#pragma once #include #include #include #include #include "Marlin.h" #include "ultralcd.h" #include "menu.h" #include "cardreader.h" #include "temperature.h" #include "cmdqueue.h" #include "eeprom.h" #include "pins.h" #include "fastio.h" #include "adc.h" #include "Timer.h" #include "pat9125.h" #define FSENSOR_IR 1 #define FSENSOR_IR_ANALOG 2 #define FSENSOR_PAT9125 3 #ifdef FILAMENT_SENSOR class Filament_sensor { public: virtual void init() = 0; virtual void deinit() = 0; virtual bool update() = 0; virtual bool getFilamentPresent() = 0; enum class State : uint8_t { disabled = 0, initializing, ready, error, }; enum class SensorActionOnError : uint8_t { _Continue = 0, _Pause = 1, _Undef = EEPROM_EMPTY_VALUE }; void setEnabled(bool enabled) { eeprom_update_byte((uint8_t *)EEPROM_FSENSOR, enabled); if (enabled) { init(); } else { deinit(); } } void setAutoLoadEnabled(bool state, bool updateEEPROM = false) { autoLoadEnabled = state; if (updateEEPROM) { eeprom_update_byte((uint8_t *)EEPROM_FSENS_AUTOLOAD_ENABLED, state); } } bool getAutoLoadEnabled() { return autoLoadEnabled; } void setRunoutEnabled(bool state, bool updateEEPROM = false) { runoutEnabled = state; if (updateEEPROM) { eeprom_update_byte((uint8_t *)EEPROM_FSENS_RUNOUT_ENABLED, state); } } bool getRunoutEnabled() { return runoutEnabled; } void setActionOnError(SensorActionOnError state, bool updateEEPROM = false) { sensorActionOnError = state; if (updateEEPROM) { eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_ACTION_NA, (uint8_t)state); } } SensorActionOnError getActionOnError() { return sensorActionOnError; } bool getFilamentLoadEvent() { return postponedLoadEvent; } bool isError() { return state == State::error; } bool isReady() { return state == State::ready; } bool isEnabled() { return state != State::disabled; } protected: void settings_init() { bool enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); if ((state != State::disabled) != enabled) { state = enabled ? State::initializing : State::disabled; } autoLoadEnabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED); runoutEnabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_RUNOUT_ENABLED); sensorActionOnError = (SensorActionOnError)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA); if (sensorActionOnError == SensorActionOnError::_Undef) { sensorActionOnError = SensorActionOnError::_Continue; } } bool checkFilamentEvents() { if (state != State::ready) return false; if (eventBlankingTimer.running() && !eventBlankingTimer.expired(100)) {// event blanking for 100ms return false; } bool newFilamentPresent = getFilamentPresent(); if (oldFilamentPresent != newFilamentPresent) { oldFilamentPresent = newFilamentPresent; eventBlankingTimer.start(); if (newFilamentPresent) { //filament insertion puts_P(PSTR("filament inserted")); triggerFilamentInserted(); postponedLoadEvent = true; } else { //filament removal puts_P(PSTR("filament removed")); triggerFilamentRemoved(); } return true; } return false; }; void triggerFilamentInserted() { if (autoLoadEnabled && (eFilamentAction == FilamentAction::None) && !(moves_planned() || IS_SD_PRINTING || usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal) || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))) { eFilamentAction = FilamentAction::AutoLoad; if(target_temperature[0] >= EXTRUDE_MINTEMP){ bFilamentPreheatState = true; menu_submenu(mFilamentItemForce); } else { menu_submenu(lcd_generic_preheat_menu); lcd_timeoutToStatus.start(); } } } void triggerFilamentRemoved() { if (runoutEnabled && (eFilamentAction == FilamentAction::None) && !saved_printing && (moves_planned() || IS_SD_PRINTING || usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal) || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))) { runoutEnabled = false; autoLoadEnabled = false; stop_and_save_print_to_ram(0, 0); restore_print_from_ram_and_continue(0); eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1); eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1); enquecommand_front_P((PSTR("M600"))); } } void triggerError() { // deinit(); //not sure if I should call this here. state = State::error; /// some message, idk ;// } State state; bool autoLoadEnabled; bool runoutEnabled; bool oldFilamentPresent; //for creating filament presence switching events. bool postponedLoadEvent; //this event lasts exactly one update cycle. It is long enough to be able to