/* -*- c++ -*- */ /* Reprap firmware based on Sprinter and grbl. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This firmware is a mashup between Sprinter and grbl. (https://github.com/kliment/Sprinter) (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #ifdef ENABLE_AUTO_BED_LEVELING #include "vector_3.h" #ifdef AUTO_BED_LEVELING_GRID #include "qr_solve.h" #endif #endif // ENABLE_AUTO_BED_LEVELING #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #include "mesh_bed_calibration.h" #endif #include "printers.h" #include "ultralcd.h" #include "Configuration_prusa.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "motion_control.h" #include "cardreader.h" #include "ConfigurationStore.h" #include "language.h" #include "pins_arduino.h" #include "math.h" #include "util.h" #include "Timer.h" #include #include #include "Dcodes.h" #ifdef SWSPI #include "swspi.h" #endif //SWSPI #ifdef NEW_SPI #include "spi.h" #endif //NEW_SPI #ifdef SWI2C #include "swi2c.h" #endif //SWI2C #ifdef PAT9125 #include "pat9125.h" #include "fsensor.h" #endif //PAT9125 #ifdef TMC2130 #include "tmc2130.h" #endif //TMC2130 #ifdef BLINKM #include "BlinkM.h" #include "Wire.h" #endif #ifdef ULTRALCD #include "ultralcd.h" #endif #if NUM_SERVOS > 0 #include "Servo.h" #endif #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #include #endif #define VERSION_STRING "1.0.2" #include "ultralcd.h" #include "cmdqueue.h" // Macros for bit masks #define BIT(b) (1<<(b)) #define TEST(n,b) (((n)&BIT(b))!=0) #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b)) //Macro for print fan speed #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes //Implemented Codes //------------------- // PRUSA CODES // P F - Returns FW versions // P R - Returns revision of printer // G0 -> G1 // G1 - Coordinated Movement X Y Z E // G2 - CW ARC // G3 - CCW ARC // G4 - Dwell S or P // G10 - retract filament according to settings of M207 // G11 - retract recover filament according to settings of M208 // G28 - Home all Axis // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. // G30 - Single Z Probe, probes bed at current XY location. // G31 - Dock sled (Z_PROBE_SLED only) // G32 - Undock sled (Z_PROBE_SLED only) // G80 - Automatic mesh bed leveling // G81 - Print bed profile // G90 - Use Absolute Coordinates // G91 - Use Relative Coordinates // G92 - Set current position to coordinates given // M Codes // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) // M1 - Same as M0 // M17 - Enable/Power all stepper motors // M18 - Disable all stepper motors; same as M84 // M20 - List SD card // M21 - Init SD card // M22 - Release SD card // M23 - Select SD file (M23 filename.g) // M24 - Start/resume SD print // M25 - Pause SD print // M26 - Set SD position in bytes (M26 S12345) // M27 - Report SD print status // M28 - Start SD write (M28 filename.g) // M29 - Stop SD write // M30 - Delete file from SD (M30 filename.g) // M31 - Output time since last M109 or SD card start to serial // M32 - Select file and start SD print (Can be used _while_ printing from SD card files): // syntax "M32 /path/filename#", or "M32 S !filename#" // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). // The '#' is necessary when calling from within sd files, as it stops buffer prereading // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. // M80 - Turn on Power Supply // M81 - Turn off Power Supply // M82 - Set E codes absolute (default) // M83 - Set E codes relative while in Absolute Coordinates (G90) mode // M84 - Disable steppers until next move, // or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. // M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) // M92 - Set axis_steps_per_unit - same syntax as G92 // M104 - Set extruder target temp // M105 - Read current temp // M106 - Fan on // M107 - Fan off // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling // IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F // M112 - Emergency stop // M113 - Get or set the timeout interval for Host Keepalive "busy" messages // M114 - Output current position to serial port // M115 - Capabilities string // M117 - display message // M119 - Output Endstop status to serial port // M126 - Solenoid Air Valve Open (BariCUDA support by jmil) // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M140 - Set bed target temp // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling // M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk // M206 - set additional homing offset // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec] // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. // M218 - set hotend offset (in mm): T X Y // M220 S- set speed factor override percentage // M221 S- set extrude factor override percentage // M226 P S- Wait until the specified pin reaches the state required // M240 - Trigger a camera to take a photograph // M250 - Set LCD contrast C (value 0..63) // M280 - set servo position absolute. P: servo index, S: angle or microseconds // M300 - Play beep sound S P // M301 - Set PID parameters P I and D // M302 - Allow cold extrudes, or set the minimum extrude S. // M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) // M304 - Set bed PID parameters P I and D // M400 - Finish all moves // M401 - Lower z-probe if present // M402 - Raise z-probe if present // M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters // M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder // M406 - Turn off Filament Sensor extrusion control // M407 - Displays measured filament diameter // M500 - stores parameters in EEPROM // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. // M503 - print the current settings (from memory not from EEPROM) // M509 - force language selection on next restart // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] // M605 - Set dual x-carriage movement mode: S [ X R ] // M860 - Wait for PINDA thermistor to reach target temperature. // M861 - Set / Read PINDA temperature compensation offsets // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details. // M907 - Set digital trimpot motor current using axis codes. // M908 - Control digital trimpot directly. // M350 - Set microstepping mode. // M351 - Toggle MS1 MS2 pins directly. // M928 - Start SD logging (M928 filename.g) - ended by M29 // M999 - Restart after being stopped by error //Stepper Movement Variables //=========================================================================== //=============================imported variables============================ //=========================================================================== //=========================================================================== //=============================public variables============================= //=========================================================================== #ifdef SDSUPPORT CardReader card; #endif unsigned long PingTime = millis(); unsigned long NcTime; union Data { byte b[2]; int value; }; float homing_feedrate[] = HOMING_FEEDRATE; // Currently only the extruder axis may be switched to a relative mode. // Other axes are always absolute or relative based on the common relative_mode flag. bool axis_relative_modes[] = AXIS_RELATIVE_MODES; int feedmultiply=100; //100->1 200->2 int saved_feedmultiply; int extrudemultiply=100; //100->1 200->2 int extruder_multiply[EXTRUDERS] = {100 #if EXTRUDERS > 1 , 100 #if EXTRUDERS > 2 , 100 #endif #endif }; int bowden_length[4] = {385, 385, 385, 385}; bool is_usb_printing = false; bool homing_flag = false; bool temp_cal_active = false; unsigned long kicktime = millis()+100000; unsigned int usb_printing_counter; int lcd_change_fil_state = 0; int feedmultiplyBckp = 100; float HotendTempBckp = 0; int fanSpeedBckp = 0; float pause_lastpos[4]; unsigned long pause_time = 0; unsigned long start_pause_print = millis(); unsigned long t_fan_rising_edge = millis(); //unsigned long load_filament_time; bool mesh_bed_leveling_flag = false; bool mesh_bed_run_from_menu = false; unsigned char lang_selected = 0; int8_t FarmMode = 0; bool prusa_sd_card_upload = false; unsigned int status_number = 0; unsigned long total_filament_used; unsigned int heating_status; unsigned int heating_status_counter; bool custom_message; bool loading_flag = false; unsigned int custom_message_type; unsigned int custom_message_state; char snmm_filaments_used = 0; float distance_from_min[2]; bool fan_state[2]; int fan_edge_counter[2]; int fan_speed[2]; char dir_names[3][9]; bool sortAlpha = false; bool volumetric_enabled = false; float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA #if EXTRUDERS > 1 , DEFAULT_NOMINAL_FILAMENT_DIA #if EXTRUDERS > 2 , DEFAULT_NOMINAL_FILAMENT_DIA #endif #endif }; float extruder_multiplier[EXTRUDERS] = {1.0 #if EXTRUDERS > 1 , 1.0 #if EXTRUDERS > 2 , 1.0 #endif #endif }; float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; float add_homing[3]={0,0,0}; float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; bool axis_known_position[3] = {false, false, false}; float zprobe_zoffset; // Extruder offset #if EXTRUDERS > 1 #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y) EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y #endif }; #endif uint8_t active_extruder = 0; int fanSpeed=0; #ifdef FWRETRACT bool autoretract_enabled=false; bool retracted[EXTRUDERS]={false #if EXTRUDERS > 1 , false #if EXTRUDERS > 2 , false #endif #endif }; bool retracted_swap[EXTRUDERS]={false #if EXTRUDERS > 1 , false #if EXTRUDERS > 2 , false #endif #endif }; float retract_length = RETRACT_LENGTH; float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_feedrate = RETRACT_FEEDRATE; float retract_zlift = RETRACT_ZLIFT; float retract_recover_length = RETRACT_RECOVER_LENGTH; float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif #ifdef ULTIPANEL #ifdef PS_DEFAULT_OFF bool powersupply = false; #else bool powersupply = true; #endif #endif bool cancel_heatup = false ; #ifdef HOST_KEEPALIVE_FEATURE int busy_state = NOT_BUSY; static long prev_busy_signal_ms = -1; uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL; #else #define host_keepalive(); #define KEEPALIVE_STATE(n); #endif const char errormagic[] PROGMEM = "Error:"; const char echomagic[] PROGMEM = "echo:"; bool no_response = false; uint8_t important_status; uint8_t saved_filament_type; //=========================================================================== //=============================Private Variables============================= //=========================================================================== const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float delta[3] = {0.0, 0.0, 0.0}; // For tracing an arc static float offset[3] = {0.0, 0.0, 0.0}; static float feedrate = 1500.0, next_feedrate, saved_feedrate; // Determines Absolute or Relative Coordinates. // Also there is bool axis_relative_modes[] per axis flag. static bool relative_mode = false; #ifndef _DISABLE_M42_M226 const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42 #endif //_DISABLE_M42_M226 //static float tt = 0; //static float bt = 0; //Inactivity shutdown variables static unsigned long previous_millis_cmd = 0; unsigned long max_inactive_time = 0; static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; unsigned long starttime=0; unsigned long stoptime=0; unsigned long _usb_timer = 0; static uint8_t tmp_extruder; bool extruder_under_pressure = true; bool Stopped=false; #if NUM_SERVOS > 0 Servo servos[NUM_SERVOS]; #endif bool CooldownNoWait = true; bool target_direction; //Insert variables if CHDK is defined #ifdef CHDK unsigned long chdkHigh = 0; boolean chdkActive = false; #endif //=========================================================================== //=============================Routines====================================== //=========================================================================== void get_arc_coordinates(); bool setTargetedHotend(int code); void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } #ifdef SDSUPPORT #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else extern "C" { extern unsigned int __bss_end; extern unsigned int __heap_start; extern void *__brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif //!SDSUPPORT void setup_killpin() { #if defined(KILL_PIN) && KILL_PIN > -1 SET_INPUT(KILL_PIN); WRITE(KILL_PIN,HIGH); #endif } // Set home pin void setup_homepin(void) { #if defined(HOME_PIN) && HOME_PIN > -1 SET_INPUT(HOME_PIN); WRITE(HOME_PIN,HIGH); #endif } void setup_photpin() { #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 SET_OUTPUT(PHOTOGRAPH_PIN); WRITE(PHOTOGRAPH_PIN, LOW); #endif } void setup_powerhold() { #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, HIGH); #endif #if defined(PS_ON_PIN) && PS_ON_PIN > -1 SET_OUTPUT(PS_ON_PIN); #if defined(PS_DEFAULT_OFF) WRITE(PS_ON_PIN, PS_ON_ASLEEP); #else WRITE(PS_ON_PIN, PS_ON_AWAKE); #endif #endif } void suicide() { #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, LOW); #endif } void servo_init() { #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1) servos[0].attach(SERVO0_PIN); #endif #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1) servos[1].attach(SERVO1_PIN); #endif #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1) servos[2].attach(SERVO2_PIN); #endif #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1) servos[3].attach(SERVO3_PIN); #endif #if (NUM_SERVOS >= 5) #error "TODO: enter initalisation code for more servos" #endif } static void lcd_language_menu(); void stop_and_save_print_to_ram(float z_move, float e_move); void restore_print_from_ram_and_continue(float e_move); bool fans_check_enabled = true; bool filament_autoload_enabled = true; #ifdef TMC2130 extern int8_t CrashDetectMenu; void crashdet_enable() { // MYSERIAL.println("crashdet_enable"); tmc2130_sg_stop_on_crash = true; eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); CrashDetectMenu = 1; } void crashdet_disable() { // MYSERIAL.println("crashdet_disable"); tmc2130_sg_stop_on_crash = false; tmc2130_sg_crash = 0; eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); CrashDetectMenu = 0; } void crashdet_stop_and_save_print() { stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change } void crashdet_restore_print_and_continue() { restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change // babystep_apply(); } void crashdet_stop_and_save_print2() { cli(); planner_abort_hard(); //abort printing cmdqueue_reset(); //empty cmdqueue card.sdprinting = false; card.closefile(); // Reset and re-enable the stepper timer just before the global interrupts are enabled. st_reset_timer(); sei(); } void crashdet_detected(uint8_t mask) { // printf("CRASH_DETECTED"); /* while (!is_buffer_empty()) { process_commands(); cmdqueue_pop_front(); }*/ st_synchronize(); lcd_update_enable(true); lcd_implementation_clear(); lcd_update(2); if (mask & X_AXIS_MASK) { eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1); eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1); } if (mask & Y_AXIS_MASK) { eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1); eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1); } #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH bool yesno = true; #else bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false); #endif lcd_update_enable(true); lcd_update(2); lcd_setstatuspgm(MSG_CRASH_DETECTED); if (yesno) { enquecommand_P(PSTR("G28 X Y")); enquecommand_P(PSTR("CRASH_RECOVER")); } else { enquecommand_P(PSTR("CRASH_CANCEL")); } } void crashdet_recover() { crashdet_restore_print_and_continue(); tmc2130_sg_stop_on_crash = true; } void crashdet_cancel() { card.sdprinting = false; card.closefile(); tmc2130_sg_stop_on_crash = true; } #endif //TMC2130 void failstats_reset_print() { eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0); eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0); eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0); eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0); } #ifdef MESH_BED_LEVELING enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet }; #endif // Factory reset function // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on. // Level input parameter sets depth of reset // Quiet parameter masks all waitings for user interact. int er_progress = 0; void factory_reset(char level, bool quiet) { lcd_implementation_clear(); int cursor_pos = 0; switch (level) { // Level 0: Language reset case 0: WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); lcd_force_language_selection(); break; //Level 1: Reset statistics case 1: WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0); eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0); eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0); eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0); eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0); eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0); eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0); eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0); lcd_menu_statistics(); break; // Level 2: Prepare for shipping case 2: //lcd_printPGM(PSTR("Factory RESET")); //lcd_print_at_PGM(1,2,PSTR("Shipping prep")); // Force language selection at the next boot up. lcd_force_language_selection(); // Force the "Follow calibration flow" message at the next boot up. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION); eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard farm_no = 0; farm_mode == false; eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode); EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); //_delay_ms(2000); break; // Level 3: erase everything, whole EEPROM will be set to 0xFF case 3: lcd_printPGM(PSTR("Factory RESET")); lcd_print_at_PGM(1, 2, PSTR("ERASING all data")); WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); er_progress = 0; lcd_print_at_PGM(3, 3, PSTR(" ")); lcd_implementation_print_at(3, 3, er_progress); // Erase EEPROM for (int i = 0; i < 4096; i++) { eeprom_write_byte((uint8_t*)i, 0xFF); if (i % 41 == 0) { er_progress++; lcd_print_at_PGM(3, 3, PSTR(" ")); lcd_implementation_print_at(3, 3, er_progress); lcd_printPGM(PSTR("%")); } } break; case 4: bowden_menu(); break; default: break; } } #include "LiquidCrystal_Prusa.h" extern LiquidCrystal_Prusa lcd; FILE _lcdout = {0}; int lcd_putchar(char c, FILE *stream) { lcd.write(c); return 0; } FILE _uartout = {0}; int uart_putchar(char c, FILE *stream) { MYSERIAL.write(c); return 0; } void lcd_splash() { // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers ")); // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers")); fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout); } void factory_reset() { KEEPALIVE_STATE(PAUSED_FOR_USER); if (!READ(BTN_ENC)) { _delay_ms(1000); if (!READ(BTN_ENC)) { lcd_implementation_clear(); lcd_printPGM(PSTR("Factory RESET")); SET_OUTPUT(BEEPER); WRITE(BEEPER, HIGH); while (!READ(BTN_ENC)); WRITE(BEEPER, LOW); _delay_ms(2000); char level = reset_menu(); factory_reset(level, false); switch (level) { case 0: _delay_ms(0); break; case 1: _delay_ms(0); break; case 2: _delay_ms(0); break; case 3: _delay_ms(0); break; } // _delay_ms(100); /* #ifdef MESH_BED_LEVELING _delay_ms(2000); if (!READ(BTN_ENC)) { WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); _delay_ms(200); WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); int _z = 0; calibration_status_store(CALIBRATION_STATUS_CALIBRATED); EEPROM_save_B(EEPROM_BABYSTEP_X, &_z); EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z); EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z); } else { WRITE(BEEPER, HIGH); _delay_ms(100); WRITE(BEEPER, LOW); } #endif // mesh */ } } else { //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre } KEEPALIVE_STATE(IN_HANDLER); } void show_fw_version_warnings() { if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return; switch (FW_DEV_VERSION) { case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break; case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break; case(FW_VERSION_DEVEL): case(FW_VERSION_DEBUG): lcd_update_enable(false); lcd_implementation_clear(); #if FW_DEV_VERSION == FW_VERSION_DEVEL lcd_print_at_PGM(0, 0, PSTR("Development build !!")); #else lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!")); #endif lcd_print_at_PGM(0, 1, PSTR("May destroy printer!")); lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL)); lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY)); lcd_wait_for_click(); break; default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break; } lcd_update_enable(true); } uint8_t check_printer_version() { uint8_t version_changed = 0; uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE); uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE); if (printer_type != PRINTER_TYPE) { if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); else version_changed |= 0b10; } if (motherboard != MOTHERBOARD) { if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); else version_changed |= 0b01; } return version_changed; } void erase_eeprom_section(uint16_t offset, uint16_t bytes) { for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF); } // "Setup" function is called by the Arduino framework on startup. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code // are initialized by the main() routine provided by the Arduino framework. void setup() { lcd_init(); fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream lcd_splash(); setup_killpin(); setup_powerhold(); farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode if ((uint16_t)farm_no == 0xFFFF) farm_no = 0; selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE); if (selectedSerialPort == 0xFF) selectedSerialPort = 0; if (farm_mode) { no_response = true; //we need confirmation by recieving PRUSA thx important_status = 8; prusa_statistics(8); selectedSerialPort = 1; } MYSERIAL.begin(BAUDRATE); fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream stdout = uartout; SERIAL_PROTOCOLLNPGM("start"); SERIAL_ECHO_START; printf_P(PSTR(" "FW_VERSION_FULL"\n")); #if 0 SERIAL_ECHOLN("Reading eeprom from 0 to 100: start"); for (int i = 0; i < 4096; ++i) { int b = eeprom_read_byte((unsigned char*)i); if (b != 255) { SERIAL_ECHO(i); SERIAL_ECHO(":"); SERIAL_ECHO(b); SERIAL_ECHOLN(""); } } SERIAL_ECHOLN("Reading eeprom from 0 to 100: done"); #endif // Check startup - does nothing if bootloader sets MCUSR to 0 byte mcu = MCUSR; /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP); if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET); if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET); if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET); if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/ if (mcu & 1) puts_P(MSG_POWERUP); if (mcu & 2) puts_P(MSG_EXTERNAL_RESET); if (mcu & 4) puts_P(MSG_BROWNOUT_RESET); if (mcu & 8) puts_P(MSG_WATCHDOG_RESET); if (mcu & 32) puts_P(MSG_SOFTWARE_RESET); MCUSR = 0; //SERIAL_ECHORPGM(MSG_MARLIN); //SERIAL_ECHOLNRPGM(VERSION_STRING); #ifdef STRING_VERSION_CONFIG_H #ifdef STRING_CONFIG_H_AUTHOR SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_CONFIGURATION_VER); SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H); SERIAL_ECHORPGM(MSG_AUTHOR); SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); SERIAL_ECHOPGM("Compiled: "); SERIAL_ECHOLNPGM(__DATE__); #endif #endif SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_FREE_MEMORY); SERIAL_ECHO(freeMemory()); SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES); SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); //lcd_update_enable(false); // why do we need this?? - andre // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) bool previous_settings_retrieved = false; uint8_t hw_changed = check_printer_version(); if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET); } else { //printer version was changed so use default settings Config_ResetDefault(); } SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack tp_init(); // Initialize temperature loop lcd_splash(); // we need to do this again, because tp_init() kills lcd plan_init(); // Initialize planner; factory_reset(); #ifdef TMC2130 uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); if (silentMode == 0xff) silentMode = 0; // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; tmc2130_mode = TMC2130_MODE_NORMAL; uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET); if (crashdet) { crashdet_enable(); MYSERIAL.println("CrashDetect ENABLED!"); } else { crashdet_disable(); MYSERIAL.println("CrashDetect DISABLED"); } #ifdef TMC2130_LINEARITY_CORRECTION #ifdef EXPERIMENTAL_FEATURES tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC); tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC); tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC); #endif //EXPERIMENTAL_FEATURES tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC); if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0; if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0; if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0; if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0; #endif //TMC2130_LINEARITY_CORRECTION #ifdef TMC2130_VARIABLE_RESOLUTION tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES); tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES); tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES); tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES); if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]); #else //TMC2130_VARIABLE_RESOLUTION tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); #endif //TMC2130_VARIABLE_RESOLUTION #endif //TMC2130 #ifdef NEW_SPI spi_init(); #endif //NEW_SPI st_init(); // Initialize stepper, this enables interrupts! #ifdef TMC2130 tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; tmc2130_init(); #endif //TMC2130 setup_photpin(); servo_init(); // Reset the machine correction matrix. // It does not make sense to load the correction matrix until the machine is homed. world2machine_reset(); #ifdef PAT9125 fsensor_init(); #endif //PAT9125 #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1) SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif setup_homepin(); #ifdef TMC2130 if (1) { /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS)); // try to run to zero phase before powering the Z motor. // Move in negative direction WRITE(Z_DIR_PIN,INVERT_Z_DIR); // Round the current micro-micro steps to micro steps. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) { // Until the phase counter is reset to zero. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); delay(2); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); delay(2); } // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS)); } #endif //TMC2130 #if defined(Z_AXIS_ALWAYS_ON) enable_z(); #endif farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no); if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode if (farm_no == 0xFFFF) farm_no = 0; if (farm_mode) { prusa_statistics(8); } // Enable Toshiba FlashAir SD card / WiFi enahanced card. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1); if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff && eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) { // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board, // where all the EEPROM entries are set to 0x0ff. // Once a firmware boots up, it forces at least a language selection, which changes // EEPROM_LANG to number lower than 0x0ff. // 1) Set a high power mode. #ifdef TMC2130 eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0); tmc2130_mode = TMC2130_MODE_NORMAL; #endif //TMC2130 eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard } // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), // but this times out if a blocking dialog is shown in setup(). card.initsd(); #ifdef DEBUG_SD_SPEED_TEST if (card.cardOK) { uint8_t* buff = (uint8_t*)block_buffer; uint32_t block = 0; uint32_t sumr = 0; uint32_t sumw = 0; for (int i = 0; i < 1024; i++) { uint32_t u = micros(); bool res = card.card.readBlock(i, buff); u = micros() - u; if (res) { printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u); sumr += u; u = micros(); res = card.card.writeBlock(i, buff); u = micros() - u; if (res) { printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u); sumw += u; } else { printf_P(PSTR("writeBlock %4d error\n"), i); break; } } else { printf_P(PSTR("readBlock %4d error\n"), i); break; } } uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512); uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512); printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed); printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed); } else printf_P(PSTR("Card NG!\n")); #endif DEBUG_SD_SPEED_TEST if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0); if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0); if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0); if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0); if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0); if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0); if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0); if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0); #ifdef SNMM if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM int _z = BOWDEN_LENGTH; for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z); } #endif // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version // is being written into the EEPROM, so the update procedure will be triggered only once. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG); if (lang_selected >= LANG_NUM){ lcd_mylang(); } if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) { eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); temp_cal_active = false; } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE); if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) { //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0); //40C eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0); //45C eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0); //50C eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0); //55C eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0); //60C eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0); temp_cal_active = false; } if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) { eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0); } if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) { eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0); } check_babystep(); //checking if Z babystep is in allowed range #ifdef UVLO_SUPPORT setup_uvlo_interrupt(); #endif //UVLO_SUPPORT #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1 setup_fan_interrupt(); #endif //DEBUG_DISABLE_FANCHECK #ifdef PAT9125 #ifndef DEBUG_DISABLE_FSENSORCHECK fsensor_setup_interrupt(); #endif //DEBUG_DISABLE_FSENSORCHECK #endif //PAT9125 for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); #ifndef DEBUG_DISABLE_STARTMSGS KEEPALIVE_STATE(PAUSED_FOR_USER); show_fw_version_warnings(); switch (hw_changed) { //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time case(0b01): lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD); eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); break; case(0b10): lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER); eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); break; case(0b11): lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH); eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE); eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD); break; default: break; //no change, show no message } if (!previous_settings_retrieved) { lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom } if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { lcd_wizard(0); } if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED || calibration_status() == CALIBRATION_STATUS_UNKNOWN) { // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); // Show the message. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW); } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) { // Show the message. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); lcd_update_enable(true); } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) { //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED); lcd_update_enable(true); } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) { // Show the message. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW); } } #ifndef DEBUG_DISABLE_FORCE_SELFTEST if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) { lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST); update_current_firmware_version_to_eeprom(); lcd_selftest(); } #endif //DEBUG_DISABLE_FORCE_SELFTEST KEEPALIVE_STATE(IN_PROCESS); #endif //DEBUG_DISABLE_STARTMSGS lcd_update_enable(true); lcd_implementation_clear(); lcd_update(2); // Store the currently running firmware into an eeprom, // so the next time the firmware gets updated, it will know from which version it has been updated. update_current_firmware_version_to_eeprom(); #ifdef TMC2130 tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN); tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS); tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS); if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0; if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48; if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48; tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN); tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS); tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS); if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0; if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48; if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48; tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED); if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0; #endif //TMC2130 #ifdef UVLO_SUPPORT if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO /* if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print(); else { eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); lcd_update_enable(true); lcd_update(2); lcd_setstatuspgm(WELCOME_MSG); } */ manage_heater(); // Update temperatures #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER MYSERIAL.println("Power panic detected!"); MYSERIAL.print("Current bed temp:"); MYSERIAL.println(degBed()); MYSERIAL.print("Saved bed temp:"); MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); #endif if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER MYSERIAL.println("Automatic recovery!"); #endif recover_print(1); } else{ #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER MYSERIAL.println("Normal recovery!"); #endif if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0); else { eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); lcd_update_enable(true); lcd_update(2); lcd_setstatuspgm(WELCOME_MSG); } } } #endif //UVLO_SUPPORT KEEPALIVE_STATE(NOT_BUSY); #ifdef WATCHDOG wdt_enable(WDTO_4S); #endif //WATCHDOG } #ifdef PAT9125 void fsensor_init() { int pat9125 = pat9125_init(); printf_P(PSTR("PAT9125_init:%d\n"), pat9125); uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); if (!pat9125) { fsensor = 0; //disable sensor fsensor_not_responding = true; } else { fsensor_not_responding = false; } puts_P(PSTR("FSensor ")); if (fsensor) { puts_P(PSTR("ENABLED\n")); fsensor_enable(); } else { puts_P(PSTR("DISABLED\n")); fsensor_disable(); } #ifdef DEBUG_DISABLE_FSENSORCHECK filament_autoload_enabled = false; fsensor_disable(); #endif //DEBUG_DISABLE_FSENSORCHECK } #endif //PAT9125 void trace(); #define CHUNK_SIZE 64 // bytes #define SAFETY_MARGIN 1 char chunk[CHUNK_SIZE+SAFETY_MARGIN]; int chunkHead = 0; int serial_read_stream() { setTargetHotend(0, 0); setTargetBed(0); lcd_implementation_clear(); lcd_printPGM(PSTR(" Upload in progress")); // first wait for how many bytes we will receive uint32_t bytesToReceive; // receive the four bytes char bytesToReceiveBuffer[4]; for (int i=0; i<4; i++) { int data; while ((data = MYSERIAL.read()) == -1) {}; bytesToReceiveBuffer[i] = data; } // make it a uint32 memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4); // we're ready, notify the sender MYSERIAL.write('+'); // lock in the routine uint32_t receivedBytes = 0; while (prusa_sd_card_upload) { int i; for (i=0; i 0) && ((millis()-_usb_timer) > 1000)) { is_usb_printing = true; usb_printing_counter--; _usb_timer = millis(); } if (usb_printing_counter == 0) { is_usb_printing = false; } if (prusa_sd_card_upload) { //we read byte-by byte serial_read_stream(); } else { get_command(); #ifdef SDSUPPORT card.checkautostart(false); #endif if(buflen) { cmdbuffer_front_already_processed = false; #ifdef SDSUPPORT if(card.saving) { // Saving a G-code file onto an SD-card is in progress. // Saving starts with M28, saving until M29 is seen. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) { card.write_command(CMDBUFFER_CURRENT_STRING); if(card.logging) process_commands(); else SERIAL_PROTOCOLLNRPGM(MSG_OK); } else { card.closefile(); SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED); } } else { process_commands(); } #else process_commands(); #endif //SDSUPPORT if (! cmdbuffer_front_already_processed && buflen) { // ptr points to the start of the block currently being processed. // The first character in the block is the block type. char *ptr = cmdbuffer + bufindr; if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) { // To support power panic, move the lenght of the command on the SD card to a planner buffer. union { struct { char lo; char hi; } lohi; uint16_t value; } sdlen; sdlen.value = 0; { // This block locks the interrupts globally for 3.25 us, // which corresponds to a maximum repeat frequency of 307.69 kHz. // This blocking is safe in the context of a 10kHz stepper driver interrupt // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz. cli(); // Reset the command to something, which will be ignored by the power panic routine, // so this buffer length will not be counted twice. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED; // Extract the current buffer length. sdlen.lohi.lo = *ptr ++; sdlen.lohi.hi = *ptr; // and pass it to the planner queue. planner_add_sd_length(sdlen.value); sei(); } } // Now it is safe to release the already processed command block. If interrupted by the power panic now, // this block's SD card length will not be counted twice as its command type has been replaced // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED. cmdqueue_pop_front(); } host_keepalive(); } } //check heater every n milliseconds manage_heater(); isPrintPaused ? manage_inactivity(true) : manage_inactivity(false); checkHitEndstops(); lcd_update(); #ifdef PAT9125 fsensor_update(); #endif //PAT9125 #ifdef TMC2130 tmc2130_check_overtemp(); if (tmc2130_sg_crash) { uint8_t crash = tmc2130_sg_crash; tmc2130_sg_crash = 0; // crashdet_stop_and_save_print(); switch (crash) { case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break; case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break; case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break; } } #endif //TMC2130 } #define DEFINE_PGM_READ_ANY(type, reader) \ static inline type pgm_read_any(const type *p) \ { return pgm_read_##reader##_near(p); } DEFINE_PGM_READ_ANY(float, float); DEFINE_PGM_READ_ANY(signed char, byte); #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ static const PROGMEM type array##_P[3] = \ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ static inline type array(int axis) \ { return pgm_read_any(&array##_P[axis]); } \ type array##_ext(int axis) \ { return pgm_read_any(&array##_P[axis]); } XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM); XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static void axis_is_at_home(int axis) { current_position[axis] = base_home_pos(axis) + add_homing[axis]; min_pos[axis] = base_min_pos(axis) + add_homing[axis]; max_pos[axis] = base_max_pos(axis) + add_homing[axis]; } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } static void setup_for_endstop_move(bool enable_endstops_now = true) { saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; previous_millis_cmd = millis(); enable_endstops(enable_endstops_now); } static void clean_up_after_endstop_move() { #ifdef ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false); #endif feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); } #ifdef ENABLE_AUTO_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); planeNormal.debug("planeNormal"); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); //bedLevel.debug("bedLevel"); //plan_bed_level_matrix.debug("bed level before"); //vector_3 uncorrected_position = plan_get_position_mm(); //uncorrected_position.debug("position before"); vector_3 corrected_position = plan_get_position(); // corrected_position.debug("position after"); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; // put the bed at 0 so we don't go below it. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } #else // not AUTO_BED_LEVELING_GRID static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { plan_bed_level_matrix.set_to_identity(); vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); vector_3 from_2_to_1 = (pt1 - pt2).get_normal(); vector_3 from_2_to_3 = (pt3 - pt2).get_normal(); vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal(); planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z)); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); vector_3 corrected_position = plan_get_position(); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; // put the bed at 0 so we don't go below it. current_position[Z_AXIS] = zprobe_zoffset; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } #endif // AUTO_BED_LEVELING_GRID static void run_z_probe() { plan_bed_level_matrix.set_to_identity(); feedrate = homing_feedrate[Z_AXIS]; // move down until you find the bed float zPosition = -10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // we have to let the planner know where we are right now as it is not where we said to go. zPosition = st_get_position_mm(Z_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); // move up the retract distance zPosition += home_retract_mm(Z_AXIS); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // move back down slowly to find bed feedrate = homing_feedrate[Z_AXIS]/4; zPosition -= home_retract_mm(Z_AXIS) * 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); // make sure the planner knows where we are as it may be a bit different than we last said to move to plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } static void do_blocking_move_to(float x, float y, float z) { float oldFeedRate = feedrate; feedrate = homing_feedrate[Z_AXIS]; current_position[Z_AXIS] = z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); feedrate = XY_TRAVEL_SPEED; current_position[X_AXIS] = x; current_position[Y_AXIS] = y; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); feedrate = oldFeedRate; } static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) { do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z); } /// Probe bed height at position (x,y), returns the measured z value static float probe_pt(float x, float y, float z_before) { // move to right place do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); run_z_probe(); float measured_z = current_position[Z_AXIS]; SERIAL_PROTOCOLRPGM(MSG_BED); SERIAL_PROTOCOLPGM(" x: "); SERIAL_PROTOCOL(x); SERIAL_PROTOCOLPGM(" y: "); SERIAL_PROTOCOL(y); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL(measured_z); SERIAL_PROTOCOLPGM("\n"); return measured_z; } #endif // #ifdef ENABLE_AUTO_BED_LEVELING #ifdef LIN_ADVANCE /** * M900: Set and/or Get advance K factor and WH/D ratio * * K Set advance K factor * R Set ratio directly (overrides WH/D) * W H D Set ratio from WH/D */ inline void gcode_M900() { st_synchronize(); const float newK = code_seen('K') ? code_value_float() : -1; if (newK >= 0) extruder_advance_k = newK; float newR = code_seen('R') ? code_value_float() : -1; if (newR < 0) { const float newD = code_seen('D') ? code_value_float() : -1, newW = code_seen('W') ? code_value_float() : -1, newH = code_seen('H') ? code_value_float() : -1; if (newD >= 0 && newW >= 0 && newH >= 0) newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; } if (newR >= 0) advance_ed_ratio = newR; SERIAL_ECHO_START; SERIAL_ECHOPGM("Advance K="); SERIAL_ECHOLN(extruder_advance_k); SERIAL_ECHOPGM(" E/D="); const float ratio = advance_ed_ratio; if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto"); } #endif // LIN_ADVANCE bool check_commands() { bool end_command_found = false; while (buflen) { if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true; if (!cmdbuffer_front_already_processed) cmdqueue_pop_front(); cmdbuffer_front_already_processed = false; } return end_command_found; } #ifdef TMC2130 bool calibrate_z_auto() { //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO); lcd_implementation_clear(); lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO); bool endstops_enabled = enable_endstops(true); int axis_up_dir = -home_dir(Z_AXIS); tmc2130_home_enter(Z_AXIS_MASK); current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); set_destination_to_current(); destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir); feedrate = homing_feedrate[Z_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // current_position[axis] = 0; // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); tmc2130_home_exit(); enable_endstops(false); current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); set_destination_to_current(); destination[Z_AXIS] += 10 * axis_up_dir; //10mm up feedrate = homing_feedrate[Z_AXIS] / 2; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); enable_endstops(endstops_enabled); current_position[Z_AXIS] = Z_MAX_POS+2.0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); return true; } #endif //TMC2130 void homeaxis(int axis, uint8_t cnt, uint8_t* pstep) { bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing #define HOMEAXIS_DO(LETTER) \ ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0) { int axis_home_dir = home_dir(axis); feedrate = homing_feedrate[axis]; #ifdef TMC2130 tmc2130_home_enter(X_AXIS_MASK << axis); #endif //TMC2130 // Move right a bit, so that the print head does not touch the left end position, // and the following left movement has a chance to achieve the required velocity // for the stall guard to work. current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); set_destination_to_current(); // destination[axis] = 11.f; destination[axis] = 3.f; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // Move left away from the possible collision with the collision detection disabled. endstops_hit_on_purpose(); enable_endstops(false); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = - 1.; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); // Now continue to move up to the left end stop with the collision detection enabled. enable_endstops(true); destination[axis] = - 1.1 * max_length(axis); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); for (uint8_t i = 0; i < cnt; i++) { // Move right from the collision to a known distance from the left end stop with the collision detection disabled. endstops_hit_on_purpose(); enable_endstops(false); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 10.f; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); endstops_hit_on_purpose(); // Now move left up to the collision, this time with a repeatable velocity. enable_endstops(true); destination[axis] = - 11.f; #ifdef TMC2130 feedrate = homing_feedrate[axis]; #else //TMC2130 feedrate = homing_feedrate[axis] / 2; #endif //TMC2130 plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); #ifdef TMC2130 uint16_t mscnt = tmc2130_rd_MSCNT(axis); if (pstep) pstep[i] = mscnt >> 4; printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt); #endif //TMC2130 } endstops_hit_on_purpose(); enable_endstops(false); #ifdef TMC2130 uint8_t orig = tmc2130_home_origin[axis]; uint8_t back = tmc2130_home_bsteps[axis]; if (tmc2130_home_enabled && (orig <= 63)) { tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis)); if (back > 0) tmc2130_do_steps(axis, back, 1, 1000); } else tmc2130_do_steps(axis, 8, 2, 1000); tmc2130_home_exit(); #endif //TMC2130 axis_is_at_home(axis); axis_known_position[axis] = true; // Move from minimum #ifdef TMC2130 float dist = 0.01f * tmc2130_home_fsteps[axis]; #else //TMC2130 float dist = 0.01f * 64; #endif //TMC2130 current_position[axis] -= dist; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); current_position[axis] += dist; destination[axis] = current_position[axis]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder); st_synchronize(); feedrate = 0.0; } else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0) { int axis_home_dir = home_dir(axis); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = -home_retract_mm(axis) * axis_home_dir; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); destination[axis] = 2*home_retract_mm(axis) * axis_home_dir; feedrate = homing_feedrate[axis]/2 ; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); axis_is_at_home(axis); destination[axis] = current_position[axis]; feedrate = 0.0; endstops_hit_on_purpose(); axis_known_position[axis] = true; } enable_endstops(endstops_enabled); } /**/ void home_xy() { set_destination_to_current(); homeaxis(X_AXIS); homeaxis(Y_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); endstops_hit_on_purpose(); } void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); } #ifdef FWRETRACT void retract(bool retracting, bool swapretract = false) { if(retracting && !retracted[active_extruder]) { destination[X_AXIS]=current_position[X_AXIS]; destination[Y_AXIS]=current_position[Y_AXIS]; destination[Z_AXIS]=current_position[Z_AXIS]; destination[E_AXIS]=current_position[E_AXIS]; current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f; plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; feedrate=retract_feedrate*60; retracted[active_extruder]=true; prepare_move(); current_position[Z_AXIS]-=retract_zlift; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); prepare_move(); feedrate = oldFeedrate; } else if(!retracting && retracted[active_extruder]) { destination[X_AXIS]=current_position[X_AXIS]; destination[Y_AXIS]=current_position[Y_AXIS]; destination[Z_AXIS]=current_position[Z_AXIS]; destination[E_AXIS]=current_position[E_AXIS]; current_position[Z_AXIS]+=retract_zlift; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f; plan_set_e_position(current_position[E_AXIS]); float oldFeedrate = feedrate; feedrate=retract_recover_feedrate*60; retracted[active_extruder]=false; prepare_move(); feedrate = oldFeedrate; } } //retract #endif //FWRETRACT void trace() { tone(BEEPER, 440); delay(25); noTone(BEEPER); delay(20); } /* void ramming() { // float tmp[4] = DEFAULT_MAX_FEEDRATE; if (current_temperature[0] < 230) { //PLA max_feedrate[E_AXIS] = 50; //current_position[E_AXIS] -= 8; //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); //current_position[E_AXIS] += 8; //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); current_position[E_AXIS] += 5.4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); current_position[E_AXIS] += 3.2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[E_AXIS] += 3; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); st_synchronize(); max_feedrate[E_AXIS] = 80; current_position[E_AXIS] -= 82; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder); max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; current_position[E_AXIS] -= 20; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder); current_position[E_AXIS] += 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); current_position[E_AXIS] += 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); current_position[E_AXIS] -= 10; st_synchronize(); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); current_position[E_AXIS] += 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); current_position[E_AXIS] -= 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); current_position[E_AXIS] += 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); current_position[E_AXIS] -= 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); st_synchronize(); } else { //ABS max_feedrate[E_AXIS] = 50; //current_position[E_AXIS] -= 8; //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); //current_position[E_AXIS] += 8; //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder); current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); current_position[E_AXIS] += 4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); //current_position[X_AXIS] += 23; //delay //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay //current_position[X_AXIS] -= 23; //delay //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay delay(4700); max_feedrate[E_AXIS] = 80; current_position[E_AXIS] -= 92; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder); max_feedrate[E_AXIS] = 50;//tmp[E_AXIS]; current_position[E_AXIS] -= 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder); current_position[E_AXIS] += 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); current_position[E_AXIS] -= 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); st_synchronize(); current_position[E_AXIS] += 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); current_position[E_AXIS] -= 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); current_position[E_AXIS] += 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); current_position[E_AXIS] -= 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); st_synchronize(); } } */ #ifdef TMC2130 void force_high_power_mode(bool start_high_power_section) { uint8_t silent; silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT); if (silent == 1) { //we are in silent mode, set to normal mode to enable crash detection // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state. st_synchronize(); cli(); tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT; tmc2130_init(); // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine. // Be safe than sorry, reset the stepper timer before re-enabling interrupts. st_reset_timer(); sei(); } } #endif //TMC2130 bool gcode_M45(bool onlyZ, int8_t verbosity_level) { bool final_result = false; #ifdef TMC2130 FORCE_HIGH_POWER_START; #endif // TMC2130 // Only Z calibration? if (!onlyZ) { setTargetBed(0); setTargetHotend(0, 0); setTargetHotend(0, 1); setTargetHotend(0, 2); adjust_bed_reset(); //reset bed level correction } // Disable the default update procedure of the display. We will do a modal dialog. lcd_update_enable(false); // Let the planner use the uncorrected coordinates. mbl.reset(); // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); // Reset the baby step value applied without moving the axes. babystep_reset(); // Mark all axes as in a need for homing. memset(axis_known_position, 0, sizeof(axis_known_position)); // Home in the XY plane. //set_destination_to_current(); setup_for_endstop_move(); lcd_display_message_fullscreen_P(MSG_AUTO_HOME); home_xy(); enable_endstops(false); current_position[X_AXIS] += 5; current_position[Y_AXIS] += 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); st_synchronize(); // Let the user move the Z axes up to the end stoppers. #ifdef TMC2130 if (calibrate_z_auto()) { #else //TMC2130 if (lcd_calibrate_z_end_stop_manual(onlyZ)) { #endif //TMC2130 refresh_cmd_timeout(); #ifndef STEEL_SHEET if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) { lcd_wait_for_cool_down(); } #endif //STEEL_SHEET if(!onlyZ) { KEEPALIVE_STATE(PAUSED_FOR_USER); #ifdef STEEL_SHEET bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false); if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET); #endif //STEEL_SHEET lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN); lcd_show_fullscreen_message_and_wait_P(MSG_PAPER); KEEPALIVE_STATE(IN_HANDLER); lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1); lcd_implementation_print_at(0, 2, 1); lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2); } // Move the print head close to the bed. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; bool endstops_enabled = enable_endstops(true); #ifdef TMC2130 tmc2130_home_enter(Z_AXIS_MASK); #endif //TMC2130 plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); st_synchronize(); #ifdef TMC2130 tmc2130_home_exit(); #endif //TMC2130 enable_endstops(endstops_enabled); if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH) { int8_t verbosity_level = 0; if (code_seen('V')) { // Just 'V' without a number counts as V1. char c = strchr_pointer[1]; verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); } if (onlyZ) { clean_up_after_endstop_move(); // Z only calibration. // Load the machine correction matrix world2machine_initialize(); // and correct the current_position to match the transformed coordinate system. world2machine_update_current(); //FIXME bool result = sample_mesh_and_store_reference(); if (result) { if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) // Shipped, the nozzle height has been set already. The user can start printing now. calibration_status_store(CALIBRATION_STATUS_CALIBRATED); final_result = true; // babystep_apply(); } } else { // Reset the baby step value and the baby step applied flag. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION); eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); // Complete XYZ calibration. uint8_t point_too_far_mask = 0; BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask); clean_up_after_endstop_move(); // Print head up. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); st_synchronize(); //#ifndef NEW_XYZCAL if (result >= 0) { #ifdef HEATBED_V2 sample_z(); #else //HEATBED_V2 point_too_far_mask = 0; // Second half: The fine adjustment. // Let the planner use the uncorrected coordinates. mbl.reset(); world2machine_reset(); // Home in the XY plane. setup_for_endstop_move(); home_xy(); result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask); clean_up_after_endstop_move(); // Print head up. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); st_synchronize(); // if (result >= 0) babystep_apply(); #endif //HEATBED_V2 } //#endif //NEW_XYZCAL lcd_update_enable(true); lcd_update(2); lcd_bed_calibration_show_result(result, point_too_far_mask); if (result >= 0) { // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET); final_result = true; } } #ifdef TMC2130 tmc2130_home_exit(); #endif } else { lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again.")); final_result = false; } } else { // Timeouted. } lcd_update_enable(true); #ifdef TMC2130 FORCE_HIGH_POWER_END; #endif // TMC2130 return final_result; } void gcode_M114() { SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); SERIAL_PROTOCOLRPGM(MSG_COUNT_X); SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]); SERIAL_PROTOCOLLN(""); } void gcode_M701() { #ifdef SNMM extr_adj(snmm_extruder);//loads current extruder #else enable_z(); custom_message = true; custom_message_type = 2; lcd_setstatuspgm(MSG_LOADING_FILAMENT); current_position[E_AXIS] += 70; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence current_position[E_AXIS] += 25; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence st_synchronize(); tone(BEEPER, 500); delay_keep_alive(50); noTone(BEEPER); if (!farm_mode && loading_flag) { bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true); while (!clean) { lcd_update_enable(true); lcd_update(2); current_position[E_AXIS] += 25; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence st_synchronize(); clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true); } } lcd_update_enable(true); lcd_update(2); lcd_setstatuspgm(WELCOME_MSG); disable_z(); loading_flag = false; custom_message = false; custom_message_type = 0; #endif } /** * @brief Get serial number from 32U2 processor * * Typical format of S/N is:CZPX0917X003XC13518 * * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL. * * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor, * reply is transmitted to serial port 1 character by character. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms, * it is interrupted, so less, or no characters are retransmitted, only newline character is send * in any case. */ static void gcode_PRUSA_SN() { if (farm_mode) { selectedSerialPort = 0; MSerial.write(";S"); int numbersRead = 0; Timer timeout; timeout.start(); while (numbersRead < 19) { while (MSerial.available() > 0) { uint8_t serial_char = MSerial.read(); selectedSerialPort = 1; MSerial.write(serial_char); numbersRead++; selectedSerialPort = 0; } if (timeout.expired(100)) break; } selectedSerialPort = 1; MSerial.write('\n'); #if 0 for (int b = 0; b < 3; b++) { tone(BEEPER, 110); delay(50); noTone(BEEPER); delay(50); } #endif } else { MYSERIAL.println("Not in farm mode."); } } void process_commands() { if (!buflen) return; //empty command #ifdef FILAMENT_RUNOUT_SUPPORT SET_INPUT(FR_SENS); #endif #ifdef CMDBUFFER_DEBUG SERIAL_ECHOPGM("Processing a GCODE command: "); SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("In cmdqueue: "); SERIAL_ECHO(buflen); SERIAL_ECHOLNPGM(""); #endif /* CMDBUFFER_DEBUG */ unsigned long codenum; //throw away variable char *starpos = NULL; #ifdef ENABLE_AUTO_BED_LEVELING float x_tmp, y_tmp, z_tmp, real_z; #endif // PRUSA GCODES KEEPALIVE_STATE(IN_HANDLER); #ifdef SNMM float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; int8_t SilentMode; #endif if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^" starpos = (strchr(strchr_pointer + 5, '*')); if (starpos != NULL) *(starpos) = '\0'; lcd_setstatus(strchr_pointer + 5); } #ifdef TMC2130 else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0) { if(code_seen("CRASH_DETECTED")) { uint8_t mask = 0; if (code_seen("X")) mask |= X_AXIS_MASK; if (code_seen("Y")) mask |= Y_AXIS_MASK; crashdet_detected(mask); } else if(code_seen("CRASH_RECOVER")) crashdet_recover(); else if(code_seen("CRASH_CANCEL")) crashdet_cancel(); } else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0) { if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0) { uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10); tmc2130_set_wave(E_AXIS, 247, fac); } else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0) { uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10); uint16_t res = tmc2130_get_res(E_AXIS); tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res); } } #endif //TMC2130 else if(code_seen("PRUSA")){ if (code_seen("Ping")) { //PRUSA Ping if (farm_mode) { PingTime = millis(); //MYSERIAL.print(farm_no); MYSERIAL.println(": OK"); } } else if (code_seen("PRN")) { MYSERIAL.println(status_number); }else if (code_seen("FAN")) { MYSERIAL.print("E0:"); MYSERIAL.print(60*fan_speed[0]); MYSERIAL.println(" RPM"); MYSERIAL.print("PRN0:"); MYSERIAL.print(60*fan_speed[1]); MYSERIAL.println(" RPM"); }else if (code_seen("fn")) { if (farm_mode) { MYSERIAL.println(farm_no); } else { MYSERIAL.println("Not in farm mode."); } } else if (code_seen("thx")) { no_response = false; }else if (code_seen("fv")) { // get file version #ifdef SDSUPPORT card.openFile(strchr_pointer + 3,true); while (true) { uint16_t readByte = card.get(); MYSERIAL.write(readByte); if (readByte=='\n') { break; } } card.closefile(); #endif // SDSUPPORT } else if (code_seen("M28")) { trace(); prusa_sd_card_upload = true; card.openFile(strchr_pointer+4,false); } else if (code_seen("SN")) { gcode_PRUSA_SN(); } else if(code_seen("Fir")){ SERIAL_PROTOCOLLN(FW_VERSION); } else if(code_seen("Rev")){ SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE ); } else if(code_seen("Lang")) { lcd_force_language_selection(); } else if(code_seen("Lz")) { EEPROM_save_B(EEPROM_BABYSTEP_Z,0); } else if (code_seen("SERIAL LOW")) { MYSERIAL.println("SERIAL LOW"); MYSERIAL.begin(BAUDRATE); return; } else if (code_seen("SERIAL HIGH")) { MYSERIAL.println("SERIAL HIGH"); MYSERIAL.begin(1152000); return; } else if(code_seen("Beat")) { // Kick farm link timer kicktime = millis(); } else if(code_seen("FR")) { // Factory full reset factory_reset(0,true); } //else if (code_seen('Cal')) { // lcd_calibration(); // } } else if (code_seen('^')) { // nothing, this is a version line } else if(code_seen('G')) { switch((int)code_value()) { case 0: // G0 -> G1 case 1: // G1 if(Stopped == false) { #ifdef FILAMENT_RUNOUT_SUPPORT if(READ(FR_SENS)){ feedmultiplyBckp=feedmultiply; float target[4]; float lastpos[4]; target[X_AXIS]=current_position[X_AXIS]; target[Y_AXIS]=current_position[Y_AXIS]; target[Z_AXIS]=current_position[Z_AXIS]; target[E_AXIS]=current_position[E_AXIS]; lastpos[X_AXIS]=current_position[X_AXIS]; lastpos[Y_AXIS]=current_position[Y_AXIS]; lastpos[Z_AXIS]=current_position[Z_AXIS]; lastpos[E_AXIS]=current_position[E_AXIS]; //retract by E target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder); target[X_AXIS]= FILAMENTCHANGE_XPOS ; target[Y_AXIS]= FILAMENTCHANGE_YPOS ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); //finish moves st_synchronize(); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); delay(100); //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); uint8_t cnt=0; int counterBeep = 0; lcd_wait_interact(); while(!lcd_clicked()){ cnt++; manage_heater(); manage_inactivity(true); //lcd_update(); if(cnt==0) { #if BEEPER > 0 if (counterBeep== 500){ counterBeep = 0; } SET_OUTPUT(BEEPER); if (counterBeep== 0){ WRITE(BEEPER,HIGH); } if (counterBeep== 20){ WRITE(BEEPER,LOW); } counterBeep++; #else #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) lcd_buzz(1000/6,100); #else lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); #endif #endif } } WRITE(BEEPER,LOW); target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_change_fil_state = 0; lcd_loading_filament(); while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ lcd_change_fil_state = 0; lcd_alright(); switch(lcd_change_fil_state){ case 2: target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_loading_filament(); break; case 3: target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_loading_color(); break; default: lcd_change_success(); break; } } target[E_AXIS]+= 5; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding //plan_set_e_position(current_position[E_AXIS]); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract plan_set_e_position(lastpos[E_AXIS]); feedmultiply=feedmultiplyBckp; char cmd[9]; sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); enquecommand(cmd); } #endif get_coordinates(); // For X Y Z E F if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100); } #ifdef FWRETRACT if(autoretract_enabled) if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { float echange=destination[E_AXIS]-current_position[E_AXIS]; if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations plan_set_e_position(current_position[E_AXIS]); //AND from the planner retract(!retracted); return; } } #endif //FWRETRACT prepare_move(); //ClearToSend(); } break; case 2: // G2 - CW ARC if(Stopped == false) { get_arc_coordinates(); prepare_arc_move(true); } break; case 3: // G3 - CCW ARC if(Stopped == false) { get_arc_coordinates(); prepare_arc_move(false); } break; case 4: // G4 dwell codenum = 0; if(code_seen('P')) codenum = code_value(); // milliseconds to wait if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL); st_synchronize(); codenum += millis(); // keep track of when we started waiting previous_millis_cmd = millis(); while(millis() < codenum) { manage_heater(); manage_inactivity(); lcd_update(); } break; #ifdef FWRETRACT case 10: // G10 retract #if EXTRUDERS > 1 retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument retract(true,retracted_swap[active_extruder]); #else retract(true); #endif break; case 11: // G11 retract_recover #if EXTRUDERS > 1 retract(false,retracted_swap[active_extruder]); #else retract(false); #endif break; #endif //FWRETRACT case 28: //G28 Home all Axis one at a time { st_synchronize(); #if 0 SERIAL_ECHOPGM("G28, initial "); print_world_coordinates(); SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates(); #endif // Flag for the display update routine and to disable the print cancelation during homing. homing_flag = true; // Which axes should be homed? bool home_x = code_seen(axis_codes[X_AXIS]); bool home_y = code_seen(axis_codes[Y_AXIS]); bool home_z = code_seen(axis_codes[Z_AXIS]); // calibrate? bool calib = code_seen('C'); // Either all X,Y,Z codes are present, or none of them. bool home_all_axes = home_x == home_y && home_x == home_z; if (home_all_axes) // No X/Y/Z code provided means to home all axes. home_x = home_y = home_z = true; #ifdef ENABLE_AUTO_BED_LEVELING plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) #endif //ENABLE_AUTO_BED_LEVELING // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); // For mesh bed leveling deactivate the matrix temporarily. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed // in a single axis only. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28. #ifdef MESH_BED_LEVELING uint8_t mbl_was_active = mbl.active; mbl.active = 0; current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); #endif // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be // consumed during the first movements following this statement. if (home_z) babystep_undo(); saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; feedmultiply = 100; previous_millis_cmd = millis(); enable_endstops(true); memcpy(destination, current_position, sizeof(destination)); feedrate = 0.0; #if Z_HOME_DIR > 0 // If homing away from BED do Z first if(home_z) homeaxis(Z_AXIS); #endif #ifdef QUICK_HOME // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially. if(home_x && home_y) //first diagonal move { current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0; int x_axis_home_dir = home_dir(X_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); feedrate = homing_feedrate[X_AXIS]; if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) { feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); } else { feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); } plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); st_synchronize(); axis_is_at_home(X_AXIS); axis_is_at_home(Y_AXIS); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); feedrate = 0.0; st_synchronize(); endstops_hit_on_purpose(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; current_position[Z_AXIS] = destination[Z_AXIS]; } #endif /* QUICK_HOME */ #ifdef TMC2130 if(home_x) { if (!calib) homeaxis(X_AXIS); else tmc2130_home_calibrate(X_AXIS); } if(home_y) { if (!calib) homeaxis(Y_AXIS); else tmc2130_home_calibrate(Y_AXIS); } #endif //TMC2130 if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0) current_position[X_AXIS]=code_value()+add_homing[X_AXIS]; if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS]; #if Z_HOME_DIR < 0 // If homing towards BED do Z last #ifndef Z_SAFE_HOMING if(home_z) { #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] )) { homeaxis(X_AXIS); homeaxis(Y_AXIS); } // 1st mesh bed leveling measurement point, corrected. world2machine_initialize(); world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]); world2machine_reset(); if (destination[Y_AXIS] < Y_MIN_POS) destination[Y_AXIS] = Y_MIN_POS; destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed feedrate = homing_feedrate[Z_AXIS]/10; current_position[Z_AXIS] = 0; enable_endstops(false); #ifdef DEBUG_BUILD SERIAL_ECHOLNPGM("plan_set_position()"); MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]); MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]); #endif plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); #ifdef DEBUG_BUILD SERIAL_ECHOLNPGM("plan_buffer_line()"); MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]); MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]); MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder); #endif plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; enable_endstops(true); endstops_hit_on_purpose(); homeaxis(Z_AXIS); #else // MESH_BED_LEVELING homeaxis(Z_AXIS); #endif // MESH_BED_LEVELING } #else // defined(Z_SAFE_HOMING): Z Safe mode activated. if(home_all_axes) { destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed feedrate = XY_TRAVEL_SPEED/60; current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; homeaxis(Z_AXIS); } // Let's see if X and Y are homed and probe is inside bed area. if(home_z) { if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed feedrate = max_feedrate[Z_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); st_synchronize(); homeaxis(Z_AXIS); } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); } else { LCD_MESSAGERPGM(MSG_ZPROBE_OUT); SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT); } } #endif // Z_SAFE_HOMING #endif // Z_HOME_DIR < 0 if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0) current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS]; #ifdef ENABLE_AUTO_BED_LEVELING if(home_z) current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) #endif // Set the planner and stepper routine positions. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position // contains the machine coordinates. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); #ifdef ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false); #endif feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); endstops_hit_on_purpose(); #ifndef MESH_BED_LEVELING // If MESH_BED_LEVELING is not active, then it is the original Prusa i3. // Offer the user to load the baby step value, which has been adjusted at the previous print session. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z)) lcd_adjust_z(); #endif // Load the machine correction matrix world2machine_initialize(); // and correct the current_position XY axes to match the transformed coordinate system. world2machine_update_current(); #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS])) { if (! home_z && mbl_was_active) { // Re-enable the mesh bed leveling if only the X and Y axes were re-homed. mbl.active = true; // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS)); } } else { st_synchronize(); homing_flag = false; // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. // enquecommand_front_P((PSTR("G80"))); goto case_G80; } #endif if (farm_mode) { prusa_statistics(20); }; homing_flag = false; #if 0 SERIAL_ECHOPGM("G28, final "); print_world_coordinates(); SERIAL_ECHOPGM("G28, final "); print_physical_coordinates(); SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table(); #endif break; } #ifdef ENABLE_AUTO_BED_LEVELING case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. { #if Z_MIN_PIN == -1 #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin." #endif // Prevent user from running a G29 without first homing in X and Y if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) ) { LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN); SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN); break; // abort G29, since we don't know where we are } st_synchronize(); // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly //vector_3 corrected_position = plan_get_position_mm(); //corrected_position.debug("position before G29"); plan_bed_level_matrix.set_to_identity(); vector_3 uncorrected_position = plan_get_position(); //uncorrected_position.debug("position durring G29"); current_position[X_AXIS] = uncorrected_position.x; current_position[Y_AXIS] = uncorrected_position.y; current_position[Z_AXIS] = uncorrected_position.z; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; #ifdef AUTO_BED_LEVELING_GRID // probe at the points of a lattice grid int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); // solve the plane equation ax + by + d = z // A is the matrix with rows [x y 1] for all the probed points // B is the vector of the Z positions // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z // "A" matrix of the linear system of equations double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; // "B" vector of Z points double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; int probePointCounter = 0; bool zig = true; for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) { int xProbe, xInc; if (zig) { xProbe = LEFT_PROBE_BED_POSITION; //xEnd = RIGHT_PROBE_BED_POSITION; xInc = xGridSpacing; zig = false; } else // zag { xProbe = RIGHT_PROBE_BED_POSITION; //xEnd = LEFT_PROBE_BED_POSITION; xInc = -xGridSpacing; zig = true; } for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) { float z_before; if (probePointCounter == 0) { // raise before probing z_before = Z_RAISE_BEFORE_PROBING; } else { // raise extruder z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; } float measured_z = probe_pt(xProbe, yProbe, z_before); eqnBVector[probePointCounter] = measured_z; eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; probePointCounter++; xProbe += xInc; } } clean_up_after_endstop_move(); // solve lsq problem double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOL(plane_equation_coefficients[0]); SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOL(plane_equation_coefficients[1]); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOLLN(plane_equation_coefficients[2]); set_bed_level_equation_lsq(plane_equation_coefficients); free(plane_equation_coefficients); #else // AUTO_BED_LEVELING_GRID not defined // Probe at 3 arbitrary points // probe 1 float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING); // probe 2 float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // probe 3 float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); clean_up_after_endstop_move(); set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); #endif // AUTO_BED_LEVELING_GRID st_synchronize(); // The following code correct the Z height difference from z-probe position and hotend tip position. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // When the bed is uneven, this height must be corrected. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; z_tmp = current_position[Z_AXIS]; apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } break; #ifndef Z_PROBE_SLED case 30: // G30 Single Z Probe { st_synchronize(); // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; run_z_probe(); SERIAL_PROTOCOLPGM(MSG_BED); SERIAL_PROTOCOLPGM(" X: "); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM("\n"); clean_up_after_endstop_move(); } break; #else case 31: // dock the sled dock_sled(true); break; case 32: // undock the sled dock_sled(false); break; #endif // Z_PROBE_SLED #endif // ENABLE_AUTO_BED_LEVELING #ifdef MESH_BED_LEVELING case 30: // G30 Single Z Probe { st_synchronize(); // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; find_bed_induction_sensor_point_z(-10.f, 3); SERIAL_PROTOCOLRPGM(MSG_BED); SERIAL_PROTOCOLPGM(" X: "); MYSERIAL.print(current_position[X_AXIS], 5); SERIAL_PROTOCOLPGM(" Y: "); MYSERIAL.print(current_position[Y_AXIS], 5); SERIAL_PROTOCOLPGM(" Z: "); MYSERIAL.print(current_position[Z_AXIS], 5); SERIAL_PROTOCOLPGM("\n"); clean_up_after_endstop_move(); } break; case 75: { for (int i = 40; i <= 110; i++) { MYSERIAL.print(i); MYSERIAL.print(" "); MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]); } } break; case 76: //PINDA probe temperature calibration { #ifdef PINDA_THERMISTOR if (true) { if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { // We don't know where we are! HOME! // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. repeatcommand_front(); // repeat G76 with all its parameters enquecommand_front_P((PSTR("G28 W0"))); break; } lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING); bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false); if (result) { current_position[Z_AXIS] = 50; current_position[Y_AXIS] = 190; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET); } lcd_update_enable(true); KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly SERIAL_ECHOLNPGM("PINDA probe calibration start"); float zero_z; int z_shift = 0; //unit: steps float start_temp = 5 * (int)(current_temperature_pinda / 5); if (start_temp < 35) start_temp = 35; if (start_temp < current_temperature_pinda) start_temp += 5; SERIAL_ECHOPGM("start temperature: "); MYSERIAL.println(start_temp); // setTargetHotend(200, 0); setTargetBed(70 + (start_temp - 30)); custom_message = true; custom_message_type = 4; custom_message_state = 1; custom_message = MSG_TEMP_CALIBRATION; current_position[X_AXIS] = PINDA_PREHEAT_X; current_position[Y_AXIS] = PINDA_PREHEAT_Y; current_position[Z_AXIS] = PINDA_PREHEAT_Z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); while (current_temperature_pinda < start_temp) { delay_keep_alive(1000); serialecho_temperatures(); } eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process current_position[Z_AXIS] = 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[X_AXIS] = pgm_read_float(bed_ref_points); current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); find_bed_induction_sensor_point_z(-1.f); zero_z = current_position[Z_AXIS]; //current_position[Z_AXIS] SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("ZERO: "); MYSERIAL.print(current_position[Z_AXIS]); SERIAL_ECHOLNPGM(""); int i = -1; for (; i < 5; i++) { float temp = (40 + i * 5); SERIAL_ECHOPGM("Step: "); MYSERIAL.print(i + 2); SERIAL_ECHOLNPGM("/6 (skipped)"); SERIAL_ECHOPGM("PINDA temperature: "); MYSERIAL.print((40 + i*5)); SERIAL_ECHOPGM(" Z shift (mm):"); MYSERIAL.print(0); SERIAL_ECHOLNPGM(""); if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); if (start_temp <= temp) break; } for (i++; i < 5; i++) { float temp = (40 + i * 5); SERIAL_ECHOPGM("Step: "); MYSERIAL.print(i + 2); SERIAL_ECHOLNPGM("/6"); custom_message_state = i + 2; setTargetBed(50 + 10 * (temp - 30) / 5); // setTargetHotend(255, 0); current_position[X_AXIS] = PINDA_PREHEAT_X; current_position[Y_AXIS] = PINDA_PREHEAT_Y; current_position[Z_AXIS] = PINDA_PREHEAT_Z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); while (current_temperature_pinda < temp) { delay_keep_alive(1000); serialecho_temperatures(); } current_position[Z_AXIS] = 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[X_AXIS] = pgm_read_float(bed_ref_points); current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); find_bed_induction_sensor_point_z(-1.f); z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("PINDA temperature: "); MYSERIAL.print(current_temperature_pinda); SERIAL_ECHOPGM(" Z shift (mm):"); MYSERIAL.print(current_position[Z_AXIS] - zero_z); SERIAL_ECHOLNPGM(""); EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift); } custom_message_type = 0; custom_message = false; eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); setTargetBed(0); //set bed target temperature back to 0 // setTargetHotend(0,0); //set hotend target temperature back to 0 lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE); temp_cal_active = true; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); lcd_update_enable(true); lcd_update(2); break; } #endif //PINDA_THERMISTOR setTargetBed(PINDA_MIN_T); float zero_z; int z_shift = 0; //unit: steps int t_c; // temperature if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { // We don't know where we are! HOME! // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. repeatcommand_front(); // repeat G76 with all its parameters enquecommand_front_P((PSTR("G28 W0"))); break; } SERIAL_ECHOLNPGM("PINDA probe calibration start"); custom_message = true; custom_message_type = 4; custom_message_state = 1; custom_message = MSG_TEMP_CALIBRATION; current_position[X_AXIS] = PINDA_PREHEAT_X; current_position[Y_AXIS] = PINDA_PREHEAT_Y; current_position[Z_AXIS] = PINDA_PREHEAT_Z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); while (abs(degBed() - PINDA_MIN_T) > 1) { delay_keep_alive(1000); serialecho_temperatures(); } //enquecommand_P(PSTR("M190 S50")); for (int i = 0; i < PINDA_HEAT_T; i++) { delay_keep_alive(1000); serialecho_temperatures(); } eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process current_position[Z_AXIS] = 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[X_AXIS] = pgm_read_float(bed_ref_points); current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); find_bed_induction_sensor_point_z(-1.f); zero_z = current_position[Z_AXIS]; //current_position[Z_AXIS] SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("ZERO: "); MYSERIAL.print(current_position[Z_AXIS]); SERIAL_ECHOLNPGM(""); for (int i = 0; i<5; i++) { SERIAL_ECHOPGM("Step: "); MYSERIAL.print(i+2); SERIAL_ECHOLNPGM("/6"); custom_message_state = i + 2; t_c = 60 + i * 10; setTargetBed(t_c); current_position[X_AXIS] = PINDA_PREHEAT_X; current_position[Y_AXIS] = PINDA_PREHEAT_Y; current_position[Z_AXIS] = PINDA_PREHEAT_Z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); while (degBed() < t_c) { delay_keep_alive(1000); serialecho_temperatures(); } for (int i = 0; i < PINDA_HEAT_T; i++) { delay_keep_alive(1000); serialecho_temperatures(); } current_position[Z_AXIS] = 5; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[X_AXIS] = pgm_read_float(bed_ref_points); current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); find_bed_induction_sensor_point_z(-1.f); z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Temperature: "); MYSERIAL.print(t_c); SERIAL_ECHOPGM(" Z shift (mm):"); MYSERIAL.print(current_position[Z_AXIS] - zero_z); SERIAL_ECHOLNPGM(""); EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift); } custom_message_type = 0; custom_message = false; eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); setTargetBed(0); //set bed target temperature back to 0 lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE); temp_cal_active = true; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); lcd_update_enable(true); lcd_update(2); } break; #ifdef DIS case 77: { //G77 X200 Y150 XP100 YP15 XO10 Y015 //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0 //G77 X232 Y218 XP116 YP109 XO-11 YO0 float dimension_x = 40; float dimension_y = 40; int points_x = 40; int points_y = 40; float offset_x = 74; float offset_y = 33; if (code_seen('X')) dimension_x = code_value(); if (code_seen('Y')) dimension_y = code_value(); if (code_seen('XP')) points_x = code_value(); if (code_seen('YP')) points_y = code_value(); if (code_seen('XO')) offset_x = code_value(); if (code_seen('YO')) offset_y = code_value(); bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y); } break; #endif case 79: { for (int i = 255; i > 0; i = i - 5) { fanSpeed = i; //delay_keep_alive(2000); for (int j = 0; j < 100; j++) { delay_keep_alive(100); } fan_speed[1]; MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]); } }break; /** * G80: Mesh-based Z probe, probes a grid and produces a * mesh to compensate for variable bed height * * The S0 report the points as below * * +----> X-axis * | * | * v Y-axis * */ case 80: #ifdef MK1BP break; #endif //MK1BP case_G80: { mesh_bed_leveling_flag = true; int8_t verbosity_level = 0; static bool run = false; if (code_seen('V')) { // Just 'V' without a number counts as V1. char c = strchr_pointer[1]; verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); } // Firstly check if we know where we are if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { // We don't know where we are! HOME! // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { repeatcommand_front(); // repeat G80 with all its parameters enquecommand_front_P((PSTR("G28 W0"))); } else { mesh_bed_leveling_flag = false; } break; } bool temp_comp_start = true; #ifdef PINDA_THERMISTOR temp_comp_start = false; #endif //PINDA_THERMISTOR if (temp_comp_start) if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) { temp_compensation_start(); run = true; repeatcommand_front(); // repeat G80 with all its parameters enquecommand_front_P((PSTR("G28 W0"))); } else { mesh_bed_leveling_flag = false; } break; } run = false; if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) { mesh_bed_leveling_flag = false; break; } // Save custom message state, set a new custom message state to display: Calibrating point 9. bool custom_message_old = custom_message; unsigned int custom_message_type_old = custom_message_type; unsigned int custom_message_state_old = custom_message_state; custom_message = true; custom_message_type = 1; custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10; lcd_update(1); mbl.reset(); //reset mesh bed leveling // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be // consumed during the first movements following this statement. babystep_undo(); // Cycle through all points and probe them // First move up. During this first movement, the babystepping will be reverted. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); // The move to the first calibration point. current_position[X_AXIS] = pgm_read_float(bed_ref_points); current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1); bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 1) { clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n"); } #endif //SUPPORT_VERBOSITY // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder); // Wait until the move is finished. st_synchronize(); int mesh_point = 0; //index number of calibration point int ix = 0; int iy = 0; int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point) #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 1) { has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n"); } #endif // SUPPORT_VERBOSITY setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100 const char *kill_message = NULL; while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { // Get coords of a measuring point. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 iy = mesh_point / MESH_MEAS_NUM_X_POINTS; if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag float z0 = 0.f; if (has_z && mesh_point > 0) { uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1))); z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01; //#if 0 #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 1) { SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Bed leveling, point: "); MYSERIAL.print(mesh_point); SERIAL_ECHOPGM(", calibration z: "); MYSERIAL.print(z0, 5); SERIAL_ECHOLNPGM(""); } #endif // SUPPORT_VERBOSITY //#endif } // Move Z up to MESH_HOME_Z_SEARCH. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); st_synchronize(); // Move to XY position of the sensor point. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point); current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1); world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 1) { SERIAL_PROTOCOL(mesh_point); clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n"); } #endif // SUPPORT_VERBOSITY plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); st_synchronize(); // Go down until endstop is hit const float Z_CALIBRATION_THRESHOLD = 1.f; if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW; break; } if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) { kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED; break; } if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH; break; } #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 10) { SERIAL_ECHOPGM("X: "); MYSERIAL.print(current_position[X_AXIS], 5); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Y: "); MYSERIAL.print(current_position[Y_AXIS], 5); SERIAL_PROTOCOLPGM("\n"); } #endif // SUPPORT_VERBOSITY float offset_z = 0; #ifdef PINDA_THERMISTOR offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda); #endif //PINDA_THERMISTOR // #ifdef SUPPORT_VERBOSITY /* if (verbosity_level >= 1) { SERIAL_ECHOPGM("mesh bed leveling: "); MYSERIAL.print(current_position[Z_AXIS], 5); SERIAL_ECHOPGM(" offset: "); MYSERIAL.print(offset_z, 5); SERIAL_ECHOLNPGM(""); }*/ // #endif // SUPPORT_VERBOSITY mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z; custom_message_state--; mesh_point++; lcd_update(1); } current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 20) { SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished."); SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: "); MYSERIAL.print(current_position[Z_AXIS], 5); } #endif // SUPPORT_VERBOSITY plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); st_synchronize(); if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) { kill(kill_message); SERIAL_ECHOLNPGM("killed"); } clean_up_after_endstop_move(); // SERIAL_ECHOLNPGM("clean up finished "); bool apply_temp_comp = true; #ifdef PINDA_THERMISTOR apply_temp_comp = false; #endif if (apply_temp_comp) if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated. // SERIAL_ECHOLNPGM("babystep applied"); bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1; #ifdef SUPPORT_VERBOSITY if (verbosity_level >= 1) { eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n"); } #endif // SUPPORT_VERBOSITY for (uint8_t i = 0; i < 4; ++i) { unsigned char codes[4] = { 'L', 'R', 'F', 'B' }; long correction = 0; if (code_seen(codes[i])) correction = code_value_long(); else if (eeprom_bed_correction_valid) { unsigned char *addr = (i < 2) ? ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) : ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR); correction = eeprom_read_int8(addr); } if (correction == 0) continue; float offset = float(correction) * 0.001f; if (fabs(offset) > 0.101f) { SERIAL_ERROR_START; SERIAL_ECHOPGM("Excessive bed leveling correction: "); SERIAL_ECHO(offset); SERIAL_ECHOLNPGM(" microns"); } else { switch (i) { case 0: for (uint8_t row = 0; row < 3; ++row) { mbl.z_values[row][1] += 0.5f * offset; mbl.z_values[row][0] += offset; } break; case 1: for (uint8_t row = 0; row < 3; ++row) { mbl.z_values[row][1] += 0.5f * offset; mbl.z_values[row][2] += offset; } break; case 2: for (uint8_t col = 0; col < 3; ++col) { mbl.z_values[1][col] += 0.5f * offset; mbl.z_values[0][col] += offset; } break; case 3: for (uint8_t col = 0; col < 3; ++col) { mbl.z_values[1][col] += 0.5f * offset; mbl.z_values[2][col] += offset; } break; } } } // SERIAL_ECHOLNPGM("Bed leveling correction finished"); mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them) // SERIAL_ECHOLNPGM("Upsample finished"); mbl.active = 1; //activate mesh bed leveling // SERIAL_ECHOLNPGM("Mesh bed leveling activated"); go_home_with_z_lift(); // SERIAL_ECHOLNPGM("Go home finished"); //unretract (after PINDA preheat retraction) if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) { current_position[E_AXIS] += DEFAULT_RETRACTION; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); } KEEPALIVE_STATE(NOT_BUSY); // Restore custom message state custom_message = custom_message_old; custom_message_type = custom_message_type_old; custom_message_state = custom_message_state_old; mesh_bed_leveling_flag = false; mesh_bed_run_from_menu = false; lcd_update(2); } break; /** * G81: Print mesh bed leveling status and bed profile if activated */ case 81: if (mbl.active) { SERIAL_PROTOCOLPGM("Num X,Y: "); SERIAL_PROTOCOL(MESH_NUM_X_POINTS); SERIAL_PROTOCOLPGM(","); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); SERIAL_PROTOCOLPGM("\nZ search height: "); SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) { for (int x = 0; x < MESH_NUM_X_POINTS; x++) { SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); } SERIAL_PROTOCOLPGM("\n"); } } else SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); break; #if 0 /** * G82: Single Z probe at current location * * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen! * */ case 82: SERIAL_PROTOCOLLNPGM("Finding bed "); setup_for_endstop_move(); find_bed_induction_sensor_point_z(); clean_up_after_endstop_move(); SERIAL_PROTOCOLPGM("Bed found at: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5); SERIAL_PROTOCOLPGM("\n"); break; /** * G83: Prusa3D specific: Babystep in Z and store to EEPROM */ case 83: { int babystepz = code_seen('S') ? code_value() : 0; int BabyPosition = code_seen('P') ? code_value() : 0; if (babystepz != 0) { //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4? // Is the axis indexed starting with zero or one? if (BabyPosition > 4) { SERIAL_PROTOCOLLNPGM("Index out of bounds"); }else{ // Save it to the eeprom babystepLoadZ = babystepz; EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ); // adjust the Z babystepsTodoZadd(babystepLoadZ); } } } break; /** * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back) */ case 84: babystepsTodoZsubtract(babystepLoadZ); // babystepLoadZ = 0; break; /** * G85: Prusa3D specific: Pick best babystep */ case 85: lcd_pick_babystep(); break; #endif /** * G86: Prusa3D specific: Disable babystep correction after home. * This G-code will be performed at the start of a calibration script. */ case 86: calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); break; /** * G87: Prusa3D specific: Enable babystep correction after home * This G-code will be performed at the end of a calibration script. */ case 87: calibration_status_store(CALIBRATION_STATUS_CALIBRATED); break; /** * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode */ case 88: break; #endif // ENABLE_MESH_BED_LEVELING case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 if(!code_seen(axis_codes[E_AXIS])) st_synchronize(); for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { if(i == E_AXIS) { current_position[i] = code_value(); plan_set_e_position(current_position[E_AXIS]); } else { current_position[i] = code_value()+add_homing[i]; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } } } break; case 98: //activate farm mode farm_mode = 1; PingTime = millis(); eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); break; case 99: //deactivate farm mode farm_mode = 0; lcd_printer_connected(); eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode); lcd_update(2); break; default: printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); } } // end if(code_seen('G')) else if(code_seen('M')) { int index; for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/ if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') { printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); } else switch((int)code_value()) { #ifdef ULTIPANEL case 0: // M0 - Unconditional stop - Wait for user button press on LCD case 1: // M1 - Conditional stop - Wait for user button press on LCD { char *src = strchr_pointer + 2; codenum = 0; bool hasP = false, hasS = false; if (code_seen('P')) { codenum = code_value(); // milliseconds to wait hasP = codenum > 0; } if (code_seen('S')) { codenum = code_value() * 1000; // seconds to wait hasS = codenum > 0; } starpos = strchr(src, '*'); if (starpos != NULL) *(starpos) = '\0'; while (*src == ' ') ++src; if (!hasP && !hasS && *src != '\0') { lcd_setstatus(src); } else { LCD_MESSAGERPGM(MSG_USERWAIT); } lcd_ignore_click(); //call lcd_ignore_click aslo for else ??? st_synchronize(); previous_millis_cmd = millis(); if (codenum > 0){ codenum += millis(); // keep track of when we started waiting KEEPALIVE_STATE(PAUSED_FOR_USER); while(millis() < codenum && !lcd_clicked()){ manage_heater(); manage_inactivity(true); lcd_update(); } KEEPALIVE_STATE(IN_HANDLER); lcd_ignore_click(false); }else{ if (!lcd_detected()) break; KEEPALIVE_STATE(PAUSED_FOR_USER); while(!lcd_clicked()){ manage_heater(); manage_inactivity(true); lcd_update(); } KEEPALIVE_STATE(IN_HANDLER); } if (IS_SD_PRINTING) LCD_MESSAGERPGM(MSG_RESUMING); else LCD_MESSAGERPGM(WELCOME_MSG); } break; #endif case 17: LCD_MESSAGERPGM(MSG_NO_MOVE); enable_x(); enable_y(); enable_z(); enable_e0(); enable_e1(); enable_e2(); break; #ifdef SDSUPPORT case 20: // M20 - list SD card SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST); card.ls(); SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST); break; case 21: // M21 - init SD card card.initsd(); break; case 22: //M22 - release SD card card.release(); break; case 23: //M23 - Select file starpos = (strchr(strchr_pointer + 4,'*')); if(starpos!=NULL) *(starpos)='\0'; card.openFile(strchr_pointer + 4,true); break; case 24: //M24 - Start SD print if (!card.paused) failstats_reset_print(); card.startFileprint(); starttime=millis(); break; case 25: //M25 - Pause SD print card.pauseSDPrint(); break; case 26: //M26 - Set SD index if(card.cardOK && code_seen('S')) { card.setIndex(code_value_long()); } break; case 27: //M27 - Get SD status card.getStatus(); break; case 28: //M28 - Start SD write starpos = (strchr(strchr_pointer + 4,'*')); if(starpos != NULL){ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos) = '\0'; } card.openFile(strchr_pointer+4,false); break; case 29: //M29 - Stop SD write //processed in write to file routine above //card,saving = false; break; case 30: //M30 Delete File if (card.cardOK){ card.closefile(); starpos = (strchr(strchr_pointer + 4,'*')); if(starpos != NULL){ char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos) = '\0'; } card.removeFile(strchr_pointer + 4); } break; case 32: //M32 - Select file and start SD print { if(card.sdprinting) { st_synchronize(); } starpos = (strchr(strchr_pointer + 4,'*')); char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. if(namestartpos==NULL) { namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M } else namestartpos++; //to skip the '!' if(starpos!=NULL) *(starpos)='\0'; bool call_procedure=(code_seen('P')); if(strchr_pointer>namestartpos) call_procedure=false; //false alert, 'P' found within filename if( card.cardOK ) { card.openFile(namestartpos,true,!call_procedure); if(code_seen('S')) if(strchr_pointer= 0 && pin_status <= 255) pin_number = code_value(); for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } #if defined(FAN_PIN) && FAN_PIN > -1 if (pin_number == FAN_PIN) fanSpeed = pin_status; #endif if (pin_number > -1) { pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); } } break; #endif //_DISABLE_M42_M226 case 44: // M44: Prusa3D: Reset the bed skew and offset calibration. // Reset the baby step value and the baby step applied flag. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0); // Reset the skew and offset in both RAM and EEPROM. reset_bed_offset_and_skew(); // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); break; case 45: // M45: Prusa3D: bed skew and offset with manual Z up { int8_t verbosity_level = 0; bool only_Z = code_seen('Z'); #ifdef SUPPORT_VERBOSITY if (code_seen('V')) { // Just 'V' without a number counts as V1. char c = strchr_pointer[1]; verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); } #endif //SUPPORT_VERBOSITY gcode_M45(only_Z, verbosity_level); } break; /* case 46: { // M46: Prusa3D: Show the assigned IP address. uint8_t ip[4]; bool hasIP = card.ToshibaFlashAir_GetIP(ip); if (hasIP) { SERIAL_ECHOPGM("Toshiba FlashAir current IP: "); SERIAL_ECHO(int(ip[0])); SERIAL_ECHOPGM("."); SERIAL_ECHO(int(ip[1])); SERIAL_ECHOPGM("."); SERIAL_ECHO(int(ip[2])); SERIAL_ECHOPGM("."); SERIAL_ECHO(int(ip[3])); SERIAL_ECHOLNPGM(""); } else { SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed"); } break; } */ case 47: // M47: Prusa3D: Show end stops dialog on the display. KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_diag_show_end_stops(); KEEPALIVE_STATE(IN_HANDLER); break; #if 0 case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC. { // Disable the default update procedure of the display. We will do a modal dialog. lcd_update_enable(false); // Let the planner use the uncorrected coordinates. mbl.reset(); // Reset world2machine_rotation_and_skew and world2machine_shift, therefore // the planner will not perform any adjustments in the XY plane. // Wait for the motors to stop and update the current position with the absolute values. world2machine_revert_to_uncorrected(); // Move the print head close to the bed. