//! @file //! @date Aug 28, 2019 //! @author mkbel //! @brief LCD #include "temperature.h" #include "ultralcd.h" #include "conv2str.h" #include "Marlin.h" #include "language.h" #include "cardreader.h" #include "fancheck.h" #include "stepper.h" #include "ConfigurationStore.h" #include "printers.h" #include #include "lcd.h" #include "menu.h" #include "backlight.h" #include "util.h" #include "mesh_bed_leveling.h" #include "mesh_bed_calibration.h" //#include "Configuration.h" #include "cmdqueue.h" #include "Filament_sensor.h" #ifdef TMC2130 #include "tmc2130.h" #endif //TMC2130 #include "sound.h" #include "mmu2.h" #include "SpoolJoin.h" #include "static_assert.h" #include "first_lay_cal.h" #include "adc.h" #include "config.h" #ifndef LA_NOCOMPAT #include "la10compat.h" #endif #include "Prusa_farm.h" int clock_interval = 0; static void lcd_sd_updir(); static void lcd_mesh_bed_leveling_settings(); #ifdef LCD_BL_PIN static void lcd_backlight_menu(); #endif int8_t ReInitLCD = 0; uint8_t scrollstuff = 0; int8_t SilentModeMenu = SILENT_MODE_OFF; uint8_t SilentModeMenu_MMU = 1; //activate mmu unit stealth mode int8_t FSensorStateMenu = 1; LcdCommands lcd_commands_type = LcdCommands::Idle; static uint8_t lcd_commands_step = 0; CustomMsg custom_message_type = CustomMsg::Status; uint8_t custom_message_state = 0; bool isPrintPaused = false; static ShortTimer display_time; //just timer for showing pid finished message on lcd; static uint16_t pid_temp = DEFAULT_PID_TEMP; static float manual_feedrate[] = MANUAL_FEEDRATE; /* LCD message status */ static LongTimer lcd_status_message_timeout; static uint8_t lcd_status_message_level; static char lcd_status_message[LCD_WIDTH + 1]; /* !Configuration settings */ static uint8_t lay1cal_filament = 0; static const char separator[] PROGMEM = "--------------------"; /** forward declarations **/ static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg); // void copy_and_scalePID_i(); // void copy_and_scalePID_d(); /* Different menus */ //static void lcd_status_screen(); // NOT static due to using inside "Marlin_main" module ("manage_inactivity()") #if (LANG_MODE != 0) static void lcd_language_menu(); #endif static void lcd_main_menu(); static void lcd_tune_menu(); //static void lcd_move_menu(); static void lcd_settings_menu(); static void lcd_calibration_menu(); static void lcd_control_temperature_menu(); #ifdef TMC2130 static void lcd_settings_linearity_correction_menu_save(); #endif static void lcd_menu_xyz_y_min(); static void lcd_menu_xyz_skew(); static void lcd_menu_xyz_offset(); static void lcd_menu_fails_stats_mmu(); static void lcd_menu_fails_stats_mmu_print(); static void lcd_menu_fails_stats_mmu_total(); static void lcd_menu_toolchange_stats_mmu_total(); static void mmu_unload_filament(); static void lcd_v2_calibration(); //static void lcd_menu_show_sensors_state(); // NOT static due to using inside "Marlin_main" module ("manage_inactivity()") static void mmu_fil_eject_menu(); static void mmu_load_to_nozzle_menu(); static void mmu_loading_test_menu(); static void preheat_or_continue(); #ifdef MMU_HAS_CUTTER static void mmu_cut_filament_menu(); #endif //MMU_HAS_CUTTER #if defined(TMC2130) || defined(FILAMENT_SENSOR) static void lcd_menu_fails_stats(); #endif //TMC2130 or FILAMENT_SENSOR #ifdef TMC2130 static void lcd_belttest_v(); #endif //TMC2130 static void lcd_selftest_v(); #ifdef TMC2130 static void reset_crash_det(uint8_t axis); static bool lcd_selfcheck_axis_sg(uint8_t axis); #else static bool lcd_selfcheck_axis(int _axis, int _travel); static bool lcd_selfcheck_pulleys(int axis); #endif //TMC2130 static bool lcd_selfcheck_endstops(); static bool lcd_selfcheck_check_heater(bool _isbed); enum class TestScreen : uint_least8_t { ExtruderFan, PrintFan, FansOk, EndStops, AxisX, AxisY, AxisZ, Bed, Hotend, HotendOk, Fsensor, FsensorOk, AllCorrect, Failed, Home, }; enum class TestError : uint_least8_t { Heater, Bed, Endstops, Motor, Endstop, PrintFan, ExtruderFan, Pulley, Axis, SwappedFan, WiringFsensor, TriggeringFsensor, FsensorLevel }; static uint8_t lcd_selftest_screen(TestScreen screen, uint8_t _progress, uint8_t _progress_scale, bool _clear, uint16_t _delay); static void lcd_selftest_screen_step(uint8_t _row, uint8_t _col, uint8_t _state, const char *_name, const char *_indicator); static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite, bool _default=false); #ifdef FANCHECK /** Enumerate for lcd_selftest_fan_auto function. */ enum class FanCheck : uint_least8_t { Success, PrintFan, ExtruderFan, SwappedFan, }; /** * Try to check fan working and wiring. * * @param _fan i fan number 0 means hotend fan, 1 means print fan. * * @returns a TestError noerror, extruderFan, printFan or swappedFan. */ static FanCheck lcd_selftest_fan_auto(uint8_t _fan); #endif //FANCHECK #ifdef FILAMENT_SENSOR #if FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 static bool lcd_selftest_fsensor(); #elif FILAMENT_SENSOR_TYPE == FSENSOR_IR static bool selftest_irsensor(); #elif FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG static bool selftest_irsensor(); static bool lcd_selftest_IRsensor(bool bStandalone=false); static void lcd_detect_IRsensor(); #endif #endif //FILAMENT_SENSOR static void lcd_selftest_error(TestError error, const char *_error_1, const char *_error_2); static void lcd_colorprint_change(); static void lcd_disable_farm_mode(); static void lcd_set_fan_check(); #ifdef MMU_HAS_CUTTER static void lcd_cutter_enabled(); #endif #ifdef SDCARD_SORT_ALPHA static void lcd_sort_type_set(); #endif static void lcd_babystep_z(); static void lcd_sdcard_menu(); static void lcd_sheet_menu(); #ifdef DELTA_CALIBRATION_MENU static void lcd_delta_calibrate_menu(); #endif // DELTA_CALIBRATION_MENU /* Different types of actions that can be used in menu items. */ static void menu_action_sdfile(const char* filename); static void menu_action_sddirectory(const char* filename); #define ENCODER_FEEDRATE_DEADZONE 10 #define STATE_NA 255 #define STATE_OFF 0 #define STATE_ON 1 /* #define MENU_ITEM(type, label, args...) do { \ if (menu_item == menu_line) { \ if (lcd_draw_update) { \ const char* _label_pstr = (label); \ if (lcd_encoder == menu_item) { \ lcd_implementation_drawmenu_ ## type ## _selected (menu_row, _label_pstr , ## args ); \ }else{\ lcd_implementation_drawmenu_ ## type (menu_row, _label_pstr , ## args ); \ }\ }\ if (menu_clicked && (lcd_encoder == menu_item)) {\ lcd_quick_feedback(); \ menu_action_ ## type ( args ); \ return;\ }\ }\ menu_item++;\ } while(0) */ #if (SDCARDDETECT > 0) bool lcd_oldcardstatus; #endif uint8_t selected_sheet = 0; bool ignore_click = false; bool wait_for_unclick; // place-holders for Ki and Kd edits #ifdef PIDTEMP // float raw_Ki, raw_Kd; #endif bool bMain; // flag (i.e. 'fake parameter') for 'lcd_sdcard_menu()' function bool bSettings; // flag (i.e. 'fake parameter') for 'lcd_hw_setup_menu()' function const char STR_SEPARATOR[] PROGMEM = "------------"; static void lcd_implementation_drawmenu_sdfile(uint8_t row, const char* longFilename) { uint8_t len = LCD_WIDTH - 1; lcd_set_cursor(0, row); lcd_print((lcd_encoder == menu_item)?'>':' '); lcd_print_pad(longFilename, len); } static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* longFilename) { uint8_t len = LCD_WIDTH - 2; lcd_set_cursor(0, row); lcd_print((lcd_encoder == menu_item)?'>':' '); lcd_print(LCD_STR_FOLDER[0]); lcd_print_pad(longFilename, len); } #define MENU_ITEM_SDDIR(str_fn, str_fnl) do { if (menu_item_sddir(str_fn, str_fnl)) return; } while (0) #define MENU_ITEM_SDFILE(str_fn, str_fnl) do { if (menu_item_sdfile(str_fn, str_fnl)) return; } while (0) uint8_t menu_item_sddir(const char* str_fn, char* str_fnl) { if (menu_item == menu_line) { if (lcd_draw_update) { lcd_implementation_drawmenu_sddirectory(menu_row, (str_fnl[0] == '\0') ? str_fn : str_fnl); } if (menu_clicked && (lcd_encoder == menu_item)) { menu_clicked = false; lcd_consume_click(); lcd_update_enabled = false; menu_action_sddirectory(str_fn); lcd_update_enabled = true; return menu_item_ret(); } } menu_item++; return 0; } static uint8_t menu_item_sdfile(const char* str_fn, char* str_fnl) { if (menu_item == menu_line) { if (lcd_draw_update) { lcd_implementation_drawmenu_sdfile(menu_row, (str_fnl[0] == '\0') ? str_fn : str_fnl); } if (menu_clicked && (lcd_encoder == menu_item)) { menu_clicked = false; lcd_consume_click(); lcd_update_enabled = false; menu_action_sdfile(str_fn); lcd_update_enabled = true; return menu_item_ret(); } } menu_item++; return 0; } // Print temperature (nozzle/bed) (9 chars total) void lcdui_print_temp(char type, int val_current, int val_target) { int chars = lcd_printf_P(_N("%c%3d/%d%c"), type, val_current, val_target, LCD_STR_DEGREE[0]); lcd_space(9 - chars); } // Print Z-coordinate (8 chars total) void lcdui_print_Z_coord(void) { if (custom_message_type == CustomMsg::MeshBedLeveling) lcd_puts_P(_N("Z --- ")); else lcd_printf_P(_N("Z%6.2f%c"), current_position[Z_AXIS], axis_known_position[Z_AXIS]?' ':'?'); } #ifdef PLANNER_DIAGNOSTICS // Print planner diagnostics (8 chars total) void lcdui_print_planner_diag(void) { lcd_set_cursor(LCD_WIDTH - 8-2, 1); lcd_print(LCD_STR_FEEDRATE[0]); lcd_print(itostr3(feedmultiply)); lcd_puts_P(PSTR("% Q")); { uint8_t queue = planner_queue_min(); if (queue < (BLOCK_BUFFER_SIZE >> 1)) lcd_putc('!'); else { lcd_putc((char)(queue / 10) + '0'); queue %= 10; } lcd_putc((char)queue + '0'); planner_queue_min_reset(); } } #endif // PLANNER_DIAGNOSTICS // Print feedrate (8 chars total) void lcdui_print_feedrate(void) { int chars = lcd_printf_P(_N("%c%3d%%"), LCD_STR_FEEDRATE[0], feedmultiply); lcd_space(8 - chars); } // Print percent done in form "USB---%", " SD---%", " ---%" (7 chars total) void lcdui_print_percent_done(void) { const char* src = usb_timer.running()?_N("USB"):(IS_SD_PRINTING?_N(" SD"):_N(" ")); char per[4]; bool num = IS_SD_PRINTING || (printer_active() && (print_percent_done_normal != PRINT_PERCENT_DONE_INIT)); if (!num || heating_status != HeatingStatus::NO_HEATING) // either not printing or heating { const int8_t sheetNR = eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)); const int8_t nextSheet = eeprom_next_initialized_sheet(sheetNR); if ((nextSheet >= 0) && (sheetNR != nextSheet)) { char sheet[8]; eeprom_read_block(sheet, EEPROM_Sheets_base->s[sheetNR].name, 7); sheet[7] = '\0'; lcd_printf_P(PSTR("%-7s"),sheet); return; //do not also print the percentage } } sprintf_P(per, num?_N("%3d"):_N("---"), calc_percent_done()); lcd_printf_P(_N("%3S%3s%%"), src, per); } // Print extruder status (5 chars total) // Scenario 1: "F?" // There is no filament loaded and no tool change is in progress // Scenario 2: "F[nr.]" // [nr.] ranges from 1 to 5. // Shows which filament is loaded. No tool change is in progress // Scenario 3: "?>[nr.]" // [nr.] ranges from 1 to 5. // There is no filament currently loaded, but [nr.] is currently being loaded via tool change // Scenario 4: "[nr.]>?" // [nr.] ranges from 1 to 5. // This scenario indicates a bug in the firmware if ? is on the right side // Scenario 5: "[nr1.]>[nr2.]" // [nr1.] ranges from 1 to 5. // [nr2.] ranges from 1 to 5. // Filament [nr1.] was loaded, but [nr2.] is currently being loaded via tool change // Scenario 6: "?>?" // This scenario should not be possible and indicates a bug in the firmware uint8_t lcdui_print_extruder(void) { uint8_t chars = 1; lcd_space(1); if (MMU2::mmu2.get_current_tool() == MMU2::mmu2.get_tool_change_tool()) { lcd_putc('F'); lcd_putc(MMU2::mmu2.get_current_tool() == (uint8_t)MMU2::FILAMENT_UNKNOWN ? '?' : MMU2::mmu2.get_current_tool() + '1'); chars += 2; } else { lcd_putc(MMU2::mmu2.get_current_tool() == (uint8_t)MMU2::FILAMENT_UNKNOWN ? '?' : MMU2::mmu2.get_current_tool() + '1'); lcd_putc('>'); lcd_putc(MMU2::mmu2.get_tool_change_tool() == (uint8_t)MMU2::FILAMENT_UNKNOWN ? '?' : MMU2::mmu2.get_tool_change_tool() + '1'); chars += 3; } return chars; } // Print farm number (5 chars total) static void lcdui_print_farm(void) { lcd_printf_P(_N(" FRM ")); } #ifdef CMD_DIAGNOSTICS // Print CMD queue diagnostic (8 chars total) void lcdui_print_cmd_diag(void) { lcd_set_cursor(LCD_WIDTH - 8 -1, 2); lcd_puts_P(PSTR(" C")); lcd_print(buflen); // number of commands in cmd buffer if (buflen < 9) lcd_print(' '); } #endif //CMD_DIAGNOSTICS // Print time (8 chars total) void lcdui_print_time(void) { //if remaining print time estimation is available print it else print elapsed time int chars = 0; if (printer_active()) { uint16_t print_t = PRINT_TIME_REMAINING_INIT; uint16_t print_tr = PRINT_TIME_REMAINING_INIT; uint16_t print_tc = PRINT_TIME_REMAINING_INIT; char suff = ' '; char suff_doubt = ' '; #ifdef TMC2130 if (SilentModeMenu != SILENT_MODE_OFF) { if (print_time_remaining_silent != PRINT_TIME_REMAINING_INIT) print_tr = print_time_remaining_silent; //#ifdef CLOCK_INTERVAL_TIME if (print_time_to_change_silent != PRINT_TIME_REMAINING_INIT) print_tc = print_time_to_change_silent; //#endif //CLOCK_INTERVAL_TIME } else { #endif //TMC2130 if (print_time_remaining_normal != PRINT_TIME_REMAINING_INIT) print_tr = print_time_remaining_normal; //#ifdef CLOCK_INTERVAL_TIME if (print_time_to_change_normal != PRINT_TIME_REMAINING_INIT) print_tc = print_time_to_change_normal; //#endif //CLOCK_INTERVAL_TIME #ifdef TMC2130 } #endif //TMC2130 //#ifdef CLOCK_INTERVAL_TIME if (clock_interval == CLOCK_INTERVAL_TIME*2) clock_interval = 0; clock_interval++; if (print_tc != PRINT_TIME_REMAINING_INIT && clock_interval > CLOCK_INTERVAL_TIME) { print_t = print_tc; suff = 'C'; } else //#endif //CLOCK_INTERVAL_TIME if (print_tr != PRINT_TIME_REMAINING_INIT) { print_t = print_tr; suff = 'R'; } else print_t = _millis() / 60000 - starttime / 60000; if (feedmultiply != 100 && (print_t == print_tr || print_t == print_tc)) { suff_doubt = '?'; print_t = 100ul * print_t / feedmultiply; } if (print_t < 6000) //time<100h chars = lcd_printf_P(_N("%c%02u:%02u%c%c"), LCD_STR_CLOCK[0], print_t / 60, print_t % 60, suff, suff_doubt); else //time>=100h chars = lcd_printf_P(_N("%c%3uh %c%c"), LCD_STR_CLOCK[0], print_t / 60, suff, suff_doubt); } else chars = lcd_printf_P(_N("%c--:-- "), LCD_STR_CLOCK[0]); lcd_space(8 - chars); } //! @Brief Print status line on status screen void lcdui_print_status_line(void) { if (heating_status != HeatingStatus::NO_HEATING) { // If heating flag, show progress of heating heating_status_counter++; if (heating_status_counter > 13) { heating_status_counter = 0; } lcd_set_cursor(7, 3); lcd_space(13); for (uint8_t dots = 0; dots < heating_status_counter; dots++) { lcd_putc_at(7 + dots, 3, '.'); } switch (heating_status) { case HeatingStatus::EXTRUDER_HEATING: lcd_puts_at_P(0, 3, _T(MSG_HEATING)); break; case HeatingStatus::EXTRUDER_HEATING_COMPLETE: lcd_puts_at_P(0, 3, _T(MSG_HEATING_COMPLETE)); heating_status = HeatingStatus::NO_HEATING; heating_status_counter = 0; break; case HeatingStatus::BED_HEATING: lcd_puts_at_P(0, 3, _T(MSG_BED_HEATING)); break; case HeatingStatus::BED_HEATING_COMPLETE: lcd_puts_at_P(0, 3, _T(MSG_BED_DONE)); heating_status = HeatingStatus::NO_HEATING; heating_status_counter = 0; break; default: break; } } else if ((IS_SD_PRINTING) && (custom_message_type == CustomMsg::Status) && (lcd_status_message_level <= LCD_STATUS_INFO) && lcd_status_message_timeout.expired_cont(LCD_STATUS_INFO_TIMEOUT)) { // If printing from SD, show what we are printing const char* longFilenameOLD = (card.longFilename[0] ? card.longFilename : card.filename); if( lcd_print_pad(&longFilenameOLD[scrollstuff], LCD_WIDTH) ) { scrollstuff++; } else { scrollstuff = 0; } } else { // Otherwise check for other special events switch (custom_message_type) { case CustomMsg::M117: // M117 Set the status line message on the LCD case CustomMsg::Status: // Nothing special, print status message normally case CustomMsg::M0Wait: // M0/M1 Wait command working even from SD case CustomMsg::FilamentLoading: // If loading filament, print status case CustomMsg::MMUProgress: // MMU Progress Codes lcd_print_pad(lcd_status_message, LCD_WIDTH); break; case CustomMsg::MeshBedLeveling: // If mesh bed leveling in progress, show the status if (custom_message_state > 10) { lcd_set_cursor(0, 3); lcd_space(LCD_WIDTH); lcd_puts_at_P(0, 3, _T(MSG_CALIBRATE_Z_AUTO)); lcd_puts_P(PSTR(" : ")); lcd_print(custom_message_state - 10); } else { if (custom_message_state == 3) { lcd_setstatuspgm(MSG_WELCOME); custom_message_type = CustomMsg::Status; } if (custom_message_state > 3 && custom_message_state <= 10) { lcd_set_cursor(0, 3); lcd_space(19); lcd_puts_at_P(0, 3, _i("Calibration done")); ////MSG_HOMEYZ_DONE c=20 custom_message_state--; } } break; case CustomMsg::PidCal: // PID tuning in progress lcd_print_pad(lcd_status_message, LCD_WIDTH); if (pid_cycle <= pid_number_of_cycles && custom_message_state > 0) { lcd_set_cursor(10, 3); lcd_print(itostr3(pid_cycle)); lcd_print('/'); lcd_print(itostr3left(pid_number_of_cycles)); } break; case CustomMsg::TempCal: // PINDA temp calibration in progress lcd_set_cursor(0, 3); lcd_printf_P(PSTR("%-12.12S%-d/6"), _T(MSG_PINDA_CALIBRATION), custom_message_state); break; case CustomMsg::TempCompPreheat: // temp compensation preheat lcd_puts_at_P(0, 3, _i("PINDA Heating")); ////MSG_PINDA_PREHEAT c=20 if (custom_message_state <= PINDA_HEAT_T) { lcd_puts_P(PSTR(": ")); lcd_print(custom_message_state); // seconds lcd_print(' '); } break; case CustomMsg::Resuming: // Resuming lcd_puts_at_P(0, 3, _T(MSG_RESUMING_PRINT)); break; } } } //! @brief Show Status Screen //! //! @code{.unparsed} //! |01234567890123456789| //! |N 000/000D Z000.0 | //! |B 000/000D F100% | //! |USB100% T0 t--:-- | //! |Status line.........| //! ---------------------- //! N - nozzle temp symbol LCD_STR_THERMOMETER //! D - Degree sysmbol LCD_STR_DEGREE //! B - bed temp symbol LCD_STR_BEDTEMP //! F - feedrate symbol LCD_STR_FEEDRATE //! t - clock symbol LCD_STR_THERMOMETER //! @endcode void lcdui_print_status_screen(void) { lcd_set_cursor(0, 0); //line 0 //Print the hotend temperature (9 chars total) lcdui_print_temp(LCD_STR_THERMOMETER[0], (int)(degHotend(0) + 0.5), (int)(degTargetHotend(0) + 0.5)); lcd_space(3); //3 spaces //Print Z-coordinate (8 chars total) lcdui_print_Z_coord(); lcd_set_cursor(0, 1); //line 1 //Print the Bed temperature (9 chars total) lcdui_print_temp(LCD_STR_BEDTEMP[0], (int)(degBed() + 0.5), (int)(degTargetBed() + 0.5)); lcd_space(3); //3 spaces #ifdef PLANNER_DIAGNOSTICS //Print planner diagnostics (8 chars) lcdui_print_planner_diag(); #else // PLANNER_DIAGNOSTICS //Print Feedrate (8 chars) lcdui_print_feedrate(); #endif // PLANNER_DIAGNOSTICS lcd_set_cursor(0, 2); //line 2 //Print SD status (7 chars) lcdui_print_percent_done(); if (MMU2::mmu2.Enabled()) { // Print extruder status (5 chars) lcd_space(5 - lcdui_print_extruder()); } else if (farm_mode) { // Print farm number (5 chars) lcdui_print_farm(); } else { lcd_space(5); // 5 spaces } #ifdef CMD_DIAGNOSTICS //Print cmd queue diagnostics (8chars) lcdui_print_cmd_diag(); #else //Print time (8chars) lcdui_print_time(); #endif //CMD_DIAGNOSTICS lcd_set_cursor(0, 3); //line 3 #ifndef DEBUG_DISABLE_LCD_STATUS_LINE lcdui_print_status_line(); #endif //DEBUG_DISABLE_LCD_STATUS_LINE } // Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent void lcd_status_screen() // NOT static due to using inside "Marlin_main" module ("manage_inactivity()") { static uint8_t lcd_status_update_delay = 0; #ifdef ULTIPANEL_FEEDMULTIPLY // Dead zone at 100% feedrate if ((feedmultiply < 100 && (feedmultiply + int(lcd_encoder)) > 100) || (feedmultiply > 100 && (feedmultiply + int(lcd_encoder)) < 100)) { lcd_encoder = 0; feedmultiply = 100; } if (feedmultiply == 100 && int(lcd_encoder) > ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(lcd_encoder) - ENCODER_FEEDRATE_DEADZONE; lcd_encoder = 0; } else if (feedmultiply == 100 && int(lcd_encoder) < -ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(lcd_encoder) + ENCODER_FEEDRATE_DEADZONE; lcd_encoder = 0; } else if (feedmultiply != 100) { feedmultiply += int(lcd_encoder); lcd_encoder = 0; } #endif //ULTIPANEL_FEEDMULTIPLY if (feedmultiply < 10) feedmultiply = 10; else if (feedmultiply > 999) feedmultiply = 999; if (lcd_draw_update) { // Update the status screen immediately lcd_status_update_delay = 0; } if (lcd_status_update_delay) lcd_status_update_delay--; else { // Redraw the main screen every second (see LCD_UPDATE_INTERVAL). // This is easier then trying keep track of all things that change on the screen lcd_status_update_delay = 10; ReInitLCD++; if (ReInitLCD == 30) { lcd_refresh(); // to maybe revive the LCD if static electricity killed it. ReInitLCD = 0 ; } else { if ((ReInitLCD % 10) == 0) lcd_refresh_noclear(); //to maybe revive the LCD if static electricity killed it. } lcdui_print_status_screen(); prusa_statistics_update_from_status_screen(); if (lcd_commands_type != LcdCommands::Idle) lcd_commands(); } bool current_click = LCD_CLICKED; if (ignore_click) { if (wait_for_unclick) { if (!current_click) ignore_click = wait_for_unclick = false; else current_click = false; } else if (current_click) { lcd_quick_feedback(); wait_for_unclick = true; current_click = false; } } if (current_click && ( menu_block_mask == MENU_BLOCK_NONE ) // or a serious error blocks entering the menu ) { menu_depth = 0; //redundant, as already done in lcd_return_to_status(), just to be sure menu_submenu(lcd_main_menu); lcd_refresh(); // to maybe revive the LCD if static electricity killed it. } } void print_stop(); void lcd_commands() { if (planner_aborted) { // we are still within an aborted command. do not process any LCD command until we return return; } if (lcd_commands_type == LcdCommands::StopPrint) { if (!blocks_queued() && !homing_flag) { custom_message_type = CustomMsg::Status; lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); lcd_commands_type = LcdCommands::Idle; lcd_commands_step = 0; print_stop(); } } if (lcd_commands_type == LcdCommands::LongPause) { if (!blocks_queued() && !homing_flag) { if (custom_message_type != CustomMsg::M117) { custom_message_type = CustomMsg::Status; lcd_setstatuspgm(_i("Print paused"));////MSG_PRINT_PAUSED c=20 } lcd_commands_type = LcdCommands::Idle; lcd_commands_step = 0; long_pause(); } } if (lcd_commands_type == LcdCommands::Layer1Cal) { char cmd1[30]; if(lcd_commands_step>1) lcd_timeoutToStatus.start(); //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen if (!blocks_queued() && cmd_buffer_empty() && !saved_printing) { switch(lcd_commands_step) { case 0: lcd_commands_step = 11; break; case 11: lay1cal_wait_preheat(); lcd_commands_step = 10; break; case 10: lay1cal_load_filament(cmd1, lay1cal_filament); lcd_commands_step = 9; break; case 9: lcd_clear(); menu_depth = 0; menu_submenu(lcd_babystep_z); lay1cal_intro_line(); lcd_commands_step = 8; break; case 8: lay1cal_before_meander(); lcd_commands_step = 7; break; case 7: lay1cal_meander(cmd1); lcd_commands_step = 6; break; case 6: for (uint8_t i = 0; i < 4; i++) { lay1cal_square(cmd1, i); } lcd_commands_step = 5; break; case 5: for (uint8_t i = 4; i < 8; i++) { lay1cal_square(cmd1, i); } lcd_commands_step = 4; break; case 4: for (uint8_t i = 8; i < 12; i++) { lay1cal_square(cmd1, i); } lcd_commands_step = 3; break; case 3: for (uint8_t i = 12; i < 16; i++) { lay1cal_square(cmd1, i); } lcd_commands_step = 2; break; case 2: enquecommand_P(PSTR("M107")); //turn off printer fan enquecommand_P(PSTR("G1 E-0.07500 F2100.00000")); //retract enquecommand_P(PSTR("M104 S0")); // turn off temperature enquecommand_P(PSTR("M140 S0")); // turn off heatbed enquecommand_P(PSTR("G1 Z10 F1300.000")); //lift Z enquecommand_P(PSTR("G1 X10 Y180 F4000")); //Go to parking position if (MMU2::mmu2.Enabled()) enquecommand_P(PSTR("M702")); //unload from nozzle enquecommand_P(PSTR("M84"));// disable motors lcd_return_to_status(); //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen lcd_commands_step = 1; break; case 1: lcd_setstatuspgm(MSG_WELCOME); lcd_commands_step = 0; lcd_commands_type = LcdCommands::Idle; if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { lcd_wizard(WizState::RepeatLay1Cal); } break; } } } if (lcd_commands_type == LcdCommands::PidExtruder) { char cmd1[30]; if (lcd_commands_step == 0) { custom_message_type = CustomMsg::PidCal; custom_message_state = 1; lcd_draw_update = 3; lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued()) { //PID calibration preparePidTuning(); // ensure we don't move to the next step early sprintf_P(cmd1, PSTR("M303 E0 S%3u"), pid_temp); // setting the correct target temperature (for visualization) is done in PID_autotune enquecommand(cmd1); lcd_setstatuspgm(_i("PID cal."));////MSG_PID_RUNNING c=20 lcd_commands_step = 2; } if (lcd_commands_step == 2 && !pidTuningRunning()) { //saving to eeprom custom_message_state = 0; lcd_setstatuspgm(_i("PID cal. finished"));////MSG_PID_FINISHED c=20 setAllTargetHotends(0); // reset all hotends temperature including the number displayed on the main screen if (_Kp != 0 || _Ki != 0 || _Kd != 0) { sprintf_P(cmd1, PSTR("M301 P%.2f I%.2f D%.2f"), _Kp, _Ki, _Kd); enquecommand(cmd1); enquecommand_P(PSTR("M500")); } else { SERIAL_ECHOPGM("Invalid PID cal. results. Not stored to EEPROM."); } display_time.start(); lcd_commands_step = 1; } if ((lcd_commands_step == 1) && display_time.expired(2000)) { //calibration finished message lcd_setstatuspgm(MSG_WELCOME); custom_message_type = CustomMsg::Status; pid_temp = DEFAULT_PID_TEMP; lcd_commands_step = 0; lcd_commands_type = LcdCommands::Idle; } } #ifdef TEMP_MODEL if (lcd_commands_type == LcdCommands::TempModel) { if (lcd_commands_step == 0) { lcd_commands_step = 3; } if (lcd_commands_step == 3) { enquecommand_P(PSTR("M310 A F0")); lcd_commands_step = 2; } if (lcd_commands_step ==2 && temp_model_valid()) { enquecommand_P(PSTR("M310 S1")); lcd_commands_step = 1; } //if (lcd_commands_step == 1 && calibrated()) { if (lcd_commands_step == 1 && temp_model_valid()) { enquecommand_P(PSTR("M500")); lcd_commands_step = 0; lcd_commands_type = LcdCommands::Idle; } } #endif //TEMP_MODEL } void lcd_return_to_status() { lcd_refresh(); // to maybe revive the LCD if static electricity killed it. menu_goto(lcd_status_screen, 0, false, true); menu_depth = 0; eFilamentAction = FilamentAction::None; // i.e. non-autoLoad } //! @brief Pause print, disable nozzle heater, move to park position, send host action "paused" void lcd_pause_print() { stop_and_save_print_to_ram(0.0, -default_retraction); SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_PAUSED); isPrintPaused = true; // return to status is required to continue processing in the main loop! lcd_commands_type = LcdCommands::LongPause; lcd_return_to_status(); } //! @brief Send host action "pause" void lcd_pause_usb_print() { SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_ASK_PAUSE); } static void lcd_move_menu_axis(); /* Menu implementation */ static void lcd_cooldown() { setAllTargetHotends(0); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); } //! @brief append text label with a colon and format it into a fixed size output buffer //! It would have been much easier if there was a ':' in the labels. //! But since the texts like Bed, Nozzle and PINDA are used in other places //! it is better to reuse these texts even though it requires some extra formatting code. //! @param [in] ipgmLabel pointer to string in PROGMEM //! @param [out] pointer to string in RAM which will receive the formatted text. Must be allocated to appropriate size //! @param [in] dstSize allocated length of dst static void pgmtext_with_colon(const char *ipgmLabel, char *dst, uint8_t dstSize){ uint8_t i = 0; for(; i < dstSize - 2; ++i){ // 2 byte less than buffer, we'd be adding a ':' to the end uint8_t b = pgm_read_byte(ipgmLabel + i); if( ! b ) break; dst[i] = b; } dst[i] = ':'; // append the colon ++i; for(; i < dstSize - 1; ++i) // fill the rest with spaces dst[i] = ' '; dst[dstSize-1] = '\0'; // terminate the string properly } //! @brief Show Extruder Info //! //! @code{.unparsed} //! |01234567890123456789| //! |Hotend fan: 0000| MSG_HOTEND_FAN_SPEED c=15 //! |Print fan: 0000| MSG_PRINT_FAN_SPEED c=15 //! | | //! | | //! ---------------------- //! @endcode void lcd_menu_extruder_info() // NOT static due to using inside "Marlin_main" module ("manage_inactivity()") { lcd_timeoutToStatus.stop(); //infinite timeout lcd_home(); lcd_printf_P(PSTR("%-15.15S%-5d\n" "%-15.15S%-5d\n"), _T(MSG_HOTEND_FAN_SPEED), 60*fan_speed[0], _T(MSG_PRINT_FAN_SPEED), 60*fan_speed[1] ); menu_back_if_clicked(); } static uint16_t __attribute__((noinline)) clamp999(uint16_t v){ return v > 999 ? 