/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include
#endif
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
#ifdef FILAMENT_SENSOR
#include "fsensor.h"
int fsensor_counter = 0; //counter for e-steps
#endif //FILAMENT_SENSOR
#include "mmu.h"
#include "ConfigurationStore.h"
#ifdef DEBUG_STACK_MONITOR
uint16_t SP_min = 0x21FF;
#endif //DEBUG_STACK_MONITOR
//===========================================================================
//=============================public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
bool x_min_endstop = false;
bool x_max_endstop = false;
bool y_min_endstop = false;
bool y_max_endstop = false;
bool z_min_endstop = false;
bool z_max_endstop = false;
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static dda_isteps_t
counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
static int32_t acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static uint16_t acc_step_rate; // needed for deccelaration start point
static uint8_t step_loops;
static uint16_t OCR1A_nominal;
static uint8_t step_loops_nominal;
volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
#endif
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
static bool old_x_max_endstop=false;
#endif
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
static bool old_y_max_endstop=false;
#endif
static bool old_x_min_endstop=false;
static bool old_y_min_endstop=false;
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;
static bool check_endstops = true;
static bool check_z_endstop = false;
static bool z_endstop_invert = false;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#ifdef LIN_ADVANCE
static uint16_t nextMainISR = 0;
static uint16_t eISR_Rate;
// Extrusion steps to be executed by the stepper.
// If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
// If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
static volatile int16_t e_steps = 0;
// How many extruder steps shall be ticked at a single ISR invocation?
static uint8_t estep_loops;
// The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
// as current_adv_steps.
static int current_estep_rate;
// The current pretension of filament expressed in extruder micro steps.
static int current_adv_steps;
#define _NEXT_ISR(T) nextMainISR = T
#else
#define _NEXT_ISR(T) OCR1A = T
#endif
#ifdef DEBUG_STEPPER_TIMER_MISSED
extern bool stepper_timer_overflow_state;
extern uint16_t stepper_timer_overflow_last;
#endif /* DEBUG_STEPPER_TIMER_MISSED */
//===========================================================================
//=============================functions ============================
//===========================================================================
#ifndef _NO_ASM
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
#else //_NO_ASM
void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
{
}
void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
{
}
#endif //_NO_ASM
// Some useful constants
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
}
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
}
#endif
}
}
bool endstops_hit_on_purpose()
{
bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
return hit;
}
bool endstop_z_hit_on_purpose()
{
bool hit = endstop_z_hit;
endstop_z_hit=false;
return hit;
}
bool enable_endstops(bool check)
{
bool old = check_endstops;
check_endstops = check;
return old;
}
bool enable_z_endstop(bool check)
{
bool old = check_z_endstop;
check_z_endstop = check;
endstop_z_hit = false;
return old;
}
void invert_z_endstop(bool endstop_invert)
{
z_endstop_invert = endstop_invert;
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
// step_loops = 1;
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; MYSERIAL.print(_N("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH
return timer;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) {
#ifdef DEBUG_STACK_MONITOR
uint16_t sp = SPL + 256 * SPH;
if (sp < SP_min) SP_min = sp;
#endif //DEBUG_STACK_MONITOR
#ifdef LIN_ADVANCE
// If there are any e_steps planned, tick them.
bool run_main_isr = false;
if (e_steps) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
uint8_t cnt = 0;
for (uint8_t i = estep_loops; e_steps && i --;) {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
cnt++;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
}
#ifdef FILAMENT_SENSOR
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= cnt;
else
fsensor_counter += cnt;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += cnt;
else
fsensor_counter -= cnt;
}
#endif //FILAMENT_SENSOR
if (e_steps) {
// Plan another Linear Advance tick.
OCR1A = eISR_Rate;
nextMainISR -= eISR_Rate;
} else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
// The timer did not overflow and it is big enough, so it makes sense to plan it.
OCR1A = nextMainISR;
} else {
// The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
// in the current interrupt tick.
run_main_isr = true;
//FIXME pick the serial line.
