fac = ((float)((uint16_t)fac1000 + 1000) / 1000); //correction factor // printf_P(PSTR(" factor: %s\n"), ftostr43(fac)); uint8_t vA = 0; //value of currentA uint8_t va = 0; //previous vA int8_t d0 = 0; //delta0 int8_t d1 = 1; //delta1 uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL) uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL) uint8_t s = 0; //current segment int8_t b; //encoded bit value int8_t dA; //delta value int i; //microstep index uint32_t reg = 0; //tmc2130 register tmc2130_wr_MSLUTSTART(axis, 0, amp); for (i = 0; i < 256; i++) { if ((i & 0x1f) == 0) reg = 0; // calculate value if (fac == 0) // default TMC wave vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1; else // corrected wave vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5); dA = vA - va; // calculate delta va = vA; b = -1; if (dA == d0) b = 0; //delta == delta0 => bit=0 else if (dA == d1) b = 1; //delta == delta1 => bit=1 else { if (dA < d0) // delta < delta0 => switch wbit down { //printf("dn\n"); b = 0; switch (dA) { case -1: d0 = -1; d1 = 0; w[s+1] = 0; break; case 0: d0 = 0; d1 = 1; w[s+1] = 1; break; case 1: d0 = 1; d1 = 2; w[s+1] = 2; break; default: b = -1; break; } if (b >= 0) { x[s] = i; s++; } } else if (dA > d1) // delta > delta0 => switch wbit up { //printf("up\n"); b = 1; switch (dA) { case 1: d0 = 0; d1 = 1; w[s+1] = 1; break; case 2: d0 = 1; d1 = 2; w[s+1] = 2; break; case 3: d0 = 2; d1 = 3; w[s+1] = 3; break; default: b = -1; break; } if (b >= 0) { x[s] = i; s++; } } } if (b < 0) break; // delta out of range (<-1 or >3) if (s > 3) break; // segment out of range (> 3) //printf("%d\n", vA); if (b == 1) reg |= 0x80000000; if ((i & 31) == 31) tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg); else reg >>= 1; // printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg); } tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]); } void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2) { uint8_t changed = 1; while (changed) { changed = 0; for (uint8_t i = 0; i < (size - 1); i++) if (data[i] > data[i+1]) { uint8_t register d = data[i]; data[i] = data[i+1]; data[i+1] = d; if (data2) { d = data2[i]; data2[i] = data2[i+1]; data2[i+1] = d; } changed = 1; } } } uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol) { uint8_t cnt = 1; uint16_t sum = data[0]; uint8_t cl = 0; for (uint8_t i = 1; i < size; i++) { uint8_t d = data[i]; uint8_t val = sum / cnt; uint8_t dif = 0; if (val > d) dif = val - d; else dif = d - val; if (dif <= tol) { cnt += 1; sum += d; } else { if (ccnt) ccnt[cl] = cnt; if (cval) cval[cl] = val; cnt = 1; sum = d; cl += 1; } } if (ccnt) ccnt[cl] = cnt; if (cval) cval[cl] = sum / cnt; return ++cl; } bool tmc2130_home_calibrate(uint8_t axis) { uint8_t step[16]; uint8_t cnt[16]; uint8_t val[16]; homeaxis(axis, 16, step); bubblesort_uint8(step, 16, 0); puts_P(PSTR("sorted samples:")); for (uint8_t i = 0; i < 16; i++) printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]); uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1); puts_P(PSTR("clusters:")); for (uint8_t i = 0; i < cl; i++) printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]); bubblesort_uint8(cnt, cl, val); tmc2130_home_origin[axis] = val[cl-1]; printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]); if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]); else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]); return true; } //! @brief Translate current to tmc2130 vsense and IHOLD or IRUN //! @param cur current in mA //! @return 0 .. 63 //! @n most significant bit is CHOPCONF vsense bit (sense resistor voltage based current scaling) //! @n rest is to be used in IRUN or IHOLD register //! //! | mA | trinamic register | note | //! | --- | --- | --- | //! | 0 | 0 | doesn't mean current off, lowest current is 1/32 current with vsense low range | //! | 30 | 1 | | //! | 40 | 2 | | //! | 60 | 3 | | //! | 90 | 4 | | //! | 100 | 5 | | //! | 120 | 6 | | //! | 130 | 7 | | //! | 150 | 8 | | //! | 180 | 9 | | //! | 190 | 10 | | //! | 210 | 11 | | //! | 230 | 12 | | //! | 240 | 13 | | //! | 250 | 13 | | //! | 260 | 14 | | //! | 280 | 15 | | //! | 300 | 16 | | //! | 320 | 17 | | //! | 340 | 18 | | //! | 350 | 19 | | //! | 370 | 20 | | //! | 390 | 21 | | //! | 410 | 22 | | //! | 430 | 23 | | //! | 450 | 24 | | //! | 460 | 25 | | //! | 480 | 26 | | //! | 500 | 27 | | //! | 520 | 28 | | //! | 535 | 29 | | //! | N/D | 30 | extruder default | //! | 540 | 33 | | //! | 560 | 34 | | //! | 580 | 35 | | //! | 590 | 36 | farm mode extruder default | //! | 610 | 37 | | //! | 630 | 38 | | //! | 640 | 39 | | //! | 660 | 40 | | //! | 670 | 41 | | //! | 690 | 42 | | //! | 710 | 43 | | //! | 720 | 44 | | //! | 730 | 45 | | //! | 760 | 46 | | //! | 770 | 47 | | //! | 790 | 48 | | //! | 810 | 49 | | //! | 820 | 50 | | //! | 840 | 51 | | //! | 850 | 52 | | //! | 870 | 53 | | //! | 890 | 54 | | //! | 900 | 55 | | //! | 920 | 56 | | //! | 940 | 57 | | //! | 950 | 58 | | //! | 970 | 59 | | //! | 980 | 60 | | //! | 1000 | 61 | | //! | 1020 | 62 | | //! | 1029 | 63 | | uint8_t tmc2130_cur2val(float cur) { if (cur < 0) cur = 0; //limit min if (cur > 1029) cur = 1029; //limit max //540mA is threshold for switch from high sense to low sense //for higher currents is maximum current 1029mA if (cur >= 540) return 63 * (float)cur / 1029; //for lower currents must be the value divided by 1.125 (= 0.18*2/0.32) return 63 * (float)cur / (1029 * 1.125); } float tmc2130_val2cur(uint8_t val) { float rsense = 0.2; //0.2 ohm sense resistors uint8_t vsense = (val & 0x20)?0:1; //vsense bit = val>31 float vfs = vsense?0.18:0.32; //vfs depends on vsense bit uint8_t val2 = vsense?val:(val >> 1); //vals 32..63 shifted right (16..31) // equation from datasheet (0.7071 ~= 1/sqrt(2)) float cur = ((float)(val2 + 1)/32) * (vfs/(rsense + 0.02)) * 0.7071; return cur * 1000; //return current in mA } #endif //TMC2130