999 : v; } //! @brief Show Fails Statistics MMU //! //! @code{.unparsed} //! |01234567890123456789| //! | Main | MSG_MAIN c=18 //! | Last print | MSG_LAST_PRINT c=18 //! | Total | MSG_TOTAL c=6 //! | | //! ---------------------- //! @endcode static void lcd_menu_fails_stats_mmu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_SUBMENU_P(_T(MSG_LAST_PRINT), lcd_menu_fails_stats_mmu_print); MENU_ITEM_SUBMENU_P(_T(MSG_TOTAL), lcd_menu_fails_stats_mmu_total); MENU_ITEM_SUBMENU_P(_O(PSTR("Toolchange count")), lcd_menu_toolchange_stats_mmu_total); MENU_END(); } //! @brief Show Last Print Failures Statistics MMU //! //! @code{.unparsed} //! |01234567890123456789| //! |Last print failures | MSG_LAST_PRINT_FAILURES c=20 //! | MMU fails 000| MSG_MMU_FAILS c=15 //! | MMU load fails 000| MSG_MMU_LOAD_FAILS c=15 //! | | //! ---------------------- //! @endcode static void lcd_menu_fails_stats_mmu_print() { lcd_timeoutToStatus.stop(); //infinite timeout lcd_home(); lcd_printf_P( PSTR("%S\n" " %-16.16S%-3d\n" " %-16.16S%-3d" ), _T(MSG_LAST_PRINT_FAILURES), _T(MSG_MMU_FAILS), clamp999( eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) ), _T(MSG_MMU_LOAD_FAILS), clamp999( eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) )); menu_back_if_clicked_fb(); } //! @brief Show Total Failures Statistics MMU //! //! @code{.unparsed} //! |01234567890123456789| //! |Total failures | MSG_TOTAL_FAILURES c=20 //! | MMU fails 000| MSG_MMU_FAILS c=15 //! | MMU load fails 000| MSG_MMU_LOAD_FAILS c=15 //! | MMU power fails 000| MSG_MMU_POWER_FAILS c=15 //! ---------------------- //! @endcode static void lcd_menu_fails_stats_mmu_total() { lcd_timeoutToStatus.stop(); //infinite timeout lcd_home(); lcd_printf_P( PSTR("%S\n" " %-16.16S%-3d\n" " %-16.16S%-3d\n" " %-16.16S%-3d" ), _T(MSG_TOTAL_FAILURES), _T(MSG_MMU_FAILS), clamp999( eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) ), _T(MSG_MMU_LOAD_FAILS), clamp999( eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) ), _T(MSG_MMU_POWER_FAILS), clamp999( MMU2::mmu2.TMCFailures() )); menu_back_if_clicked_fb(); } //! @brief Show Total Failures Statistics MMU //! //! @code{.unparsed} //! |01234567890123456789| //! |Toolchange count: | //! | 4294967295| //! | | //! | | //! ---------------------- //! @endcode static void lcd_menu_toolchange_stats_mmu_total() { typedef struct { bool initialized; // 1byte } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if(!_md->initialized) { lcd_set_cursor(0, 0); lcd_puts_P(PSTR("Toolchange count:")); lcd_set_cursor(10, 1); lcd_print(eeprom_read_dword((uint32_t*)EEPROM_TOTAL_TOOLCHANGE_COUNT)); _md->initialized = true; } menu_back_if_clicked_fb(); } #if defined(TMC2130) && defined(FILAMENT_SENSOR) static const char failStatsFmt[] PROGMEM = "%S\n" " %-16.16S%-3d\n" " %-16.16S%-3d\n" " %-7.7SX %-3d Y %-3d"; //! @brief Show Total Failures Statistics MMU //! //! @code{.unparsed} //! |01234567890123456789| //! |Total failures | MSG_TOTAL_FAILURES c=20 //! | Power failures 000| MSG_POWER_FAILURES c=15 //! | Fil. runouts 000| MSG_FIL_RUNOUTS c=15 //! | Crash X:000 Y:000| MSG_CRASH c=7 //! ---------------------- //! @endcode static void lcd_menu_fails_stats_total() { lcd_timeoutToStatus.stop(); //infinite timeout lcd_home(); lcd_printf_P(failStatsFmt, _T(MSG_TOTAL_FAILURES), _T(MSG_POWER_FAILURES), clamp999( eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) ), _T(MSG_FIL_RUNOUTS), clamp999( eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) ), _T(MSG_CRASH), clamp999( eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) ), clamp999( eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) )); menu_back_if_clicked_fb(); } //! @brief Show Last Print Failures Statistics //! //! @code{.unparsed} //! |01234567890123456789| //! |Last print failures | MSG_LAST_PRINT_FAILURES c=20 //! | Power failures 000| MSG_POWER_FAILURES c=15 //! | Fil. runouts 000| MSG_FIL_RUNOUTS c=15 //! | Crash X 000 Y 000| MSG_CRASH c=7 //! ---------------------- //! @endcode //! @todo leptun refactor this piece of code please static void lcd_menu_fails_stats_print() { lcd_timeoutToStatus.stop(); //infinite timeout uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT); uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X); uint8_t crashY = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y); lcd_home(); lcd_printf_P(failStatsFmt, _T(MSG_LAST_PRINT_FAILURES), _T(MSG_POWER_FAILURES), power, _T(MSG_FIL_RUNOUTS), filam, _T(MSG_CRASH), crashX, crashY); menu_back_if_clicked_fb(); } //! @brief Open fail statistics menu //! //! This version of function is used, when there is filament sensor, //! power failure and crash detection. //! There are Last print and Total menu items. //! //! @code{.unparsed} //! |01234567890123456789| //! | Main | MSG_MAIN c=18 //! | Last print | MSG_LAST_PRINT c=18 //! | Total | MSG_TOTAL c=6 //! | | //! ---------------------- //! @endcode static void lcd_menu_fails_stats() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_SUBMENU_P(_T(MSG_LAST_PRINT), lcd_menu_fails_stats_print); MENU_ITEM_SUBMENU_P(_T(MSG_TOTAL), lcd_menu_fails_stats_total); MENU_END(); } #elif defined(FILAMENT_SENSOR) static const char failStatsFmt[] PROGMEM = "%S\n" " %-16.16S%-3d\n" "%S\n" " %-16.16S%-3d\n"; //! //! @brief Print last print and total filament run outs //! //! This version of function is used, when there is filament sensor, //! but no other sensors (e.g. power failure, crash detection). //! //! Example screen: //! @code{.unparsed} //! |01234567890123456789| //! |Last print failures | MSG_LAST_PRINT_FAILURES c=20 //! | Fil. runouts 000| MSG_FIL_RUNOUTS c=15 //! |Total failures | MSG_TOTAL_FAILURES c=20 //! | Fil. runouts 000| MSG_FIL_RUNOUTS c=15 //! ---------------------- //! @endcode static void lcd_menu_fails_stats() { lcd_timeoutToStatus.stop(); //infinite timeout uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint16_t filamentTotal = clamp999( eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) ); lcd_home(); lcd_printf_P(failStatsFmt, _T(MSG_LAST_PRINT_FAILURES), _T(MSG_FIL_RUNOUTS), filamentLast, _T(MSG_TOTAL_FAILURES), _T(MSG_FIL_RUNOUTS), filamentTotal); menu_back_if_clicked(); } #else static void lcd_menu_fails_stats() { lcd_timeoutToStatus.stop(); //infinite timeout MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_END(); } #endif //TMC2130 #ifdef DEBUG_BUILD #ifdef DEBUG_STACK_MONITOR extern uint16_t SP_min; extern char* __malloc_heap_start; extern char* __malloc_heap_end; #endif //DEBUG_STACK_MONITOR //! @brief Show Debug Information //! //! @code{.unparsed} //! |01234567890123456789| //! |RAM statistics | c=20 //! | SP_min: 0000| c=14 //! | heap_start: 0000| c=14 //! | heap_end: 0000| c=14 //! ---------------------- //! @endcode //! @todo Positioning of the messages and values on LCD aren't fixed to their exact place. This causes issues with translations. static void lcd_menu_debug() { #ifdef DEBUG_STACK_MONITOR lcd_home(); lcd_printf_P(PSTR("RAM statistics\n" ////c=20 " SP_min: 0x%04x\n" ////c=14 " heap_start: 0x%04x\n" ////c=14 " heap_end: 0x%04x"), SP_min, __malloc_heap_start, __malloc_heap_end); ////c=14 #endif //DEBUG_STACK_MONITOR menu_back_if_clicked_fb(); } #endif /* DEBUG_BUILD */ //! @brief common line print for lcd_menu_temperatures //! @param [in] ipgmLabel pointer to string in PROGMEM //! @param [in] value to be printed behind the label static void lcd_menu_temperatures_line(const char *ipgmLabel, int value){ static const size_t maxChars = 15; char tmp[maxChars]; pgmtext_with_colon(ipgmLabel, tmp, maxChars); lcd_printf_P(PSTR(" %s%3d\x01 \n"), tmp, value); // no need to add -14.14 to string alignment } //! @brief Show Temperatures //! //! @code{.unparsed} //! |01234567890123456789| //! | Nozzle: 000D| MSG_NOZZLE c=10 //! | Bed: 000D| MSG_BED c=13 //! | Ambient: 000D| MSG_AMBIENTc=14 //! | PINDA: 000D| MSG_PINDA c=14 //! ---------------------- //! D - Degree sysmbol LCD_STR_DEGREE //! @endcode static void lcd_menu_temperatures() { lcd_timeoutToStatus.stop(); //infinite timeout lcd_home(); lcd_menu_temperatures_line( _T(MSG_NOZZLE), (int)current_temperature[0] ); lcd_menu_temperatures_line( _T(MSG_BED), (int)current_temperature_bed ); #ifdef AMBIENT_THERMISTOR lcd_menu_temperatures_line( _i("Ambient"), (int)current_temperature_ambient ); ////MSG_AMBIENT c=14 #endif //AMBIENT_THERMISTOR #ifdef PINDA_THERMISTOR lcd_menu_temperatures_line(MSG_PINDA, (int)current_temperature_pinda ); ////MSG_PINDA #endif //PINDA_THERMISTOR menu_back_if_clicked(); } #if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) || (defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG)) #define VOLT_DIV_R1 10000 #define VOLT_DIV_R2 2370 #define VOLT_DIV_FAC ((float)VOLT_DIV_R2 / (VOLT_DIV_R2 + VOLT_DIV_R1)) //! @brief Show Voltages //! //! @code{.unparsed} //! |01234567890123456789| //! | | //! | PWR: 00.0V | c=12 //! | Bed: 00.0V | c=12 //! | IR : 00.0V | c=12 optional //! ---------------------- //! @endcode static void lcd_menu_voltages() { lcd_timeoutToStatus.stop(); //infinite timeout float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; lcd_home(); lcd_printf_P(PSTR(" PWR: %4.1fV\n" " BED: %4.1fV"), volt_pwr, volt_bed); #ifdef IR_SENSOR_ANALOG lcd_printf_P(PSTR("\n IR : %3.1fV"), fsensor.Raw2Voltage(fsensor.getVoltRaw())); #endif //IR_SENSOR_ANALOG menu_back_if_clicked(); } #endif //defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) || defined(IR_SENSOR_ANALOG) #ifdef TMC2130 //! @brief Show Belt Status //! //! @code{.unparsed} //! |01234567890123456789| //! | Belt status | c=18 //! | X: 000 | //! | Y: 000 | //! | | //! ---------------------- //! @endcode static void lcd_menu_belt_status() { lcd_home(); lcd_printf_P(PSTR("%S\n" " X %d\n" " Y %d"), _T(MSG_BELT_STATUS), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y))); menu_back_if_clicked(); } #endif //TMC2130 #ifdef RESUME_DEBUG extern void stop_and_save_print_to_ram(float z_move, float e_move); extern void restore_print_from_ram_and_continue(float e_move); static void lcd_menu_test_save() { stop_and_save_print_to_ram(10, -0.8); } static void lcd_menu_test_restore() { restore_print_from_ram_and_continue(0.8); } #endif //RESUME_DEBUG //! @brief Show Preheat Menu static void lcd_preheat_menu() { eFilamentAction = FilamentAction::Preheat; lcd_generic_preheat_menu(); } #ifdef MENU_DUMP #include "xflash_dump.h" static void lcd_dump_memory() { lcd_beeper_quick_feedback(); xfdump_dump(); lcd_return_to_status(); } #endif //MENU_DUMP #ifdef MENU_SERIAL_DUMP #include "Dcodes.h" static void lcd_serial_dump() { serial_dump_and_reset(dump_crash_reason::manual); } #endif //MENU_SERIAL_DUMP #if defined(DEBUG_BUILD) && defined(EMERGENCY_HANDLERS) #include #ifdef WATCHDOG static void lcd_wdr_crash() { while (1); } #endif static uint8_t lcd_stack_crash_(uint8_t arg, uint32_t sp = 0) { // populate the stack with an increasing value for ease of testing volatile uint16_t tmp __attribute__((unused)) = sp; _delay(arg); uint8_t ret = lcd_stack_crash_(arg, SP); // required to avoid tail call elimination and to slow down the stack growth _delay(ret); return ret; } static void lcd_stack_crash() { #ifdef WATCHDOG wdt_disable(); #endif // delay choosen in order to hit the stack-check in the temperature isr reliably lcd_stack_crash_(10); } #endif #ifdef DEBUG_PULLUP_CRASH void TestPullupCrash() { PORTF |= 0x01; } #endif // DEBUG_PULLUP_CRASH //! @brief Show Support Menu //! //! @code{.unparsed} //! |01234567890123456789| //! | Main | MSG_MAIN c=18 //! | Firmware: | c=18 //! | 3.7.2.-2363 | c=16 //! | prusa3d.com | MSG_PRUSA3D //! | forum.prusa3d.com | MSG_PRUSA3D_FORUM //! | help.prusa3d.com | MSG_PRUSA3D_HELP //! | -------------- | STR_SEPARATOR //! | 1_75mm_MK3 | FILAMENT_SIZE //! | help.prusa3d.com | ELECTRONICS //! | help.prusa3d.com | NOZZLE_TYPE //! | -------------- | STR_SEPARATOR //! | Date: | c=17 //! | MMM DD YYYY | __DATE__ //! | -------------- | STR_SEPARATOR //! @endcode //! //! If MMU is connected //! //! @code{.unparsed} //! | MMU2 connected | c=18 //! | FW: 1.0.6-7064523 | //! @endcode //! //! If MMU is not connected //! //! @code{.unparsed} //! | MMU2 N/A | c=18 //! @endcode //! //! If Flash Air is connected //! //! @code{.unparsed} //! | -------------- | STR_SEPARATOR //! | FlashAir IP Addr: | c=18 //! | 192.168.1.100 | //! @endcode //! //! @code{.unparsed} //! | -------------- | STR_SEPARATOR //! | XYZ cal. details | MSG_XYZ_DETAILS c=18 //! | Extruder info | MSG_INFO_EXTRUDER //! | XYZ cal. details | MSG_INFO_SENSORS //! @endcode //! //! If TMC2130 defined //! //! @code{.unparsed} //! | Belt status | MSG_BELT_STATUS //! @endcode //! //! @code{.unparsed} //! | Temperatures | MSG_MENU_TEMPERATURES //! @endcode //! //! If Voltage Bed and PWR Pin are defined //! //! @code{.unparsed} //! | Voltages | MSG_MENU_VOLTAGES //! @endcode //! //! //! If DEBUG_BUILD is defined //! //! @code{.unparsed} //! | Debug | c=18 //! @endcode //! ---------------------- //! @endcode static void lcd_support_menu() { typedef struct { // 22bytes total int8_t status; // 1byte bool is_flash_air; // 1byte uint32_t ip; // 4bytes char ip_str[IP4_STR_SIZE]; // 16bytes } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0 || lcd_draw_update == 2) { // Menu was entered or SD card status has changed (plugged in or removed). // Initialize its status. _md->status = 1; _md->is_flash_air = card.ToshibaFlashAir_isEnabled(); if (_md->is_flash_air) { card.ToshibaFlashAir_GetIP((uint8_t*)(&_md->ip)); // ip == 0 if it failed } } else if (_md->is_flash_air && _md->ip == 0 && ++ _md->status == 16) { // Waiting for the FlashAir card to get an IP address from a router. Force an update. _md->status = 0; } MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_BACK_P(PSTR("Firmware:")); MENU_ITEM_BACK_P(PSTR(" " FW_VERSION_FULL)); #if (FW_DEV_VERSION != FW_VERSION_GOLD) && (FW_DEV_VERSION != FW_VERSION_RC) MENU_ITEM_BACK_P(PSTR(" repo " FW_REPOSITORY)); #endif // Ideally this block would be optimized out by the compiler. /* const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P()); if (fw_string_len < 6) { MENU_ITEM_BACK_P(PSTR(MSG_FW_VERSION " - " FW_version)); } else { MENU_ITEM_BACK_P(PSTR("FW - " FW_version)); }*/ MENU_ITEM_BACK_P(_n("prusa3d.com"));////MSG_PRUSA3D c=18 MENU_ITEM_BACK_P(_n("forum.prusa3d.com"));////MSG_PRUSA3D_FORUM c=18 MENU_ITEM_BACK_P(_n("help.prusa3d.com"));////MSG_PRUSA3D_HELP c=18 MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(PSTR(FILAMENT_SIZE)); MENU_ITEM_BACK_P(PSTR(ELECTRONICS)); MENU_ITEM_BACK_P(PSTR(NOZZLE_TYPE)); MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(_i("Date:"));////MSG_DATE c=17 MENU_ITEM_BACK_P(PSTR(SOURCE_DATE_EPOCH)); #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(PSTR("Fil. sensor v.:")); MENU_ITEM_BACK_P(fsensor.getIRVersionText()); #endif // IR_SENSOR_ANALOG MENU_ITEM_BACK_P(STR_SEPARATOR); if (MMU2::mmu2.Enabled()) { MENU_ITEM_BACK_P(_i("MMU2 connected")); ////MSG_MMU_CONNECTED c=18 MENU_ITEM_BACK_P(PSTR(" FW:")); ////c=17 if (((menu_item - 1) == menu_line) && lcd_draw_update) { lcd_set_cursor(6, menu_row); MMU2::Version mmu_version = MMU2::mmu2.GetMMUFWVersion(); if (mmu_version.major > 0) lcd_printf_P(PSTR("%d.%d.%d"), mmu_version.major, mmu_version.minor, mmu_version.build); else lcd_puts_P(_i("unknown")); ////MSG_UNKNOWN c=13 } } else MENU_ITEM_BACK_P(PSTR("MMU2 N/A")); // Show the FlashAir IP address, if the card is available. if (_md->is_flash_air) { MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(PSTR("FlashAir IP Addr:")); ////MSG_FLASHAIR c=18 MENU_ITEM_BACK_P(PSTR(" ")); if (((menu_item - 1) == menu_line) && lcd_draw_update) { lcd_set_cursor(2, menu_row); ip4_to_str(_md->ip_str, (uint8_t*)(&_md->ip)); lcd_print(_md->ip_str); } } // Show the printer IP address, if it is available. if (IP_address) { MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_BACK_P(_i("Printer IP Addr:")); ////MSG_PRINTER_IP c=18 MENU_ITEM_BACK_P(PSTR(" ")); if (((menu_item - 1) == menu_line) && lcd_draw_update) { lcd_set_cursor(2, menu_row); ip4_to_str(_md->ip_str, (uint8_t*)(&IP_address)); lcd_print(_md->ip_str); } } MENU_ITEM_BACK_P(STR_SEPARATOR); MENU_ITEM_SUBMENU_P(_i("XYZ cal. details"), lcd_menu_xyz_y_min);////MSG_XYZ_DETAILS c=18 MENU_ITEM_SUBMENU_P(_i("Extruder info"), lcd_menu_extruder_info);////MSG_INFO_EXTRUDER c=18 MENU_ITEM_SUBMENU_P(_i("Sensor info"), lcd_menu_show_sensors_state);////MSG_INFO_SENSORS c=18 #ifdef TMC2130 MENU_ITEM_SUBMENU_P(_T(MSG_BELT_STATUS), lcd_menu_belt_status); #endif //TMC2130 MENU_ITEM_SUBMENU_P(_i("Temperatures"), lcd_menu_temperatures);////MSG_MENU_TEMPERATURES c=18 #if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) MENU_ITEM_SUBMENU_P(_i("Voltages"), lcd_menu_voltages);////MSG_MENU_VOLTAGES c=18 #endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN #ifdef MENU_DUMP MENU_ITEM_FUNCTION_P(_n("Dump memory"), lcd_dump_memory); #endif //MENU_DUMP #ifdef MENU_SERIAL_DUMP if (emergency_serial_dump) MENU_ITEM_FUNCTION_P(_n("Dump to serial"), lcd_serial_dump); #endif #ifdef DEBUG_BUILD #ifdef EMERGENCY_HANDLERS #ifdef WATCHDOG MENU_ITEM_FUNCTION_P(PSTR("WDR crash"), lcd_wdr_crash); #endif //WATCHDOG MENU_ITEM_FUNCTION_P(PSTR("Stack crash"), lcd_stack_crash); #endif //EMERGENCY_HANDLERS MENU_ITEM_SUBMENU_P(PSTR("Debug"), lcd_menu_debug);////MSG_DEBUG c=18 #endif /* DEBUG_BUILD */ MENU_END(); } void lcd_set_fan_check() { fans_check_enabled = !fans_check_enabled; eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED, fans_check_enabled); #ifdef FANCHECK if (fans_check_enabled == false) fan_check_error = EFCE_OK; //reset error if fanCheck is disabled during error. Allows resuming print. #endif //FANCHECK } #ifdef MMU_HAS_CUTTER void lcd_cutter_enabled() { if (EEPROM_MMU_CUTTER_ENABLED_enabled == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED)) { #ifndef MMU_ALWAYS_CUT eeprom_update_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED, 0); } #else //MMU_ALWAYS_CUT eeprom_update_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED, EEPROM_MMU_CUTTER_ENABLED_always); } else if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED)) { eeprom_update_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED, 0); } #endif //MMU_ALWAYS_CUT else { eeprom_update_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED, EEPROM_MMU_CUTTER_ENABLED_enabled); } } #endif //MMU_HAS_CUTTER void lcd_set_filament_autoload() { fsensor.setAutoLoadEnabled(!fsensor.getAutoLoadEnabled()); } #if defined(FILAMENT_SENSOR) && defined(PAT9125) void lcd_set_filament_oq_meass() { fsensor_oq_meassure_set(!fsensor_oq_meassure_enabled); } #endif FilamentAction eFilamentAction=FilamentAction::None; // must be initialized as 'non-autoLoad' bool bFilamentPreheatState; bool bFilamentAction=false; static bool bFilamentWaitingFlag=false; static void mFilamentPrompt() { uint8_t nLevel; lcd_set_cursor(0,0); lcdui_print_temp(LCD_STR_THERMOMETER[0],(int)degHotend(0),(int)degTargetHotend(0)); lcd_puts_at_P(0,1, _i("Press the knob")); ////MSG_PRESS_KNOB c=20 lcd_set_cursor(0,2); switch(eFilamentAction) { case FilamentAction::Load: case FilamentAction::AutoLoad: case FilamentAction::MmuLoad: case FilamentAction::MmuLoadingTest: lcd_puts_P(_i("to load filament")); ////MSG_TO_LOAD_FIL c=20 break; case FilamentAction::UnLoad: case FilamentAction::MmuUnLoad: lcd_puts_P(_i("to unload filament")); ////MSG_TO_UNLOAD_FIL c=20 break; case FilamentAction::MmuEject: case FilamentAction::MmuCut: case FilamentAction::None: case FilamentAction::Preheat: case FilamentAction::Lay1Cal: break; } if(lcd_clicked() #ifdef FILAMENT_SENSOR /// @todo leptun - add this as a specific retest item || (((eFilamentAction == FilamentAction::Load) || (eFilamentAction == FilamentAction::AutoLoad)) && fsensor.getFilamentLoadEvent()) #endif //FILAMENT_SENSOR ) { nLevel=2; if(!bFilamentPreheatState) { nLevel++; // setTargetHotend0(0.0); // uncoment if return to base-state is required } menu_back(nLevel); switch(eFilamentAction) { case FilamentAction::AutoLoad: eFilamentAction=FilamentAction::None; // i.e. non-autoLoad // FALLTHRU case FilamentAction::Load: loading_flag=true; enquecommand_P(PSTR("M701")); // load filament break; case FilamentAction::UnLoad: enquecommand_P(PSTR("M702")); // unload filament break; case FilamentAction::MmuLoad: case FilamentAction::MmuLoadingTest: case FilamentAction::MmuUnLoad: case FilamentAction::MmuEject: case FilamentAction::MmuCut: case FilamentAction::None: case FilamentAction::Preheat: case FilamentAction::Lay1Cal: break; } } } void mFilamentItem(uint16_t nTemp, uint16_t nTempBed) { static int nTargetOld; static int nTargetBedOld; uint8_t nLevel; nTargetOld = target_temperature[0]; nTargetBedOld = target_temperature_bed; setTargetHotend0((float )nTemp); setTargetBed((float) nTempBed); { const FilamentAction action = eFilamentAction; if (action == FilamentAction::Preheat || action == FilamentAction::Lay1Cal) { lcd_return_to_status(); if (action == FilamentAction::Lay1Cal) { lcd_commands_type = LcdCommands::Layer1Cal; } else { raise_z_above(MIN_Z_FOR_PREHEAT); if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE)) lcd_wizard(WizState::LoadFilHot); } return; } } lcd_timeoutToStatus.stop(); if (current_temperature[0] > (target_temperature[0] * 0.95)) { switch (eFilamentAction) { case FilamentAction::Load: case FilamentAction::AutoLoad: case FilamentAction::UnLoad: if (bFilamentWaitingFlag) menu_submenu(mFilamentPrompt); else { nLevel = bFilamentPreheatState ? 1 : 2; menu_back(nLevel); if ((eFilamentAction == FilamentAction::Load) || (eFilamentAction == FilamentAction::AutoLoad)) { loading_flag = true; enquecommand_P(PSTR("M701")); // load filament if (eFilamentAction == FilamentAction::AutoLoad) eFilamentAction = FilamentAction::None; // i.e. non-autoLoad } if (eFilamentAction == FilamentAction::UnLoad) enquecommand_P(PSTR("M702")); // unload filament } break; case FilamentAction::MmuLoad: nLevel = bFilamentPreheatState ? 1 : 2; bFilamentAction = true; menu_back(nLevel); menu_submenu(mmu_load_to_nozzle_menu); break; case FilamentAction::MmuLoadingTest: nLevel = bFilamentPreheatState ? 1 : 2; bFilamentAction = true; menu_back(nLevel); menu_submenu(mmu_loading_test_menu); break; case FilamentAction::MmuUnLoad: nLevel = bFilamentPreheatState ? 1 : 2; bFilamentAction = true; menu_back(nLevel); MMU2::mmu2.unload(); break; case FilamentAction::MmuEject: nLevel = bFilamentPreheatState ? 