}
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
} else
run_main_isr = true;
if (run_main_isr)
#endif
isr();
// Don't run the ISR faster than possible
// Is there a 8us time left before the next interrupt triggers?
if (OCR1A < TCNT1 + 16) {
#ifdef DEBUG_STEPPER_TIMER_MISSED
// Verify whether the next planned timer interrupt has not been missed already.
// This debugging test takes < 1.125us
// This skews the profiling slightly as the fastest stepper timer
// interrupt repeats at a 100us rate (10kHz).
if (OCR1A + 40 < TCNT1) {
// The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
// Give a warning.
stepper_timer_overflow_state = true;
stepper_timer_overflow_last = TCNT1 - OCR1A;
// Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
WRITE(BEEPER, HIGH);
}
#endif
// Fix the next interrupt to be executed after 8us from now.
OCR1A = TCNT1 + 16;
}
}
uint8_t last_dir_bits = 0;
#ifdef BACKLASH_X
uint8_t st_backlash_x = 0;
#endif //BACKLASH_X
#ifdef BACKLASH_Y
uint8_t st_backlash_y = 0;
#endif //BACKLASH_Y
FORCE_INLINE void stepper_next_block()
{
// Anything in the buffer?
//WRITE_NC(LOGIC_ANALYZER_CH2, true);
current_block = plan_get_current_block();
if (current_block != NULL) {
#ifdef BACKLASH_X
if (current_block->steps_x.wide)
{ //X-axis movement
if ((current_block->direction_bits ^ last_dir_bits) & 1)
{
printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
if (current_block->direction_bits & 1)
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
else
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
_delay_us(100);
for (uint8_t i = 0; i < st_backlash_x; i++)
{
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
_delay_us(100);
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
_delay_us(900);
}
}
last_dir_bits &= ~1;
last_dir_bits |= current_block->direction_bits & 1;
}
#endif
#ifdef BACKLASH_Y
if (current_block->steps_y.wide)
{ //Y-axis movement
if ((current_block->direction_bits ^ last_dir_bits) & 2)
{
printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
if (current_block->direction_bits & 2)
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
else
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
_delay_us(100);
for (uint8_t i = 0; i < st_backlash_y; i++)
{
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
_delay_us(100);
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
_delay_us(900);
}
}
last_dir_bits &= ~2;
last_dir_bits |= current_block->direction_bits & 2;
}
#endif
#ifdef FILAMENT_SENSOR
fsensor_counter = 0;
fsensor_st_block_begin(current_block);
#endif //FILAMENT_SENSOR
// The busy flag is set by the plan_get_current_block() call.
// current_block->busy = true;
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
deceleration_time = 0;
// Set the nominal step loops to zero to indicate, that the timer value is not known yet.
// That means, delay the initialization of nominal step rate and step loops until the steady
// state is reached.
step_loops_nominal = 0;
acc_step_rate = uint16_t(current_block->initial_rate);
acceleration_time = calc_timer(acc_step_rate);
#ifdef LIN_ADVANCE
current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif /* LIN_ADVANCE */
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
counter_x.lo = -(current_block->step_event_count.lo >> 1);
counter_y.lo = counter_x.lo;
counter_z.lo = counter_x.lo;
counter_e.lo = counter_x.lo;
} else {
counter_x.wide = -(current_block->step_event_count.wide >> 1);
counter_y.wide = counter_x.wide;
counter_z.wide = counter_x.wide;
counter_e.wide = counter_x.wide;
}
step_events_completed.wide = 0;
// Set directions.
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1< -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_min_endstop = x_min_endstop;
#endif
} else { // +direction
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_max_endstop = x_max_endstop;
#endif
}
#ifndef COREXY
if ((out_bits & (1< -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#endif
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_min_endstop = y_min_endstop;
#endif
} else { // +direction
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#endif
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_max_endstop = y_max_endstop;
#endif
}
if ((out_bits & (1< -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (! check_z_endstop) {
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
else
#endif //TMC2130_STEALTH_Z
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
} else { // +direction
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_max_endstop = false;
else
#endif //TMC2130_STEALTH_Z
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
#else
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_max_endstop = z_max_endstop;
#endif
}
}
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (check_z_endstop) {
// Check the Z min end-stop no matter what.
