//mmu.cpp #include "mmu.h" #include "planner.h" #include "language.h" #include "lcd.h" #include "uart2.h" #include "temperature.h" #include "Configuration_prusa.h" extern const char* lcd_display_message_fullscreen_P(const char *msg); extern void lcd_show_fullscreen_message_and_wait_P(const char *msg); extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false); extern void lcd_return_to_status(); extern void lcd_wait_for_heater(); extern char choose_extruder_menu(); #define MMU_TODELAY 100 #define MMU_TIMEOUT 10 #define MMU_HWRESET #define MMU_RST_PIN 76 bool mmu_enabled = false; int8_t mmu_state = 0; uint8_t mmu_extruder = 0; uint8_t tmp_extruder = 0; int8_t mmu_finda = -1; int16_t mmu_version = -1; int16_t mmu_buildnr = -1; //clear rx buffer void mmu_clr_rx_buf(void) { while (fgetc(uart2io) >= 0); } //send command - puts int mmu_puts_P(const char* str) { mmu_clr_rx_buf(); //clear rx buffer return fputs_P(str, uart2io); //send command } //send command - printf int mmu_printf_P(const char* format, ...) { va_list args; va_start(args, format); mmu_clr_rx_buf(); //clear rx buffer int r = vfprintf_P(uart2io, format, args); //send command va_end(args); return r; } //check 'ok' response int8_t mmu_rx_ok(void) { return uart2_rx_str_P(PSTR("ok\n")); } //check 'start' response int8_t mmu_rx_start(void) { return uart2_rx_str_P(PSTR("start\n")); } //initialize mmu2 unit - first part - should be done at begining of startup process void mmu_init(void) { digitalWrite(MMU_RST_PIN, HIGH); pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin uart2_init(); //init uart2 _delay_ms(10); //wait 10ms for sure mmu_reset(); //reset mmu (HW or SW), do not wait for response mmu_state = -1; } //mmu main loop - state machine processing void mmu_loop(void) { // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state); switch (mmu_state) { case 0: return; case -1: if (mmu_rx_start() > 0) { puts_P(PSTR("MMU => 'start'")); puts_P(PSTR("MMU <= 'S1'")); mmu_puts_P(PSTR("S1\n")); //send 'read version' request mmu_state = -2; } else if (millis() > 30000) //30sec after reset disable mmu { puts_P(PSTR("MMU not responding - DISABLED")); mmu_state = 0; } return; case -2: if (mmu_rx_ok() > 0) { fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer printf_P(PSTR("MMU => '%dok'\n"), mmu_version); puts_P(PSTR("MMU <= 'S2'")); mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request mmu_state = -3; } return; case -3: if (mmu_rx_ok() > 0) { fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr); puts_P(PSTR("MMU <= 'P0'")); mmu_puts_P(PSTR("P0\n")); //send 'read finda' request mmu_state = -4; } return; case -4: if (mmu_rx_ok() > 0) { fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer printf_P(PSTR("MMU => '%dok'\n"), mmu_finda); puts_P(PSTR("MMU - ENABLED")); mmu_enabled = true; mmu_state = 1; } return; } } void mmu_reset(void) { #ifdef MMU_HWRESET //HW - pulse reset pin digitalWrite(MMU_RST_PIN, LOW); _delay_us(100); digitalWrite(MMU_RST_PIN, HIGH); #else //SW - send X0 command mmu_puts_P(PSTR("X0\n")); #endif } int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament) { printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament); mmu_printf_P(PSTR("F%d %d\n"), extruder, filament); unsigned char timeout = MMU_TIMEOUT; //10x100ms while ((mmu_rx_ok() <= 0) && (--timeout)) delay_keep_alive(MMU_TODELAY); return timeout?1:0; } bool mmu_get_response(bool timeout) { printf_P(PSTR("mmu_get_response - begin\n")); //waits for "ok" from mmu //function returns true if "ok" was received //if timeout is set to true function return false if there is no "ok" received before timeout bool response = true; LongTimer mmu_get_reponse_timeout; KEEPALIVE_STATE(IN_PROCESS); mmu_get_reponse_timeout.start(); while (mmu_rx_ok() <= 0) { delay_keep_alive(100); if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout response = false; break; } } printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0); return response; } void manage_response(bool move_axes, bool turn_off_nozzle) { bool response = false; mmu_print_saved = false; bool lcd_update_was_enabled = false; float hotend_temp_bckp = degTargetHotend(active_extruder); float z_position_bckp = current_position[Z_AXIS]; float x_position_bckp = current_position[X_AXIS]; float y_position_bckp = current_position[Y_AXIS]; while(!response) { response = mmu_get_response(true); //wait for "ok" from mmu if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater if (lcd_update_enabled) { lcd_update_was_enabled = true; lcd_update_enable(false); } st_synchronize(); mmu_print_saved = true; hotend_temp_bckp = degTargetHotend(active_extruder); if (move_axes) { z_position_bckp = current_position[Z_AXIS]; x_position_bckp = current_position[X_AXIS]; y_position_bckp = current_position[Y_AXIS]; //lift z current_position[Z_AXIS] += Z_PAUSE_LIFT; if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); st_synchronize(); //Move XY to side current_position[X_AXIS] = X_PAUSE_POS; current_position[Y_AXIS] = Y_PAUSE_POS; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); st_synchronize(); } if (turn_off_nozzle) { //set nozzle target temperature to 0 setAllTargetHotends(0); printf_P(PSTR("MMU not responding\n")); lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature.")); setTargetHotend(hotend_temp_bckp, active_extruder); while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) { delay_keep_alive(1000); lcd_wait_for_heater(); } } } lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit.")); } else if (mmu_print_saved) { printf_P(PSTR("MMU start responding\n")); lcd_clear(); lcd_display_message_fullscreen_P(_i("MMU OK. Resuming...")); if (move_axes) { current_position[X_AXIS] = x_position_bckp; current_position[Y_AXIS] = y_position_bckp; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); st_synchronize(); current_position[Z_AXIS] = z_position_bckp; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); st_synchronize(); } else { delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements } } } if (lcd_update_was_enabled) lcd_update_enable(true); } void mmu_load_to_nozzle() { st_synchronize(); bool saved_e_relative_mode = axis_relative_modes[E_AXIS]; if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true; current_position[E_AXIS] += 7.2f; float feedrate = 562; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); st_synchronize(); current_position[E_AXIS] += 14.4f; feedrate = 871; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); st_synchronize(); current_position[E_AXIS] += 36.0f; feedrate = 1393; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); st_synchronize(); current_position[E_AXIS] += 14.4f; feedrate = 871; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); st_synchronize(); if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false; } void mmu_M600_load_filament(bool automatic) { //load filament for mmu v2 bool yes = false; if (!automatic) { yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false); if(yes) tmp_extruder = choose_extruder_menu(); else tmp_extruder = mmu_extruder; } else { tmp_extruder = (tmp_extruder+1)%5; } lcd_update_enable(false); lcd_clear(); lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT)); lcd_print(" "); lcd_print(tmp_extruder + 1); snmm_filaments_used |= (1 << tmp_extruder); //for stop print printf_P(PSTR("T code: %d \n"), tmp_extruder); mmu_printf_P(PSTR("T%d\n"), tmp_extruder); manage_response(false, true); mmu_extruder = tmp_extruder; //filament change is finished mmu_load_to_nozzle(); st_synchronize(); current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder); } void extr_mov(float shift, float feed_rate) { //move extruder no matter what the current heater temperature is set_extrude_min_temp(.0); current_position[E_AXIS] += shift; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder); set_extrude_min_temp(EXTRUDE_MINTEMP); } void change_extr(int #ifdef SNMM extr #endif //SNMM ) { //switches multiplexer for extruders #ifdef SNMM st_synchronize(); delay(100); disable_e0(); disable_e1(); disable_e2(); mmu_extruder = extr; pinMode(E_MUX0_PIN, OUTPUT); pinMode(E_MUX1_PIN, OUTPUT); switch (extr) { case 1: WRITE(E_MUX0_PIN, HIGH); WRITE(E_MUX1_PIN, LOW); break; case 2: WRITE(E_MUX0_PIN, LOW); WRITE(E_MUX1_PIN, HIGH); break; case 3: WRITE(E_MUX0_PIN, HIGH); WRITE(E_MUX1_PIN, HIGH); break; default: WRITE(E_MUX0_PIN, LOW); WRITE(E_MUX1_PIN, LOW); break; } delay(100); #endif } int get_ext_nr() { //reads multiplexer input pins and return current extruder number (counted from 0) #ifndef SNMM return(mmu_extruder); //update needed #else return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN)); #endif } void display_loading() { switch (mmu_extruder) { case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break; case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break; case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break; default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break; } } void extr_adj(int extruder) //loading filament for SNMM { #ifndef SNMM printf_P(PSTR("L%d \n"),extruder); fprintf_P(uart2io, PSTR("L%d\n"), extruder); //show which filament is currently loaded lcd_update_enable(false); lcd_clear(); lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT)); //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1); //else lcd.print(" "); lcd_print(" "); lcd_print(mmu_extruder + 1); // get response manage_response(false, false); lcd_update_enable(true); //lcd_return_to_status(); #else bool correct; max_feedrate[E_AXIS] =80; //max_feedrate[E_AXIS] = 50; START: lcd_clear(); lcd_set_cursor(0, 0); switch (extruder) { case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break; case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break; case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break; default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break; } KEEPALIVE_STATE(PAUSED_FOR_USER); do{ extr_mov(0.001,1000); delay_keep_alive(2); } while (!lcd_clicked()); //delay_keep_alive(500); KEEPALIVE_STATE(IN_HANDLER); st_synchronize(); //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false); //if (!correct) goto START; //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max) //extr_mov(BOWDEN_LENGTH/2.f, 500); extr_mov(bowden_length[extruder], 500); lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT)); if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1); else lcd_print(" "); lcd_print(mmu_extruder + 1); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT)); st_synchronize(); max_feedrate[E_AXIS] = 50; lcd_update_enable(true); lcd_return_to_status(); lcdDrawUpdate = 2; #endif } void extr_unload() { //unload just current filament for multimaterial printers #ifdef SNMM float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); #endif if (degHotend0() > EXTRUDE_MINTEMP) { #ifndef SNMM st_synchronize(); //show which filament is currently unloaded lcd_update_enable(false); lcd_clear(); lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT)); lcd_print(" "); lcd_print(mmu_extruder + 1); current_position[E_AXIS] -= 80; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); st_synchronize(); printf_P(PSTR("U0\n")); fprintf_P(uart2io, PSTR("U0\n")); // get response manage_response(false, true); lcd_update_enable(true); #else //SNMM lcd_clear(); lcd_display_message_fullscreen_P(PSTR("")); max_feedrate[E_AXIS] = 50; lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT)); lcd_print(" "); lcd_print(mmu_extruder + 1); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT)); if (current_position[Z_AXIS] < 15) { current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder); } current_position[E_AXIS] += 10; //extrusion plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder); st_current_set(2, E_MOTOR_HIGH_CURRENT); if (current_temperature[0] < 230) { //PLA & all other filaments current_position[E_AXIS] += 5.4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); current_position[E_AXIS] += 3.2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[E_AXIS] += 3; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); } else { //ABS current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); current_position[E_AXIS] += 4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); /*current_position[X_AXIS] += 23; //delay plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay current_position[X_AXIS] -= 23; //delay plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/ delay_keep_alive(4700); } max_feedrate[E_AXIS] = 80; current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); st_synchronize(); //st_current_init(); if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents else st_current_set(2, tmp_motor_loud[2]); lcd_update_enable(true); lcd_return_to_status(); max_feedrate[E_AXIS] = 50; #endif //SNMM } else { lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_ERROR)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_clear(); } //lcd_return_to_status(); } //wrapper functions for loading filament void extr_adj_0() { #ifndef SNMM enquecommand_P(PSTR("M701 E0")); #else change_extr(0); extr_adj(0); #endif } void extr_adj_1() { #ifndef SNMM enquecommand_P(PSTR("M701 E1")); #else change_extr(1); extr_adj(1); #endif } void extr_adj_2() { #ifndef SNMM enquecommand_P(PSTR("M701 E2")); #else change_extr(2); extr_adj(2); #endif } void extr_adj_3() { #ifndef SNMM enquecommand_P(PSTR("M701 E3")); #else change_extr(3); extr_adj(3); #endif } void extr_adj_4() { #ifndef SNMM enquecommand_P(PSTR("M701 E4")); #else change_extr(4); extr_adj(4); #endif } void load_all() { #ifndef SNMM enquecommand_P(PSTR("M701 E0")); enquecommand_P(PSTR("M701 E1")); enquecommand_P(PSTR("M701 E2")); enquecommand_P(PSTR("M701 E3")); enquecommand_P(PSTR("M701 E4")); #else for (int i = 0; i < 4; i++) { change_extr(i); extr_adj(i); } #endif } //wrapper functions for changing extruders void extr_change_0() { change_extr(0); lcd_return_to_status(); } void extr_change_1() { change_extr(1); lcd_return_to_status(); } void extr_change_2() { change_extr(2); lcd_return_to_status(); } void extr_change_3() { change_extr(3); lcd_return_to_status(); } //wrapper functions for unloading filament void extr_unload_all() { if (degHotend0() > EXTRUDE_MINTEMP) { for (int i = 0; i < 4; i++) { change_extr(i); extr_unload(); } } else { lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_ERROR)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_clear(); lcd_return_to_status(); } } //unloading just used filament (for snmm) void extr_unload_used() { if (degHotend0() > EXTRUDE_MINTEMP) { for (int i = 0; i < 4; i++) { if (snmm_filaments_used & (1 << i)) { change_extr(i); extr_unload(); } } snmm_filaments_used = 0; } else { lcd_clear(); lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_ERROR)); lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_clear(); lcd_return_to_status(); } } void extr_unload_0() { change_extr(0); extr_unload(); } void extr_unload_1() { change_extr(1); extr_unload(); } void extr_unload_2() { change_extr(2); extr_unload(); } void extr_unload_3() { change_extr(3); extr_unload(); } void extr_unload_4() { change_extr(4); extr_unload(); }