1 : 2; bFilamentAction = true; menu_back(nLevel); menu_submenu(mmu_fil_eject_menu); break; case FilamentAction::MmuCut: #ifdef MMU_HAS_CUTTER nLevel=bFilamentPreheatState?1:2; bFilamentAction=true; menu_back(nLevel); menu_submenu(mmu_cut_filament_menu); #endif //MMU_HAS_CUTTER break; case FilamentAction::None: case FilamentAction::Preheat: case FilamentAction::Lay1Cal: // handled earlier break; } if (bFilamentWaitingFlag) Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); bFilamentWaitingFlag = false; } else { if (!bFilamentWaitingFlag || lcd_draw_update) { // First entry from another menu OR first run after the filament preheat selection. Use // bFilamentWaitingFlag to distinguish: this flag is reset exactly once when entering // the menu and is used to raise the carriage *once*. In other cases, the LCD has been // modified elsewhere and needs to be redrawn in full. // reset bFilamentWaitingFlag immediately to avoid re-entry from raise_z_above()! bool once = !bFilamentWaitingFlag; bFilamentWaitingFlag = true; // also force-enable lcd_draw_update (might be 0 when called from outside a menu) lcd_draw_update = 1; lcd_clear(); lcd_puts_at_P(0, 3, _T(MSG_CANCEL)); lcd_set_cursor(0, 1); switch (eFilamentAction) { case FilamentAction::Load: case FilamentAction::AutoLoad: case FilamentAction::MmuLoad: case FilamentAction::MmuLoadingTest: lcd_puts_P(_i("Preheating to load")); ////MSG_PREHEATING_TO_LOAD c=20 if (once) raise_z_above(MIN_Z_FOR_LOAD); break; case FilamentAction::UnLoad: case FilamentAction::MmuUnLoad: lcd_puts_P(_i("Preheating to unload")); ////MSG_PREHEATING_TO_UNLOAD c=20 if (once) raise_z_above(MIN_Z_FOR_UNLOAD); break; case FilamentAction::MmuEject: lcd_puts_P(_i("Preheating to eject")); ////MSG_PREHEATING_TO_EJECT c=20 break; case FilamentAction::MmuCut: lcd_puts_P(_i("Preheating to cut")); ////MSG_PREHEATING_TO_CUT c=20 break; case FilamentAction::None: case FilamentAction::Preheat: case FilamentAction::Lay1Cal: // handled earlier break; } } if (bFilamentWaitingFlag) { lcd_set_cursor(0, 0); lcdui_print_temp(LCD_STR_THERMOMETER[0], (int) degHotend(0), (int) degTargetHotend(0)); } if (lcd_clicked()) { bFilamentWaitingFlag = false; if (!bFilamentPreheatState) { setTargetHotend0(0.0); setTargetBed(0.0); menu_back(); } else { setTargetHotend0((float )nTargetOld); setTargetBed((float) nTargetBedOld); } menu_back(); if (eFilamentAction == FilamentAction::AutoLoad) eFilamentAction = FilamentAction::None; // i.e. non-autoLoad } } } static void mFilamentItem_farm() { bFilamentPreheatState = false; mFilamentItem(FARM_PREHEAT_HOTEND_TEMP, FARM_PREHEAT_HPB_TEMP); } static void mFilamentItem_farm_nozzle() { bFilamentPreheatState = false; mFilamentItem(FARM_PREHEAT_HOTEND_TEMP, 0); } static void mFilamentItem_PLA() { bFilamentPreheatState = false; mFilamentItem(PLA_PREHEAT_HOTEND_TEMP, PLA_PREHEAT_HPB_TEMP); } static void mFilamentItem_PET() { bFilamentPreheatState = false; mFilamentItem(PET_PREHEAT_HOTEND_TEMP, PET_PREHEAT_HPB_TEMP); } static void mFilamentItem_ASA() { bFilamentPreheatState = false; mFilamentItem(ASA_PREHEAT_HOTEND_TEMP, ASA_PREHEAT_HPB_TEMP); } static void mFilamentItem_PC() { bFilamentPreheatState = false; mFilamentItem(PC_PREHEAT_HOTEND_TEMP, PC_PREHEAT_HPB_TEMP); } static void mFilamentItem_ABS() { bFilamentPreheatState = false; mFilamentItem(ABS_PREHEAT_HOTEND_TEMP, ABS_PREHEAT_HPB_TEMP); } static void mFilamentItem_HIPS() { bFilamentPreheatState = false; mFilamentItem(HIPS_PREHEAT_HOTEND_TEMP, HIPS_PREHEAT_HPB_TEMP); } static void mFilamentItem_PP() { bFilamentPreheatState = false; mFilamentItem(PP_PREHEAT_HOTEND_TEMP, PP_PREHEAT_HPB_TEMP); } static void mFilamentItem_FLEX() { bFilamentPreheatState = false; mFilamentItem(FLEX_PREHEAT_HOTEND_TEMP, FLEX_PREHEAT_HPB_TEMP); } static void mFilamentItem_PVB() { bFilamentPreheatState = false; mFilamentItem(PVB_PREHEAT_HOTEND_TEMP, PVB_PREHEAT_HPB_TEMP); } void mFilamentBack() { if (eFilamentAction == FilamentAction::AutoLoad || eFilamentAction == FilamentAction::Preheat || eFilamentAction == FilamentAction::Lay1Cal) { eFilamentAction = FilamentAction::None; // i.e. non-autoLoad } } void lcd_generic_preheat_menu() { MENU_BEGIN(); if (!eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE)) { ON_MENU_LEAVE( mFilamentBack(); ); MENU_ITEM_BACK_P(_T(eFilamentAction == FilamentAction::Lay1Cal ? MSG_BACK : MSG_MAIN)); } if (farm_mode) { MENU_ITEM_FUNCTION_P(PSTR("farm - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FARM_PREHEAT_HPB_TEMP)), mFilamentItem_farm); MENU_ITEM_FUNCTION_P(PSTR("nozzle - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/0"), mFilamentItem_farm_nozzle); } else { MENU_ITEM_SUBMENU_P(PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)),mFilamentItem_PLA); MENU_ITEM_SUBMENU_P(PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)),mFilamentItem_PET); MENU_ITEM_SUBMENU_P(PSTR("ASA - " STRINGIFY(ASA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ASA_PREHEAT_HPB_TEMP)),mFilamentItem_ASA); MENU_ITEM_SUBMENU_P(PSTR("PC - " STRINGIFY(PC_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PC_PREHEAT_HPB_TEMP)),mFilamentItem_PC); MENU_ITEM_SUBMENU_P(PSTR("PVB - " STRINGIFY(PVB_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PVB_PREHEAT_HPB_TEMP)),mFilamentItem_PVB); MENU_ITEM_SUBMENU_P(PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)),mFilamentItem_ABS); MENU_ITEM_SUBMENU_P(PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)),mFilamentItem_HIPS); MENU_ITEM_SUBMENU_P(PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)),mFilamentItem_PP); MENU_ITEM_SUBMENU_P(PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)),mFilamentItem_FLEX); } if (!eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) && eFilamentAction == FilamentAction::Preheat) MENU_ITEM_FUNCTION_P(_T(MSG_COOLDOWN), lcd_cooldown); MENU_END(); } void mFilamentItemForce() { mFilamentItem(target_temperature[0],target_temperature_bed); } void lcd_unLoadFilament() { eFilamentAction=FilamentAction::UnLoad; preheat_or_continue(); } static void mmu_unload_filament() { eFilamentAction = FilamentAction::MmuUnLoad; preheat_or_continue(); } void lcd_wait_interact() { lcd_clear(); lcd_puts_at_P(0, 1, _i("Insert filament"));////MSG_INSERT_FILAMENT c=20 #ifdef FILAMENT_SENSOR if (!fsensor.getAutoLoadEnabled()) #endif //FILAMENT_SENSOR { lcd_puts_at_P(0, 2, _i("and press the knob"));////MSG_PRESS c=20 r=2 } } void lcd_change_success() { lcd_clear(); lcd_puts_at_P(0, 2, _i("Change success!"));////MSG_CHANGE_SUCCESS c=20 } static void lcd_loading_progress_bar(uint16_t loading_time_ms) { for (uint_least8_t i = 0; i < LCD_WIDTH; i++) { lcd_putc_at(i, 3, '.'); //loading_time_ms/20 delay for (uint_least8_t j = 0; j < 5; j++) { delay_keep_alive(loading_time_ms / 100); } } } void lcd_loading_color() { //we are extruding 25mm with feedrate 200mm/min -> 7.5 seconds for whole action, 0.375 s for one character lcd_clear(); lcd_puts_at_P(0, 0, _i("Loading color"));////MSG_LOADING_COLOR c=20 lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT)); lcd_loading_progress_bar((FILAMENTCHANGE_FINALFEED * 1000ul) / FILAMENTCHANGE_EFEED_FINAL); //show progress bar during filament loading slow sequence } void lcd_loading_filament() { lcd_clear(); lcd_puts_at_P(0, 0, _T(MSG_LOADING_FILAMENT)); lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT)); uint16_t slow_seq_time = (FILAMENTCHANGE_FINALFEED * 1000ul) / FILAMENTCHANGE_EFEED_FINAL; uint16_t fast_seq_time = (FILAMENTCHANGE_FIRSTFEED * 1000ul) / FILAMENTCHANGE_EFEED_FIRST; lcd_loading_progress_bar(slow_seq_time + fast_seq_time); //show progress bar for total time of filament loading fast + slow sequence } uint8_t lcd_alright() { int8_t enc_dif = 0; uint8_t cursor_pos = 1; lcd_clear(); lcd_puts_at_P(0, 0, _i("Changed correctly?"));////MSG_CORRECTLY c=20 lcd_puts_at_P(1, 1, _T(MSG_YES)); lcd_puts_at_P(1, 2, _i("Filament not loaded"));////MSG_NOT_LOADED c=19 lcd_puts_at_P(1, 3, _i("Color not correct"));////MSG_NOT_COLOR c=19 lcd_putc_at(0, 1, '>'); enc_dif = lcd_encoder_diff; lcd_consume_click(); while (1) { manage_heater(); manage_inactivity(true); if (abs(enc_dif - lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { if (enc_dif > lcd_encoder_diff ) { // Rotating knob counter clockwise cursor_pos--; } else if (enc_dif < lcd_encoder_diff) { // Rotating knob clockwise cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; Sound_MakeSound(e_SOUND_TYPE_BlindAlert); } else if (cursor_pos < 1) { cursor_pos = 1; Sound_MakeSound(e_SOUND_TYPE_BlindAlert); } // Update '>' render only lcd_puts_at_P(0, 1, PSTR(" \n \n ")); lcd_putc_at(0, cursor_pos, '>'); // Consume rotation event and make feedback sound enc_dif = lcd_encoder_diff; Sound_MakeSound(e_SOUND_TYPE_EncoderMove); _delay(100); } if (lcd_clicked()) { Sound_MakeSound(e_SOUND_TYPE_ButtonEcho); lcd_clear(); lcd_return_to_status(); return cursor_pos; } }; } void show_preheat_nozzle_warning() { lcd_clear(); lcd_puts_at_P(0, 0, _T(MSG_ERROR)); lcd_puts_at_P(0, 2, _T(MSG_PREHEAT_NOZZLE)); _delay(2000); lcd_clear(); } void lcd_load_filament_color_check() { uint8_t clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, LCD_LEFT_BUTTON_CHOICE); while (clean == LCD_MIDDLE_BUTTON_CHOICE) { load_filament_final_feed(); st_synchronize(); clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, LCD_LEFT_BUTTON_CHOICE); } } #ifdef FILAMENT_SENSOR static void lcd_menu_AutoLoadFilament() { lcd_display_message_fullscreen_nonBlocking_P(_i("Autoloading filament is active, just press the knob and insert filament..."));////MSG_AUTOLOADING_ENABLED c=20 r=4 menu_back_if_clicked(); } #endif //FILAMENT_SENSOR static void preheat_or_continue() { if (target_temperature[0] >= extrude_min_temp) { bFilamentPreheatState = true; mFilamentItem(target_temperature[0], target_temperature_bed); } else { lcd_generic_preheat_menu(); } } static void lcd_LoadFilament() { eFilamentAction = FilamentAction::Load; preheat_or_continue(); } //! @brief Show filament used a print time //! //! If printing current print statistics are shown //! //! @code{.unparsed} //! |01234567890123456789| //! |Filament used: | MSG_FILAMENT_USED c=19 //! | 0000.00m | //! |Print time: | MSG_PRINT_TIME c=19 //! | 00h 00m 00s | //! ---------------------- //! @endcode //! //! If not printing, total statistics are shown //! //! @code{.unparsed} //! |01234567890123456789| //! |Total filament: | MSG_TOTAL_FILAMENT c=19 //! | 0000.00m | //! |Total print time: | MSG_TOTAL_PRINT_TIME c=19 //! | 00d 00h 00m | //! ---------------------- //! @endcode void lcd_menu_statistics() { lcd_timeoutToStatus.stop(); //infinite timeout if (IS_SD_PRINTING) { const float _met = ((float)total_filament_used) / (100000.f); const uint32_t _t = (_millis() - starttime) / 1000ul; const uint32_t _h = _t / 3600; const uint8_t _m = (_t - (_h * 3600ul)) / 60ul; const uint8_t _s = _t - ((_h * 3600ul) + (_m * 60ul)); lcd_home(); lcd_printf_P(_N( "%S:\n" "%18.2fm \n" "%S:\n" "%10ldh %02dm %02ds" ), _i("Filament used"), _met, ////MSG_FILAMENT_USED c=19 _i("Print time"), _h, _m, _s); ////MSG_PRINT_TIME c=19 menu_back_if_clicked_fb(); } else { unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes uint8_t _hours, _minutes; uint32_t _days; float _filament_m = (float)_filament/100; _days = _time / 1440; _hours = (_time - (_days * 1440)) / 60; _minutes = _time - ((_days * 1440) + (_hours * 60)); lcd_home(); lcd_printf_P(_N( "%S:\n" "%18.2fm \n" "%S:\n" "%10ldd %02dh %02dm" ), _i("Total filament"), _filament_m, ////MSG_TOTAL_FILAMENT c=19 _i("Total print time"), _days, _hours, _minutes); ////MSG_TOTAL_PRINT_TIME c=19 menu_back_if_clicked_fb(); } } static void _lcd_move(const char *name, uint8_t axis, int min, int max) { if (homing_flag || mesh_bed_leveling_flag) { // printer entered a new state where axis move is forbidden menu_back(); return; } typedef struct { // 2bytes total bool initialized; // 1byte bool endstopsEnabledPrevious; // 1byte } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (!_md->initialized) { _md->endstopsEnabledPrevious = enable_endstops(false); _md->initialized = true; } if (lcd_encoder != 0) { refresh_cmd_timeout(); if (! planner_queue_full()) { current_position[axis] += float((int)lcd_encoder); if (min_software_endstops && current_position[axis] < min) current_position[axis] = min; if (max_software_endstops && current_position[axis] > max) current_position[axis] = max; lcd_encoder = 0; world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); plan_buffer_line_curposXYZE(manual_feedrate[axis] / 60); lcd_draw_update = 1; } } if (lcd_draw_update) { lcd_set_cursor(0, 1); menu_draw_float31(name, current_position[axis]); } if (menu_leaving || LCD_CLICKED) (void)enable_endstops(_md->endstopsEnabledPrevious); if (LCD_CLICKED) menu_back(); } void lcd_move_e() { if ((int)degHotend0() > extrude_min_temp) { if (lcd_encoder != 0) { refresh_cmd_timeout(); if (! planner_queue_full()) { current_position[E_AXIS] += float((int)lcd_encoder); lcd_encoder = 0; plan_buffer_line_curposXYZE(manual_feedrate[E_AXIS] / 60); lcd_draw_update = 1; } } if (lcd_draw_update) { lcd_set_cursor(0, 1); // Note: the colon behind the text is necessary to greatly shorten // the implementation of menu_draw_float31 menu_draw_float31(PSTR("Extruder:"), current_position[E_AXIS]); } if (LCD_CLICKED) menu_back(); } else { show_preheat_nozzle_warning(); lcd_return_to_status(); } } //! @brief Show measured Y distance of front calibration points from Y_MIN_POS //! If those points are detected too close to edge of reachable area, their confidence is lowered. //! This functionality is applied more often for MK2 printers. //! @code{.unparsed} //! |01234567890123456789| //! |Y distance from min | MSG_Y_DIST_FROM_MIN //! | -------------- | STR_SEPARATOR //! |Left: 00.00mm| MSG_LEFT c=10, c=8 //! |Right: 00.00mm| MSG_RIGHT c=10, c=8 //! ---------------------- //! @endcode //! @todo Positioning of the messages and values on LCD aren't fixed to their exact place. This causes issues with translations. static void lcd_menu_xyz_y_min() { float distanceMin[2]; count_xyz_details(distanceMin); lcd_home(); lcd_printf_P(_N( "%S\n" "%S\n" "%S:\n" "%S:" ), _i("Y distance from min"), ////MSG_Y_DIST_FROM_MIN c=20 separator, _i("Left"), ////MSG_LEFT c=10 _i("Right") ////MSG_RIGHT c=10 ); for (uint8_t i = 0; i < 2; i++) { lcd_set_cursor(11,2+i); if (distanceMin[i] >= 200) lcd_puts_P(_T(MSG_NA)); else lcd_printf_P(_N("%6.2fmm"), distanceMin[i]); } if (lcd_clicked()) menu_goto(lcd_menu_xyz_skew, 0, true, true); } //@brief Show measured axis skewness float _deg(float rad) { return rad * 180 / M_PI; } //! @brief Show Measured XYZ Skew //! //! @code{.unparsed} //! |01234567890123456789| //! |Measured skew :0.00D| MSG_MEASURED_SKEW c=14 //! | -------------- | STR_SEPARATOR //! |Slight skew :0.12D| MSG_SLIGHT_SKEW c=14 //! |Severe skew :0.25D| MSG_SEVERE_SKEW c=14 //! ---------------------- //! D - Degree sysmbol LCD_STR_DEGREE //! @endcode //! @todo Positioning of the messages and values on LCD aren't fixed to their exact place. This causes issues with translations. static void lcd_menu_xyz_skew() { float angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW)); lcd_home(); lcd_printf_P(_N( "%-14.14S:\n" "%S\n" "%-14.14S:%3.2f\x01\n" "%-14.14S:%3.2f\x01" ), _i("Measured skew"), ////MSG_MEASURED_SKEW c=14 separator, _i("Slight skew"), _deg(bed_skew_angle_mild), ////MSG_SLIGHT_SKEW c=14 _i("Severe skew"), _deg(bed_skew_angle_extreme) ////MSG_SEVERE_SKEW c=14 ); if (angleDiff < 100){ lcd_set_cursor(15,0); lcd_printf_P(_N("%3.2f\x01"), _deg(angleDiff)); } else{ lcd_puts_at_P(15,0, _T(MSG_NA)); } if (lcd_clicked()) menu_goto(lcd_menu_xyz_offset, 0, true, true); } //! @brief Show measured bed offset from expected position //! //! @code{.unparsed} //! |01234567890123456789| //! |[0;0] point offset | MSG_MEASURED_OFFSET c=20 //! | -------------- | STR_SEPARATOR //! |X 00.00mm| c=10 //! |Y 00.00mm| c=10 //! ---------------------- //! @endcode //! @todo Positioning of the messages and values on LCD aren't fixed to their exact place. This causes issues with translations. static void lcd_menu_xyz_offset() { lcd_puts_at_P(0, 0, _i("[0;0] point offset"));////MSG_MEASURED_OFFSET c=20 lcd_puts_at_P(0, 1, separator); lcd_puts_at_P(0, 2, PSTR("X")); lcd_puts_at_P(0, 3, PSTR("Y")); float vec_x[2]; float vec_y[2]; float cntr[2]; world2machine_read_valid(vec_x, vec_y, cntr); for (uint_least8_t i = 0; i < 2; i++) { lcd_set_cursor((cntr[i] < 0) ? 13 : 14, i+2); lcd_print(cntr[i]); lcd_puts_at_P(18, i + 2, PSTR("mm")); } menu_back_if_clicked(); } // Note: the colon behind the text (X, Y, Z) is necessary to greatly shorten // the implementation of menu_draw_float31 static void lcd_move_x() { _lcd_move(PSTR("X:"), X_AXIS, X_MIN_POS, X_MAX_POS); } static void lcd_move_y() { _lcd_move(PSTR("Y:"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); } static void lcd_move_z() { _lcd_move(PSTR("Z:"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); } /** * @brief Adjust first layer offset from bed if axis is Z_AXIS * * If menu is left (button pushed or timed out), value is stored to EEPROM and * if the axis is Z_AXIS, CALIBRATION_STATUS_CALIBRATED is also stored. * Purpose of this function for other axis then Z is unknown. * * @param axis AxisEnum X_AXIS Y_AXIS Z_AXIS * other value leads to storing Z_AXIS * @param msg text to be displayed */ static void lcd_babystep_z() { if (homing_flag || mesh_bed_leveling_flag) { // printer changed to a new state where live Z is forbidden menu_back(); return; } typedef struct { int8_t status; int16_t babystepMemZ; float babystepMemMMZ; } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0) { // Menu was entered. // Initialize its status. _md->status = 1; check_babystep(); if(!eeprom_is_sheet_initialized(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))){ _md->babystepMemZ = 0; } else{ _md->babystepMemZ = eeprom_read_word(reinterpret_cast(&(EEPROM_Sheets_base-> s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset))); } // same logic as in babystep_load if (calibration_status() >= CALIBRATION_STATUS_LIVE_ADJUST) _md->babystepMemZ = 0; _md->babystepMemMMZ = _md->babystepMemZ/cs.axis_steps_per_unit[Z_AXIS]; lcd_draw_update = 1; //SERIAL_ECHO("Z baby step: "); //SERIAL_ECHO(_md->babystepMem[2]); } if (lcd_encoder != 0) { _md->babystepMemZ += (int)lcd_encoder; if (_md->babystepMemZ < Z_BABYSTEP_MIN) _md->babystepMemZ = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm else if (_md->babystepMemZ > Z_BABYSTEP_MAX) _md->babystepMemZ = Z_BABYSTEP_MAX; //0 else babystepsTodoZadd(lcd_encoder); _md->babystepMemMMZ = _md->babystepMemZ/cs.axis_steps_per_unit[Z_AXIS]; _delay(50); lcd_encoder = 0; lcd_draw_update = 1; } if (lcd_draw_update) { SheetFormatBuffer buffer; menu_format_sheet_E(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))], buffer); lcd_set_cursor(0, 0); lcd_print(buffer.c); lcd_set_cursor(0, 1); menu_draw_float13(_i("Adjusting Z:"), _md->babystepMemMMZ); ////MSG_BABYSTEPPING_Z c=15 // Beware: must include the ':' as its last character } if (LCD_CLICKED || menu_leaving) { // Only update the EEPROM when leaving the menu. uint8_t active_sheet=eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)); eeprom_update_word(reinterpret_cast(&(EEPROM_Sheets_base->s[active_sheet].z_offset)),_md->babystepMemZ); // NOTE: bed_temp and pinda_temp are not currently read/used anywhere. eeprom_update_byte(&(EEPROM_Sheets_base->s[active_sheet].bed_temp),target_temperature_bed); #ifdef PINDA_THERMISTOR eeprom_update_byte(&(EEPROM_Sheets_base->s[active_sheet].pinda_temp),current_temperature_pinda); #endif //PINDA_THERMISTOR calibration_status_store(CALIBRATION_STATUS_CALIBRATED); } if (LCD_CLICKED) menu_back(); } typedef struct { // 12bytes + 9bytes = 21bytes total menu_data_edit_t reserved; //12 bytes reserved for number editing functions int8_t status; // 1byte int16_t left; // 2byte int16_t right; // 2byte int16_t front; // 2byte int16_t rear; // 2byte } _menu_data_adjust_bed_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_adjust_bed_t),"_menu_data_adjust_bed_t doesn't fit into menu_data"); void lcd_adjust_bed_reset(void) { eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0); _menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]); _md->status = 0; } //! @brief Show Bed level correct //! //! @code{.unparsed} //! |01234567890123456789| //! |Settings: | MSG_SETTINGS //! |Left side [μm]: | MSG_BED_CORRECTION_LEFT //! |Right side[μm]: | MSG_BED_CORRECTION_RIGHT //! |Front side[μm]: | MSG_BED_CORRECTION_FRONT //! |Rear side [μm]: | MSG_BED_CORRECTION_REAR //! |Reset | MSG_BED_CORRECTION_RESET //! ---------------------- //! @endcode void lcd_adjust_bed(void) { _menu_data_adjust_bed_t* _md = (_menu_data_adjust_bed_t*)&(menu_data[0]); if (_md->status == 0) { // Menu was entered. if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1) { _md->left = (int8_t)eeprom_read_byte((uint8_t*)EEPROM_BED_CORRECTION_LEFT); _md->right = (int8_t)eeprom_read_byte((uint8_t*)EEPROM_BED_CORRECTION_RIGHT); _md->front = (int8_t)eeprom_read_byte((uint8_t*)EEPROM_BED_CORRECTION_FRONT); _md->rear = (int8_t)eeprom_read_byte((uint8_t*)EEPROM_BED_CORRECTION_REAR); } _md->status = 1; } MENU_BEGIN(); // leaving menu - this condition must be immediately before MENU_ITEM_BACK_P ON_MENU_LEAVE( eeprom_update_byte((uint8_t*)EEPROM_BED_CORRECTION_LEFT, (uint8_t)_md->left); eeprom_update_byte((uint8_t*)EEPROM_BED_CORRECTION_FRONT, (uint8_t)_md->front); eeprom_update_byte((uint8_t*)EEPROM_BED_CORRECTION_REAR, (uint8_t)_md->rear); eeprom_update_byte((uint8_t*)EEPROM_BED_CORRECTION_RIGHT, (uint8_t)_md->right); eeprom_update_byte((uint8_t*)EEPROM_BED_CORRECTION_VALID, 1); ); MENU_ITEM_BACK_P(_T(MSG_BACK)); MENU_ITEM_EDIT_int3_P(_i("Left side [\xe4m]"), &_md->left, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_LEFT c=14 MENU_ITEM_EDIT_int3_P(_i("Right side[\xe4m]"), &_md->right, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_RIGHT c=14 MENU_ITEM_EDIT_int3_P(_i("Front side[\xe4m]"), &_md->front, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_FRONT c=14 MENU_ITEM_EDIT_int3_P(_i("Rear side [\xe4m]"), &_md->rear, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_REAR c=14 MENU_ITEM_FUNCTION_P(_T(MSG_RESET), lcd_adjust_bed_reset); MENU_END(); } //! @brief Show PID Extruder //! //! @code{.unparsed} //! |01234567890123456789| //! |Set temperature: | //! | | //! | 210 | //! | | //! ---------------------- //! @endcode void pid_extruder() { lcd_clear(); lcd_puts_at_P(0, 0, _i("Set temperature:"));////MSG_SET_TEMPERATURE c=20 pid_temp += int(lcd_encoder); if (pid_temp > HEATER_0_MAXTEMP) pid_temp = HEATER_0_MAXTEMP; if (pid_temp < HEATER_0_MINTEMP) pid_temp = HEATER_0_MINTEMP; lcd_encoder = 0; lcd_set_cursor(1, 2); lcd_printf_P(PSTR("%3u"), pid_temp); if (lcd_clicked()) { lcd_commands_type = LcdCommands::PidExtruder; lcd_return_to_status(); lcd_update(2); } } #ifdef PINDA_THERMISTOR bool lcd_wait_for_pinda(float temp) { setAllTargetHotends(0); setTargetBed(0); LongTimer pinda_timeout; pinda_timeout.start(); bool target_temp_reached = true; while (current_temperature_pinda > temp){ lcd_display_message_fullscreen_P(_i("Waiting for PINDA probe cooling"));////MSG_WAITING_TEMP_PINDA c=20 r=3 lcd_set_cursor(0, 4); lcd_print(LCD_STR_THERMOMETER[0]); lcd_printf_P(PSTR("%3d/%3d"), (int16_t)current_temperature_pinda, (int16_t) temp); lcd_print(LCD_STR_DEGREE[0]); delay_keep_alive(1000); serialecho_temperatures(); if (pinda_timeout.expired(8 * 60 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes target_temp_reached = false; break; } } lcd_update_enable(true); return target_temp_reached; } #endif //PINDA_THERMISTOR void lcd_wait_for_heater() { lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd_set_cursor(0, 4); lcd_print(LCD_STR_THERMOMETER[0]); lcd_printf_P(PSTR("%3d/%3d"), (int16_t)degHotend(active_extruder), (int16_t) degTargetHotend(active_extruder)); lcd_print(LCD_STR_DEGREE[0]); } void lcd_wait_for_cool_down() { setAllTargetHotends(0); setTargetBed(0); int fanSpeedBckp = fanSpeed; fanSpeed = 255; while ((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) { lcd_display_message_fullscreen_P(_i("Waiting for nozzle and bed cooling"));////MSG_WAITING_TEMP c=20 r=4 lcd_set_cursor(0, 4); lcd_print(LCD_STR_THERMOMETER[0]); lcd_printf_P(PSTR("%3d/0"), (int16_t)degHotend(0)); lcd_print(LCD_STR_DEGREE[0]); lcd_set_cursor(9, 4); lcd_print(LCD_STR_BEDTEMP[0]); lcd_printf_P(PSTR("%3d/0"), (int16_t)degBed()); lcd_print(LCD_STR_DEGREE[0]); delay_keep_alive(1000); serialecho_temperatures(); } fanSpeed = fanSpeedBckp; lcd_update_enable(true); } // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. #ifndef TMC2130 bool lcd_calibrate_z_end_stop_manual(bool only_z) { // Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up. current_position[Z_AXIS] = 0; plan_set_position_curposXYZE(); // Until confirmed by the confirmation dialog. for (;;) { const char *msg = only_z ? _i("Calibrating Z. Rotate the knob to move the Z carriage up to the end stoppers. Click when done.")////MSG_MOVE_CARRIAGE_TO_THE_TOP_Z c=20 r=8 : _i("Calibrating XYZ. Rotate the knob to move the Z carriage up to the end stoppers. Click when done.");////MSG_MOVE_CARRIAGE_TO_THE_TOP c=20 r=8 const char *msg_next = lcd_display_message_fullscreen_P(msg); const bool multi_screen = msg_next != NULL; unsigned long previous_millis_msg = _millis(); // Until the user finishes the z up movement. lcd_encoder_diff = 0; lcd_encoder = 0; for (;;) { manage_heater(); manage_inactivity(true); if (abs(lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { _delay(50); lcd_encoder += abs(lcd_encoder_diff / ENCODER_PULSES_PER_STEP); lcd_encoder_diff = 0; if (! planner_queue_full()) { // Only move up, whatever direction the user rotates the encoder. current_position[Z_AXIS] += fabs(lcd_encoder); lcd_encoder = 0; plan_buffer_line_curposXYZE(manual_feedrate[Z_AXIS] / 60); } } if (lcd_clicked()) { // Abort a move if in progress. planner_abort_hard(); planner_aborted = false; while (lcd_clicked()) ; _delay(10); while (lcd_clicked()) ; break; } if (multi_screen && _millis() - previous_millis_msg > 5000) { if (msg_next == NULL) msg_next = msg; msg_next = lcd_display_message_fullscreen_P(msg_next); previous_millis_msg = _millis(); } } // Let the user confirm, that the Z carriage is at the top end stoppers. uint8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Are left and right Z~carriages all up?"), false);////MSG_CONFIRM_CARRIAGE_AT_THE_TOP c=20 r=2 if (result == LCD_BUTTON_TIMEOUT) goto canceled; else if (result == LCD_LEFT_BUTTON_CHOICE) goto calibrated; // otherwise perform another round of the Z up dialog. } calibrated: // Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed // during the search for the induction points. if ((PRINTER_TYPE == PRINTER_MK25) || (PRINTER_TYPE == PRINTER_MK2) || (PRINTER_TYPE == PRINTER_MK2_SNMM)) { current_position[Z_AXIS] = Z_MAX_POS-3.f; } else { current_position[Z_AXIS] = Z_MAX_POS+4.f; } plan_set_position_curposXYZE(); return true; canceled: return false; } #endif // TMC2130 static inline bool pgm_is_whitespace(const char *c_addr) { const char c = pgm_read_byte(c_addr); return c == ' ' || c == '\t' || c == '\r' || c == '\n'; } static inline bool pgm_is_interpunction(const char *c_addr) { const char c = pgm_read_byte(c_addr); return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/'; } /** * @brief show full screen message * * This function is non-blocking * @param msg message to be displayed from PROGMEM * @return rest of the text (to be displayed on next page) */ static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg) { lcd_set_cursor(0, 0); const char *msgend = msg; uint8_t row = 0; bool multi_screen = false; for (; row < 4; ++ row) { while (pgm_is_whitespace(msg)) ++ msg; if (pgm_read_byte(msg) == 0) // End of the message. break; lcd_set_cursor(0, row); uint8_t linelen = min(strlen_P(msg), LCD_WIDTH); const char *msgend2 = msg + linelen; msgend = msgend2; if (row == 3 && linelen == LCD_WIDTH) { // Last line of the display, full line shall be displayed. // Find out, whether this message will be split into multiple screens. while (pgm_is_whitespace(msgend)) ++ msgend; multi_screen = pgm_read_byte(msgend) != 0; if (multi_screen) msgend = (msgend2 -= 2); } if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) { // Splitting a word. Find the start of the current word. while (msgend > msg && ! pgm_is_whitespace(msgend - 1)) -- msgend; if (msgend == msg) // Found a single long word, which cannot be split. Just cut it. msgend = msgend2; } for (; msg < msgend; ++ msg) { char c = char(pgm_read_byte(msg)); if (c == '~') c = ' '; lcd_print(c); } } if (multi_screen) { // Display the "next screen" indicator character. lcd_set_custom_characters_nextpage(); lcd_set_cursor(19, 3); // Display the double down arrow. lcd_print(LCD_STR_ARROW_2_DOWN[0]); } return multi_screen ? msgend : NULL; } const char* lcd_display_message_fullscreen_P(const char *msg) { // Disable update of the screen by the usual lcd_update(0) routine. lcd_update_enable(false); lcd_clear(); return lcd_display_message_fullscreen_nonBlocking_P(msg); } /** * @brief show full screen message and wait * * This function is blocking. * @param msg message to be displayed from PROGMEM */ void lcd_show_fullscreen_message_and_wait_P(const char *msg) { LcdUpdateDisabler lcdUpdateDisabler; const char *msg_next = lcd_display_message_fullscreen_P(msg); bool multi_screen = msg_next != NULL; lcd_set_custom_characters_nextpage(); lcd_consume_click(); KEEPALIVE_STATE(PAUSED_FOR_USER); // Until confirmed by a button click. for (;;) { if (!multi_screen) { lcd_set_cursor(19, 3); // Display the confirm char. lcd_print(LCD_STR_CONFIRM[0]); } // Wait for 5 seconds before displaying the next text. for (uint8_t i = 0; i < 100; ++ i) { delay_keep_alive(50); if (lcd_clicked()) { if (msg_next == NULL) { KEEPALIVE_STATE(IN_HANDLER); lcd_set_custom_characters(); return; } else { break; } } } if (multi_screen) { if (msg_next == NULL) msg_next = msg; msg_next = lcd_display_message_fullscreen_P(msg_next); if (msg_next == NULL) { lcd_set_cursor(19, 3); // Display the confirm char. lcd_print(LCD_STR_CONFIRM[0]); } } } } bool lcd_wait_for_click_delay(uint16_t nDelay) // nDelay :: timeout [s] (0 ~ no timeout) // true ~ clicked, false ~ delayed { bool bDelayed; long nTime0 = _millis()/1000; lcd_consume_click(); KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { manage_heater(); manage_inactivity(true); bDelayed = ((_millis()/1000-nTime0) > nDelay); bDelayed = (bDelayed && (nDelay != 0)); // 0 ~ no timeout, always waiting for click if (lcd_clicked() || bDelayed) { KEEPALIVE_STATE(IN_HANDLER); return(!bDelayed); } } } void lcd_wait_for_click() { lcd_wait_for_click_delay(0); } //! @brief Show multiple screen message with yes and no possible choices and wait with possible timeout //! @param msg Message to show. If NULL, do not clear the screen and handle choice selection only. //! @param allow_timeouting if true, allows time outing of the screen //! @param default_selection if 0, 'Yes' choice is selected by default, otherwise 'No' choice is preselected //! @retval 0 yes choice selected by user //! @retval 1 no choice selected by user //! @retval 0xFF button timeout (only possible if allow_timeouting is true) uint8_t lcd_show_multiscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, uint8_t default_selection) //currently just max. n*4 + 3 lines supported (set in language header files) { return lcd_show_multiscreen_message_with_choices_and_wait_P(msg, allow_timeouting, default_selection, _T(MSG_YES), _T(MSG_NO), nullptr, 10); } //! @brief Show a two-choice prompt on the last line of the LCD //! @param selected Show first choice as selected if true, the second otherwise //! @param first_choice text caption of first possible choice //! @param second_choice text caption of second possible choice //! @param second_col column on LCD where second choice is rendered. //! @param third_choice text caption of third, optional, choice. void lcd_show_choices_prompt_P(uint8_t selected, const char *first_choice, const char *second_choice, uint8_t second_col, const char *third_choice) { lcd_set_cursor(0, 3); lcd_print(selected == LCD_LEFT_BUTTON_CHOICE ? '>': ' '); lcd_puts_P(first_choice); lcd_set_cursor(second_col, 3); lcd_print(selected == LCD_MIDDLE_BUTTON_CHOICE ? '>': ' '); lcd_puts_P(second_choice); if (third_choice) { lcd_set_cursor(18, 3); lcd_print(selected == LCD_RIGHT_BUTTON_CHOICE ? '>': ' '); lcd_puts_P(third_choice); } } //! @brief Show single or multiple screen message with two possible choices and wait with possible timeout //! @param msg Message to show. If NULL, do not clear the screen and handle choice selection only. //! @param allow_timeouting bool, if true, allows time outing of the screen //! @param default_selection uint8_t, Control which choice is selected first. 