// Good for searching for the center of an induction target.
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
else
#endif //TMC2130_STEALTH_Z
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
}
FORCE_INLINE void stepper_tick_lowres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
// Step in X axis
counter_x.lo += current_block->steps_x.lo;
if (counter_x.lo > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.lo -= current_block->step_event_count.lo;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.lo += current_block->steps_y.lo;
if (counter_y.lo > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.lo -= current_block->step_event_count.lo;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.lo += current_block->steps_z.lo;
if (counter_z.lo > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
counter_z.lo -= current_block->step_event_count.lo;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
}
// Step in E axis
counter_e.lo += current_block->steps_e.lo;
if (counter_e.lo > 0) {
#ifndef LIN_ADVANCE
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
#endif /* LIN_ADVANCE */
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS];
#ifdef LIN_ADVANCE
++ e_steps;
#else
#ifdef FILAMENT_SENSOR
++ fsensor_counter;
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#endif
}
if(++ step_events_completed.lo >= current_block->step_event_count.lo)
break;
}
}
FORCE_INLINE void stepper_tick_highres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
// Step in X axis
counter_x.wide += current_block->steps_x.wide;
if (counter_x.wide > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.wide -= current_block->step_event_count.wide;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.wide += current_block->steps_y.wide;
if (counter_y.wide > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.wide -= current_block->step_event_count.wide;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.wide += current_block->steps_z.wide;
if (counter_z.wide > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
counter_z.wide -= current_block->step_event_count.wide;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
}
// Step in E axis
counter_e.wide += current_block->steps_e.wide;
if (counter_e.wide > 0) {
#ifndef LIN_ADVANCE
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
#endif /* LIN_ADVANCE */
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS];
#ifdef LIN_ADVANCE
++ e_steps;
#else
#ifdef FILAMENT_SENSOR
++ fsensor_counter;
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#endif
}
if(++ step_events_completed.wide >= current_block->step_event_count.wide)
break;
}
}
// 50us delay
#define LIN_ADV_FIRST_TICK_DELAY 100
FORCE_INLINE void isr() {
//WRITE_NC(LOGIC_ANALYZER_CH0, true);
//if (UVLO) uvlo();
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL)
stepper_next_block();
if (current_block != NULL)
{
stepper_check_endstops();
#ifdef LIN_ADVANCE
e_steps = 0;
#endif /* LIN_ADVANCE */
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
stepper_tick_lowres();
else
stepper_tick_highres();
#ifdef LIN_ADVANCE
if (out_bits&(1<use_advance_lead) {
//int esteps_inc = 0;
//esteps_inc = current_estep_rate - current_adv_steps;
//e_steps += esteps_inc;
e_steps += current_estep_rate - current_adv_steps;
#if 0
if (abs(esteps_inc) > 4) {
LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
if (esteps_inc < -511 || esteps_inc > 511)
LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
}
#endif
current_adv_steps = current_estep_rate;
}
// If we have esteps to execute, step some of them now.
if (e_steps) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
// Set the step direction.
bool neg = e_steps < 0;
{
bool dir =
#ifdef SNMM
(neg == (mmu_extruder & 1))
#else
neg
#endif
? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
WRITE_NC(E0_DIR_PIN, dir);
if (neg)
// Flip the e_steps counter to be always positive.
e_steps = - e_steps;
}
// Tick min(step_loops, abs(e_steps)).
estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
if (step_loops < estep_loops)
estep_loops = step_loops;
#ifdef FILAMENT_SENSOR
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= estep_loops;
else
fsensor_counter += estep_loops;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += estep_loops;
else
fsensor_counter -= estep_loops;
}
#endif //FILAMENT_SENSOR
do {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
} while (-- estep_loops != 0);
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
MSerial.checkRx(); // Check for serial chars.
}
#endif
// Calculare new timer value
// 13.38-14.63us for steady state,
// 25.12us for acceleration / deceleration.