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); // Home in the XY plane. set_destination_to_current(); setup_for_endstop_move(); home_xy(); int8_t verbosity_level = 0; if (code_seen('V')) { // Just 'V' without a number counts as V1. char c = strchr_pointer[1]; verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short(); } bool success = scan_bed_induction_points(verbosity_level); clean_up_after_endstop_move(); // Print head up. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder); st_synchronize(); lcd_update_enable(true); break; } #endif // M48 Z-Probe repeatability measurement function. // // Usage: M48 // // This function assumes the bed has been homed. Specificaly, that a G28 command // as been issued prior to invoking the M48 Z-Probe repeatability measurement function. // Any information generated by a prior G29 Bed leveling command will be lost and need to be // regenerated. // // The number of samples will default to 10 if not specified. You can use upper or lower case // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital // N for its communication protocol and will get horribly confused if you send it a capital N. // #ifdef ENABLE_AUTO_BED_LEVELING #ifdef Z_PROBE_REPEATABILITY_TEST case 48: // M48 Z-Probe repeatability { #if Z_MIN_PIN == -1 #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." #endif double sum=0.0; double mean=0.0; double sigma=0.0; double sample_set[50]; int verbose_level=1, n=0, j, n_samples = 10, n_legs=0; double X_current, Y_current, Z_current; double X_probe_location, Y_probe_location, Z_start_location, ext_position; if (code_seen('V') || code_seen('v')) { verbose_level = code_value(); if (verbose_level<0 || verbose_level>4 ) { SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); goto Sigma_Exit; } } if (verbose_level > 0) { SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n"); SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n"); } if (code_seen('n')) { n_samples = code_value(); if (n_samples<4 || n_samples>50 ) { SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); goto Sigma_Exit; } } X_current = X_probe_location = st_get_position_mm(X_AXIS); Y_current = Y_probe_location = st_get_position_mm(Y_AXIS); Z_current = st_get_position_mm(Z_AXIS); Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; ext_position = st_get_position_mm(E_AXIS); if (code_seen('X') || code_seen('x') ) { X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; if (X_probe_locationX_MAX_POS ) { SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); goto Sigma_Exit; } } if (code_seen('Y') || code_seen('y') ) { Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; if (Y_probe_locationY_MAX_POS ) { SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); goto Sigma_Exit; } } if (code_seen('L') || code_seen('l') ) { n_legs = code_value(); if ( n_legs==1 ) n_legs = 2; if ( n_legs<0 || n_legs>15 ) { SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); goto Sigma_Exit; } } // // Do all the preliminary setup work. First raise the probe. // st_synchronize(); plan_bed_level_matrix.set_to_identity(); plan_buffer_line( X_current, Y_current, Z_start_location, ext_position, homing_feedrate[Z_AXIS]/60, active_extruder); st_synchronize(); // // Now get everything to the specified probe point So we can safely do a probe to // get us close to the bed. If the Z-Axis is far from the bed, we don't want to // use that as a starting point for each probe. // if (verbose_level > 2) SERIAL_PROTOCOL("Positioning probe for the test.\n"); plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, ext_position, homing_feedrate[X_AXIS]/60, active_extruder); st_synchronize(); current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS); current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); // // OK, do the inital probe to get us close to the bed. // Then retrace the right amount and use that in subsequent probes // setup_for_endstop_move(); run_z_probe(); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, ext_position, homing_feedrate[X_AXIS]/60, active_extruder); st_synchronize(); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); for( n=0; nX_MAX_POS) X_current = X_MAX_POS; if ( Y_currentY_MAX_POS) Y_current = Y_MAX_POS; if (verbose_level>3 ) { SERIAL_ECHOPAIR("x: ", X_current); SERIAL_ECHOPAIR("y: ", Y_current); SERIAL_PROTOCOLLNPGM(""); } do_blocking_move_to( X_current, Y_current, Z_current ); } do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location } setup_for_endstop_move(); run_z_probe(); sample_set[n] = current_position[Z_AXIS]; // // Get the current mean for the data points we have so far // sum=0.0; for( j=0; j<=n; j++) { sum = sum + sample_set[j]; } mean = sum / (double (n+1)); // // Now, use that mean to calculate the standard deviation for the // data points we have so far // sum=0.0; for( j=0; j<=n; j++) { sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); } sigma = sqrt( sum / (double (n+1)) ); if (verbose_level > 1) { SERIAL_PROTOCOL(n+1); SERIAL_PROTOCOL(" of "); SERIAL_PROTOCOL(n_samples); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); } if (verbose_level > 2) { SERIAL_PROTOCOL(" mean: "); SERIAL_PROTOCOL_F(mean,6); SERIAL_PROTOCOL(" sigma: "); SERIAL_PROTOCOL_F(sigma,6); } if (verbose_level > 0) SERIAL_PROTOCOLPGM("\n"); plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); st_synchronize(); } delay(1000); clean_up_after_endstop_move(); // enable_endstops(true); if (verbose_level > 0) { SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOLPGM("\n"); } SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_PROTOCOLPGM("\n\n"); Sigma_Exit: break; } #endif // Z_PROBE_REPEATABILITY_TEST #endif // ENABLE_AUTO_BED_LEVELING case 104: // M104 if(setTargetedHotend(104)){ break; } if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); setWatch(); break; case 112: // M112 -Emergency Stop kill("", 3); break; case 140: // M140 set bed temp if (code_seen('S')) setTargetBed(code_value()); break; case 105 : // M105 if(setTargetedHotend(105)){ break; } #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetBed(),1); #endif //TEMP_BED_PIN for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM(":"); SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1); } #else SERIAL_ERROR_START; SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS); #endif SERIAL_PROTOCOLPGM(" @:"); #ifdef EXTRUDER_WATTS SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127); SERIAL_PROTOCOLPGM("W"); #else SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); #endif SERIAL_PROTOCOLPGM(" B@:"); #ifdef BED_WATTS SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127); SERIAL_PROTOCOLPGM("W"); #else SERIAL_PROTOCOL(getHeaterPower(-1)); #endif #ifdef PINDA_THERMISTOR SERIAL_PROTOCOLPGM(" P:"); SERIAL_PROTOCOL_F(current_temperature_pinda,1); #endif //PINDA_THERMISTOR #ifdef AMBIENT_THERMISTOR SERIAL_PROTOCOLPGM(" A:"); SERIAL_PROTOCOL_F(current_temperature_ambient,1); #endif //AMBIENT_THERMISTOR #ifdef SHOW_TEMP_ADC_VALUES {float raw = 0.0; #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 SERIAL_PROTOCOLPGM(" ADC B:"); SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOLPGM("C->"); raw = rawBedTemp(); SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); SERIAL_PROTOCOLPGM(" Rb->"); SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); SERIAL_PROTOCOLPGM(" Rxb->"); SERIAL_PROTOCOL_F(raw, 5); #endif for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM(":"); SERIAL_PROTOCOL_F(degHotend(cur_extruder),1); SERIAL_PROTOCOLPGM("C->"); raw = rawHotendTemp(cur_extruder); SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5); SERIAL_PROTOCOLPGM(" Rt"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM("->"); SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5); SERIAL_PROTOCOLPGM(" Rx"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLPGM("->"); SERIAL_PROTOCOL_F(raw, 5); }} #endif SERIAL_PROTOCOLLN(""); KEEPALIVE_STATE(NOT_BUSY); return; break; case 109: {// M109 - Wait for extruder heater to reach target. if(setTargetedHotend(109)){ break; } LCD_MESSAGERPGM(MSG_HEATING); heating_status = 1; if (farm_mode) { prusa_statistics(1); }; #ifdef AUTOTEMP autotemp_enabled=false; #endif if (code_seen('S')) { setTargetHotend(code_value(), tmp_extruder); CooldownNoWait = true; } else if (code_seen('R')) { setTargetHotend(code_value(), tmp_extruder); CooldownNoWait = false; } #ifdef AUTOTEMP if (code_seen('S')) autotemp_min=code_value(); if (code_seen('B')) autotemp_max=code_value(); if (code_seen('F')) { autotemp_factor=code_value(); autotemp_enabled=true; } #endif setWatch(); codenum = millis(); /* See if we are heating up or cooling down */ target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling KEEPALIVE_STATE(NOT_BUSY); cancel_heatup = false; wait_for_heater(codenum); //loops until target temperature is reached LCD_MESSAGERPGM(MSG_HEATING_COMPLETE); KEEPALIVE_STATE(IN_HANDLER); heating_status = 2; if (farm_mode) { prusa_statistics(2); }; //starttime=millis(); previous_millis_cmd = millis(); } break; case 190: // M190 - Wait for bed heater to reach target. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 LCD_MESSAGERPGM(MSG_BED_HEATING); heating_status = 3; if (farm_mode) { prusa_statistics(1); }; if (code_seen('S')) { setTargetBed(code_value()); CooldownNoWait = true; } else if (code_seen('R')) { setTargetBed(code_value()); CooldownNoWait = false; } codenum = millis(); cancel_heatup = false; target_direction = isHeatingBed(); // true if heating, false if cooling KEEPALIVE_STATE(NOT_BUSY); while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) { if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. { if (!farm_mode) { float tt = degHotend(active_extruder); SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOL(tt); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL((int)active_extruder); SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(degBed(), 1); SERIAL_PROTOCOLLN(""); } codenum = millis(); } manage_heater(); manage_inactivity(); lcd_update(); } LCD_MESSAGERPGM(MSG_BED_DONE); KEEPALIVE_STATE(IN_HANDLER); heating_status = 4; previous_millis_cmd = millis(); #endif break; #if defined(FAN_PIN) && FAN_PIN > -1 case 106: //M106 Fan On if (code_seen('S')){ fanSpeed=constrain(code_value(),0,255); } else { fanSpeed=255; } break; case 107: //M107 Fan Off fanSpeed = 0; break; #endif //FAN_PIN #if defined(PS_ON_PIN) && PS_ON_PIN > -1 case 80: // M80 - Turn on Power Supply SET_OUTPUT(PS_ON_PIN); //GND WRITE(PS_ON_PIN, PS_ON_AWAKE); // If you have a switch on suicide pin, this is useful // if you want to start another print with suicide feature after // a print without suicide... #if defined SUICIDE_PIN && SUICIDE_PIN > -1 SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, HIGH); #endif #ifdef ULTIPANEL powersupply = true; LCD_MESSAGERPGM(WELCOME_MSG); lcd_update(); #endif break; #endif case 81: // M81 - Turn off Power Supply disable_heater(); st_synchronize(); disable_e0(); disable_e1(); disable_e2(); finishAndDisableSteppers(); fanSpeed = 0; delay(1000); // Wait a little before to switch off #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 st_synchronize(); suicide(); #elif defined(PS_ON_PIN) && PS_ON_PIN > -1 SET_OUTPUT(PS_ON_PIN); WRITE(PS_ON_PIN, PS_ON_ASLEEP); #endif #ifdef ULTIPANEL powersupply = false; LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!! /* MACHNAME = "Prusa i3" MSGOFF = "Vypnuto" "Prusai3"" ""vypnuto""." "Prusa i3"" "MSG_ALL[lang_selected][50]"." */ lcd_update(); #endif break; case 82: axis_relative_modes[3] = false; break; case 83: axis_relative_modes[3] = true; break; case 18: //compatibility case 84: // M84 if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; } else { bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); if(all_axis) { st_synchronize(); disable_e0(); disable_e1(); disable_e2(); finishAndDisableSteppers(); } else { st_synchronize(); if (code_seen('X')) disable_x(); if (code_seen('Y')) disable_y(); if (code_seen('Z')) disable_z(); #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS if (code_seen('E')) { disable_e0(); disable_e1(); disable_e2(); } #endif } } snmm_filaments_used = 0; break; case 85: // M85 if(code_seen('S')) { max_inactive_time = code_value() * 1000; } break; case 92: // M92 for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { if(i == 3) { // E float value = code_value(); if(value < 20.0) { float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. max_jerk[E_AXIS] *= factor; max_feedrate[i] *= factor; axis_steps_per_sqr_second[i] *= factor; } axis_steps_per_unit[i] = value; } else { axis_steps_per_unit[i] = code_value(); } } } break; case 110: // M110 - reset line pos if (code_seen('N')) gcode_LastN = code_value_long(); break; #ifdef HOST_KEEPALIVE_FEATURE case 113: // M113 - Get or set Host Keepalive interval if (code_seen('S')) { host_keepalive_interval = (uint8_t)code_value_short(); // NOMORE(host_keepalive_interval, 60); } else { SERIAL_ECHO_START; SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval); SERIAL_PROTOCOLLN(""); } break; #endif case 115: // M115 if (code_seen('V')) { // Report the Prusa version number. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P()); } else if (code_seen('U')) { // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, // pause the print and ask the user to upgrade the firmware. show_upgrade_dialog_if_version_newer(++ strchr_pointer); } else { SERIAL_PROTOCOLRPGM(MSG_M115_REPORT); } break; /* case 117: // M117 display message starpos = (strchr(strchr_pointer + 5,'*')); if(starpos!=NULL) *(starpos)='\0'; lcd_setstatus(strchr_pointer + 5); break;*/ case 114: // M114 gcode_M114(); break; case 120: // M120 enable_endstops(false) ; break; case 121: // M121 enable_endstops(true) ; break; case 119: // M119 SERIAL_PROTOCOLRPGM(MSG_M119_REPORT); SERIAL_PROTOCOLLN(""); #if defined(X_MIN_PIN) && X_MIN_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_X_MIN); if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(X_MAX_PIN) && X_MAX_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_X_MAX); if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Y_MIN); if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Y_MAX); if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Z_MIN); if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 SERIAL_PROTOCOLRPGM(MSG_Z_MAX); if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT); }else{ SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN); } SERIAL_PROTOCOLLN(""); #endif break; //TODO: update for all axis, use for loop #ifdef BLINKM case 150: // M150 { byte red; byte grn; byte blu; if(code_seen('R')) red = code_value(); if(code_seen('U')) grn = code_value(); if(code_seen('B')) blu = code_value(); SendColors(red,grn,blu); } break; #endif //BLINKM case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). { tmp_extruder = active_extruder; if(code_seen('T')) { tmp_extruder = code_value(); if(tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); break; } } float area = .0; if(code_seen('D')) { float diameter = (float)code_value(); if (diameter == 0.0) { // setting any extruder filament size disables volumetric on the assumption that // slicers either generate in extruder values as cubic mm or as as filament feeds // for all extruders volumetric_enabled = false; } else { filament_size[tmp_extruder] = (float)code_value(); // make sure all extruders have some sane value for the filament size filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]); #if EXTRUDERS > 1 filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]); #if EXTRUDERS > 2 filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]); #endif #endif volumetric_enabled = true; } } else { //reserved for setting filament diameter via UFID or filament measuring device break; } calculate_extruder_multipliers(); } break; case 201: // M201 for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { max_acceleration_units_per_sq_second[i] = code_value(); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) reset_acceleration_rates(); break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; #endif case 203: // M203 max feedrate mm/sec for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); } break; case 204: // M204 acclereration S normal moves T filmanent only moves { if(code_seen('S')) acceleration = code_value() ; if(code_seen('T')) retract_acceleration = code_value() ; } break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk { if(code_seen('S')) minimumfeedrate = code_value(); if(code_seen('T')) mintravelfeedrate = code_value(); if(code_seen('B')) minsegmenttime = code_value() ; if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value(); if(code_seen('Y')) max_jerk[Y_AXIS] = code_value(); if(code_seen('Z')) max_jerk[Z_AXIS] = code_value(); if(code_seen('E')) max_jerk[E_AXIS] = code_value(); if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK; if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK; } break; case 206: // M206 additional homing offset