0: left most, 1: middle, 2: right most choice. The left most choice is selected by default //! @param first_choice text caption of first possible choice. Must be in PROGMEM //! @param second_choice text caption of second possible choice. Must be in PROGMEM //! @param third_choice text caption of second possible choice. Must be in PROGMEM. When not set to nullptr first_choice and second_choice may not be more than 5 characters long. //! @param second_col column on LCD where second_choice starts //! @retval 0 first choice selected by user //! @retval 1 first choice selected by user //! @retval 2 third choice selected by user //! @retval 0xFF button timeout (only possible if allow_timeouting is true) uint8_t lcd_show_multiscreen_message_with_choices_and_wait_P( const char *const msg, bool allow_timeouting, uint8_t default_selection, const char *const first_choice, const char *const second_choice, const char *const third_choice, uint8_t second_col ) { const char *msg_next = msg ? lcd_display_message_fullscreen_P(msg) : NULL; bool multi_screen = msg_next != NULL; lcd_set_custom_characters_nextpage(); // Initial status/prompt on single-screen messages uint8_t current_selection = default_selection; if (!msg_next) { lcd_show_choices_prompt_P(current_selection, first_choice, second_choice, second_col, third_choice); } // Wait for user confirmation or a timeout. unsigned long previous_millis_cmd = _millis(); int8_t enc_dif = lcd_encoder_diff; lcd_consume_click(); KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { for (uint8_t i = 0; i < 100; ++i) { delay_keep_alive(50); if (allow_timeouting && _millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) { return LCD_BUTTON_TIMEOUT; } manage_heater(); manage_inactivity(true); if (abs(enc_dif - lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { if (msg_next == NULL) { if (third_choice) { // third_choice is not nullptr, safe to dereference if (enc_dif > lcd_encoder_diff && current_selection != LCD_LEFT_BUTTON_CHOICE) { // Rotating knob counter clockwise current_selection--; } else if (enc_dif < lcd_encoder_diff && current_selection != LCD_RIGHT_BUTTON_CHOICE) { // Rotating knob clockwise current_selection++; } } else { if (enc_dif > lcd_encoder_diff && current_selection != LCD_LEFT_BUTTON_CHOICE) { // Rotating knob counter clockwise current_selection = LCD_LEFT_BUTTON_CHOICE; } else if (enc_dif < lcd_encoder_diff && current_selection != LCD_MIDDLE_BUTTON_CHOICE) { // Rotating knob clockwise current_selection = LCD_MIDDLE_BUTTON_CHOICE; } } lcd_show_choices_prompt_P(current_selection, first_choice, second_choice, second_col, third_choice); enc_dif = lcd_encoder_diff; Sound_MakeSound(e_SOUND_TYPE_EncoderMove); } else { Sound_MakeSound(e_SOUND_TYPE_BlindAlert); break; // turning knob skips waiting loop } } if (lcd_clicked()) { Sound_MakeSound(e_SOUND_TYPE_ButtonEcho); if (msg_next == NULL) { KEEPALIVE_STATE(IN_HANDLER); lcd_set_custom_characters(); lcd_update_enable(true); return current_selection; } else break; } } if (multi_screen) { if (msg_next == NULL) { msg_next = msg; } msg_next = lcd_display_message_fullscreen_P(msg_next); } if (msg_next == NULL) { lcd_show_choices_prompt_P(current_selection, first_choice, second_choice, second_col, third_choice); } } } //! @brief Display and wait for a Yes/No choice using the last line of the LCD //! @param allow_timeouting if true, allows time outing of the screen //! @param default_selection if 0, 'Yes' choice is selected by default, otherwise 'No' choice is preselected //! @retval 0 yes choice selected by user //! @retval 1 no choice selected by user //! @retval 0xFF button timeout (only possible if allow_timeouting is true) uint8_t lcd_show_yes_no_and_wait(bool allow_timeouting, uint8_t default_selection) { return lcd_show_multiscreen_message_yes_no_and_wait_P(NULL, allow_timeouting, default_selection); } //! @brief Show single screen message with yes and no possible choices and wait with possible timeout //! @param msg Message to show. If NULL, do not clear the screen and handle choice selection only. //! @param allow_timeouting if true, allows time outing of the screen //! @param default_selection if 0, 'Yes' choice is selected by default, otherwise 'No' choice is preselected //! @retval 0 yes choice selected by user //! @retval 1 no choice selected by user //! @retval 0xFF button timeout (only possible if allow_timeouting is true) //! @relates lcd_show_yes_no_and_wait uint8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, uint8_t default_selection) { return lcd_show_multiscreen_message_yes_no_and_wait_P(msg, allow_timeouting, default_selection); } void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask) { const char *msg = NULL; if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) { lcd_show_fullscreen_message_and_wait_P(_i("XYZ calibration failed. Bed calibration point was not found."));////MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND c=20 r=6 } else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) { if (point_too_far_mask == 0) msg = _T(MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED); else if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = _i("XYZ calibration failed. Front calibration points not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR c=20 r=6 else if ((point_too_far_mask & 1) == 0) // The right and maybe the center point out of reach. msg = _i("XYZ calibration failed. Right front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR c=20 r=6 else // The left and maybe the center point out of reach. //@todo Why isn't it found in the firmware.map msg = _n("XYZ calibration failed. Left front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR c=20 r=8 lcd_show_fullscreen_message_and_wait_P(msg); } else { if (point_too_far_mask != 0) { if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = _i("XYZ calibration compromised. Front calibration points not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR c=20 r=8 else if ((point_too_far_mask & 1) == 0) // The right and maybe the center point out of reach. msg = _i("XYZ calibration compromised. Right front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR c=20 r=8 else // The left and maybe the center point out of reach. //@todo Why isn't it found in the firmware.map msg = _n("XYZ calibration compromised. Left front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR c=20 r=8 lcd_show_fullscreen_message_and_wait_P(msg); } if (point_too_far_mask == 0 || result > 0) { switch (result) { default: // should not happen msg = _T(MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED); break; case BED_SKEW_OFFSET_DETECTION_PERFECT: msg = _i("XYZ calibration ok. X/Y axes are perpendicular. Congratulations!");////MSG_BED_SKEW_OFFSET_DETECTION_PERFECT c=20 r=8 break; case BED_SKEW_OFFSET_DETECTION_SKEW_MILD: msg = _i("XYZ calibration all right. X/Y axes are slightly skewed. Good job!");////MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD c=20 r=8 break; case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME: msg = _i("XYZ calibration all right. Skew will be corrected automatically.");////MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME c=20 r=8 break; } lcd_show_fullscreen_message_and_wait_P(msg); } } } void lcd_temp_cal_show_result(bool result) { custom_message_type = CustomMsg::Status; disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); setTargetBed(0); //set bed target temperature back to 0 if (result == true) { eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); SERIAL_ECHOLNPGM("PINDA calibration done. Continue with pressing the knob."); lcd_show_fullscreen_message_and_wait_P(_T(MSG_PINDA_CALIBRATION_DONE)); eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); } else { eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); SERIAL_ECHOLNPGM("PINDA calibration failed. Continue with pressing the knob."); lcd_show_fullscreen_message_and_wait_P(_i("PINDA calibration failed"));////MSG_PINDA_CAL_FAILED c=20 r=4 eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 0); } lcd_update_enable(true); lcd_update(2); } static void lcd_show_end_stops() { lcd_puts_at_P(0, 0, (PSTR("End stops diag"))); lcd_puts_at_P(0, 1, (READ(X_MIN_PIN) ^ (bool)X_MIN_ENDSTOP_INVERTING) ? (PSTR("X1")) : (PSTR("X0"))); lcd_puts_at_P(0, 2, (READ(Y_MIN_PIN) ^ (bool)Y_MIN_ENDSTOP_INVERTING) ? (PSTR("Y1")) : (PSTR("Y0"))); lcd_puts_at_P(0, 3, (READ(Z_MIN_PIN) ^ (bool)Z_MIN_ENDSTOP_INVERTING) ? (PSTR("Z1")) : (PSTR("Z0"))); } #ifndef TMC2130 static void menu_show_end_stops() { lcd_show_end_stops(); if (LCD_CLICKED) menu_back(); } #endif // not defined TMC2130 // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. void lcd_diag_show_end_stops() { lcd_clear(); lcd_consume_click(); for (;;) { manage_heater(); manage_inactivity(true); lcd_show_end_stops(); if (lcd_clicked()) { break; } } lcd_clear(); lcd_return_to_status(); } static void lcd_print_state(uint8_t state) { switch (state) { case STATE_ON: lcd_puts_P(_N(" 1")); break; case STATE_OFF: lcd_puts_P(_N(" 0")); break; default: lcd_puts_P(_T(MSG_NA)); break; } } //! @brief Show sensor state //! //! @code{.unparsed} //! |01234567890123456789| //! |PINDA N/A FINDA N/A| MSG_PINDA c=5 MSG_FINDA c=5 //! |Fil. sensor N/A| MSG_FSENSOR //! | Int: 000 Xd:+00000| //! |Shut: 000 Yd:+00000| //! ---------------------- //! @endcode static void lcd_show_sensors_state() { //0: N/A; 1: OFF; 2: ON uint8_t pinda_state = STATE_NA; uint8_t finda_state = STATE_NA; uint8_t idler_state = STATE_NA; pinda_state = READ(Z_MIN_PIN); if (MMU2::mmu2.Enabled()) { finda_state = MMU2::mmu2.FindaDetectsFilament(); } lcd_puts_at_P(0, 0, MSG_PINDA); lcd_set_cursor(LCD_WIDTH - 14, 0); lcd_print_state(pinda_state); if (MMU2::mmu2.Enabled()) { lcd_puts_at_P(10, 0, _n("FINDA"));////MSG_FINDA c=5 lcd_set_cursor(LCD_WIDTH - 3, 0); lcd_print_state(finda_state); } #ifdef FILAMENT_SENSOR idler_state = fsensor.getFilamentPresent(); lcd_puts_at_P(0, 1, _T(MSG_FSENSOR)); lcd_set_cursor(LCD_WIDTH - 3, 1); lcd_print_state(idler_state); #endif //FILAMENT_SENSOR #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) // Display X and Y difference from Filament sensor // Display Light intensity from Filament sensor // Frame_Avg register represents the average brightness of all pixels within a frame (324 pixels). This // value ranges from 0(darkest) to 255(brightest). // Display LASER shutter time from Filament sensor // Shutter register is an index of LASER shutter time. It is automatically controlled by the chip's internal // auto-exposure algorithm. When the chip is tracking on a reflective surface, the Shutter is small. // When the chip is tracking on a surface that absorbs IR (or doesn't reflect it), the Shutter is large. // The maximum value of the shutter is 17. The value of 16 seems to be reported as 17 even though the // Brightness value changes correctly as if the shutter changed to 16 (probably some bug with the sensor). // The shutter algorithm tries to keep the B value in the 70-110 range. lcd_set_cursor(0, 2); lcd_printf_P(_N("B: %3d Xd:%6d\n" "S: %3d Yd:%6d"), pat9125_b, pat9125_x, pat9125_s, pat9125_y); #endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) } void lcd_menu_show_sensors_state() // NOT static due to using inside "Marlin_main" module ("manage_inactivity()") { lcd_timeoutToStatus.stop(); lcd_show_sensors_state(); menu_back_if_clicked(); } void lcd_move_menu_axis() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); MENU_ITEM_SUBMENU_P(_i("Move X"), lcd_move_x);////MSG_MOVE_X c=18 MENU_ITEM_SUBMENU_P(_i("Move Y"), lcd_move_y);////MSG_MOVE_Y c=18 MENU_ITEM_SUBMENU_P(_i("Move Z"), lcd_move_z);////MSG_MOVE_Z c=18 MENU_ITEM_SUBMENU_P(_T(MSG_EXTRUDER), lcd_move_e); MENU_END(); } #ifdef SDCARD_SORT_ALPHA static void lcd_sort_type_set() { uint8_t sdSort; sdSort = eeprom_read_byte((uint8_t*) EEPROM_SD_SORT); switch (sdSort) { case SD_SORT_TIME: sdSort = SD_SORT_ALPHA; break; case SD_SORT_ALPHA: sdSort = SD_SORT_NONE; break; default: sdSort = SD_SORT_TIME; } eeprom_update_byte((uint8_t*)EEPROM_SD_SORT, sdSort); card.presort_flag = true; } #endif //SDCARD_SORT_ALPHA #ifdef TMC2130 static void lcd_crash_mode_info() { lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < _millis()) { lcd_clear(); fputs_P(_i("Crash detection can\nbe turned on only in\nNormal mode"), lcdout);////MSG_CRASH_DET_ONLY_IN_NORMAL c=20 r=4 tim = _millis(); } menu_back_if_clicked(); } static void lcd_crash_mode_info2() { lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < _millis()) { lcd_clear(); fputs_P(_i("WARNING:\nCrash detection\ndisabled in\nStealth mode"), lcdout);////MSG_CRASH_DET_STEALTH_FORCE_OFF c=20 r=4 tim = _millis(); } menu_back_if_clicked(); } #endif //TMC2130 //-// static void lcd_sound_state_set(void) { Sound_CycleState(); } #ifndef MMU_FORCE_STEALTH_MODE static void lcd_silent_mode_mmu_set() { if (SilentModeMenu_MMU == 1) SilentModeMenu_MMU = 0; else SilentModeMenu_MMU = 1; //saving to eeprom is done in mmu_loop() after mmu actually switches state and confirms with "ok" } #endif //MMU_FORCE_STEALTH_MODE static void lcd_silent_mode_set() { switch (SilentModeMenu) { #ifdef TMC2130 case SILENT_MODE_NORMAL: SilentModeMenu = SILENT_MODE_STEALTH; break; case SILENT_MODE_STEALTH: SilentModeMenu = SILENT_MODE_NORMAL; break; default: SilentModeMenu = SILENT_MODE_NORMAL; break; // (probably) not needed #else case SILENT_MODE_POWER: SilentModeMenu = SILENT_MODE_SILENT; break; case SILENT_MODE_SILENT: SilentModeMenu = SILENT_MODE_AUTO; break; case SILENT_MODE_AUTO: SilentModeMenu = SILENT_MODE_POWER; break; default: SilentModeMenu = SILENT_MODE_POWER; break; // (probably) not needed #endif //TMC2130 } eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu); #ifdef TMC2130 lcd_display_message_fullscreen_P(_i("Mode change in progress..."));////MSG_MODE_CHANGE_IN_PROGRESS c=20 r=3 // Wait until the planner queue is drained and the stepper routine achieves // an idle state. st_synchronize(); if (tmc2130_wait_standstill_xy(1000)) {} // MYSERIAL.print("standstill OK"); // else // MYSERIAL.print("standstill NG!"); cli(); tmc2130_mode = (SilentModeMenu != SILENT_MODE_NORMAL)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; update_mode_profile(); tmc2130_init(TMCInitParams(false, FarmOrUserECool())); // We may have missed a stepper timer interrupt due to the time spent in tmc2130_init. // Be safe than sorry, reset the stepper timer before re-enabling interrupts. st_reset_timer(); sei(); #endif //TMC2130 st_current_init(); #ifdef TMC2130 if (lcd_crash_detect_enabled() && (SilentModeMenu != SILENT_MODE_NORMAL)) menu_submenu(lcd_crash_mode_info2); lcd_encoder_diff=0; // reset 'encoder buffer' #endif //TMC2130 } #ifdef TMC2130 static void crash_mode_switch() { if (lcd_crash_detect_enabled()) { lcd_crash_detect_disable(); } else { lcd_crash_detect_enable(); } if (IS_SD_PRINTING || usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal)) menu_goto(lcd_tune_menu, 9, true, true); else menu_goto(lcd_settings_menu, 9, true, true); } #endif //TMC2130 #if (LANG_MODE != 0) void menu_setlang(unsigned char lang) { if (!lang_select(lang)) { if (lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Copy selected language?"), false, LCD_LEFT_BUTTON_CHOICE) == LCD_LEFT_BUTTON_CHOICE)////MSG_COPY_SEL_LANG c=20 r=3 lang_boot_update_start(lang); lcd_update_enable(true); lcd_clear(); menu_goto(lcd_language_menu, 0, true, true); lcd_timeoutToStatus.stop(); //infinite timeout lcd_draw_update = 2; } } #ifdef COMMUNITY_LANGUAGE_SUPPORT #ifdef XFLASH static void lcd_community_language_menu() { MENU_BEGIN(); uint8_t cnt = lang_get_count(); MENU_ITEM_BACK_P(_T(MSG_SELECT_LANGUAGE)); //Back to previous Menu for (int i = 8; i < cnt; i++) //all community languages if (menu_item_text_P(lang_get_name_by_code(lang_get_code(i)))) { menu_setlang(i); return; } MENU_END(); } #endif //XFLASH #endif //COMMUNITY_LANGUAGE_SUPPORT && W52X20CL static void lcd_language_menu() { MENU_BEGIN(); if (lang_is_selected()) MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); // if (menu_item_text_P(lang_get_name_by_code(lang_get_code(0)))) //primary language { menu_setlang(0); return; } uint8_t cnt = lang_get_count(); #ifdef XFLASH if (cnt == 2) //display secondary language in case of clear xflash { if (menu_item_text_P(lang_get_name_by_code(lang_get_code(1)))) { menu_setlang(1); return; } } else for (int i = 2; i < 8; i++) //skip seconday language - solved in lang_select (MK3) 'i < 8' for 7 official languages #else //XFLASH for (int i = 1; i < cnt; i++) //all seconday languages (MK2/25) #endif //XFLASH if (menu_item_text_P(lang_get_name_by_code(lang_get_code(i)))) { menu_setlang(i); return; } #ifdef COMMUNITY_LANGUAGE_SUPPORT #ifdef XFLASH MENU_ITEM_SUBMENU_P(_T(MSG_COMMUNITY_MADE), lcd_community_language_menu); #endif //XFLASH #endif //COMMUNITY_LANGUAGE_SUPPORT && W52X20CL MENU_END(); } #endif //(LANG_MODE != 0) void lcd_mesh_bedleveling() { enquecommand_P(PSTR("G80")); lcd_return_to_status(); } void lcd_mesh_calibration() { enquecommand_P(PSTR("M45")); lcd_return_to_status(); } void lcd_mesh_calibration_z() { enquecommand_P(PSTR("M45 Z")); lcd_return_to_status(); } void lcd_temp_calibration_set() { bool temp_cal_active = eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE); temp_cal_active = !temp_cal_active; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, temp_cal_active); } #ifdef HAS_SECOND_SERIAL_PORT void lcd_second_serial_set() { if(selectedSerialPort == 1) selectedSerialPort = 0; else selectedSerialPort = 1; eeprom_update_byte((unsigned char *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort); MYSERIAL.begin(BAUDRATE); } #endif //HAS_SECOND_SERIAL_PORT void lcd_calibrate_pinda() { enquecommand_P(PSTR("G76")); lcd_return_to_status(); } void lcd_toshiba_flash_air_compatibility_toggle() { card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled()); eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled()); } //! @brief Continue first layer calibration with previous value or start from zero? //! //! @code{.unparsed} //! |01234567890123456789| //! |Sheet Smooth1| MSG_SHEET c=12, MSG_SHEET_NAME c=7 //! |Z offset: -1.480mm| MSG_Z_OFFSET c=11 //! |>Continue | MSG_CONTINUE //! | Reset | MSG_RESET //! ---------------------- //! @endcode void lcd_first_layer_calibration_reset() { typedef struct { bool reset; } MenuData; static_assert(sizeof(menu_data)>= sizeof(MenuData),"_menu_data_t doesn't fit into menu_data"); MenuData* menuData = (MenuData*)&(menu_data[0]); if(LCD_CLICKED || !eeprom_is_sheet_initialized(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))) || (calibration_status() >= CALIBRATION_STATUS_LIVE_ADJUST) || (0 == static_cast(eeprom_read_word(reinterpret_cast (&EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset))))) { if (menuData->reset) { eeprom_update_word(reinterpret_cast(&EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset), 0xffff); } menu_goto(lcd_v2_calibration,0,true,true); } if (lcd_encoder > 0) { menuData->reset = true; lcd_encoder = 1; } else if (lcd_encoder < 1) { menuData->reset = false; lcd_encoder = 0; } char sheet_name[sizeof(Sheet::name)]; eeprom_read_block(sheet_name, &EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].name, sizeof(Sheet::name)); lcd_set_cursor(0, 0); float offset = static_cast(eeprom_read_word(reinterpret_cast(&EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)))/cs.axis_steps_per_unit[Z_AXIS]; lcd_printf_P(_i("Sheet %.7s\nZ offset: %+1.3fmm\n%cContinue\n%cReset"),////MSG_SHEET_OFFSET c=20 r=4 sheet_name, offset, menuData->reset ? ' ' : '>', menuData->reset ? '>' : ' ');// \n denotes line break, %.7s is replaced by 7 character long sheet name, %+1.3f is replaced by 6 character long floating point number, %c is replaced by > or white space (one character) based on whether first or second option is selected. % denoted place holders can not be reordered. } void lcd_v2_calibration() { if (MMU2::mmu2.Enabled()) { const uint8_t filament = choose_menu_P( _T(MSG_SELECT_FILAMENT), _T(MSG_FILAMENT),(_T(MSG_CANCEL)+1)); //Hack to reuse MSG but strip 1st char off if (filament < 5) { lay1cal_filament = filament; } else { menu_back(); return; } } #ifdef FILAMENT_SENSOR else if (!eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE)) { bool loaded = false; if (fsensor.isReady()) { loaded = fsensor.getFilamentPresent(); } else { loaded = !lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_LOADED), false, LCD_LEFT_BUTTON_CHOICE); lcd_update_enabled = true; } if (!loaded) { lcd_display_message_fullscreen_P(_i("Please load filament first."));////MSG_PLEASE_LOAD_PLA c=20 r=4 lcd_consume_click(); for (uint_least8_t i = 0; i < 20; i++) { //wait max. 2s delay_keep_alive(100); if (lcd_clicked()) { break; } } lcd_update_enabled = true; menu_back(); return; } } #endif //FILAMENT_SENSOR eFilamentAction = FilamentAction::Lay1Cal; menu_goto(lcd_generic_preheat_menu, 0, true, true); } void lcd_wizard() { bool result = true; if (calibration_status() != CALIBRATION_STATUS_ASSEMBLED) { result = !lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Running Wizard will delete current calibration results and start from the beginning. Continue?"), false);////MSG_WIZARD_RERUN c=20 r=7 } if (result) { calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); lcd_wizard(WizState::Run); } else { lcd_return_to_status(); lcd_update_enable(true); lcd_update(2); } } #if (LANG_MODE != 0) void lcd_language() { lcd_update_enable(true); lcd_clear(); menu_goto(lcd_language_menu, 0, true, true); lcd_timeoutToStatus.stop(); //infinite timeout lcd_draw_update = 2; while ((menu_menu != lcd_status_screen) && (!lang_is_selected())) { _delay(50); lcd_update(0); manage_heater(); manage_inactivity(true); } if (lang_is_selected()) lcd_return_to_status(); else lang_select(LANG_ID_PRI); } #endif static void wait_preheat() { current_position[Z_AXIS] = 100; //move in z axis to make space for loading filament plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60); delay_keep_alive(2000); lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); while (fabs(degHotend(0) - degTargetHotend(0)) > 3) { lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd_set_cursor(0, 4); //Print the hotend temperature (9 chars total) lcdui_print_temp(LCD_STR_THERMOMETER[0], (int)(degHotend(0) + 0.5), (int)(degTargetHotend(0) + 0.5)); delay_keep_alive(1000); } } static void lcd_wizard_load() { if (MMU2::mmu2.Enabled()) { lcd_show_fullscreen_message_and_wait_P( _i("Please insert filament into the first tube of the MMU, then press the knob to load it.")); ////MSG_MMU_INSERT_FILAMENT_FIRST_TUBE c=20 r=6 } else { lcd_show_fullscreen_message_and_wait_P( _i("Please insert filament into the extruder, then press the knob to load it.")); ////MSG_WIZARD_LOAD_FILAMENT c=20 r=6 } lcd_update_enable(false); lcd_clear(); lcd_puts_at_P(0, 2, _T(MSG_LOADING_FILAMENT)); loading_flag = true; gcode_M701(FILAMENTCHANGE_FIRSTFEED, 0); //enquecommand_P(PSTR("M701")); } static void wizard_lay1cal_message(bool cold) { lcd_show_fullscreen_message_and_wait_P( _i("Now I will calibrate distance between tip of the nozzle and heatbed surface.")); ////MSG_WIZARD_V2_CAL c=20 r=8 if (MMU2::mmu2.Enabled()) { lcd_show_fullscreen_message_and_wait_P( _i("Select a filament for the First Layer Calibration and select it in the on-screen menu."));////MSG_SELECT_FIL_1ST_LAYERCAL c=20 r=7 } else if (cold) { lcd_show_fullscreen_message_and_wait_P( _i("Select temperature which matches your material."));////MSG_SELECT_TEMP_MATCHES_MATERIAL c=20 r=4 } lcd_show_fullscreen_message_and_wait_P( _i("The printer will start printing a zig-zag line. Rotate the knob until you reach the optimal height. Check the pictures in the handbook (Calibration chapter).")); ////MSG_WIZARD_V2_CAL_2 c=20 r=12 } //! @brief Printer first run wizard (Selftest and calibration) //! //! //! First layer calibration with MMU state diagram //! //! @startuml //! [*] --> IsFil //! IsFil : Is any filament loaded? //! LoadFilCold : Push the button to start loading Filament 1 //! //! IsFil --> Lay1CalCold : yes //! IsFil --> LoadFilCold : no //! LoadFilCold --> Lay1CalCold : click //! @enduml //! //! First layer calibration without MMU state diagram //! //! @startuml //! [*] --> IsFil //! IsFil : Is filament loaded? //! Preheat : Select nozle temperature which matches your material. //! LoadFilHot : Insert filament to extruder and press the knob. //! //! IsFil --> Lay1CalCold : yes //! IsFil --> Preheat : no //! Preheat --> LoadFilHot : select //! LoadFilHot --> Lay1CalHot : click //! @enduml //! //! @param state Entry point of the wizard //! //! state | description //! ---------------------- | ---------------- //! WizState::Run | Main entry point //! WizState::RepeatLay1Cal | Entry point after passing 1st layer calibration //! WizState::LoadFilHot | Entry point after temporarily left for preheat before load filament void lcd_wizard(WizState state) { using S = WizState; bool end = false; uint8_t wizard_event; const char *msg = NULL; // Make sure EEPROM_WIZARD_ACTIVE is true if entering using different entry point // other than WizState::Run - it is useful for debugging wizard. if (state != S::Run) eeprom_update_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); FORCE_BL_ON_START; while (!end) { printf_P(PSTR("Wizard state: %d\n"), state); switch (state) { case S::Run: //Run wizard? // 2019-08-07 brutal hack - solving the "viper" situation. // It is caused by the fact, that tmc2130_st_isr makes a crash detection before the printers really starts. // And thus it calles stop_and_save_print_to_ram which sets the saved_printing flag. // Having this flag set during normal printing is lethal - mesh_plan_buffer_line exist in the middle of planning long travels // which results in distorted print. // This primarily happens when the printer is new and parked in 0,0 // So any new printer will fail the first layer calibration unless being reset or the Stop function gets called. // We really must find a way to prevent the crash from happening before the printer is started - that would be the correct solution. // Btw. the flag may even trigger the viper situation on normal start this way and the user won't be able to find out why. saved_printing = false; if( eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE)==2){ lcd_show_fullscreen_message_and_wait_P(_T(MSG_WIZARD_WELCOME_SHIPPING)); state = S::Restore; } else { wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(_T(MSG_WIZARD_WELCOME), false, LCD_LEFT_BUTTON_CHOICE); if (wizard_event == LCD_LEFT_BUTTON_CHOICE) { state = S::Restore; eeprom_update_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); } else { // MIDDLE_BUTTON_CHOICE eeprom_update_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); end = true; } } break; case S::Restore: switch (calibration_status()) { case CALIBRATION_STATUS_ASSEMBLED: state = S::Selftest; break; //run selftest case CALIBRATION_STATUS_XYZ_CALIBRATION: state = S::Xyz; break; //run xyz cal. case CALIBRATION_STATUS_Z_CALIBRATION: state = S::Z; break; //run z cal. case CALIBRATION_STATUS_LIVE_ADJUST: state = S::IsFil; break; //run live adjust case CALIBRATION_STATUS_CALIBRATED: end = true; eeprom_update_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); break; default: state = S::Selftest; break; //if calibration status is unknown, run wizard from the beginning } break; case S::Selftest: lcd_show_fullscreen_message_and_wait_P(_i("First, I will run the selftest to check most common assembly problems."));////MSG_WIZARD_SELFTEST c=20 r=8 wizard_event = lcd_selftest(); if (wizard_event) { calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION); state = S::Xyz; } else end = true; break; case S::Xyz: lcd_show_fullscreen_message_and_wait_P(_i("I will run xyz calibration now. It will take approx. 