do polling for load event. ShortTimer eventBlankingTimer; SensorActionOnError sensorActionOnError; }; #if (FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) class IR_sensor: public Filament_sensor { public: void init() { if (state == State::error) { deinit(); //deinit first if there was an error. } puts_P(PSTR("fsensor::init()")); SET_INPUT(IR_SENSOR_PIN); //input mode WRITE(IR_SENSOR_PIN, 1); //pullup settings_init(); //also sets the state to State::initializing } void deinit() { puts_P(PSTR("fsensor::deinit()")); SET_INPUT(IR_SENSOR_PIN); //input mode WRITE(IR_SENSOR_PIN, 0); //no pullup state = State::disabled; } bool update() { switch (state) { case State::initializing: state = State::ready; //the IR sensor gets ready instantly as it's just a gpio read operation. oldFilamentPresent = getFilamentPresent(); //initialize the current filament state so that we don't create a switching event right after the sensor is ready. // fallthru case State::ready: { postponedLoadEvent = false; bool event = checkFilamentEvents(); ;// return event; } break; case State::disabled: case State::error: default: return false; } } bool getFilamentPresent() { return !READ(IR_SENSOR_PIN); } void settings_init() { Filament_sensor::settings_init(); } protected: }; #if (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) class IR_sensor_analog: public IR_sensor { public: void init() { IR_sensor::init(); settings_init(); } void deinit() { IR_sensor::deinit(); } bool update() { bool event = IR_sensor::update(); if (state == State::ready) { if (voltReady) { voltReady = false; uint16_t volt = getVoltRaw(); printf_P(PSTR("newVoltRaw:%u\n"), volt / OVERSAMPLENR); // detect min-max, some long term sliding window for filtration may be added // avoiding floating point operations, thus computing in raw if(volt > maxVolt) { maxVolt = volt; } else if(volt < minVolt) { minVolt = volt; } //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage //! to be detected as the new fsensor //! We can either fake it by extending the detection window to a looooong time //! or do some other countermeasures //! what we want to detect: //! if minvolt gets below ~0.3V, it means there is an old fsensor //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5> //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor if(minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD) { IR_ANALOG_Check(SensorRevision::_Old, SensorRevision::_Rev04); } //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why //! we need to have both voltages detected correctly to allow switching back to the old fsensor. else if( minVolt < IRsensor_Ldiode_TRESHOLD && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD) { IR_ANALOG_Check(SensorRevision::_Rev04, SensorRevision::_Old); } if (!checkVoltage(volt)) { triggerError(); } } } ;// return event; } void voltUpdate(uint16_t raw) { //to be called from the ADC ISR when a cycle is finished voltRaw = raw; voltReady = true; } uint16_t getVoltRaw() { uint16_t newVoltRaw; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { newVoltRaw = voltRaw; } return newVoltRaw; } void settings_init() { IR_sensor::settings_init(); sensorRevision = (SensorRevision)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB); } enum class SensorRevision : uint8_t { _Old = 0, _Rev04 = 1, _Undef = EEPROM_EMPTY_VALUE }; SensorRevision getSensorRevision() { return sensorRevision; } const char* getIRVersionText() { switch(sensorRevision) { case SensorRevision::_Old: return _T(MSG_IR_03_OR_OLDER); case SensorRevision::_Rev04: return _T(MSG_IR_04_OR_NEWER); default: return _T(MSG_IR_UNKNOWN); } } void setSensorRevision(SensorRevision rev, bool updateEEPROM = false) { sensorRevision = rev; if (updateEEPROM) { eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)rev); } } uint16_t Voltage2Raw(float V) { return (V * 1023 * OVERSAMPLENR / VOLT_DIV_REF ) + 0.5F; } float Raw2Voltage(uint16_t raw) { return VOLT_DIV_REF * (raw / (1023.F * OVERSAMPLENR)); } bool checkVoltage(uint16_t raw) { if(IRsensor_Lmax_TRESHOLD <= raw && raw <= IRsensor_Hmin_TRESHOLD) { /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly. /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way, /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual /// and would have been considered more like a sabotage than normal printer operation if (voltageErrorCnt++ > 4) { puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor")); return false; } } else { voltageErrorCnt = 0; } if(sensorRevision == SensorRevision::_Rev04) { /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount if(IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD) { puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected")); return false; } /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure #if 0 //Disabled as it has to be decided if we gonna use this or not. if(IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD) { puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor")); return false; } #endif } /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false #if 0 #error "I really think this code can't be enabled anymore because we are constantly checking this voltage." if((sensorRevision == SensorRevision::_Undef) && (raw > IRsensor_Lmax_TRESHOLD)) { puts_P(PSTR("Unknown IR sensor version and no filament loaded detected.")); return false; } #endif // otherwise the IR fsensor is considered working correctly return true; } // Voltage2Raw is not constexpr :/ const uint16_t IRsensor_Ldiode_TRESHOLD = Voltage2Raw(0.3f); // ~0.3V, raw value=982 const uint16_t IRsensor_Lmax_TRESHOLD = Voltage2Raw(1.5f); // ~1.5V (0.3*Vcc), raw value=4910 const uint16_t IRsensor_Hmin_TRESHOLD = Voltage2Raw(3.0f); // ~3.0V (0.6*Vcc), raw value=9821 const uint16_t IRsensor_Hopen_TRESHOLD = Voltage2Raw(4.6f); // ~4.6V (N.C. @ Ru~20-50k, Rd'=56k, Ru'=10k), raw value=15059 const uint16_t IRsensor_VMax_TRESHOLD = Voltage2Raw(5.f); // ~5V, raw value=16368 private: SensorRevision sensorRevision; volatile bool voltReady; //this gets set by the adc ISR volatile uint16_t voltRaw; uint16_t minVolt = Voltage2Raw(6.f); uint16_t maxVolt = 0; uint16_t nFSCheckCount; uint8_t voltageErrorCnt; static constexpr uint16_t FS_CHECK_COUNT = 4; /// Switching mechanism of the fsensor type. /// Called from 2 spots which have a very similar behavior /// 1: SensorRevision::_Old -> SensorRevision::_Rev04 and print _i("FS v0.4 or newer") /// 2: SensorRevision::_Rev04 -> sensorRevision=SensorRevision::_Old and print _i("FS v0.3 or older") void IR_ANALOG_Check(SensorRevision isVersion, SensorRevision switchTo) { bool bTemp = (!CHECK_ALL_HEATERS); bTemp = bTemp && (menu_menu == lcd_status_screen); bTemp = bTemp && ((sensorRevision == isVersion) || (sensorRevision == SensorRevision::_Undef)); bTemp = bTemp && (state == State::ready); if (bTemp) { nFSCheckCount++; if (nFSCheckCount > FS_CHECK_COUNT) { nFSCheckCount = 0; // not necessary setSensorRevision(switchTo, true); printf_IRSensorAnalogBoardChange(); switch (switchTo) { case SensorRevision::_Old: lcd_setstatuspgm(_T(MSG_FS_V_03_OR_OLDER)); ////MSG_FS_V_03_OR_OLDER c=18 break; case SensorRevision::_Rev04: lcd_setstatuspgm(_T(MSG_FS_V_04_OR_NEWER)); ////MSG_FS_V_04_OR_NEWER c=18 break; default: break; } } } else { nFSCheckCount = 0; } } }; #endif //(FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) #endif //(FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG) #if (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) class PAT9125_sensor: public Filament_sensor { public: void init() { if (state == State::error) { deinit(); //deinit first if there was an error. } puts_P(PSTR("fsensor::init()")); ;// settings_init(); //also sets the state to State::initializing } void deinit() { puts_P(PSTR("fsensor::deinit()")); ;// state = State::disabled; } bool update() { switch (state) { case State::initializing: // state = State::ready; //the IR sensor gets ready instantly as it's just a gpio read operation. oldFilamentPresent = getFilamentPresent(); //initialize the current filament state so that we don't create a switching event right after the sensor is ready. // fallthru case State::ready: { postponedLoadEvent = false; bool event = checkFilamentEvents(); ;// return event; } break; case State::disabled: case State::error: default: return false; } } bool getFilamentPresent() { return false;/// } void settings_init() { Filament_sensor::settings_init(); } protected: }; #endif //(FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125) #if FILAMENT_SENSOR_TYPE == FSENSOR_IR extern IR_sensor fsensor; #elif FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG extern IR_sensor_analog fsensor; #elif FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125 extern PAT9125_sensor fsensor; #endif #endif //FILAMENT_SENSOR