{
//WRITE_NC(LOGIC_ANALYZER_CH1, true);
if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += uint16_t(current_block->initial_rate);
// upper limit
if(acc_step_rate > uint16_t(current_block->nominal_rate))
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
uint16_t timer = calc_timer(acc_step_rate);
_NEXT_ISR(timer);
acceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
// int32_t = (uint16_t * uint32_t) >> 17
current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
}
else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
uint16_t step_rate;
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
// Result is negative or too small.
step_rate = uint16_t(current_block->final_rate);
}
// Step_rate to timer interval.
uint16_t timer = calc_timer(step_rate);
_NEXT_ISR(timer);
deceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
}
else {
if (! step_loops_nominal) {
// Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
// the initial interrupt blocking.
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
step_loops_nominal = step_loops;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead)
current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
}
_NEXT_ISR(OCR1A_nominal);
}
//WRITE_NC(LOGIC_ANALYZER_CH1, false);
}
#ifdef LIN_ADVANCE
if (e_steps && current_block->use_advance_lead) {
//WRITE_NC(LOGIC_ANALYZER_CH7, true);
MSerial.checkRx(); // Check for serial chars.
// Some of the E steps were not ticked yet. Plan additional interrupts.
uint16_t now = TCNT1;
// Plan the first linear advance interrupt after 50us from now.
uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
eISR_Rate = 0;
if ((to_go & 0x8000) == 0) {
// The to_go number is not negative.
// Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
uint8_t ticks = to_go >> 8;
if (ticks == 1) {
// Avoid running the following loop for a very short interval.
estep_loops = 255;
eISR_Rate = 1;
} else if ((e_steps & 0x0ff00) == 0) {
// e_steps <= 0x0ff
if (uint8_t(e_steps) <= ticks) {
// Spread the e_steps along the whole go_to interval.
eISR_Rate = to_go / uint8_t(e_steps);
estep_loops = 1;
} else if (ticks != 0) {
// At least one tick fits into the to_go interval. Calculate the e-step grouping.
uint8_t e = uint8_t(e_steps) >> 1;
estep_loops = 2;
while (e > ticks) {
e >>= 1;
estep_loops <<= 1;
}
// Now the estep_loops contains the number of loops of power of 2, that will be sufficient
// to squeeze enough of Linear Advance ticks until nextMainISR.
// Calculate the tick rate.
eISR_Rate = to_go / ticks;
}
} else {
// This is an exterme case with too many e_steps inserted by the linear advance.
// At least one tick fits into the to_go interval. Calculate the e-step grouping.
estep_loops = 2;
uint16_t e = e_steps >> 1;
while (e & 0x0ff00) {
e >>= 1;
estep_loops <<= 1;
}
while (uint8_t(e) > ticks) {
e >>= 1;
estep_loops <<= 1;
}
// Now the estep_loops contains the number of loops of power of 2, that will be sufficient
// to squeeze enough of Linear Advance ticks until nextMainISR.
// Calculate the tick rate.
eISR_Rate = to_go / ticks;
}
}
if (eISR_Rate == 0) {
// There is not enough time to fit even a single additional tick.
// Tick all the extruder ticks now.
MSerial.checkRx(); // Check for serial chars.
#ifdef FILAMENT_SENSOR
if (READ(E0_DIR_PIN) == INVERT_E0_DIR)
{
if (count_direction[E_AXIS] == 1)
fsensor_counter -= e_steps;
else
fsensor_counter += e_steps;
}
else
{
if (count_direction[E_AXIS] == 1)
fsensor_counter += e_steps;
else
fsensor_counter -= e_steps;
}
#endif //FILAMENT_SENSOR
do {
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
-- e_steps;
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
} while (e_steps);
OCR1A = nextMainISR;
} else {
// Tick the 1st Linear Advance interrupt after 50us from now.
nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
}
//WRITE_NC(LOGIC_ANALYZER_CH7, false);
} else
OCR1A = nextMainISR;
#endif
// If current block is finished, reset pointer
if (step_events_completed.wide >= current_block->step_event_count.wide) {
#ifdef FILAMENT_SENSOR
fsensor_st_block_chunk(current_block, fsensor_counter);
fsensor_counter = 0;
#endif //FILAMENT_SENSOR
current_block = NULL;
plan_discard_current_block();
}
#ifdef FILAMENT_SENSOR
else if ((fsensor_counter >= fsensor_chunk_len))
{
fsensor_st_block_chunk(current_block, fsensor_counter);
fsensor_counter = 0;
}
#endif //FILAMENT_SENSOR
}
#ifdef TMC2130
tmc2130_st_isr();
#endif //TMC2130
//WRITE_NC(LOGIC_ANALYZER_CH0, false);
}
#ifdef LIN_ADVANCE
void clear_current_adv_vars() {
e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
current_adv_steps = 0;
}
#endif // LIN_ADVANCE
void st_init()
{
#ifdef TMC2130
tmc2130_init();
#endif //TMC2130
st_current_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
//Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
SET_OUTPUT(Y2_DIR_PIN);
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN);
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN);
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
SET_OUTPUT(E1_DIR_PIN);
#endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
SET_OUTPUT(E2_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
SET_OUTPUT(Y2_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
SET_OUTPUT(E0_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
#endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
SET_OUTPUT(E1_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
#endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
SET_OUTPUT(E2_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef TMC2130_SG_HOMING
SET_INPUT(X_TMC2130_DIAG);
WRITE(X_TMC2130_DIAG,HIGH);
SET_INPUT(Y_TMC2130_DIAG);
WRITE(Y_TMC2130_DIAG,HIGH);
SET_INPUT(Z_TMC2130_DIAG);
WRITE(Z_TMC2130_DIAG,HIGH);
SET_INPUT(E0_TMC2130_DIAG);
WRITE(E0_TMC2130_DIAG,HIGH);
#endif
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
SET_INPUT(TACH_0);
#ifdef TACH0PULLUP
WRITE(TACH_0, HIGH);
#endif
#endif
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif
#ifdef PSU_Delta
init_force_z();
#endif // PSU_Delta
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2();
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1< -1
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//_delay(10);
}
#endif
void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
{
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
}while(--size);
}
void st_current_init() //Initialize Digipot Motor Current
{
#ifdef MOTOR_CURRENT_PWM_XY_PIN
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
SilentModeMenu = SilentMode;
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
motor_current_setting[0] = motor_current_setting_loud[0];
motor_current_setting[1] = motor_current_setting_loud[1];
motor_current_setting[2] = motor_current_setting_loud[2];
}else{
motor_current_setting[0] = motor_current_setting_silent[0];
motor_current_setting[1] = motor_current_setting_silent[1];
motor_current_setting[2] = motor_current_setting_silent[2];
}
st_current_set(0, motor_current_setting[0]);
st_current_set(1, motor_current_setting[1]);
st_current_set(2, motor_current_setting[2]);
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
#endif
}
#ifdef MOTOR_CURRENT_PWM_XY_PIN
void st_current_set(uint8_t driver, int current)
{
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
}
#else //MOTOR_CURRENT_PWM_XY_PIN
void st_current_set(uint8_t, int ){}
#endif //MOTOR_CURRENT_PWM_XY_PIN
void microstep_init()
{
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT);
#endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
const uint8_t microstep_modes[] = MICROSTEP_MODES;
pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
#endif
}
#ifndef TMC2130
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
{
if(ms1 > -1) switch(driver)
{
case 0: digitalWrite( X_MS1_PIN,ms1); break;
case 1: digitalWrite( Y_MS1_PIN,ms1); break;
case 2: digitalWrite( Z_MS1_PIN,ms1); break;
case 3: digitalWrite(E0_MS1_PIN,ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
#endif
}
if(ms2 > -1) switch(driver)
{
case 0: digitalWrite( X_MS2_PIN,ms2); break;
case 1: digitalWrite( Y_MS2_PIN,ms2); break;
case 2: digitalWrite( Z_MS2_PIN,ms2); break;
case 3: digitalWrite(E0_MS2_PIN,ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
#endif
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
{
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break;
case 8: microstep_ms(driver,MICROSTEP8); break;
case 16: microstep_ms(driver,MICROSTEP16); break;
}
}
void microstep_readings()
{
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
#endif
}
#endif //TMC2130