12 mins."));////MSG_WIZARD_XYZ_CAL c=20 r=8 wizard_event = gcode_M45(false, 0); if (wizard_event) state = S::IsFil; else end = true; break; case S::Z: lcd_show_fullscreen_message_and_wait_P(_i("Please remove shipping helpers first."));////MSG_REMOVE_SHIPPING_HELPERS c=20 r=3 lcd_show_fullscreen_message_and_wait_P(_i("Now remove the test print from steel sheet."));////MSG_REMOVE_TEST_PRINT c=20 r=4 lcd_show_fullscreen_message_and_wait_P(_i("I will run z calibration now."));////MSG_WIZARD_Z_CAL c=20 r=8 wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false); if (wizard_event == LCD_MIDDLE_BUTTON_CHOICE) { lcd_show_fullscreen_message_and_wait_P(_T(MSG_PLACE_STEEL_SHEET)); } wizard_event = gcode_M45(true, 0); if (wizard_event) { //current filament needs to be unloaded and then new filament should be loaded //start to preheat nozzle for unloading remaining PLA filament setTargetHotend(PLA_PREHEAT_HOTEND_TEMP, 0); lcd_display_message_fullscreen_P(_i("Now I will preheat nozzle for PLA.")); ////MSG_WIZARD_WILL_PREHEAT c=20 r=4 wait_preheat(); //unload current filament unload_filament(FILAMENTCHANGE_FINALRETRACT, true); //load filament lcd_wizard_load(); setTargetHotend(0, 0); //we are finished, cooldown nozzle state = S::Finish; //shipped, no need to set first layer, go to final message directly } else end = true; break; case S::IsFil: //start to preheat nozzle and bed to save some time later setTargetHotend(PLA_PREHEAT_HOTEND_TEMP, 0); setTargetBed(PLA_PREHEAT_HPB_TEMP); wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_LOADED), true); if (wizard_event == LCD_LEFT_BUTTON_CHOICE) { state = S::Lay1CalCold; } else { // MIDDLE_BUTTON_CHOICE if(MMU2::mmu2.Enabled()) state = S::LoadFilCold; else state = S::Preheat; } break; case S::Preheat: menu_goto(lcd_preheat_menu,0,false,true); lcd_show_fullscreen_message_and_wait_P(_i("Select nozzle preheat temperature which matches your material."));////MSG_SEL_PREHEAT_TEMP c=20 r=6 end = true; // Leave wizard temporarily for lcd_preheat_menu break; case S::LoadFilHot: wait_preheat(); lcd_wizard_load(); state = S::Lay1CalHot; break; case S::LoadFilCold: lcd_wizard_load(); state = S::Lay1CalCold; break; case S::Lay1CalCold: wizard_lay1cal_message(true); menu_goto(lcd_v2_calibration,0,false,true); end = true; // Leave wizard temporarily for lcd_v2_calibration break; case S::Lay1CalHot: wizard_lay1cal_message(false); lcd_commands_type = LcdCommands::Layer1Cal; end = true; // Leave wizard temporarily for lcd_v2_calibration break; case S::RepeatLay1Cal: wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Do you want to repeat last step to readjust distance between nozzle and heatbed?"), false);////MSG_WIZARD_REPEAT_V2_CAL c=20 r=7 if (wizard_event == LCD_LEFT_BUTTON_CHOICE) { lcd_show_fullscreen_message_and_wait_P(_i("Please clean heatbed and then press the knob."));////MSG_WIZARD_CLEAN_HEATBED c=20 r=8 state = S::Lay1CalCold; } else { lcd_show_fullscreen_message_and_wait_P(_i("If you have additional steel sheets, calibrate their presets in Settings - HW Setup - Steel sheets."));////MSG_ADDITIONAL_SHEETS c=20 r=9 state = S::Finish; } break; case S::Finish: eeprom_update_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); end = true; break; default: break; } } FORCE_BL_ON_END; printf_P(_N("Wizard end state: %d\n"), state); switch (state) { //final message case S::Restore: //printer was already calibrated msg = _T(MSG_WIZARD_DONE); break; case S::Selftest: //selftest case S::Xyz: //xyz cal. case S::Z: //z cal. msg = _T(MSG_WIZARD_CALIBRATION_FAILED); break; case S::Finish: //we are finished msg = _T(MSG_WIZARD_DONE); lcd_reset_alert_level(); lcd_setstatuspgm(MSG_WELCOME); lcd_return_to_status(); break; default: msg = _T(MSG_WIZARD_QUIT); break; } if (!((S::Lay1CalCold == state) || (S::Lay1CalHot == state) || (S::Preheat == state))) { lcd_show_fullscreen_message_and_wait_P(msg); } lcd_update_enable(true); lcd_update(2); } #ifdef TMC2130 void lcd_settings_linearity_correction_menu(void) { MENU_BEGIN(); ON_MENU_LEAVE( lcd_settings_linearity_correction_menu_save(); ); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); #ifdef TMC2130_LINEARITY_CORRECTION_XYZ //tmc2130_wave_fac[X_AXIS] MENU_ITEM_EDIT_int3_P(_i("X-correct:"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_X_CORRECTION c=13 MENU_ITEM_EDIT_int3_P(_i("Y-correct:"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_Y_CORRECTION c=13 MENU_ITEM_EDIT_int3_P(_i("Z-correct:"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_Z_CORRECTION c=13 #endif //TMC2130_LINEARITY_CORRECTION_XYZ MENU_ITEM_EDIT_int3_P(_i("E-correct:"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=13 MENU_END(); } #endif // TMC2130 #ifdef FILAMENT_SENSOR static void fsensor_reinit() { fsensor.init(); } static void lcd_fsensor_enabled_set(void) { fsensor.setEnabled(!fsensor.isEnabled()); } static void lcd_fsensor_runout_set() { fsensor.setRunoutEnabled(!fsensor.getRunoutEnabled(), true); } static void lcd_fsensor_autoload_set() { fsensor.setAutoLoadEnabled(!fsensor.getAutoLoadEnabled(), true); } #if FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 static void lcd_fsensor_jam_detection_set() { fsensor.setJamDetectionEnabled(!fsensor.getJamDetectionEnabled(), true); } #endif //FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 static void lcd_fsensor_actionNA_set(void) { Filament_sensor::SensorActionOnError act = fsensor.getActionOnError(); switch(act) { case Filament_sensor::SensorActionOnError::_Continue: act = Filament_sensor::SensorActionOnError::_Pause; break; case Filament_sensor::SensorActionOnError::_Pause: act = Filament_sensor::SensorActionOnError::_Continue; break; default: act = Filament_sensor::SensorActionOnError::_Continue; } fsensor.setActionOnError(act, true); } static void lcd_fsensor_settings_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_BACK)); MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR), fsensor.isEnabled() ? _T(MSG_ON) : _T(MSG_OFF), lcd_fsensor_enabled_set); if (fsensor.isEnabled()) { if (fsensor.isError()) { MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR_RUNOUT), _T(MSG_NA), fsensor_reinit); MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR_AUTOLOAD), _T(MSG_NA), fsensor_reinit); #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR_JAM_DETECTION), _T(MSG_NA), fsensor_reinit); #endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) } else { MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR_RUNOUT), fsensor.getRunoutEnabled() ? _T(MSG_ON) : _T(MSG_OFF), lcd_fsensor_runout_set); MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR_AUTOLOAD), fsensor.getAutoLoadEnabled() ? _T(MSG_ON) : _T(MSG_OFF), lcd_fsensor_autoload_set); #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) MENU_ITEM_TOGGLE_P(_T(MSG_FSENSOR_JAM_DETECTION), fsensor.getJamDetectionEnabled() ? _T(MSG_ON) : _T(MSG_OFF), lcd_fsensor_jam_detection_set); #endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) } switch(fsensor.getActionOnError()) { case Filament_sensor::SensorActionOnError::_Continue: MENU_ITEM_TOGGLE_P(_T(MSG_FS_ACTION), _T(MSG_CONTINUE_SHORT), lcd_fsensor_actionNA_set); break; case Filament_sensor::SensorActionOnError::_Pause: MENU_ITEM_TOGGLE_P(_T(MSG_FS_ACTION), _T(MSG_PAUSE), lcd_fsensor_actionNA_set); break; default: lcd_fsensor_actionNA_set(); } } MENU_END(); } #endif //FILAMENT_SENSOR static void settingsSpoolJoin() { MENU_ITEM_TOGGLE_P(MSG_SPOOL_JOIN, SpoolJoin::spooljoin.isSpoolJoinEnabled() ? _T(MSG_ON) : _T(MSG_OFF), SpoolJoin::spooljoin.toggleSpoolJoin); } #define SETTINGS_SPOOLJOIN \ do\ {\ settingsSpoolJoin();\ }\ while(0)\ #ifdef MMU_HAS_CUTTER static void settingsCutter() { if (EEPROM_MMU_CUTTER_ENABLED_enabled == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED)) { MENU_ITEM_TOGGLE_P(_T(MSG_CUTTER), _T(MSG_ON), lcd_cutter_enabled); } #ifdef MMU_ALWAYS_CUT else if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED)) { MENU_ITEM_TOGGLE_P(_T(MSG_CUTTER), _T(MSG_ALWAYS), lcd_cutter_enabled); } #endif else { MENU_ITEM_TOGGLE_P(_T(MSG_CUTTER), _T(MSG_OFF), lcd_cutter_enabled); } } #define SETTINGS_CUTTER \ do\ {\ settingsCutter();\ }\ while(0) #else #define SETTINGS_CUTTER #endif //MMU_HAS_CUTTER static void mmu_enable_switch() { uint8_t current_state = eeprom_read_byte((uint8_t *)EEPROM_MMU_ENABLED); // EEPROM update is handled by the stop and start functions. if (current_state) { MMU2::mmu2.Stop(); } else { MMU2::mmu2.Start(); } } static void mmu_reset() { MMU2::mmu2.Reset(MMU2::MMU2::ResetForm::Software); } #ifdef TMC2130 #define SETTINGS_SILENT_MODE \ do\ {\ if(!farm_mode)\ {\ if (SilentModeMenu == SILENT_MODE_NORMAL)\ {\ MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_NORMAL), lcd_silent_mode_set);\ }\ else MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_STEALTH), lcd_silent_mode_set);\ if (SilentModeMenu == SILENT_MODE_NORMAL)\ {\ if (lcd_crash_detect_enabled()) MENU_ITEM_TOGGLE_P(_T(MSG_CRASHDETECT), _T(MSG_ON), crash_mode_switch);\ else MENU_ITEM_TOGGLE_P(_T(MSG_CRASHDETECT), _T(MSG_OFF), crash_mode_switch);\ }\ else MENU_ITEM_TOGGLE_P(_T(MSG_CRASHDETECT), NULL, lcd_crash_mode_info);\ }\ }\ while (0) #else //TMC2130 #define SETTINGS_SILENT_MODE \ do\ {\ if(!farm_mode)\ {\ switch (SilentModeMenu)\ {\ case SILENT_MODE_POWER:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_HIGH_POWER), lcd_silent_mode_set);\ break;\ case SILENT_MODE_SILENT:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_SILENT), lcd_silent_mode_set);\ break;\ case SILENT_MODE_AUTO:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_AUTO_POWER), lcd_silent_mode_set);\ break;\ default:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_HIGH_POWER), lcd_silent_mode_set);\ break; /* (probably) not needed*/\ }\ }\ }\ while (0) #endif //TMC2130 #ifndef MMU_FORCE_STEALTH_MODE #define SETTINGS_MMU_MODE \ do\ {\ if (MMU2::mmu2.Enabled())\ {\ if (SilentModeMenu_MMU == 0) MENU_ITEM_TOGGLE_P(_T(MSG_MMU_MODE), _T(MSG_NORMAL), lcd_silent_mode_mmu_set);\ else MENU_ITEM_TOGGLE_P(_T(MSG_MMU_MODE), _T(MSG_STEALTH), lcd_silent_mode_mmu_set);\ }\ }\ while (0) #else //MMU_FORCE_STEALTH_MODE #define SETTINGS_MMU_MODE #endif //MMU_FORCE_STEALTH_MODE /* #define SETTINGS_MBL_MODE \ do\ {\ switch(e_mbl_type)\ {\ case e_MBL_FAST:\ MENU_ITEM_FUNCTION_P(_n("Mode [Fast]"),mbl_mode_set);\ break; \ case e_MBL_OPTIMAL:\ MENU_ITEM_FUNCTION_P(_n("Mode [Optimal]"), mbl_mode_set); \ break; \ case e_MBL_PREC:\ MENU_ITEM_FUNCTION_P(_n("Mode [Precise]"), mbl_mode_set); \ break; \ default:\ MENU_ITEM_FUNCTION_P(_n("Mode [Optimal]"), mbl_mode_set); \ break; \ }\ }\ while (0) */ #define SETTINGS_MMU_LOADING_TEST \ do\ {\ MENU_ITEM_SUBMENU_P(_T(MSG_LOADING_TEST), mmu_loading_test_menu); \ }\ while (0) #define SETTINGS_SOUND \ do\ {\ switch(eSoundMode)\ {\ case e_SOUND_MODE_LOUD:\ MENU_ITEM_TOGGLE_P(_T(MSG_SOUND), _T(MSG_SOUND_LOUD), lcd_sound_state_set);\ break;\ case e_SOUND_MODE_ONCE:\ MENU_ITEM_TOGGLE_P(_T(MSG_SOUND), _T(MSG_SOUND_ONCE), lcd_sound_state_set);\ break;\ case e_SOUND_MODE_SILENT:\ MENU_ITEM_TOGGLE_P(_T(MSG_SOUND), _T(MSG_SILENT), lcd_sound_state_set);\ break;\ case e_SOUND_MODE_BLIND:\ MENU_ITEM_TOGGLE_P(_T(MSG_SOUND), _T(MSG_SOUND_BLIND), lcd_sound_state_set);\ break;\ default:\ MENU_ITEM_TOGGLE_P(_T(MSG_SOUND), _T(MSG_SOUND_LOUD), lcd_sound_state_set);\ }\ }\ while (0) //-// static void lcd_check_mode_set(void) { switch(oCheckMode) { case ClCheckMode::_None: oCheckMode=ClCheckMode::_Warn; break; case ClCheckMode::_Warn: oCheckMode=ClCheckMode::_Strict; break; case ClCheckMode::_Strict: oCheckMode=ClCheckMode::_None; break; default: oCheckMode=ClCheckMode::_None; } eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,(uint8_t)oCheckMode); } #define SETTINGS_MODE \ do\ {\ switch(oCheckMode)\ {\ case ClCheckMode::_None:\ MENU_ITEM_TOGGLE_P(_T(MSG_NOZZLE), _T(MSG_NONE), lcd_check_mode_set);\ break;\ case ClCheckMode::_Warn:\ MENU_ITEM_TOGGLE_P(_T(MSG_NOZZLE), _T(MSG_WARN), lcd_check_mode_set);\ break;\ case ClCheckMode::_Strict:\ MENU_ITEM_TOGGLE_P(_T(MSG_NOZZLE), _T(MSG_STRICT), lcd_check_mode_set);\ break;\ default:\ MENU_ITEM_TOGGLE_P(_T(MSG_NOZZLE), _T(MSG_NONE), lcd_check_mode_set);\ }\ }\ while (0) static void lcd_nozzle_diameter_cycle(void) { uint16_t nDiameter; switch(oNozzleDiameter){ case ClNozzleDiameter::_Diameter_250: oNozzleDiameter=ClNozzleDiameter::_Diameter_400; nDiameter=400; break; case ClNozzleDiameter::_Diameter_400: oNozzleDiameter=ClNozzleDiameter::_Diameter_600; nDiameter=600; break; case ClNozzleDiameter::_Diameter_600: oNozzleDiameter=ClNozzleDiameter::_Diameter_800; nDiameter=800; break; case ClNozzleDiameter::_Diameter_800: oNozzleDiameter=ClNozzleDiameter::_Diameter_250; nDiameter=250; break; default: oNozzleDiameter=ClNozzleDiameter::_Diameter_400; nDiameter=400; } eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)oNozzleDiameter); eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter); } #define SETTINGS_NOZZLE \ do\ {\ float fNozzleDiam;\ switch(oNozzleDiameter)\ {\ case ClNozzleDiameter::_Diameter_250: fNozzleDiam = 0.25f; break;\ case ClNozzleDiameter::_Diameter_400: fNozzleDiam = 0.4f; break;\ case ClNozzleDiameter::_Diameter_600: fNozzleDiam = 0.6f; break;\ case ClNozzleDiameter::_Diameter_800: fNozzleDiam = 0.8f; break;\ default: fNozzleDiam = 0.4f; break;\ }\ MENU_ITEM_TOGGLE(_T(MSG_NOZZLE_DIAMETER), ftostr12ns(fNozzleDiam), lcd_nozzle_diameter_cycle);\ }\ while (0) static void lcd_check_model_set(void) { switch(oCheckModel) { case ClCheckModel::_None: oCheckModel=ClCheckModel::_Warn; break; case ClCheckModel::_Warn: oCheckModel=ClCheckModel::_Strict; break; case ClCheckModel::_Strict: oCheckModel=ClCheckModel::_None; break; default: oCheckModel=ClCheckModel::_None; } eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODEL,(uint8_t)oCheckModel); } #define SETTINGS_MODEL \ do\ {\ switch(oCheckModel)\ {\ case ClCheckModel::_None:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODEL), _T(MSG_NONE), lcd_check_model_set);\ break;\ case ClCheckModel::_Warn:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODEL), _T(MSG_WARN), lcd_check_model_set);\ break;\ case ClCheckModel::_Strict:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODEL), _T(MSG_STRICT), lcd_check_model_set);\ break;\ default:\ MENU_ITEM_TOGGLE_P(_T(MSG_MODEL), _T(MSG_NONE), lcd_check_model_set);\ }\ }\ while (0) static void lcd_check_version_set(void) { switch(oCheckVersion) { case ClCheckVersion::_None: oCheckVersion=ClCheckVersion::_Warn; break; case ClCheckVersion::_Warn: oCheckVersion=ClCheckVersion::_Strict; break; case ClCheckVersion::_Strict: oCheckVersion=ClCheckVersion::_None; break; default: oCheckVersion=ClCheckVersion::_None; } eeprom_update_byte((uint8_t*)EEPROM_CHECK_VERSION,(uint8_t)oCheckVersion); } #define SETTINGS_VERSION \ do\ {\ switch(oCheckVersion)\ {\ case ClCheckVersion::_None:\ MENU_ITEM_TOGGLE_P(MSG_FIRMWARE, _T(MSG_NONE), lcd_check_version_set);\ break;\ case ClCheckVersion::_Warn:\ MENU_ITEM_TOGGLE_P(MSG_FIRMWARE, _T(MSG_WARN), lcd_check_version_set);\ break;\ case ClCheckVersion::_Strict:\ MENU_ITEM_TOGGLE_P(MSG_FIRMWARE, _T(MSG_STRICT), lcd_check_version_set);\ break;\ default:\ MENU_ITEM_TOGGLE_P(MSG_FIRMWARE, _T(MSG_NONE), lcd_check_version_set);\ }\ }\ while (0) static void lcd_checking_menu(void) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_HW_SETUP)); SETTINGS_MODE; SETTINGS_MODEL; SETTINGS_VERSION; MENU_END(); } template static void select_sheet_menu() { selected_sheet = number; lcd_sheet_menu(); } static void sheets_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_HW_SETUP)); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[0], select_sheet_menu<0>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[1], select_sheet_menu<1>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[2], select_sheet_menu<2>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[3], select_sheet_menu<3>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[4], select_sheet_menu<4>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[5], select_sheet_menu<5>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[6], select_sheet_menu<6>); MENU_ITEM_SUBMENU_E(EEPROM_Sheets_base->s[7], select_sheet_menu<7>); MENU_END(); } void lcd_hw_setup_menu(void) // can not be "static" { typedef struct {// 2bytes total int8_t status; uint8_t experimental_menu_visibility; } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0 || lcd_draw_update) { _md->status = 1; _md->experimental_menu_visibility = eeprom_init_default_byte((uint8_t *)EEPROM_EXPERIMENTAL_VISIBILITY, 0); } MENU_BEGIN(); MENU_ITEM_BACK_P(_T(bSettings?MSG_SETTINGS:MSG_BACK)); // i.e. default menu-item / menu-item after checking mismatch MENU_ITEM_SUBMENU_P(_T(MSG_STEEL_SHEETS), sheets_menu); SETTINGS_NOZZLE; MENU_ITEM_SUBMENU_P(_i("Checks"), lcd_checking_menu); ////MSG_CHECKS c=18 #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) //! Fsensor Detection isn't ready for mmu yet it is temporarily disabled. //! @todo Don't forget to remove this as soon Fsensor Detection works with mmu if(!MMU2::mmu2.Enabled()) MENU_ITEM_FUNCTION_P(PSTR("Fsensor Detection"), lcd_detect_IRsensor); #endif //IR_SENSOR_ANALOG if (_md->experimental_menu_visibility) { MENU_ITEM_SUBMENU_P(PSTR("Experimental"), lcd_experimental_menu);////MSG_MENU_EXPERIMENTAL c=18 } #ifdef PINDA_TEMP_COMP //! The SuperPINDA is detected when the PINDA temp is below its defined limit. //! This works well on the EINSY board but not on the miniRAMBo board as //! as a disconnected SuperPINDA will show higher temps compared to an EINSY board. //! //! This menu allows the user to en-/disable the SuperPINDA manualy MENU_ITEM_TOGGLE_P(_N("SuperPINDA"), eeprom_read_byte((uint8_t *)EEPROM_PINDA_TEMP_COMPENSATION) ? _T(MSG_YES) : _T(MSG_NO), lcd_pinda_temp_compensation_toggle); #endif //PINDA_TEMP_COMP MENU_END(); } static void lcd_settings_menu() { SilentModeMenu = eeprom_read_byte((uint8_t*) EEPROM_SILENT); MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_SUBMENU_P(_i("Temperature"), lcd_control_temperature_menu);////MSG_TEMPERATURE c=18 if (!printer_active() || isPrintPaused) { MENU_ITEM_SUBMENU_P(_i("Move axis"), lcd_move_menu_axis);////MSG_MOVE_AXIS c=18 MENU_ITEM_GCODE_P(_i("Disable steppers"), PSTR("M84"));////MSG_DISABLE_STEPPERS c=18 } #ifdef FILAMENT_SENSOR MENU_ITEM_SUBMENU_P(_T(MSG_FSENSOR), lcd_fsensor_settings_menu); #endif //FILAMENT_SENSOR MENU_ITEM_TOGGLE_P(PSTR("MMU"), eeprom_read_byte((uint8_t *)EEPROM_MMU_ENABLED) ? _T(MSG_ON) : _T(MSG_OFF), mmu_enable_switch); if (MMU2::mmu2.Enabled()) { // Only show menus when communicating with MMU SETTINGS_SPOOLJOIN; SETTINGS_CUTTER; SETTINGS_MMU_MODE; SETTINGS_MMU_LOADING_TEST; } if (eeprom_read_byte((uint8_t *)EEPROM_MMU_ENABLED)) { // Communication with MMU not required to reset MMU MENU_ITEM_FUNCTION_P(PSTR("Reset MMU"), mmu_reset); } MENU_ITEM_TOGGLE_P(_T(MSG_FANS_CHECK), fans_check_enabled ? _T(MSG_ON) : _T(MSG_OFF), lcd_set_fan_check); SETTINGS_SILENT_MODE; if(!farm_mode) { bSettings=true; // flag ('fake parameter') for 'lcd_hw_setup_menu()' function MENU_ITEM_SUBMENU_P(_T(MSG_HW_SETUP), lcd_hw_setup_menu); } MENU_ITEM_SUBMENU_P(_T(MSG_MESH_BED_LEVELING), lcd_mesh_bed_leveling_settings); #if defined (TMC2130) && defined (LINEARITY_CORRECTION) MENU_ITEM_SUBMENU_P(_i("Lin. correction"), lcd_settings_linearity_correction_menu);////MSG_LIN_CORRECTION c=18 #endif //LINEARITY_CORRECTION && TMC2130 if(has_temperature_compensation()) { MENU_ITEM_TOGGLE_P(_T(MSG_PINDA_CALIBRATION), eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) ? _T(MSG_ON) : _T(MSG_OFF), lcd_temp_calibration_set); } #ifdef HAS_SECOND_SERIAL_PORT MENU_ITEM_TOGGLE_P(_T(MSG_RPI_PORT), (selectedSerialPort == 0) ? _T(MSG_OFF) : _T(MSG_ON), lcd_second_serial_set); #endif //HAS_SECOND_SERIAL if (!isPrintPaused && !homing_flag && !mesh_bed_leveling_flag) MENU_ITEM_SUBMENU_P(_T(MSG_BABYSTEP_Z), lcd_babystep_z); #if (LANG_MODE != 0) MENU_ITEM_SUBMENU_P(_T(MSG_SELECT_LANGUAGE), lcd_language_menu); #endif //(LANG_MODE != 0) if (!farm_mode) { //SD related settings are not available in farm mode if (card.ToshibaFlashAir_isEnabled()) MENU_ITEM_TOGGLE_P(_T(MSG_SD_CARD), MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY, lcd_toshiba_flash_air_compatibility_toggle); else MENU_ITEM_TOGGLE_P(_T(MSG_SD_CARD), _T(MSG_NORMAL), lcd_toshiba_flash_air_compatibility_toggle); #ifdef SDCARD_SORT_ALPHA switch (eeprom_read_byte((uint8_t*) EEPROM_SD_SORT)) { case SD_SORT_TIME: MENU_ITEM_TOGGLE_P(_T(MSG_SORT), _T(MSG_SORT_TIME), lcd_sort_type_set); break; case SD_SORT_ALPHA: MENU_ITEM_TOGGLE_P(_T(MSG_SORT), _T(MSG_SORT_ALPHA), lcd_sort_type_set); break; default: MENU_ITEM_TOGGLE_P(_T(MSG_SORT), _T(MSG_NONE), lcd_sort_type_set); } } #endif //SDCARD_SORT_ALPHA SETTINGS_SOUND; #ifdef LCD_BL_PIN if (backlightSupport) { MENU_ITEM_SUBMENU_P(_T(MSG_BRIGHTNESS), lcd_backlight_menu); } #endif //LCD_BL_PIN if (farm_mode) { MENU_ITEM_FUNCTION_P(PSTR("Disable farm mode"), lcd_disable_farm_mode); } MENU_END(); } #ifdef TMC2130 static void lcd_ustep_linearity_menu_save() { eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC, tmc2130_wave_fac[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC, tmc2130_wave_fac[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC, tmc2130_wave_fac[Z_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC, tmc2130_wave_fac[E_AXIS]); } #endif //TMC2130 #ifdef TMC2130 static void lcd_settings_linearity_correction_menu_save() { bool changed = false; if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[X_AXIS] = 0; if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Y_AXIS] = 0; if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Z_AXIS] = 0; if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[E_AXIS] = 0; changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]); lcd_ustep_linearity_menu_save(); if (changed) tmc2130_init(TMCInitParams(false, FarmOrUserECool())); } #endif //TMC2130 static void lcd_calibration_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); if (!isPrintPaused) { MENU_ITEM_FUNCTION_P(_i("Wizard"), lcd_wizard);////MSG_WIZARD c=17 if (lcd_commands_type == LcdCommands::Idle) { MENU_ITEM_SUBMENU_P(_T(MSG_V2_CALIBRATION), lcd_first_layer_calibration_reset); } MENU_ITEM_GCODE_P(_T(MSG_AUTO_HOME), PSTR("G28 W")); #ifdef TMC2130 MENU_ITEM_FUNCTION_P(_i("Belt test"), lcd_belttest_v);////MSG_BELTTEST c=18 #endif //TMC2130 MENU_ITEM_FUNCTION_P(_i("Selftest"), lcd_selftest_v);////MSG_SELFTEST c=18 // MK2 MENU_ITEM_FUNCTION_P(_i("Calibrate XYZ"), lcd_mesh_calibration);////MSG_CALIBRATE_BED c=18 // "Calibrate Z" with storing the reference values to EEPROM. MENU_ITEM_SUBMENU_P(_T(MSG_HOMEYZ), lcd_mesh_calibration_z); MENU_ITEM_SUBMENU_P(_T(MSG_MESH_BED_LEVELING), lcd_mesh_bedleveling); ////MSG_MESH_BED_LEVELING c=18 MENU_ITEM_SUBMENU_P(_i("Bed level correct"), lcd_adjust_bed);////MSG_BED_CORRECTION_MENU c=18 MENU_ITEM_SUBMENU_P(_i("PID calibration"), pid_extruder);////MSG_PID_EXTRUDER c=17 #ifndef TMC2130 MENU_ITEM_SUBMENU_P(_i("Show end stops"), menu_show_end_stops);////MSG_SHOW_END_STOPS c=18 #endif MENU_ITEM_GCODE_P(_i("Reset XYZ calibr."), PSTR("M44"));////MSG_CALIBRATE_BED_RESET c=18 if(has_temperature_compensation()) { MENU_ITEM_FUNCTION_P(_T(MSG_PINDA_CALIBRATION), lcd_calibrate_pinda); } } #ifdef TEMP_MODEL MENU_ITEM_SUBMENU_P(_n("Temp Model cal."), lcd_temp_model_cal); #endif //TEMP_MODEL MENU_END(); } //! @brief Select one of numbered items //! //! Create list of items with header. Header can not be selected. //! Each item has text description passed by function parameter and //! number. There are 5 numbered items, if MMU2::mmu2.Enabled(), 4 otherwise. //! Items are numbered from 1 to 4 or 5. But index returned starts at 0. //! There can be last item with different text and no number. //! //! @param header Header text //! @param item Item text //! @param last_item Last item text, or nullptr if there is no Last item //! @return selected item index, first item index is 0 uint8_t choose_menu_P(const char *header, const char *item, const char *last_item) { //following code should handle 3 to 127 number of items well const int8_t items_no = last_item?(MMU2::mmu2.Enabled()?6:5):(MMU2::mmu2.Enabled()?5:4); const uint8_t item_len = item?strlen_P(item):0; int8_t first = 0; int8_t enc_dif = lcd_encoder_diff; int8_t cursor_pos = 1; lcd_clear(); KEEPALIVE_STATE(PAUSED_FOR_USER); while (1) { manage_heater(); manage_inactivity(true); if (abs((enc_dif - lcd_encoder_diff)) > 4) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } enc_dif = lcd_encoder_diff; Sound_MakeSound(e_SOUND_TYPE_EncoderMove); } if (cursor_pos > 3) { cursor_pos = 3; if (first < items_no - 3) { first++; lcd_clear(); } else { // here we are at the very end of the list Sound_MakeSound(e_SOUND_TYPE_BlindAlert); } } if (cursor_pos < 1) { cursor_pos = 1; if (first > 0) { first--; lcd_clear(); } else { // here we are at the very end of the list Sound_MakeSound(e_SOUND_TYPE_BlindAlert); } } if (header) lcd_puts_at_P(0,0,header); const bool last_visible = (first == items_no - 3); const uint_least8_t ordinary_items = (last_item&&last_visible)?2:3; for (uint_least8_t i = 0; i < ordinary_items; i++) { if (item) lcd_puts_at_P(1, i + 1, item); } for (uint_least8_t i = 0; i < ordinary_items; i++) { lcd_set_cursor(2 + item_len, i+1); lcd_print(first + i + 1); } if (last_item&&last_visible) lcd_puts_at_P(1, 3, last_item); lcd_puts_at_P(0, 1, PSTR(" \n \n ")); lcd_putc_at(0, cursor_pos, '>'); _delay(100); if (lcd_clicked()) { Sound_MakeSound(e_SOUND_TYPE_ButtonEcho); KEEPALIVE_STATE(IN_HANDLER); lcd_encoder_diff = 0; return(cursor_pos + first - 1); } } } char reset_menu() { static int8_t first = 0; int8_t enc_dif = 0; char cursor_pos = 0; const char *const item[] = { PSTR("Language"), PSTR("Statistics"), PSTR("Shipping prep"), PSTR("Service prep"), PSTR("All Data"), }; enc_dif = lcd_encoder_diff; lcd_clear(); lcd_set_cursor(0, 0); lcd_putc('>'); lcd_consume_click(); while (1) { for (uint_least8_t i = 0; i < 4; i++) { lcd_puts_at_P(1, i, item[first + i]); } manage_heater(); manage_inactivity(true); if (abs((enc_dif - lcd_encoder_diff)) > 4) { if ((abs(enc_dif - lcd_encoder_diff)) > 1) { if (enc_dif > lcd_encoder_diff) { cursor_pos--; } if (enc_dif < lcd_encoder_diff) { cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; Sound_MakeSound(e_SOUND_TYPE_BlindAlert); if (first < (uint8_t)(sizeof(item) / sizeof(item[0])) - 4) { first++; lcd_clear(); } } if (cursor_pos < 0) { cursor_pos = 0; Sound_MakeSound(e_SOUND_TYPE_BlindAlert); if (first > 0) { first--; lcd_clear(); } } lcd_puts_at_P(0, 0, PSTR(" \n \n \n ")); lcd_set_cursor(0, cursor_pos); lcd_putc('>'); Sound_MakeSound(e_SOUND_TYPE_EncoderMove); enc_dif = lcd_encoder_diff; _delay(100); } } if (lcd_clicked()) { Sound_MakeSound(e_SOUND_TYPE_ButtonEcho); return(cursor_pos + first); } } } static void lcd_disable_farm_mode() { uint8_t disable = lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Disable farm mode?"), true); //allow timeouting, default no if (disable == LCD_LEFT_BUTTON_CHOICE) { enquecommand_P(PSTR("G99")); lcd_return_to_status(); } lcd_update_enable(true); lcd_draw_update = 2; } static inline void load_all_wrapper(){ for(uint8_t i = 0; i < 5; ++i){ MMU2::mmu2.load_filament(i); } } static inline void load_filament_wrapper(uint8_t i){ MMU2::mmu2.load_filament(i); } static void mmu_load_filament_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_T(MSG_LOAD_ALL), load_all_wrapper); for (uint8_t i = 0; i < MMU_FILAMENT_COUNT; i++) MENU_ITEM_FUNCTION_NR_P(_T(MSG_LOAD_FILAMENT), i + '1', load_filament_wrapper, i); ////MSG_LOAD_FILAMENT c=16 MENU_END(); } static inline void lcd_mmu_load_to_nozzle_wrapper(uint8_t index){ MMU2::mmu2.load_filament_to_nozzle(index); // Ask user if the extruded color is correct: lcd_return_to_status(); lcd_load_filament_color_check(); lcd_setstatuspgm(MSG_WELCOME); custom_message_type = CustomMsg::Status; } static void mmu_load_to_nozzle_menu() { if (bFilamentAction) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); for (uint8_t i = 0; i < MMU_FILAMENT_COUNT; i++) MENU_ITEM_FUNCTION_NR_P(_T(MSG_LOAD_FILAMENT), i + '1', lcd_mmu_load_to_nozzle_wrapper, i); ////MSG_LOAD_FILAMENT c=16 MENU_END(); } else { eFilamentAction = FilamentAction::MmuLoad; preheat_or_continue(); } } static void mmu_eject_filament(uint8_t filament) { menu_back(); MMU2::mmu2.eject_filament(filament, true); } static void mmu_fil_eject_menu() { if (bFilamentAction) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); for (uint8_t i = 0; i < MMU_FILAMENT_COUNT; i++) MENU_ITEM_FUNCTION_NR_P(_T(MSG_EJECT_FILAMENT), i + '1', mmu_eject_filament, i); ////MSG_EJECT_FILAMENT c=16 MENU_END(); } else { eFilamentAction = FilamentAction::MmuEject; preheat_or_continue(); } } #ifdef MMU_HAS_CUTTER static inline void mmu_cut_filament_wrapper(uint8_t index){ MMU2::mmu2.cut_filament(index); } static void mmu_cut_filament_menu() { if (bFilamentAction) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); for (uint8_t i = 0; i < MMU_FILAMENT_COUNT; i++) MENU_ITEM_FUNCTION_NR_P(_T(MSG_CUT_FILAMENT), i + '1', mmu_cut_filament_wrapper, i); ////MSG_CUT_FILAMENT c=16 MENU_END(); } else { eFilamentAction=FilamentAction::MmuCut; preheat_or_continue(); } } #endif //MMU_HAS_CUTTER static inline void loading_test_all_wrapper(){ for(uint8_t i = 0; i < 5; ++i){ MMU2::mmu2.loading_test(i); } } static inline void loading_test_wrapper(uint8_t i){ MMU2::mmu2.loading_test(i); } static void mmu_loading_test_menu() { if (bFilamentAction) { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); MENU_ITEM_FUNCTION_P(_T(MSG_LOAD_ALL), loading_test_all_wrapper); for (uint8_t i = 0; i < MMU_FILAMENT_COUNT; i++) MENU_ITEM_FUNCTION_NR_P(_T(MSG_LOAD_FILAMENT), i + '1', loading_test_wrapper, i); ////MSG_LOAD_FILAMENT c=16 MENU_END(); } else { eFilamentAction = FilamentAction::MmuLoadingTest; preheat_or_continue(); } } // unload filament for single material printer (used in M702 gcode) // @param automatic: If true, unload_filament is part of a unload+load sequence (M600) void unload_filament(float unloadLength, bool automatic) { custom_message_type = CustomMsg::FilamentLoading; lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT)); FSensorBlockRunout fsBlockRunout; if (automatic) { // M600 raise_z_above(MIN_Z_FOR_SWAP); } // Retract filament current_position[E_AXIS] += -FILAMENT_UNLOAD_PURGE_RETRACT; plan_buffer_line_curposXYZE(PAUSE_PARK_RETRACT_FEEDRATE); st_synchronize(); // Wait for filament to cool delay_keep_alive(FILAMENT_UNLOAD_PURGE_DELAY); // Quickly purge current_position[E_AXIS] += (FILAMENT_UNLOAD_PURGE_RETRACT + FILAMENT_UNLOAD_PURGE_LENGTH); plan_buffer_line_curposXYZE(FILAMENT_UNLOAD_PURGE_FEEDRATE); st_synchronize(); // Configurable length current_position[E_AXIS] += unloadLength; plan_buffer_line_curposXYZE(FILAMENT_CHANGE_UNLOAD_FEEDRATE); st_synchronize(); lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT)); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); _delay(100); Sound_MakeSound(e_SOUND_TYPE_StandardPrompt); uint8_t counterBeep = 0; while (!lcd_clicked() && (counterBeep < 50)) { delay_keep_alive(100); counterBeep++; } st_synchronize(); while (lcd_clicked()) delay_keep_alive(100); lcd_update_enable(true); lcd_setstatuspgm(MSG_WELCOME); custom_message_type = CustomMsg::Status; eFilamentAction = FilamentAction::None; } #include "xflash.h" #ifdef LCD_TEST static void lcd_test_menu() { XFLASH_SPI_ENTER(); xflash_enable_wr(); xflash_chip_erase(); xflash_disable_wr(); } #endif //LCD_TEST static bool fan_error_selftest() { #ifdef FANCHECK if (!fans_check_enabled) return 0; fanSpeed = 255; #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 255; #endif //FAN_SOFT_PWM manage_heater(); //enables print fan setExtruderAutoFanState(3); //force enables the hotend fan #ifdef FAN_SOFT_PWM extruder_autofan_last_check = _millis(); fan_measuring = true; #endif //FAN_SOFT_PWM _delay(1000); //delay_keep_alive would turn off hotend fan, because temerature is too low (maybe) manage_heater(); fanSpeed = 0; setExtruderAutoFanState(1); //releases lock on the hotend fan #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 0; #endif //FAN_SOFT_PWM manage_heater(); #ifdef TACH_0 if (fan_speed[0] <= 20) { //hotend fan error LCD_ALERTMESSAGERPGM(MSG_FANCHECK_HOTEND); return 1; } #endif #ifdef TACH_1 if (fan_speed[1] <= 20) { //print fan error LCD_ALERTMESSAGERPGM(MSG_FANCHECK_PRINT); return 1; } #endif #endif //FANCHECK return 0; } bool resume_print_checks() { // reset the lcd status so that a newer error will be shown lcd_return_to_status(); lcd_reset_alert_level(); // ensure thermal issues (temp or fan) are resolved before we allow to resume if (get_temp_error() #ifdef FANCHECK || fan_error_selftest() #endif ) { return false; // abort if error persists } return true; } //! @brief Resume paused print, send host action "resumed" //! @todo It is not good to call restore_print_from_ram_and_continue() from function called by lcd_update(), //! as restore_print_from_ram_and_continue() calls lcd_update() internally. void lcd_resume_print() { // reset lcd and ensure we can resume first if (!resume_print_checks()) return; cmdqueue_serial_disabled = false; lcd_setstatuspgm(_T(MSG_FINISHING_MOVEMENTS)); st_synchronize(); custom_message_type = CustomMsg::Resuming; isPrintPaused = false; Stopped = false; // resume processing USB commands again restore_print_from_ram_and_continue(default_retraction); pause_time += (_millis() - start_pause_print); //accumulate time when print is paused for correct statistics calculation refresh_cmd_timeout(); SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_RESUMED); //resume octoprint custom_message_type = CustomMsg::Status; } //! @brief Resume paused USB/host print, send host action "resume" void lcd_resume_usb_print() { // reset lcd and ensure we can resume first if (!resume_print_checks()) return; // resume the usb host SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_ASK_RESUME); } static void change_sheet() { eeprom_update_byte(&(EEPROM_Sheets_base->active_sheet), selected_sheet); menu_back(3); } static void lcd_rename_sheet_menu() { struct MenuData { bool initialized; uint8_t selected; char name[sizeof(Sheet::name)]; }; static_assert(sizeof(menu_data)>= sizeof(MenuData),"MenuData doesn't fit into menu_data"); MenuData* menuData = (MenuData*)&(menu_data[0]); if (!menuData->initialized) { eeprom_read_block(menuData->name, EEPROM_Sheets_base->s[selected_sheet].name, sizeof(Sheet::name)); lcd_encoder = menuData->name[0]; menuData->initialized = true; } if (lcd_encoder < '\x20') lcd_encoder = '\x20'; if (lcd_encoder > '\x7F') lcd_encoder = '\x7F'; menuData->name[menuData->selected] = lcd_encoder; lcd_set_cursor(0,0); for (uint_least8_t i = 0; i < sizeof(Sheet::name); ++i) { lcd_putc(menuData->name[i]); } lcd_set_cursor(menuData->selected, 1); lcd_putc('^'); if (lcd_clicked()) { if ((menuData->selected + 1u) < sizeof(Sheet::name)) { lcd_encoder = menuData->name[++(menuData->selected)]; } else { eeprom_update_block(menuData->name, EEPROM_Sheets_base->s[selected_sheet].name, sizeof(Sheet::name)); menu_back(); } } } static void lcd_reset_sheet() { SheetName sheetName; eeprom_default_sheet_name(selected_sheet, sheetName); eeprom_update_word(reinterpret_cast(&(EEPROM_Sheets_base->s[selected_sheet].z_offset)),EEPROM_EMPTY_VALUE16); eeprom_update_block(sheetName.c,EEPROM_Sheets_base->s[selected_sheet].name,sizeof(Sheet::name)); if (selected_sheet == eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))) { eeprom_switch_to_next_sheet(); if((-1 == eeprom_next_initialized_sheet(0)) && (CALIBRATION_STATUS_CALIBRATED == calibration_status())) { calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); } } menu_back(); } //! @brief Activate selected_sheet and run first layer calibration static void activate_calibrate_sheet() { eeprom_update_byte(&(EEPROM_Sheets_base->active_sheet), selected_sheet); lcd_first_layer_calibration_reset(); } static void lcd_sheet_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_STEEL_SHEETS)); if(eeprom_is_sheet_initialized(selected_sheet)){ MENU_ITEM_SUBMENU_P(_i("Select"), change_sheet); ////MSG_SELECT c=18 } if (lcd_commands_type == LcdCommands::Idle) { MENU_ITEM_SUBMENU_P(_T(MSG_V2_CALIBRATION), activate_calibrate_sheet); } MENU_ITEM_SUBMENU_P(_i("Rename"), lcd_rename_sheet_menu); ////MSG_RENAME c=18 MENU_ITEM_FUNCTION_P(_T(MSG_RESET), lcd_reset_sheet); MENU_END(); } //! @brief Show Main Menu //! //! @code{.unparsed} //! |01234567890123456789| //! | Info screen | allways //! //! | tst - Save | ifdef RESUME_DEBUG //! | tst - Restore | ifdef RESUME_DEBUG //! //! | recover print | ifdef TMC2130_DEBUG //! | power panic | ifdef TMC2130_DEBUG //! //! | Live adjust Z | printing + Z low //! //! | Change filament | farm mode //! //! | Tune | printing + paused //! | Pause print | printing + not paused //! | Resume print | printing + paused //! | Stop print | printing or paused + NOT MBL //! | Preheat | not printing + not paused //! | Print from SD | not printing or paused //! //! | Switch sheet | farm mode //! //! | AutoLoad filament | not printing + not mmu or paused //! | Load filament | not printing + mmu or paused //! | Load to nozzle | not printing + mmu or paused //! | Unload filament | not printing or paused //! | Eject filament | not printing + mmu or paused //! | Cut filament | not printing + mmu or paused + cut atctive //! | Settings | not printing or paused //! | Calibration | not printing //! | Statistics | not printing //! | Fail stats | allways //! | Fail stats MMU | mmu //! | Support | allways //! @endcode static void lcd_main_menu() { MENU_BEGIN(); // Majkl superawesome menu MENU_ITEM_BACK_P(_T(MSG_INFO_SCREEN)); #ifdef RESUME_DEBUG if (!saved_printing) MENU_ITEM_FUNCTION_P(PSTR("tst - Save"), lcd_menu_test_save); else MENU_ITEM_FUNCTION_P(PSTR("tst - Restore"), lcd_menu_test_restore); #endif //RESUME_DEBUG #ifdef TMC2130_DEBUG MENU_ITEM_FUNCTION_P(PSTR("recover print"), recover_print); MENU_ITEM_FUNCTION_P(PSTR("power panic"), uvlo_); #endif //TMC2130_DEBUG if ( ( IS_SD_PRINTING || usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal)) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag) { MENU_ITEM_SUBMENU_P(_T(MSG_BABYSTEP_Z), lcd_babystep_z);//8 } if (farm_mode) MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//8 if ( moves_planned() || printer_active() ) { MENU_ITEM_SUBMENU_P(_i("Tune"), lcd_tune_menu);////MSG_TUNE c=18 } else { MENU_ITEM_SUBMENU_P(_i("Preheat"), lcd_preheat_menu);////MSG_PREHEAT c=18 } if (mesh_bed_leveling_flag == false && homing_flag == false && !isPrintPaused) { if (usb_timer.running()) { MENU_ITEM_FUNCTION_P(_T(MSG_PAUSE_PRINT), lcd_pause_usb_print); } else if (IS_SD_PRINTING) { MENU_ITEM_FUNCTION_P(_T(MSG_PAUSE_PRINT), lcd_pause_print); } } if(isPrintPaused) { // only allow resuming if hardware errors (temperature or fan) are cleared if(!get_temp_error() #ifdef FANCHECK && ((fan_check_error == EFCE_FIXED) || (fan_check_error == EFCE_OK)) #endif //FANCHECK ) { if (saved_printing) { MENU_ITEM_SUBMENU_P(_T(MSG_RESUME_PRINT), lcd_resume_print); } else { MENU_ITEM_SUBMENU_P(_T(MSG_RESUME_PRINT), lcd_resume_usb_print); } } } if((IS_SD_PRINTING || usb_timer.running() || isPrintPaused) && (custom_message_type != CustomMsg::MeshBedLeveling)) { MENU_ITEM_SUBMENU_P(_T(MSG_STOP_PRINT), lcd_sdcard_stop); } #ifdef SDSUPPORT //!@todo SDSUPPORT undefined creates several issues in source code if (card.cardOK || lcd_commands_type == LcdCommands::Layer1Cal) { if (!card.isFileOpen()) { if (!usb_timer.running() && (lcd_commands_type != LcdCommands::Layer1Cal)) { bMain=true; // flag ('fake parameter') for 'lcd_sdcard_menu()' function MENU_ITEM_SUBMENU_P(_T(MSG_CARD_MENU), lcd_sdcard_menu); } #if SDCARDDETECT < 1 MENU_ITEM_GCODE_P(_i("Change SD card"), PSTR("M21")); // SD-card changed by user ////MSG_CNG_SDCARD c=18 #endif //SDCARDDETECT } } else { bMain=true; // flag (i.e. 'fake parameter') for 'lcd_sdcard_menu()' function MENU_ITEM_SUBMENU_P(_i("No SD card"), lcd_sdcard_menu); ////MSG_NO_CARD c=18 #if SDCARDDETECT < 1 MENU_ITEM_GCODE_P(_i("Init. SD card"), PSTR("M21")); // Manually initialize the SD-card via user interface ////MSG_INIT_SDCARD c=18 #endif //SDCARDDETECT } #endif //SDSUPPORT if(!isPrintPaused && !IS_SD_PRINTING && !usb_timer.running() && (lcd_commands_type != LcdCommands::Layer1Cal)) { if (!farm_mode) { const int8_t sheet = eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)); const int8_t nextSheet = eeprom_next_initialized_sheet(sheet); if ((nextSheet >= 0) && (sheet != nextSheet)) { // show menu only if we have 2 or more sheets initialized MENU_ITEM_FUNCTION_E(EEPROM_Sheets_base->s[sheet], eeprom_switch_to_next_sheet); } } } if ( ! ( IS_SD_PRINTING || usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal) ) ) { if (MMU2::mmu2.Enabled()) { MENU_ITEM_SUBMENU_P(_T(MSG_LOAD_FILAMENT), mmu_load_filament_menu); MENU_ITEM_SUBMENU_P(_i("Load to nozzle"), mmu_load_to_nozzle_menu);////MSG_LOAD_TO_NOZZLE c=18 MENU_ITEM_SUBMENU_P(_T(MSG_UNLOAD_FILAMENT), mmu_unload_filament); MENU_ITEM_SUBMENU_P(_T(MSG_EJECT_FILAMENT), mmu_fil_eject_menu); #ifdef MMU_HAS_CUTTER if (eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED) != 0) { MENU_ITEM_SUBMENU_P(_T(MSG_CUT_FILAMENT), mmu_cut_filament_menu); } #endif //MMU_HAS_CUTTER } else { #ifdef FILAMENT_SENSOR if (fsensor.getAutoLoadEnabled()) { MENU_ITEM_SUBMENU_P(_i("AutoLoad filament"), lcd_menu_AutoLoadFilament);////MSG_AUTOLOAD_FILAMENT c=18 } else #endif //FILAMENT_SENSOR { MENU_ITEM_SUBMENU_P(_T(MSG_LOAD_FILAMENT), lcd_LoadFilament); } MENU_ITEM_SUBMENU_P(_T(MSG_UNLOAD_FILAMENT), lcd_unLoadFilament); } MENU_ITEM_SUBMENU_P(_T(MSG_SETTINGS), lcd_settings_menu); if(!isPrintPaused) MENU_ITEM_SUBMENU_P(_T(MSG_CALIBRATION), lcd_calibration_menu); } if (!usb_timer.running() && (lcd_commands_type != LcdCommands::Layer1Cal)) { MENU_ITEM_SUBMENU_P(_i("Statistics"), lcd_menu_statistics);////MSG_STATISTICS c=18 } #if defined(TMC2130) || defined(FILAMENT_SENSOR) MENU_ITEM_SUBMENU_P(_i("Fail stats"), lcd_menu_fails_stats);////MSG_FAIL_STATS c=18 #endif if (MMU2::mmu2.Enabled()) { MENU_ITEM_SUBMENU_P(_i("Fail stats MMU"), lcd_menu_fails_stats_mmu);////MSG_MMU_FAIL_STATS c=18 } MENU_ITEM_SUBMENU_P(_i("Support"), lcd_support_menu);////MSG_SUPPORT c=18 #ifdef LCD_TEST MENU_ITEM_SUBMENU_P(_i("XFLASH init"), lcd_test_menu);////MSG_XFLASH c=18 #endif //LCD_TEST MENU_END(); } #ifdef DEBUG_STEPPER_TIMER_MISSED bool stepper_timer_overflow_state = false; uint16_t stepper_timer_overflow_max = 0; uint16_t stepper_timer_overflow_last = 0; uint16_t stepper_timer_overflow_cnt = 0; void stepper_timer_overflow() { char msg[28]; sprintf_P(msg, PSTR("#%d %d max %d"), ++ stepper_timer_overflow_cnt, stepper_timer_overflow_last >> 1, stepper_timer_overflow_max >> 1); lcd_setstatus(msg); stepper_timer_overflow_state = false; if (stepper_timer_overflow_last > stepper_timer_overflow_max) stepper_timer_overflow_max = stepper_timer_overflow_last; SERIAL_ECHOPGM("Stepper timer overflow: "); MYSERIAL.print(msg); SERIAL_ECHOLNPGM(""); WRITE(BEEPER, LOW); } #endif /* DEBUG_STEPPER_TIMER_MISSED */ static void lcd_colorprint_change() { enquecommand_P(PSTR("M600")); custom_message_type = CustomMsg::FilamentLoading; //just print status message lcd_setstatuspgm(_T(MSG_FINISHING_MOVEMENTS)); lcd_return_to_status(); lcd_draw_update = 3; } #ifdef LA_LIVE_K // @wavexx: looks like there's no generic float editing function in menu.cpp so we // redefine our custom handling functions to mimick other tunables const char menu_fmt_float13off[] PROGMEM = "%c%-13.13S%6.6S"; static void lcd_advance_draw_K(char chr, float val) { if (val <= 0) lcd_printf_P(menu_fmt_float13off, chr, MSG_ADVANCE_K, _T(MSG_OFF)); else lcd_printf_P(menu_fmt_float13, chr, MSG_ADVANCE_K, val); } static void lcd_advance_edit_K(void) { if (lcd_draw_update) { if (lcd_encoder < 0) lcd_encoder = 0; if (lcd_encoder > 999) lcd_encoder = 999; lcd_set_cursor(0, 1); lcd_advance_draw_K(' ', 0.01 * lcd_encoder); } if (LCD_CLICKED) { extruder_advance_K = 0.01 * lcd_encoder; menu_back_no_reset(); } } static uint8_t lcd_advance_K() { if (menu_item == menu_line) { if (lcd_draw_update) { lcd_set_cursor(0, menu_row); lcd_advance_draw_K((lcd_encoder == menu_item)?'>':' ', extruder_advance_K); } if (menu_clicked && (lcd_encoder == menu_item)) { menu_submenu_no_reset(lcd_advance_edit_K); lcd_encoder = 100. * extruder_advance_K; return menu_item_ret(); } } menu_item++; return 0; } #define MENU_ITEM_EDIT_advance_K() do { if (lcd_advance_K()) return; } while (0) #endif static void lcd_tune_menu() { typedef struct { menu_data_edit_t reserved; //!< reserved for number editing functions int8_t status; //!< To recognize, whether the menu has been just initialized. //! Backup of extrudemultiply, to recognize, that the value has been changed and //! it needs to be applied. int16_t extrudemultiply; } _menu_data_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_t),"_menu_data_t doesn't fit into menu_data"); _menu_data_t* _md = (_menu_data_t*)&(menu_data[0]); if (_md->status == 0) { // Menu was entered. Mark the menu as entered and save the current extrudemultiply value. _md->status = 1; _md->extrudemultiply = extrudemultiply; } else if (_md->extrudemultiply != extrudemultiply) { // extrudemultiply has been changed from the child menu. Apply the new value. _md->extrudemultiply = extrudemultiply; calculate_extruder_multipliers(); } SilentModeMenu = eeprom_read_byte((uint8_t*) EEPROM_SILENT); MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_MAIN)); //1 MENU_ITEM_EDIT_int3_P(_i("Speed"), &feedmultiply, 10, 999);//2////MSG_SPEED c=15 MENU_ITEM_EDIT_int3_P(_T(MSG_NOZZLE), &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3 MENU_ITEM_EDIT_int3_P(_T(MSG_BED), &target_temperature_bed, 0, BED_MAXTEMP - 10); MENU_ITEM_EDIT_int3_P(_T(MSG_FAN_SPEED), &fanSpeed, 0, 255);//5 MENU_ITEM_EDIT_int3_P(_i("Flow"), &extrudemultiply, 10, 999);//6////MSG_FLOW c=15 #ifdef LA_LIVE_K MENU_ITEM_EDIT_advance_K();//7 #endif #ifdef FILAMENTCHANGEENABLE if (!farm_mode) MENU_ITEM_FUNCTION_P(_T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//8 #endif #ifdef FILAMENT_SENSOR MENU_ITEM_SUBMENU_P(_T(MSG_FSENSOR), lcd_fsensor_settings_menu); #endif //FILAMENT_SENSOR if (MMU2::mmu2.Enabled()) { SETTINGS_SPOOLJOIN; SETTINGS_CUTTER; } MENU_ITEM_TOGGLE_P(_T(MSG_FANS_CHECK), fans_check_enabled ? _T(MSG_ON) : _T(MSG_OFF), lcd_set_fan_check); #ifdef TMC2130 if(!farm_mode) { if (SilentModeMenu == SILENT_MODE_NORMAL) { MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_NORMAL), lcd_silent_mode_set); if (lcd_crash_detect_enabled()) { MENU_ITEM_TOGGLE_P(_T(MSG_CRASHDETECT), _T(MSG_ON), crash_mode_switch); } else { MENU_ITEM_TOGGLE_P(_T(MSG_CRASHDETECT), _T(MSG_OFF), crash_mode_switch); } } else { MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_STEALTH), lcd_silent_mode_set); MENU_ITEM_TOGGLE_P(_T(MSG_CRASHDETECT), NULL, lcd_crash_mode_info); } } #else //TMC2130 if (!farm_mode) { //dont show in menu if we are in farm mode switch (SilentModeMenu) { case SILENT_MODE_POWER: MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_HIGH_POWER), lcd_silent_mode_set); break; case SILENT_MODE_SILENT: MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_SILENT), lcd_silent_mode_set); break; case SILENT_MODE_AUTO: MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_AUTO_POWER), lcd_silent_mode_set); break; default: MENU_ITEM_TOGGLE_P(_T(MSG_MODE), _T(MSG_HIGH_POWER), lcd_silent_mode_set); break; // (probably) not needed } } #endif //TMC2130 SETTINGS_MMU_MODE; SETTINGS_SOUND; #ifdef LCD_BL_PIN if (backlightSupport) { MENU_ITEM_SUBMENU_P(_T(MSG_BRIGHTNESS), lcd_backlight_menu); } #endif //LCD_BL_PIN MENU_END(); } static void mbl_magnets_elimination_toggle() { bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0); magnet_elimination = !magnet_elimination; eeprom_update_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION, (uint8_t)magnet_elimination); } static void mbl_mesh_toggle() { uint8_t mesh_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR); if(mesh_nr == 3) mesh_nr = 7; else mesh_nr = 3; eeprom_update_byte((uint8_t*)EEPROM_MBL_POINTS_NR, mesh_nr); } static void mbl_probe_nr_toggle() { mbl_z_probe_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR); switch (mbl_z_probe_nr) { case 1: mbl_z_probe_nr = 3; break; case 3: mbl_z_probe_nr = 5; break; case 5: mbl_z_probe_nr = 1; break; default: mbl_z_probe_nr = 3; break; } eeprom_update_byte((uint8_t*)EEPROM_MBL_PROBE_NR, mbl_z_probe_nr); } static void lcd_mesh_bed_leveling_settings() { bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0); uint8_t points_nr = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR); char sToggle[4]; //enough for nxn format MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); sToggle[0] = points_nr + '0'; sToggle[1] = 'x'; sToggle[2] = points_nr + '0'; sToggle[3] = 0; MENU_ITEM_TOGGLE(_T(MSG_MESH), sToggle, mbl_mesh_toggle); sToggle[0] = mbl_z_probe_nr + '0'; sToggle[1] = 0; MENU_ITEM_TOGGLE(_T(MSG_Z_PROBE_NR), sToggle, mbl_probe_nr_toggle); MENU_ITEM_TOGGLE_P(_T(MSG_MAGNETS_COMP), (points_nr == 7) ? (magnet_elimination ? _T(MSG_ON): _T(MSG_OFF)) : _T(MSG_NA), mbl_magnets_elimination_toggle); MENU_END(); //SETTINGS_MBL_MODE; } #ifdef LCD_BL_PIN static void backlight_mode_toggle() { switch (backlightMode) { case BACKLIGHT_MODE_BRIGHT: backlightMode = BACKLIGHT_MODE_DIM; break; case BACKLIGHT_MODE_DIM: backlightMode = BACKLIGHT_MODE_AUTO; break; case BACKLIGHT_MODE_AUTO: backlightMode = BACKLIGHT_MODE_BRIGHT; break; default: backlightMode = BACKLIGHT_MODE_BRIGHT; break; } backlight_save(); } static void lcd_backlight_menu() { MENU_BEGIN(); ON_MENU_LEAVE( backlight_save(); ); MENU_ITEM_BACK_P(_T(MSG_BACK)); MENU_ITEM_EDIT_int3_P(_T(MSG_BL_HIGH), &backlightLevel_HIGH, backlightLevel_LOW, 255); MENU_ITEM_EDIT_int3_P(_T(MSG_BL_LOW), &backlightLevel_LOW, 0, backlightLevel_HIGH); MENU_ITEM_TOGGLE_P(_T(MSG_MODE), ((backlightMode==BACKLIGHT_MODE_BRIGHT) ? _T(MSG_BRIGHT) : ((backlightMode==BACKLIGHT_MODE_DIM) ? _T(MSG_DIM) : _T(MSG_AUTO))), backlight_mode_toggle); MENU_ITEM_EDIT_int3_P(_T(MSG_TIMEOUT), &backlightTimer_period, 1, 999); MENU_END(); } #endif //LCD_BL_PIN static void lcd_control_temperature_menu() { #ifdef PIDTEMP // set up temp variables - undo the default scaling // raw_Ki = unscalePID_i(Ki); // raw_Kd = unscalePID_d(Kd); #endif MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_SETTINGS)); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT_int3_P(_T(MSG_NOZZLE), &target_temperature[0], 0, HEATER_0_MAXTEMP - 10); #endif #if TEMP_SENSOR_1 != 0 MENU_ITEM_EDIT_int3_P(_n("Nozzle2"), &target_temperature[1], 0, HEATER_1_MAXTEMP - 10); #endif #if TEMP_SENSOR_2 != 0 MENU_ITEM_EDIT_int3_P(_n("Nozzle3"), &target_temperature[2], 0, HEATER_2_MAXTEMP - 10); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT_int3_P(_T(MSG_BED), &target_temperature_bed, 0, BED_MAXTEMP - 3); #endif MENU_ITEM_EDIT_int3_P(_T(MSG_FAN_SPEED), &fanSpeed, 0, 255); #if defined AUTOTEMP && (TEMP_SENSOR_0 != 0) //MENU_ITEM_EDIT removed, following code must be redesigned if AUTOTEMP enabled MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); MENU_ITEM_EDIT(float3, _n(" \xdf Min"), &autotemp_min, 0, HEATER_0_MAXTEMP - 10); MENU_ITEM_EDIT(float3, _n(" \xdf Max"), &autotemp_max, 0, HEATER_0_MAXTEMP - 10); MENU_ITEM_EDIT(float32, _n(" \xdf Fact"), &autotemp_factor, 0.0, 1.0); #endif MENU_END(); } static void lcd_sd_refresh() { #if SDCARDDETECT == -1 card.initsd(); #else card.presort(); #endif menu_top = 0; lcd_encoder = 0; menu_data_reset(); //Forces reloading of cached variables. } static void lcd_sd_updir() { card.updir(); menu_top = 0; lcd_encoder = 0; menu_data_reset(); //Forces reloading of cached variables. } // continue stopping the print from the main loop after lcd_print_stop() is called void print_stop() { // save printing time stoptime = _millis(); unsigned long t = (stoptime - starttime - pause_time) / 1000; //time in s save_statistics(total_filament_used, t); // lift Z raise_z(10); // if axis are homed, move to parking position. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) { current_position[X_AXIS] = X_CANCEL_POS; current_position[Y_AXIS] = Y_CANCEL_POS; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); } st_synchronize(); // did we come here from a thermal error? if(get_temp_error()) { // time to stop the error beep WRITE(BEEPER, LOW); } else { // Turn off the print fan fanSpeed = 0; } if (MMU2::mmu2.Enabled()) { if (isPrintPaused) { // Restore temperature saved in ram after pausing print restore_extruder_temperature_from_ram(); } MMU2::mmu2.unload(); //M702 C } lcd_cooldown(); //turns off heaters and fan; goes to status screen. finishAndDisableSteppers(); //M84 axis_relative_modes = E_AXIS_MASK; //XYZ absolute, E relative } void lcd_print_stop() { // UnconditionalStop() will internally cause planner_abort_hard(), meaning we _cannot_ plan // any more move in this call! Any further move must happen inside print_stop(), which is called // by the main loop one iteration later. UnconditionalStop(); if (!card.sdprinting) { SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); // for Octoprint } #ifdef MESH_BED_LEVELING mbl.active = false; #endif // clear any pending paused state immediately pause_time = 0; isPrintPaused = false; // return to status is required to continue processing in the main loop! lcd_commands_type = LcdCommands::StopPrint; lcd_return_to_status(); } #ifdef TEMP_MODEL void lcd_temp_model_cal() { lcd_commands_type = LcdCommands::TempModel; lcd_return_to_status(); } #endif //TEMP_MODEL void lcd_sdcard_stop() { lcd_puts_at_P(0, 0, _T(MSG_STOP_PRINT)); lcd_puts_at_P(2, 2, _T(MSG_NO)); lcd_puts_at_P(2, 3, _T(MSG_YES)); lcd_putc_at(0, 2, ' '); lcd_putc_at(0, 3, ' '); if ((int32_t)lcd_encoder > 2) { lcd_encoder = 2; } if ((int32_t)lcd_encoder < 1) { lcd_encoder = 1; } lcd_putc_at(0, 1 + lcd_encoder, '>'); if (lcd_clicked()) { Sound_MakeSound(e_SOUND_TYPE_ButtonEcho); if ((int32_t)lcd_encoder == 1) { lcd_return_to_status(); } if ((int32_t)lcd_encoder == 2) { lcd_print_stop(); } } } void lcd_sdcard_menu() { enum menuState_t : uint8_t {_uninitialized, _standard, _scrolling}; typedef struct { menuState_t menuState = _uninitialized; uint8_t offset; bool isDir; const char* scrollPointer; uint16_t selectedFileID; uint16_t fileCnt; int8_t row; uint8_t sdSort; ShortTimer lcd_scrollTimer; } _menu_data_sdcard_t; static_assert(sizeof(menu_data)>= sizeof(_menu_data_sdcard_t),"_menu_data_sdcard_t doesn't fit into menu_data"); _menu_data_sdcard_t* _md = (_menu_data_sdcard_t*)&(menu_data[0]); switch(_md->menuState) { case _uninitialized: //Initialize menu data { if (card.presort_flag == true) //used to force resorting if sorting type is changed. { card.presort_flag = false; lcd_update_enabled = false; card.presort(); lcd_update_enabled = true; } _md->fileCnt = card.getnrfilenames(); _md->sdSort = farm_mode ? SD_SORT_NONE : eeprom_read_byte((uint8_t*)EEPROM_SD_SORT); _md->menuState = _standard; _md->row = -1; // assume that no SD file/dir is currently selected. Once they are rendered, it will be changed to the correct row for the _scrolling state. } // FALLTHRU case _standard: //normal menu structure. { if (!_md->lcd_scrollTimer.running()) //if the timer is not running, then the menu state was just switched, so redraw the screen. { _md->lcd_scrollTimer.start(); lcd_draw_update = 1; } if ((lcd_draw_update == 0) && _md->lcd_scrollTimer.expired(500) && (_md->row != -1)) //switch to the scrolling state on timeout if a file/dir is selected. { _md->menuState = _scrolling; _md->offset = 0; _md->scrollPointer = NULL; _md->lcd_scrollTimer.start(); lcd_draw_update = 1; //forces last load before switching to scrolling. } if (lcd_draw_update == 0 && !LCD_CLICKED) return; // nothing to do (so don't thrash the SD card) _md->row = -1; // assume that no SD file/dir is currently selected. Once they are rendered, it will be changed to the correct row for the _scrolling state. //if we reached this point it means that the encoder moved or clicked or the state is being switched. Reset the scrollTimer. _md->lcd_scrollTimer.start(); MENU_BEGIN(); MENU_ITEM_BACK_P(_T(bMain?MSG_MAIN:MSG_BACK)); // i.e. default menu-item / menu-item after card insertion card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM_FUNCTION_P(_T(MSG_REFRESH), lcd_sd_refresh); #else if (card.ToshibaFlashAir_isEnabled()) MENU_ITEM_FUNCTION_P(_T(MSG_REFRESH), lcd_sd_refresh); //show the refresh option if in flashAir mode. #endif } else MENU_ITEM_FUNCTION_P(PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); //Show the updir button if in a subdir. for (uint16_t i = _md->fileCnt; i-- > 0;) // Every file, from top to bottom. { if (menu_item == menu_line) //If the file is on the screen. { //load filename to memory. #ifdef SDCARD_SORT_ALPHA card.getfilename_sorted(i, _md->sdSort); #else card.getfilename(i); #endif if (lcd_encoder == menu_item) //If the file is selected. { _md->selectedFileID = i; _md->isDir = card.filenameIsDir; _md->row = menu_row; } if (card.filenameIsDir) MENU_ITEM_SDDIR(card.filename, card.longFilename); else MENU_ITEM_SDFILE(card.filename, card.longFilename); } else MENU_ITEM_DUMMY(); //dummy item that just increments the internal menu counters. } MENU_END(); } break; case _scrolling: //scrolling filename { const bool rewindFlag = LCD_CLICKED || lcd_draw_update; //flag that says whether the menu should return to _standard state. if (_md->scrollPointer == NULL) { //load filename to memory. #ifdef SDCARD_SORT_ALPHA card.getfilename_sorted(_md->selectedFileID, _md->sdSort); #else card.getfilename(_md->selectedFileID); #endif _md->scrollPointer = (card.longFilename[0] == '\0') ? card.filename : card.longFilename; } if (rewindFlag == 1) _md->offset = 0; //redraw once again from the beginning. if (_md->lcd_scrollTimer.expired(300) || rewindFlag) { uint8_t len = LCD_WIDTH - ((_md->isDir)? 2 : 1); lcd_set_cursor(0, _md->row); lcd_print('>'); if (_md->isDir) lcd_print(LCD_STR_FOLDER[0]); if( lcd_print_pad(&_md->scrollPointer[_md->offset], len) ) { _md->lcd_scrollTimer.start(); _md->offset++; } else { // stop at the end of the string _md->lcd_scrollTimer.stop(); } } if (rewindFlag) //go back to sd_menu. { _md->lcd_scrollTimer.stop(); //forces redraw in _standard state _md->menuState = _standard; } } break; default: _md->menuState = _uninitialized; //shouldn't ever happen. Anyways, initialize the menu. } } #ifdef TMC2130 static void lcd_belttest_v() { lcd_belttest(); menu_back_if_clicked(); } void lcd_belttest() { lcd_clear(); // Belttest requires high power mode. Enable it. FORCE_HIGH_POWER_START; uint16_t X = eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)); uint16_t Y = eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y)); lcd_printf_P(_T(MSG_CHECKING_X)); lcd_set_cursor(0,1), lcd_printf_P(PSTR("X: %u -> ..."),X); KEEPALIVE_STATE(IN_HANDLER); // N.B: it doesn't make sense to handle !lcd_selfcheck...() because selftest_sg throws its own error screen // that clobbers ours, with more info than we could provide. So on fail we just fall through to take us back to status. if (lcd_selfcheck_axis_sg(X_AXIS)){ X = eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)); lcd_set_cursor(10,1), lcd_printf_P(PSTR("%u"),X); // Show new X value next to old one. lcd_puts_at_P(0,2,_T(MSG_CHECKING_Y)); lcd_set_cursor(0,3), lcd_printf_P(PSTR("Y: %u -> ..."),Y); if (lcd_selfcheck_axis_sg(Y_AXIS)) { Y = eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y)); lcd_set_cursor(10,3),lcd_printf_P(PSTR("%u"),Y); lcd_set_cursor(19, 3); lcd_print(LCD_STR_UPLEVEL[0]); lcd_wait_for_click_delay(10); } } FORCE_HIGH_POWER_END; KEEPALIVE_STATE(NOT_BUSY); } #endif //TMC2130 #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) // called also from marlin_main.cpp void printf_IRSensorAnalogBoardChange(){ printf_P(PSTR("Filament sensor board change detected: revision%S\n"), fsensor.getIRVersionText()); } static bool lcd_selftest_IRsensor(bool bStandalone) { FSensorBlockRunout fsBlockRunout; IR_sensor_analog::SensorRevision oldSensorRevision = fsensor.getSensorRevision(); IR_sensor_analog::SensorRevision newSensorRevision; uint16_t volt_IR_int = fsensor.getVoltRaw(); newSensorRevision = (volt_IR_int < fsensor.IRsensor_Hopen_TRESHOLD) ? IR_sensor_analog::SensorRevision::_Rev04 : IR_sensor_analog::SensorRevision::_Old; printf_P(PSTR("Measured filament sensor high level: %4.2fV\n"), Raw2Voltage(volt_IR_int) ); if(volt_IR_int < fsensor.IRsensor_Hmin_TRESHOLD){ if(!bStandalone) lcd_selftest_error(TestError::FsensorLevel,"HIGH",""); return false; } lcd_show_fullscreen_message_and_wait_P(_i("Insert the filament (do not load it) into the extruder and then press the knob."));////MSG_INSERT_FIL c=20 r=6 volt_IR_int = fsensor.getVoltRaw(); printf_P(PSTR("Measured filament sensor low level: %4.2fV\n"), Raw2Voltage(volt_IR_int)); if(volt_IR_int > (fsensor.IRsensor_Lmax_TRESHOLD)){ if(!bStandalone) lcd_selftest_error(TestError::FsensorLevel,"LOW",""); return false; } if(newSensorRevision != oldSensorRevision) { fsensor.setSensorRevision(newSensorRevision, true); printf_IRSensorAnalogBoardChange(); } return true; } static void lcd_detect_IRsensor(){ bool bAction; bool loaded; /// Check if filament is loaded. If it is loaded stop detection. /// @todo Add autodetection with MMU2s loaded = fsensor.getFilamentPresent(); if(loaded){ lcd_show_fullscreen_message_and_wait_P(_i("Please unload the filament first, then repeat this action."));////MSG_UNLOAD_FILAMENT_REPEAT c=20 r=4 return; } else { lcd_show_fullscreen_message_and_wait_P(_i("Please check the IR sensor connection, unload filament if present."));////MSG_CHECK_IR_CONNECTION c=20 r=4 bAction = lcd_selftest_IRsensor(true); } if(bAction){ lcd_show_fullscreen_message_and_wait_P(_i("Sensor verified, remove the filament now."));////MSG_FS_VERIFIED c=20 r=3 fsensor.init(); } else { lcd_show_fullscreen_message_and_wait_P(_i("Verification failed, remove the filament and try again."));////MSG_FIL_FAILED c=20 r=5 } } #endif //IR_SENSOR_ANALOG static void lcd_selftest_v() { (void)lcd_selftest(); } bool lcd_selftest() { uint8_t _progress = 0; bool _result = true; bool _swapped_fan = false; #if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) //! Check if IR sensor is in unknown state, if so run Fsensor Detection //! As the Fsensor Detection isn't yet ready for the mmu2s we set temporarily the IR sensor 0.3 or older for mmu2s //! @todo Don't forget to remove this as soon Fsensor Detection works with mmu if(fsensor.getSensorRevision() == IR_sensor_analog::SensorRevision::_Undef) { if (!MMU2::mmu2.Enabled()) { lcd_detect_IRsensor(); } else { fsensor.setSensorRevision(IR_sensor_analog::SensorRevision::_Old, true); } } #endif lcd_wait_for_cool_down(); lcd_clear(); lcd_puts_at_P(0, 0, _i("Self test start"));////MSG_SELFTEST_START c=20 #ifdef TMC2130 FORCE_HIGH_POWER_START; #endif // TMC2130 FORCE_BL_ON_START; _delay(2000); KEEPALIVE_STATE(IN_HANDLER); _progress = lcd_selftest_screen(TestScreen::ExtruderFan, _progress, 3, true, 2000); #if (defined(FANCHECK) && defined(TACH_0)) switch (lcd_selftest_fan_auto(0)){ // check hotend fan case FanCheck::SwappedFan: _swapped_fan = true; // swapped is merely a hint (checked later) // FALLTHRU case FanCheck::Success: _result = true; break; default: _result = false; break; } #else //defined(TACH_0) _result = lcd_selftest_manual_fan_check(0, false); #endif //defined(TACH_0) if (!_result) { lcd_selftest_error(TestError::ExtruderFan, "", ""); } if (_result) { _progress = lcd_selftest_screen(TestScreen::PrintFan, _progress, 3, true, 2000); #if (defined(FANCHECK) && defined(TACH_1)) switch (lcd_selftest_fan_auto(1)){ // check print fan case FanCheck::SwappedFan: _swapped_fan = true; // swapped is merely a hint (checked later) // FALLTHRU case FanCheck::Success: _result = true; break; default: _result = false; break; } #else //defined(TACH_1) _result = lcd_selftest_manual_fan_check(1, false); #endif //defined(TACH_1) if (!_result) { lcd_selftest_error(TestError::PrintFan, "", ""); //print fan not spinning } } if (_swapped_fan) { //turn on print fan and check that left hotend fan is not spinning _result = lcd_selftest_manual_fan_check(1, true); if (_result) { //print fan is stil turned on; check that it is spinning _result = lcd_selftest_manual_fan_check(1, false, true); if (!_result){ lcd_selftest_error(TestError::PrintFan, "", ""); } } else { // fans are swapped lcd_selftest_error(TestError::SwappedFan, "", ""); } } if (_result) { _progress = lcd_selftest_screen(TestScreen::FansOk, _progress, 3, true, 2000); _result = lcd_selfcheck_endstops(); //With TMC2130, only the Z probe is tested. } if (_result) { //current_position[Z_AXIS] += 15; //move Z axis higher to avoid false triggering of Z end stop in case that we are very low - just above heatbed _progress = lcd_selftest_screen(TestScreen::AxisX, _progress, 3, true, 2000); #ifdef TMC2130 _result = lcd_selfcheck_axis_sg(X_AXIS); #else _result = lcd_selfcheck_axis(X_AXIS, X_MAX_POS); #endif //TMC2130 } if (_result) { _progress = lcd_selftest_screen(TestScreen::AxisX, _progress, 3, true, 0); #ifndef TMC2130 _result = lcd_selfcheck_pulleys(X_AXIS); #endif } if (_result) { _progress = lcd_selftest_screen(TestScreen::AxisY, _progress, 3, true, 1500); #ifdef TMC2130 _result = lcd_selfcheck_axis_sg(Y_AXIS); #else _result = lcd_selfcheck_axis(Y_AXIS, Y_MAX_POS); #endif // TMC2130 } if (_result) { _progress = lcd_selftest_screen(TestScreen::AxisZ, _progress, 3, true, 0); #ifndef TMC2130 _result = lcd_selfcheck_pulleys(Y_AXIS); #endif // TMC2130 } if (_result) { #ifdef TMC2130 tmc2130_home_exit(); enable_endstops(false); #endif //homeaxis(X_AXIS); //homeaxis(Y_AXIS); current_position[X_AXIS] = pgm_read_float(bed_ref_points_4); current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4+1); #ifdef TMC2130 //current_position[X_AXIS] += 0; current_position[Y_AXIS] += 4; #endif //TMC2130 raise_z(10); set_destination_to_current(); _progress = lcd_selftest_screen(TestScreen::AxisZ, _progress, 3, true, 1500); #ifdef TMC2130 homeaxis(Z_AXIS); //In case of failure, the code gets stuck in this function. #else _result = lcd_selfcheck_axis(Z_AXIS, Z_MAX_POS); #endif //TMC2130 //raise Z to not damage the bed during and hotend testing raise_z(20); } #ifdef TMC2130 if (_result) { raise_z(10); _progress = lcd_selftest_screen(TestScreen::Home, 0, 2, true, 0); bool bres = tmc2130_home_calibrate(X_AXIS); _progress = lcd_selftest_screen(TestScreen::Home, 1, 2, true, 0); bres &= tmc2130_home_calibrate(Y_AXIS); _progress = lcd_selftest_screen(TestScreen::Home, 2, 2, true, 0); if (bres) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, 1); _result = bres; } #endif //TMC2130 if (_result) { _progress = lcd_selftest_screen(TestScreen::Bed, _progress, 3, true, 2000); _result = lcd_selfcheck_check_heater(true); } if (_result) { _progress = lcd_selftest_screen(TestScreen::Hotend, _progress, 3, true, 1000); _result = lcd_selfcheck_check_heater(false); } if (_result) { _progress = lcd_selftest_screen(TestScreen::HotendOk, _progress, 3, true, 2000); //nozzle ok } #ifdef FILAMENT_SENSOR if (_result) { #if (FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) if (MMU2::mmu2.Enabled()) { _progress = lcd_selftest_screen(TestScreen::Fsensor, _progress, 3, true, 2000); //check filaments sensor _result = selftest_irsensor(); if (_result) { _progress = lcd_selftest_screen(TestScreen::FsensorOk, _progress, 3, true, 2000); //fil sensor OK } } else #endif //(FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) { #if FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 _progress = lcd_selftest_screen(TestScreen::Fsensor, _progress, 3, true, 2000); //check filaments sensor _result = lcd_selftest_fsensor(); if (_result) { _progress = lcd_selftest_screen(TestScreen::FsensorOk, _progress, 3, true, 2000); //fil sensor OK } #endif //FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 #if 0 // Intentionally disabled - that's why we moved the detection to runtime by just checking the two voltages. // The idea is not to force the user to remove and insert the filament on an assembled printer. //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) _progress = lcd_selftest_screen(TestScreen::Fsensor, _progress, 3, true, 2000); //check filament sensor _result = lcd_selftest_IRsensor(); if (_result) { _progress = lcd_selftest_screen(TestScreen::FsensorOk, _progress, 3, true, 2000); //filament sensor OK } #endif //IR_SENSOR_ANALOG } } #endif //FILAMENT_SENSOR if (_result) { _progress = lcd_selftest_screen(TestScreen::AllCorrect, _progress, 3, true, 5000); //all correct } else { _progress = lcd_selftest_screen(TestScreen::Failed, _progress, 3, true, 5000); } lcd_reset_alert_level(); enquecommand_P(PSTR("M84")); lcd_update_enable(true); if (_result) { LCD_ALERTMESSAGERPGM(_i("Self test OK"));////MSG_SELFTEST_OK c=20 } else { LCD_ALERTMESSAGERPGM(_T(MSG_SELFTEST_FAILED)); } #ifdef TMC2130 FORCE_HIGH_POWER_END; #endif // TMC2130 FORCE_BL_ON_END; KEEPALIVE_STATE(NOT_BUSY); return(_result); } #ifdef TMC2130 static void reset_crash_det(uint8_t axis) { current_position[axis] += 10; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET)) tmc2130_sg_stop_on_crash = true; } static bool lcd_selfcheck_axis_sg(uint8_t axis) { // each axis length is measured twice float axis_length, current_position_init, current_position_final; float measured_axis_length[2]; float margin = 60; float max_error_mm = 5; switch (axis) { case 0: axis_length = X_MAX_POS; break; case 1: axis_length = Y_MAX_POS + 8; break; default: axis_length = 210; break; } tmc2130_sg_stop_on_crash = false; tmc2130_home_exit(); enable_endstops(true); raise_z_above(MESH_HOME_Z_SEARCH); tmc2130_home_enter(1 << axis); // first axis length measurement begin current_position[axis] -= (axis_length + margin); plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); tmc2130_sg_meassure_start(axis); current_position_init = st_get_position_mm(axis); current_position[axis] += 2 * margin; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); current_position[axis] += axis_length; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); uint16_t sg1 = tmc2130_sg_meassure_stop(); printf_P(PSTR("%c AXIS SG1=%d\n"), 'X'+axis, sg1); eeprom_write_word(((uint16_t*)((axis == X_AXIS)?EEPROM_BELTSTATUS_X:EEPROM_BELTSTATUS_Y)), sg1); current_position_final = st_get_position_mm(axis); measured_axis_length[0] = fabs(current_position_final - current_position_init); // first measurement end and second measurement begin current_position[axis] -= margin; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); current_position[axis] -= (axis_length + margin); plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); current_position_init = st_get_position_mm(axis); measured_axis_length[1] = fabs(current_position_final - current_position_init); tmc2130_home_exit(); //end of second measurement, now check for possible errors: for(uint_least8_t i = 0; i < 2; i++){ //check if measured axis length corresponds to expected length printf_P(_N("Measured axis length:%.3f\n"), measured_axis_length[i]); if (fabs(measured_axis_length[i] - axis_length) > max_error_mm) { enable_endstops(false); const char *_error_1; if (axis == X_AXIS) _error_1 = "X"; if (axis == Y_AXIS) _error_1 = "Y"; if (axis == Z_AXIS) _error_1 = "Z"; lcd_selftest_error(TestError::Axis, _error_1, ""); current_position[axis] = 0; plan_set_position_curposXYZE(); reset_crash_det(axis); enable_endstops(true); endstops_hit_on_purpose(); return false; } } printf_P(_N("Axis length difference:%.3f\n"), fabs(measured_axis_length[0] - measured_axis_length[1])); if (fabs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low //loose pulleys const char *_error_1; if (axis == X_AXIS) _error_1 = "X"; if (axis == Y_AXIS) _error_1 = "Y"; if (axis == Z_AXIS) _error_1 = "Z"; lcd_selftest_error(TestError::Pulley, _error_1, ""); current_position[axis] = 0; plan_set_position_curposXYZE(); reset_crash_det(axis); endstops_hit_on_purpose(); return false; } current_position[axis] = 0; plan_set_position_curposXYZE(); reset_crash_det(axis); endstops_hit_on_purpose(); return true; } #endif //TMC2130 #ifndef TMC2130 static bool lcd_selfcheck_axis(int _axis, int _travel) { // printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _axis, _travel); bool _stepdone = false; bool _stepresult = false; uint8_t _progress = 0; int _travel_done = 0; int _err_endstop = 0; int _lcd_refresh = 0; _travel = _travel + (_travel / 10); if (_axis == X_AXIS) { current_position[Z_AXIS] += 17; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); } do { current_position[_axis] = current_position[_axis] - 1; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); #ifdef TMC2130 if ((READ(Z_MIN_PIN) ^ (bool)Z_MIN_ENDSTOP_INVERTING)) #else //TMC2130 if ((READ(X_MIN_PIN) ^ (bool)X_MIN_ENDSTOP_INVERTING) || (READ(Y_MIN_PIN) ^ (bool)Y_MIN_ENDSTOP_INVERTING) || (READ(Z_MIN_PIN) ^ (bool)Z_MIN_ENDSTOP_INVERTING)) #endif //TMC2130 { if (_axis == 0) { _stepresult = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? 1 : 2; } if (_axis == 1) { _stepresult = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 2; } if (_axis == 2) { _stepresult = ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 1; printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _stepresult, _err_endstop); /*disable_x(); disable_y(); disable_z();*/ } _stepdone = true; } if (_lcd_refresh < 6) { _lcd_refresh++; } else { _progress = lcd_selftest_screen(static_cast(static_cast(TestScreen::AxisX) + _axis), _progress, 3, false, 0); _lcd_refresh = 0; } manage_heater(); manage_inactivity(true); //_delay(100); (_travel_done <= _travel) ? _travel_done++ : _stepdone = true; } while (!_stepdone); //current_position[_axis] = current_position[_axis] + 15; //plan_buffer_line_curposXYZE(manual_feedrate[0] / 60, active_extruder); if (!_stepresult) { const char *_error_1; const char *_error_2; if (_axis == X_AXIS) _error_1 = "X"; if (_axis == Y_AXIS) _error_1 = "Y"; if (_axis == Z_AXIS) _error_1 = "Z"; if (_err_endstop == 0) _error_2 = "X"; if (_err_endstop == 1) _error_2 = "Y"; if (_err_endstop == 2) _error_2 = "Z"; if (_travel_done >= _travel) { lcd_selftest_error(TestError::Endstop, _error_1, _error_2); } else { lcd_selftest_error(TestError::Motor, _error_1, _error_2); } } current_position[_axis] = 0; //simulate axis home to avoid negative numbers for axis position, especially Z. plan_set_position_curposXYZE(); return _stepresult; } static bool lcd_selfcheck_pulleys(int axis) { float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float current_position_init; float move; bool endstop_triggered = false; int i; unsigned long timeout_counter; refresh_cmd_timeout(); manage_inactivity(true); if (axis == 0) move = 50; //X_AXIS else move = 50; //Y_AXIS current_position_init = current_position[axis]; current_position[axis] += 2; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); for (i = 0; i < 5; i++) { refresh_cmd_timeout(); current_position[axis] = current_position[axis] + move; st_current_set(0, 850); //set motor current higher plan_buffer_line_curposXYZE(200); st_synchronize(); if (SilentModeMenu != SILENT_MODE_OFF) st_current_set(0, tmp_motor[0]); //set back to normal operation currents else st_current_set(0, tmp_motor_loud[0]); //set motor current back current_position[axis] = current_position[axis] - move; plan_buffer_line_curposXYZE(50); st_synchronize(); if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) { lcd_selftest_error(TestError::Pulley, (axis == 0) ? "X" : "Y", ""); return(false); } } timeout_counter = _millis() + 2500; endstop_triggered = false; manage_inactivity(true); while (!endstop_triggered) { if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) { endstop_triggered = true; if (current_position_init - 1 <= current_position[axis] && current_position_init + 1 >= current_position[axis]) { current_position[axis] += 10; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); return(true); } else { lcd_selftest_error(TestError::Pulley, (axis == 0) ? "X" : "Y", ""); return(false); } } else { current_position[axis] -= 1; plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); if (_millis() > timeout_counter) { lcd_selftest_error(TestError::Pulley, (axis == 0) ? "X" : "Y", ""); return(false); } } } return(true); } #endif //not defined TMC2130 static bool lcd_selfcheck_endstops() { bool _result = true; if ( #ifndef TMC2130 ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || #endif //!TMC2130 ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) { #ifndef TMC2130 if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) current_position[0] += 10; if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) current_position[1] += 10; #endif //!TMC2130 if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) current_position[2] += 10; } plan_buffer_line_curposXYZE(manual_feedrate[0] / 60); st_synchronize(); if ( #ifndef TMC2130 ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || #endif //!TMC2130 ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) { _result = false; char _error[4] = ""; #ifndef TMC2130 if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "X"); if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Y"); #endif //!TMC2130 if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Z"); lcd_selftest_error(TestError::Endstops, _error, ""); } manage_heater(); manage_inactivity(true); return _result; } static bool lcd_selfcheck_check_heater(bool _isbed) { uint8_t _counter = 0; uint8_t _progress = 0; bool _stepresult = false; bool _docycle = true; int _checked_snapshot = (_isbed) ? degBed() : degHotend(0); int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed(); uint8_t _cycles = (_isbed) ? 180 : 60; //~ 90s / 30s target_temperature[0] = (_isbed) ? 0 : 200; target_temperature_bed = (_isbed) ? 100 : 0; manage_heater(); manage_inactivity(true); do { _counter++; _docycle = (_counter < _cycles) ? true : false; manage_heater(); manage_inactivity(true); _progress = (_isbed) ? lcd_selftest_screen(TestScreen::Bed, _progress, 2, false, 400) : lcd_selftest_screen(TestScreen::Hotend, _progress, 2, false, 400); /*if (_isbed) { MYSERIAL.print("Bed temp:"); MYSERIAL.println(degBed()); } else { MYSERIAL.print("Hotend temp:"); MYSERIAL.println(degHotend(0)); }*/ if(_counter%5 == 0) serialecho_temperatures(); //show temperatures once in two seconds } while (_docycle); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot; int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot; /* MYSERIAL.println(""); MYSERIAL.print("Checked result:"); MYSERIAL.println(_checked_result); MYSERIAL.print("Opposite result:"); MYSERIAL.println(_opposite_result); */ if (_opposite_result < ((_isbed) ? 30 : 9)) { if (_checked_result >= ((_isbed) ? 9 : 30)) { _stepresult = true; } else { lcd_selftest_error(TestError::Heater, "", ""); } } else { lcd_selftest_error(TestError::Bed, "", ""); } manage_heater(); manage_inactivity(true); return _stepresult; } static void lcd_selftest_error(TestError testError, const char *_error_1, const char *_error_2) { lcd_beeper_quick_feedback(); FORCE_BL_ON_END; target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); manage_inactivity(); lcd_clear(); lcd_puts_at_P(0, 0, _i("Selftest error!"));////MSG_SELFTEST_ERROR c=20 lcd_puts_at_P(0, 1, _i("Please check:"));////MSG_SELFTEST_PLEASECHECK c=20 switch (testError) { case TestError::Heater: lcd_puts_at_P(0, 2, _i("Heater/Thermistor"));////MSG_SELFTEST_HEATERTHERMISTOR c=20 lcd_puts_at_P(0, 3, _i("Not connected"));////MSG_SELFTEST_NOTCONNECTED c=20 break; case TestError::Bed: lcd_puts_at_P(0, 2, _i("Bed/Heater"));////MSG_SELFTEST_BEDHEATER c=20 lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_WIRINGERROR)); break; case TestError::Endstops: lcd_puts_at_P(0, 2, _i("Endstops"));////MSG_SELFTEST_ENDSTOPS c=20 lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_WIRINGERROR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::Motor: lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_MOTOR)); lcd_set_cursor(18, 2); lcd_print(_error_1); lcd_puts_at_P(0, 3, _i("Endstop"));////MSG_SELFTEST_ENDSTOP c=16 lcd_set_cursor(18, 3); lcd_print(_error_2); break; case TestError::Endstop: lcd_puts_at_P(0, 2, _i("Endstop not hit"));////MSG_SELFTEST_ENDSTOP_NOTHIT c=20 lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_MOTOR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::PrintFan: lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_PART_FAN)); lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_WIRINGERROR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::ExtruderFan: lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_HOTEND_FAN)); lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_WIRINGERROR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::Pulley: lcd_puts_at_P(0, 2, _i("Loose pulley"));////MSG_LOOSE_PULLEY c=20 lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_MOTOR)); lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::Axis: lcd_puts_at_P(0, 2, _i("Axis length"));////MSG_SELFTEST_AXIS_LENGTH c=20 lcd_puts_at_P(0, 3, _i("Axis"));////MSG_SELFTEST_AXIS c=16 lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::SwappedFan: lcd_puts_at_P(0, 2, _i("Front/left fans"));////MSG_SELFTEST_FANS c=20 lcd_puts_at_P(0, 3, _i("Swapped"));////MSG_SELFTEST_SWAPPED c=16 lcd_set_cursor(18, 3); lcd_print(_error_1); break; case TestError::WiringFsensor: lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_FILAMENT_SENSOR)); lcd_puts_at_P(0, 3, _T(MSG_SELFTEST_WIRINGERROR)); break; case TestError::TriggeringFsensor: lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_FILAMENT_SENSOR)); lcd_puts_at_P(0, 3, _i("False triggering"));////MSG_FALSE_TRIGGERING c=20 break; case TestError::FsensorLevel: lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_FILAMENT_SENSOR)); lcd_set_cursor(0, 3); lcd_printf_P(_i("%s level expected"),_error_1);////MSG_SELFTEST_FS_LEVEL c=20 break; } _delay(1000); lcd_beeper_quick_feedback(); do { _delay(100); manage_heater(); manage_inactivity(); } while (!lcd_clicked()); LCD_ALERTMESSAGERPGM(_T(MSG_SELFTEST_FAILED)); lcd_return_to_status(); } #ifdef FILAMENT_SENSOR #if FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 static bool lcd_selftest_fsensor(void) { fsensor.init(); if (fsensor.isError()) { lcd_selftest_error(TestError::WiringFsensor, "", ""); } return (!fsensor.isError()); } #endif //FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 #if (FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) //! @brief Self-test of infrared barrier filament sensor mounted on MK3S with MMUv2 printer //! //! Test whether sensor is not triggering filament presence when extruder idler is moving without filament. //! //! Steps: //! * Backup current active extruder temperature //! * Pre-heat to PLA extrude temperature. //! * Unload filament possibly present. //! * Move extruder idler same way as during filament load //! and sample the filament sensor. //! * Check that pin doesn't go low. //! //! @retval true passed //! @retval false failed static bool selftest_irsensor() { class TempBackup { public: TempBackup(): m_temp(degTargetHotend(active_extruder)), m_extruder(active_extruder){} ~TempBackup(){setTargetHotend(m_temp,m_extruder);} private: float m_temp; uint8_t m_extruder; }; uint8_t progress; { TempBackup tempBackup; setTargetHotend(ABS_PREHEAT_HOTEND_TEMP,active_extruder); progress = lcd_selftest_screen(TestScreen::Fsensor, 0, 1, true, 0); } progress = lcd_selftest_screen(TestScreen::Fsensor, progress, 1, true, 0); MMU2::mmu2.unload(); for(uint_least8_t i = 0; i < 200; ++i) { if (0 == (i % 32)) progress = lcd_selftest_screen(TestScreen::Fsensor, progress, 1, true, 0); //@@TODO mmu_load_step(false); while (blocks_queued()) { if (fsensor.getFilamentPresent()) { lcd_selftest_error(TestError::TriggeringFsensor, "", ""); return false; } #ifdef TMC2130 manage_heater(); // Vojtech: Don't disable motors inside the planner! if (!tmc2130_update_sg()) { manage_inactivity(true); } #else //TMC2130 manage_heater(); // Vojtech: Don't disable motors inside the planner! manage_inactivity(true); #endif //TMC2130 } } return true; } #endif //(FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) #endif //FILAMENT_SENSOR static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite, bool _default) { bool _result = check_opposite; lcd_clear(); lcd_puts_at_P(0, 0, _T(MSG_SELFTEST_FAN)); switch (_fan) { case 0: // extruder cooling fan lcd_puts_at_P(0, 1, check_opposite ? _T(MSG_SELFTEST_PART_FAN) : _T(MSG_SELFTEST_HOTEND_FAN)); setExtruderAutoFanState(3); break; case 1: // object cooling fan lcd_puts_at_P(0, 1, check_opposite ? _T(MSG_SELFTEST_HOTEND_FAN) : _T(MSG_SELFTEST_PART_FAN)); SET_OUTPUT(FAN_PIN); #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 255; #else //FAN_SOFT_PWM analogWrite(FAN_PIN, 255); #endif //FAN_SOFT_PWM break; } _delay(500); lcd_puts_at_P(1, 2, _T(MSG_SELFTEST_FAN_YES)); lcd_putc_at(0, 3, '>'); lcd_puts_at_P(1, 3, _T(MSG_SELFTEST_FAN_NO)); int8_t enc_dif = int(_default)*3; KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_button_pressed = false; do { if (abs((enc_dif - lcd_encoder_diff)) > 2) { if (enc_dif > lcd_encoder_diff) { _result = !check_opposite; lcd_putc_at(0, 2, '>'); lcd_puts_at_P(1, 2, _T(MSG_SELFTEST_FAN_YES)); lcd_putc_at(0, 3, ' '); lcd_puts_at_P(1, 3, _T(MSG_SELFTEST_FAN_NO)); } if (enc_dif < lcd_encoder_diff) { _result = check_opposite; lcd_putc_at(0, 2, ' '); lcd_puts_at_P(1, 2, _T(MSG_SELFTEST_FAN_YES)); lcd_putc_at(0, 3, '>'); lcd_puts_at_P(1, 3, _T(MSG_SELFTEST_FAN_NO)); } enc_dif = 0; lcd_encoder_diff = 0; } manage_heater(); _delay(100); } while (!lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); setExtruderAutoFanState(0); SET_OUTPUT(FAN_PIN); #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = 0; #else //FAN_SOFT_PWM analogWrite(FAN_PIN, 0); #endif //FAN_SOFT_PWM fanSpeed = 0; manage_heater(); return _result; } #ifdef FANCHECK // Set print fan speed static void lcd_selftest_setfan(uint8_t speed) { // set the fan speed fanSpeed = speed; #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = speed; #endif manage_heater(); } // Wait for the specified number of seconds while displaying some single-character indicator on the // screen coordinate col/row, then perform fan measurement static void lcd_selftest_measure_fans(uint8_t delay, uint8_t col, uint8_t row) { // spin-up delay static char symbols[] = {'-', '|'}; static_assert(1000 / sizeof(symbols) * sizeof(symbols) == 1000); while(delay--) { for(uint8_t i = 0; i != sizeof(symbols); ++i) { lcd_putc_at(col, row, symbols[i]); delay_keep_alive(1000 / sizeof(symbols)); } } #ifdef FANCHECK extruder_autofan_last_check = _millis(); #endif fan_measuring = true; while(fan_measuring) { delay_keep_alive(100); } gcode_M123(); } static FanCheck lcd_selftest_fan_auto(uint8_t _fan) { // speed threshold to differentiate between extruder and print fan static const int printFanThr = FANCHECK_AUTO_PRINT_FAN_THRS; // >= FANCHECK_AUTO_PRINT_FAN_THRS RPS // speed threshold to mark a fan as failed static const int failThr = FANCHECK_AUTO_FAIL_THRS; // < FANCHECK_AUTO_FAIL_THRS RPM would mean either a faulty Noctua, Altfan or print fan switch (_fan) { case 0: setExtruderAutoFanState(3); // hotend fan lcd_selftest_setfan(0); // print fan off lcd_selftest_measure_fans(2, 18, 2); setExtruderAutoFanState(0); // hotend fan off if (fan_speed[0] < failThr) { return FanCheck::ExtruderFan; } if (fan_speed[0] >= printFanThr ) { return FanCheck::SwappedFan; } break; case 1: lcd_selftest_setfan(255); lcd_selftest_measure_fans(5, 18, 3); lcd_selftest_setfan(0); if (fan_speed[1] < failThr) { return FanCheck::PrintFan; } if (fan_speed[1] < printFanThr) { return FanCheck::SwappedFan; } } return FanCheck::Success; } #endif //FANCHECK static uint8_t lcd_selftest_screen(TestScreen screen, uint8_t _progress, uint8_t _progress_scale, bool _clear, uint16_t _delay) { lcd_update_enable(false); const char *_indicator = (_progress >= _progress_scale) ? "-" : "|"; if (_clear) lcd_clear(); lcd_set_cursor(0, 0); if (screen == TestScreen::ExtruderFan) lcd_puts_P(_T(MSG_SELFTEST_FAN)); if (screen == TestScreen::PrintFan) lcd_puts_P(_T(MSG_SELFTEST_FAN)); if (screen == TestScreen::FansOk) lcd_puts_P(_T(MSG_SELFTEST_FAN)); if (screen == TestScreen::EndStops) lcd_puts_P(_i("Checking endstops"));////MSG_SELFTEST_CHECK_ENDSTOPS c=20 if (screen == TestScreen::AxisX) lcd_puts_P(_T(MSG_CHECKING_X)); if (screen == TestScreen::AxisY) lcd_puts_P(_T(MSG_CHECKING_Y)); if (screen == TestScreen::AxisZ) lcd_puts_P(_i("Checking Z axis"));////MSG_SELFTEST_CHECK_Z c=20 if (screen == TestScreen::Bed) lcd_puts_P(_T(MSG_SELFTEST_CHECK_BED)); if (screen == TestScreen::Hotend || screen == TestScreen::HotendOk) lcd_puts_P(_i("Checking hotend"));////MSG_SELFTEST_CHECK_HOTEND c=20 if (screen == TestScreen::Fsensor) lcd_puts_P(_T(MSG_SELFTEST_CHECK_FSENSOR)); if (screen == TestScreen::FsensorOk) lcd_puts_P(_T(MSG_SELFTEST_CHECK_FSENSOR)); if (screen == TestScreen::AllCorrect) lcd_puts_P(_i("All correct"));////MSG_SELFTEST_CHECK_ALLCORRECT c=20 if (screen == TestScreen::Failed) lcd_puts_P(_T(MSG_SELFTEST_FAILED)); if (screen == TestScreen::Home) lcd_puts_P(_i("Calibrating home"));////MSG_CALIBRATING_HOME c=20 lcd_puts_at_P(0, 1, separator); if ((screen >= TestScreen::ExtruderFan) && (screen <= TestScreen::FansOk)) { //SERIAL_ECHOLNPGM("Fan test"); lcd_puts_at_P(0, 2, _T(MSG_HOTEND_FAN_SPEED)); lcd_set_cursor(18, 2); (screen < TestScreen::PrintFan) ? lcd_print(_indicator) : lcd_print("OK"); lcd_puts_at_P(0, 3, _T(MSG_PRINT_FAN_SPEED)); lcd_set_cursor(18, 3); (screen < TestScreen::FansOk) ? lcd_print(_indicator) : lcd_print("OK"); } else if (screen >= TestScreen::Fsensor && screen <= TestScreen::FsensorOk) { lcd_puts_at_P(0, 2, _T(MSG_SELFTEST_FILAMENT_SENSOR)); lcd_putc(':'); lcd_set_cursor(18, 2); (screen == TestScreen::Fsensor) ? lcd_print(_indicator) : lcd_print("OK"); } else if (screen < TestScreen::Fsensor) { //SERIAL_ECHOLNPGM("Other tests"); TestScreen _step_block = TestScreen::AxisX; lcd_selftest_screen_step(2, 2, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), PSTR("X"), _indicator); _step_block = TestScreen::AxisY; lcd_selftest_screen_step(2, 8, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), PSTR("Y"), _indicator); _step_block = TestScreen::AxisZ; lcd_selftest_screen_step(2, 14, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), PSTR("Z"), _indicator); _step_block = TestScreen::Bed; lcd_selftest_screen_step(3, 0, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), PSTR("Bed"), _indicator); _step_block = TestScreen::Hotend; lcd_selftest_screen_step(3, 9, ((screen == _step_block) ? 1 : (screen < _step_block) ? 0 : 2), PSTR("Hotend"), _indicator); } if (_delay > 0) delay_keep_alive(_delay); _progress++; return (_progress >= _progress_scale * 2) ? 0 : _progress; } static void lcd_selftest_screen_step(uint8_t _row, uint8_t _col, uint8_t _state, const char *_name_PROGMEM, const char *_indicator) { lcd_set_cursor(_col, _row); uint8_t strlenNameP = strlen_P(_name_PROGMEM); switch (_state) { case 1: lcd_puts_P(_name_PROGMEM); lcd_putc_at(_col + strlenNameP, _row, ':'); lcd_set_cursor(_col + strlenNameP + 1, _row); lcd_print(_indicator); break; case 2: lcd_puts_P(_name_PROGMEM); lcd_putc_at(_col + strlenNameP, _row, ':'); lcd_puts_at_P(_col + strlenNameP + 1, _row, PSTR("OK")); break; default: lcd_puts_P(_name_PROGMEM); } } /** End of menus **/ /** Menu action functions **/ static bool check_file(const char* filename) { if (farm_mode) return true; card.openFileReadFilteredGcode(filename, true); bool result = false; const uint32_t filesize = card.getFileSize(); uint32_t startPos = 0; const uint16_t bytesToCheck = min(END_FILE_SECTION, filesize); if (filesize > END_FILE_SECTION) { startPos = filesize - END_FILE_SECTION; card.setIndex(startPos); } cmdqueue_reset(); cmdqueue_serial_disabled = true; menu_progressbar_init(bytesToCheck, _i("Checking file"));////MSG_CHECKING_FILE c=17 while (!card.eof() && !result) { menu_progressbar_update(card.get_sdpos() - startPos); card.sdprinting = true; get_command(); result = check_commands(); #ifdef CMDBUFFER_DEBUG // Kick watchdog because the file check is very slow // with the CMDBUFFER_DEBUG enabled manage_heater(); #endif // CMDBUFFER_DEBUG } menu_progressbar_finish(); cmdqueue_serial_disabled = false; card.printingHasFinished(); lcd_setstatuspgm(MSG_WELCOME); return result; } static void menu_action_sdfile(const char* filename) { loading_flag = false; char cmd[30]; char* c; bool result = true; sprintf_P(cmd, PSTR("M23 %s"), filename); for (c = &cmd[4]; *c; c++) *c = tolower(*c); const char end[5] = ".gco"; //we are storing just first 8 characters of 8.3 filename assuming that extension is always ".gco" for (uint_least8_t i = 0; i < 8; i++) { if (strcmp((cmd + i + 4), end) == 0) { //filename is shorter then 8.3, store '\0' character on position where ".gco" string was found to terminate stored string properly eeprom_write_byte((uint8_t*)EEPROM_FILENAME + i, '\0'); break; } else { eeprom_write_byte((uint8_t*)EEPROM_FILENAME + i, cmd[i + 4]); } } uint8_t depth = card.getWorkDirDepth(); eeprom_write_byte((uint8_t*)EEPROM_DIR_DEPTH, depth); for (uint_least8_t i = 0; i < depth; i++) { for (uint_least8_t j = 0; j < 8; j++) { eeprom_write_byte((uint8_t*)EEPROM_DIRS + j + 8 * i, card.dir_names[i][j]); } } //filename is just a pointer to card.filename, which changes everytime you try to open a file by filename. So you can't use filename directly //to open a file. Instead, the cached filename in cmd is used as that one is static for the whole lifetime of this function. if (!check_file(cmd + 4)) { result = !lcd_show_fullscreen_message_yes_no_and_wait_P(_i("File incomplete. Continue anyway?"), false);////MSG_FILE_INCOMPLETE c=20 r=3 lcd_update_enable(true); } if (result) { enquecommand(cmd); enquecommand_P(PSTR("M24")); } lcd_return_to_status(); } void menu_action_sddirectory(const char* filename) { card.chdir(filename, true); lcd_encoder = 0; menu_data_reset(); //Forces reloading of cached variables. } /** LCD API **/ void ultralcd_init() { backlight_init(); lcd_init(); lcd_refresh(); lcd_longpress_func = menu_lcd_longpress_func; lcd_lcdupdate_func = menu_lcd_lcdupdate_func; menu_menu = lcd_status_screen; SET_INPUT(BTN_EN1); SET_INPUT(BTN_EN2); WRITE(BTN_EN1, HIGH); WRITE(BTN_EN2, HIGH); #if BTN_ENC > 0 SET_INPUT(BTN_ENC); WRITE(BTN_ENC, HIGH); #endif #if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0) SET_INPUT(SDCARDDETECT); WRITE(SDCARDDETECT, HIGH); _delay_ms(1); //wait for the pullups to raise the line lcd_oldcardstatus = IS_SD_INSERTED; #endif//(SDCARDDETECT > 0) lcd_encoder_diff = 0; // Initialise status line strncpy_P(lcd_status_message, MSG_WELCOME, LCD_WIDTH); } void lcd_ignore_click(bool b) { ignore_click = b; wait_for_unclick = false; } static bool lcd_message_check(uint8_t priority) { // regular priority check if (priority >= lcd_status_message_level) return true; // check if we can override an info message yet if (lcd_status_message_level == LCD_STATUS_INFO) { return lcd_status_message_timeout.expired_cont(LCD_STATUS_INFO_TIMEOUT); } return false; } static void lcd_updatestatus(const char *message, bool progmem = false) { if (progmem) strncpy_P(lcd_status_message, message, LCD_WIDTH); else strncpy(lcd_status_message, message, LCD_WIDTH); lcd_status_message[LCD_WIDTH] = 0; SERIAL_PROTOCOLLNRPGM(MSG_LCD_STATUS_CHANGED); // hack lcd_draw_update to 1, i.e. without clear lcd_draw_update = 1; } void lcd_setstatus(const char* message) { if (lcd_message_check(LCD_STATUS_NONE)) lcd_updatestatus(message); } void lcd_setstatuspgm(const char* message) { if (lcd_message_check(LCD_STATUS_NONE)) lcd_updatestatus(message, true); } void lcd_setstatus_serial(const char* message) { if (lcd_message_check(LCD_STATUS_NONE)) lcd_updatestatus(message); SERIAL_ECHOLN(message); } void lcd_setalertstatus_(const char* message, uint8_t severity, bool progmem) { if (lcd_message_check(severity)) { bool same = !(progmem? strcmp_P(lcd_status_message, message): strcmp(lcd_status_message, message)); lcd_updatestatus(message, progmem); lcd_status_message_timeout.start(); lcd_status_message_level = severity; custom_message_type = CustomMsg::Status; custom_message_state = 0; if (!same) { // do not kick the user out of the menus if the message is unchanged lcd_return_to_status(); } } } void lcd_setalertstatus(const char* message, uint8_t severity) { lcd_setalertstatus_(message, severity, false); } void lcd_setalertstatuspgm(const char* message, uint8_t severity) { lcd_setalertstatus_(message, severity, true); } void lcd_reset_alert_level() { lcd_status_message_level = 0; } uint8_t get_message_level() { return lcd_status_message_level; } void menu_lcd_longpress_func(void) { // Wake up the LCD backlight and, // start LCD inactivity timer lcd_timeoutToStatus.start(); backlight_wake(); if (homing_flag || mesh_bed_leveling_flag || menu_menu == lcd_babystep_z || menu_menu == lcd_move_z || menu_block_mask != MENU_BLOCK_NONE) { // disable longpress during re-entry, while homing, calibration or if a serious error lcd_quick_feedback(); return; } if (menu_menu == lcd_hw_setup_menu) { // only toggle the experimental menu visibility flag lcd_quick_feedback(); eeprom_toggle((uint8_t *)EEPROM_EXPERIMENTAL_VISIBILITY); return; } // explicitely listed menus which are allowed to rise the move-z or live-adj-z functions // The lists are not the same for both functions, so first decide which function is to be performed if ( (moves_planned() || IS_SD_PRINTING || usb_timer.running() )){ // long press as live-adj-z if (( current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU ) // only allow live-adj-z up to 2mm of print height && ( menu_menu == lcd_status_screen // and in listed menus... || menu_menu == lcd_main_menu || menu_menu == lcd_tune_menu || menu_menu == lcd_support_menu ) ){ lcd_clear(); menu_submenu(lcd_babystep_z); } else { lcd_quick_feedback(); } } else { // long press as move-z if (menu_menu == lcd_status_screen || menu_menu == lcd_main_menu || menu_menu == lcd_preheat_menu || menu_menu == lcd_sdcard_menu || menu_menu == lcd_settings_menu || menu_menu == lcd_control_temperature_menu #if (LANG_MODE != 0) || menu_menu == lcd_language #endif || menu_menu == lcd_support_menu ){ menu_submenu(lcd_move_z); } else { lcd_quick_feedback(); } } } static inline bool z_menu_expired() { return (menu_menu == lcd_babystep_z && lcd_timeoutToStatus.expired(LCD_TIMEOUT_TO_STATUS_BABYSTEP_Z)); } static inline bool other_menu_expired() { return (menu_menu != lcd_status_screen && menu_menu != lcd_babystep_z && lcd_timeoutToStatus.expired(LCD_TIMEOUT_TO_STATUS)); } void menu_lcd_lcdupdate_func(void) { #if (SDCARDDETECT > 0) if ((IS_SD_INSERTED != lcd_oldcardstatus)) { if(menu_menu == lcd_sdcard_menu) { // If the user is either inside the submenus // 1. 'Print from SD' --> and SD card is removed // 2. 'No SD card' --> and SD card is inserted // // 1. 'Print from SD': We want to back out of this submenu // and instead show the submenu title 'No SD card'. // // 2. 'No SD card': When the user inserts the SD card we want // to back out of this submenu. Not only to show // 'Print from SD' submenu title but also because the user // will be prompted with another menu with the sorted list of files. // Without backing out of the menu, the list will appear empty and // The user will need to back out of two nested submenus. menu_back(); } lcd_draw_update = 2; lcd_oldcardstatus = IS_SD_INSERTED; lcd_refresh(); // to maybe revive the LCD if static electricity killed it. backlight_wake(); if (lcd_oldcardstatus) { if (!card.cardOK) { card.initsd(false); //delay the sorting to the sd menu. Otherwise, removing the SD card while sorting will not menu_back() card.presort_flag = true; //force sorting of the SD menu } LCD_MESSAGERPGM(MSG_WELCOME); bMain=false; // flag (i.e. 'fake parameter') for 'lcd_sdcard_menu()' function menu_submenu(lcd_sdcard_menu); lcd_timeoutToStatus.start(); } else { card.release(); LCD_MESSAGERPGM(_i("Card removed"));////MSG_SD_REMOVED c=20 } } #endif//CARDINSERTED backlight_update(); if (lcd_next_update_millis < _millis()) { if (abs(lcd_encoder_diff) >= ENCODER_PULSES_PER_STEP) { if (lcd_draw_update == 0) lcd_draw_update = 1; lcd_encoder += lcd_encoder_diff / ENCODER_PULSES_PER_STEP; Sound_MakeSound(e_SOUND_TYPE_EncoderMove); lcd_encoder_diff = 0; lcd_timeoutToStatus.start(); backlight_wake(); } if (LCD_CLICKED) { lcd_timeoutToStatus.start(); backlight_wake(); } (*menu_menu)(); if (z_menu_expired() || other_menu_expired()) { // Exiting a menu. Let's call the menu function the last time with menu_leaving flag set to true // to give it a chance to save its state. // This is useful for example, when the babystep value has to be written into EEPROM. if (menu_menu != NULL) { menu_leaving = 1; (*menu_menu)(); menu_leaving = 0; } lcd_clear(); lcd_return_to_status(); lcd_draw_update = 2; } if (lcd_draw_update == 2) lcd_clear(); if (lcd_draw_update) lcd_draw_update--; lcd_next_update_millis = _millis() + LCD_UPDATE_INTERVAL; } prusa_statistics_update_from_lcd_update(); if (lcd_commands_type == LcdCommands::Layer1Cal) lcd_commands(); } #ifdef TMC2130 //! @brief Is crash detection enabled? //! //! @retval true crash detection enabled //! @retval false crash detection disabled bool lcd_crash_detect_enabled() { return eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); } void lcd_crash_detect_enable() { tmc2130_sg_stop_on_crash = true; eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); } void lcd_crash_detect_disable() { tmc2130_sg_stop_on_crash = false; tmc2130_sg_crash = 0; eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); } #endif #ifdef TMC2130 void UserECool_toggle(){ // this is only called when the experimental menu is visible, thus the first condition for enabling of the ECool mode is met in this place // The condition is intentionally inverted as we are toggling the state (i.e. if it was enabled, we are disabling the feature and vice versa) bool enable = ! UserECoolEnabled(); eeprom_update_byte((uint8_t *)EEPROM_ECOOL_ENABLE, enable ? EEPROM_ECOOL_MAGIC_NUMBER : EEPROM_EMPTY_VALUE); // @@TODO I don't like this - disabling the experimental menu shall disable ECool mode, but it will not reinit the TMC // and I don't want to add more code for this experimental feature ... ideally do not reinit the TMC here at all and let the user reset the printer. tmc2130_init(TMCInitParams(enable)); } #endif /// Enable experimental support for cooler operation of the extruder motor /// Beware - REQUIRES original Prusa MK3/S/+ extruder motor with adequate maximal current /// Therefore we don't want to allow general usage of this feature in public as the community likes to /// change motors for various reasons and unless the motor is rotating, we cannot verify its properties /// (which would be obviously too late for an improperly sized motor) /// For farm printing, the cooler E-motor is enabled by default. bool UserECoolEnabled(){ // We enable E-cool mode for non-farm prints IFF the experimental menu is visible AND the EEPROM_ECOOL variable has // a value of the universal answer to all problems of the universe return ( eeprom_read_byte((uint8_t *)EEPROM_ECOOL_ENABLE) == EEPROM_ECOOL_MAGIC_NUMBER ) && ( eeprom_read_byte((uint8_t *)EEPROM_EXPERIMENTAL_VISIBILITY) == 1 ); } bool FarmOrUserECool(){ return farm_mode || UserECoolEnabled(); } #ifdef PRUSA_SN_SUPPORT void WorkaroundPrusaSN() { const char *SN = PSTR("CZPXInvalidSerialNr"); for (uint8_t i = 0; i < 20; i++) { eeprom_update_byte((uint8_t*)EEPROM_PRUSA_SN + i, pgm_read_byte(SN++)); } } #endif //PRUSA_SN_SUPPORT void lcd_experimental_menu() { MENU_BEGIN(); MENU_ITEM_BACK_P(_T(MSG_BACK)); #ifdef EXTRUDER_ALTFAN_DETECT MENU_ITEM_TOGGLE_P(_N("ALTFAN det."), altfanOverride_get()?_T(MSG_OFF):_T(MSG_ON), altfanOverride_toggle);////MSG_MENU_ALTFAN c=18 #endif //EXTRUDER_ALTFAN_DETECT #ifdef TMC2130 MENU_ITEM_TOGGLE_P(_N("E-cool mode"), UserECoolEnabled()?_T(MSG_ON):_T(MSG_OFF), UserECool_toggle);////MSG_MENU_ECOOL c=18 #endif #ifdef DEBUG_PULLUP_CRASH MENU_ITEM_FUNCTION_P(_N("Test Pullup Crash"), TestPullupCrash); #endif // DEBUG_PULLUP_CRASH #ifdef PRUSA_SN_SUPPORT MENU_ITEM_FUNCTION_P(_N("Fake serial number"), WorkaroundPrusaSN);////MSG_WORKAROUND_PRUSA_SN c=18 #endif //PRUSA_SN_SUPPORT MENU_END(); } #ifdef PINDA_TEMP_COMP void lcd_pinda_temp_compensation_toggle() { uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION); if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) // On MK2.5/S the EEPROM_EMPTY_VALUE will be set to 0 during eeprom_init. pinda_temp_compensation = 1; // But for MK3/S it should be 1 so SuperPINDA is "active" else pinda_temp_compensation = !pinda_temp_compensation; eeprom_update_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION, pinda_temp_compensation); SERIAL_ECHOLNPGM("SuperPINDA:"); SERIAL_ECHOLN(pinda_temp_compensation); } #endif //PINDA_TEMP_COMP