for(int8_t i=0; i < 3; i++) { if(code_seen(axis_codes[i])) add_homing[i] = code_value(); } break; #ifdef FWRETRACT case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] { if(code_seen('S')) { retract_length = code_value() ; } if(code_seen('F')) { retract_feedrate = code_value()/60 ; } if(code_seen('Z')) { retract_zlift = code_value() ; } }break; case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] { if(code_seen('S')) { retract_recover_length = code_value() ; } if(code_seen('F')) { retract_recover_feedrate = code_value()/60 ; } }break; case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. { if(code_seen('S')) { int t= code_value() ; switch(t) { case 0: { autoretract_enabled=false; retracted[0]=false; #if EXTRUDERS > 1 retracted[1]=false; #endif #if EXTRUDERS > 2 retracted[2]=false; #endif }break; case 1: { autoretract_enabled=true; retracted[0]=false; #if EXTRUDERS > 1 retracted[1]=false; #endif #if EXTRUDERS > 2 retracted[2]=false; #endif }break; default: SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); SERIAL_ECHOLNPGM("\"(1)"); } } }break; #endif // FWRETRACT #if EXTRUDERS > 1 case 218: // M218 - set hotend offset (in mm), T X Y { if(setTargetedHotend(218)){ break; } if(code_seen('X')) { extruder_offset[X_AXIS][tmp_extruder] = code_value(); } if(code_seen('Y')) { extruder_offset[Y_AXIS][tmp_extruder] = code_value(); } SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_HOTEND_OFFSET); for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) { SERIAL_ECHO(" "); SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); SERIAL_ECHO(","); SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); } SERIAL_ECHOLN(""); }break; #endif case 220: // M220 S- set speed factor override percentage { if(code_seen('S')) { feedmultiply = code_value() ; } } break; case 221: // M221 S- set extrude factor override percentage { if(code_seen('S')) { int tmp_code = code_value(); if (code_seen('T')) { if(setTargetedHotend(221)){ break; } extruder_multiply[tmp_extruder] = tmp_code; } else { extrudemultiply = tmp_code ; } } calculate_extruder_multipliers(); } break; #ifndef _DISABLE_M42_M226 case 226: // M226 P S- Wait until the specified pin reaches the state required { if(code_seen('P')){ int pin_number = code_value(); // pin number int pin_state = -1; // required pin state - default is inverted if(code_seen('S')) pin_state = code_value(); // required pin state if(pin_state >= -1 && pin_state <= 1){ for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } if (pin_number > -1) { int target = LOW; st_synchronize(); pinMode(pin_number, INPUT); switch(pin_state){ case 1: target = HIGH; break; case 0: target = LOW; break; case -1: target = !digitalRead(pin_number); break; } while(digitalRead(pin_number) != target){ manage_heater(); manage_inactivity(); lcd_update(); } } } } } break; #endif //_DISABLE_M42_M226 #if NUM_SERVOS > 0 case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds { int servo_index = -1; int servo_position = 0; if (code_seen('P')) servo_index = code_value(); if (code_seen('S')) { servo_position = code_value(); if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) servos[servo_index].attach(0); #endif servos[servo_index].write(servo_position); #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) delay(PROBE_SERVO_DEACTIVATION_DELAY); servos[servo_index].detach(); #endif } else { SERIAL_ECHO_START; SERIAL_ECHO("Servo "); SERIAL_ECHO(servo_index); SERIAL_ECHOLN(" out of range"); } } else if (servo_index >= 0) { SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(" Servo "); SERIAL_PROTOCOL(servo_index); SERIAL_PROTOCOL(": "); SERIAL_PROTOCOL(servos[servo_index].read()); SERIAL_PROTOCOLLN(""); } } break; #endif // NUM_SERVOS > 0 #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) case 300: // M300 { int beepS = code_seen('S') ? code_value() : 110; int beepP = code_seen('P') ? code_value() : 1000; if (beepS > 0) { #if BEEPER > 0 tone(BEEPER, beepS); delay(beepP); noTone(BEEPER); #elif defined(ULTRALCD) lcd_buzz(beepS, beepP); #elif defined(LCD_USE_I2C_BUZZER) lcd_buzz(beepP, beepS); #endif } else { delay(beepP); } } break; #endif // M300 #ifdef PIDTEMP case 301: // M301 { if(code_seen('P')) Kp = code_value(); if(code_seen('I')) Ki = scalePID_i(code_value()); if(code_seen('D')) Kd = scalePID_d(code_value()); #ifdef PID_ADD_EXTRUSION_RATE if(code_seen('C')) Kc = code_value(); #endif updatePID(); SERIAL_PROTOCOLRPGM(MSG_OK); SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(Kp); SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(unscalePID_i(Ki)); SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(unscalePID_d(Kd)); #ifdef PID_ADD_EXTRUSION_RATE SERIAL_PROTOCOL(" c:"); //Kc does not have scaling applied above, or in resetting defaults SERIAL_PROTOCOL(Kc); #endif SERIAL_PROTOCOLLN(""); } break; #endif //PIDTEMP #ifdef PIDTEMPBED case 304: // M304 { if(code_seen('P')) bedKp = code_value(); if(code_seen('I')) bedKi = scalePID_i(code_value()); if(code_seen('D')) bedKd = scalePID_d(code_value()); updatePID(); SERIAL_PROTOCOLRPGM(MSG_OK); SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(bedKp); SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(unscalePID_i(bedKi)); SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(unscalePID_d(bedKd)); SERIAL_PROTOCOLLN(""); } break; #endif //PIDTEMP case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ { #ifdef CHDK SET_OUTPUT(CHDK); WRITE(CHDK, HIGH); chdkHigh = millis(); chdkActive = true; #else #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 const uint8_t NUM_PULSES=16; const float PULSE_LENGTH=0.01524; for(int i=0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } delay(7.33); for(int i=0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } #endif #endif //chdk end if } break; #ifdef DOGLCD case 250: // M250 Set LCD contrast value: C (value 0..63) { if (code_seen('C')) { lcd_setcontrast( ((int)code_value())&63 ); } SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOL(lcd_contrast); SERIAL_PROTOCOLLN(""); } break; #endif #ifdef PREVENT_DANGEROUS_EXTRUDE case 302: // allow cold extrudes, or set the minimum extrude temperature { float temp = .0; if (code_seen('S')) temp=code_value(); set_extrude_min_temp(temp); } break; #endif case 303: // M303 PID autotune { float temp = 150.0; int e=0; int c=5; if (code_seen('E')) e=code_value(); if (e<0) temp=70; if (code_seen('S')) temp=code_value(); if (code_seen('C')) c=code_value(); PID_autotune(temp, e, c); } break; case 400: // M400 finish all moves { st_synchronize(); } break; case 500: // M500 Store settings in EEPROM { Config_StoreSettings(EEPROM_OFFSET); } break; case 501: // M501 Read settings from EEPROM { Config_RetrieveSettings(EEPROM_OFFSET); } break; case 502: // M502 Revert to default settings { Config_ResetDefault(); } break; case 503: // M503 print settings currently in memory { Config_PrintSettings(); } break; case 509: //M509 Force language selection { lcd_force_language_selection(); SERIAL_ECHO_START; SERIAL_PROTOCOLPGM(("LANG SEL FORCED")); } break; #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED case 540: { if(code_seen('S')) abort_on_endstop_hit = code_value() > 0; } break; #endif #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: { float value; if (code_seen('Z')) { value = code_value(); if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) { zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR(""))); SERIAL_PROTOCOLLN(""); } else { SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET); SERIAL_ECHORPGM(MSG_Z_MIN); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); SERIAL_ECHORPGM(MSG_Z_MAX); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); SERIAL_PROTOCOLLN(""); } } else { SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : "))); SERIAL_ECHO(-zprobe_zoffset); SERIAL_PROTOCOLLN(""); } break; } #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET #ifdef FILAMENTCHANGEENABLE case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] { #ifdef PAT9125 bool old_fsensor_enabled = fsensor_enabled; fsensor_enabled = false; //temporary solution for unexpected restarting #endif //PAT9125 st_synchronize(); float target[4]; float lastpos[4]; if (farm_mode) { prusa_statistics(22); } feedmultiplyBckp=feedmultiply; int8_t TooLowZ = 0; float HotendTempBckp = degTargetHotend(active_extruder); int fanSpeedBckp = fanSpeed; target[X_AXIS]=current_position[X_AXIS]; target[Y_AXIS]=current_position[Y_AXIS]; target[Z_AXIS]=current_position[Z_AXIS]; target[E_AXIS]=current_position[E_AXIS]; lastpos[X_AXIS]=current_position[X_AXIS]; lastpos[Y_AXIS]=current_position[Y_AXIS]; lastpos[Z_AXIS]=current_position[Z_AXIS]; lastpos[E_AXIS]=current_position[E_AXIS]; //Restract extruder if(code_seen('E')) { target[E_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_FIRSTRETRACT target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //Lift Z if(code_seen('Z')) { target[Z_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_ZADD target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; if(target[Z_AXIS] < 10){ target[Z_AXIS]+= 10 ; TooLowZ = 1; }else{ TooLowZ = 0; } #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); //Move XY to side if(code_seen('X')) { target[X_AXIS]+= code_value(); } else { #ifdef FILAMENTCHANGE_XPOS target[X_AXIS]= FILAMENTCHANGE_XPOS ; #endif } if(code_seen('Y')) { target[Y_AXIS]= code_value(); } else { #ifdef FILAMENTCHANGE_YPOS target[Y_AXIS]= FILAMENTCHANGE_YPOS ; #endif } plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); st_synchronize(); KEEPALIVE_STATE(PAUSED_FOR_USER); uint8_t cnt = 0; int counterBeep = 0; fanSpeed = 0; unsigned long waiting_start_time = millis(); uint8_t wait_for_user_state = 0; lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD); while (!(wait_for_user_state == 0 && lcd_clicked())){ //cnt++; manage_heater(); manage_inactivity(true); /*#ifdef SNMM target[E_AXIS] += 0.002; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); #endif // SNMM*/ //if (cnt == 0) { #if BEEPER > 0 if (counterBeep == 500) { counterBeep = 0; } SET_OUTPUT(BEEPER); if (counterBeep == 0) { WRITE(BEEPER, HIGH); } if (counterBeep == 20) { WRITE(BEEPER, LOW); } counterBeep++; #else #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) lcd_buzz(1000 / 6, 100); #else lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); #endif #endif } switch (wait_for_user_state) { case 0: delay_keep_alive(4); if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) { lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT); wait_for_user_state = 1; setTargetHotend(0, 0); setTargetHotend(0, 1); setTargetHotend(0, 2); st_synchronize(); disable_e0(); disable_e1(); disable_e2(); } break; case 1: delay_keep_alive(4); if (lcd_clicked()) { setTargetHotend(HotendTempBckp, active_extruder); lcd_wait_for_heater(); wait_for_user_state = 2; } break; case 2: if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) { lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD); waiting_start_time = millis(); wait_for_user_state = 0; } else { counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat lcd.setCursor(1, 4); lcd.print(ftostr3(degHotend(active_extruder))); } break; } } WRITE(BEEPER, LOW); lcd_change_fil_state = 0; // Unload filament lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT); KEEPALIVE_STATE(IN_HANDLER); custom_message = true; lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); if (code_seen('L')) { target[E_AXIS] += code_value(); } else { #ifdef SNMM #else #ifdef FILAMENTCHANGE_FINALRETRACT target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT; #endif #endif // SNMM } #ifdef SNMM target[E_AXIS] += 12; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder); target[E_AXIS] += 6; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); target[E_AXIS] += (FIL_LOAD_LENGTH * -1); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder); st_synchronize(); target[E_AXIS] += (FIL_COOLING); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); target[E_AXIS] += (FIL_COOLING*-1); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); target[E_AXIS] += (bowden_length[snmm_extruder] * -1); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); st_synchronize(); #else // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder); target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT; st_synchronize(); #ifdef TMC2130 uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS]; tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R); #else st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; #endif //TMC2130 target[E_AXIS] -= 45; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder); st_synchronize(); target[E_AXIS] -= 15; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder); st_synchronize(); target[E_AXIS] -= 20; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder); st_synchronize(); #ifdef TMC2130 tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp); #else uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); if(silentMode) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents else st_current_set(2, tmp_motor_loud[2]); #endif //TMC2130 #endif // SNMM //finish moves st_synchronize(); lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); delay(100); WRITE(BEEPER, HIGH); counterBeep = 0; while(!lcd_clicked() && (counterBeep < 50)) { if(counterBeep > 5) WRITE(BEEPER, LOW); delay_keep_alive(100); counterBeep++; } WRITE(BEEPER, LOW); KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true); if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER); //lcd_return_to_status(); lcd_update_enable(true); //Wait for user to insert filament lcd_wait_interact(); //load_filament_time = millis(); KEEPALIVE_STATE(PAUSED_FOR_USER); #ifdef PAT9125 if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start(); #endif //PAT9125 // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600); while(!lcd_clicked()) { manage_heater(); manage_inactivity(true); #ifdef PAT9125 if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload()) { tone(BEEPER, 1000); delay_keep_alive(50); noTone(BEEPER); break; } #endif //PAT9125 /*#ifdef SNMM target[E_AXIS] += 0.002; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); #endif // SNMM*/ } #ifdef PAT9125 if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop(); #endif //PAT9125 //WRITE(BEEPER, LOW); KEEPALIVE_STATE(IN_HANDLER); #ifdef SNMM display_loading(); KEEPALIVE_STATE(PAUSED_FOR_USER); do { target[E_AXIS] += 0.002; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); delay_keep_alive(2); } while (!lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); /*if (millis() - load_filament_time > 2) { load_filament_time = millis(); target[E_AXIS] += 0.001; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder); }*/ //Filament inserted //Feed the filament to the end of nozzle quickly st_synchronize(); target[E_AXIS] += bowden_length[snmm_extruder]; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); target[E_AXIS] += FIL_LOAD_LENGTH - 60; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); target[E_AXIS] += 40; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); target[E_AXIS] += 10; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); #else target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); #endif // SNMM //Extrude some filament target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); //Wait for user to check the state lcd_change_fil_state = 0; lcd_loading_filament(); tone(BEEPER, 500); delay_keep_alive(50); noTone(BEEPER); while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){ lcd_change_fil_state = 0; KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_alright(); KEEPALIVE_STATE(IN_HANDLER); switch(lcd_change_fil_state){ // Filament failed to load so load it again case 2: #ifdef SNMM display_loading(); do { target[E_AXIS] += 0.002; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder); delay_keep_alive(2); } while (!lcd_clicked()); st_synchronize(); target[E_AXIS] += bowden_length[snmm_extruder]; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder); target[E_AXIS] += FIL_LOAD_LENGTH - 60; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder); target[E_AXIS] += 40; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder); target[E_AXIS] += 10; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder); #else target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); #endif target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); lcd_loading_filament(); break; // Filament loaded properly but color is not clear case 3: target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); lcd_loading_color(); break; // Everything good default: lcd_change_success(); lcd_update_enable(true); break; } } //Not let's go back to print fanSpeed = fanSpeedBckp; //Feed a little of filament to stabilize pressure target[E_AXIS]+= FILAMENTCHANGE_RECFEED; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); //Retract target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT; plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing //Move XY back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder); //Move Z back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder); target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT; //Unretract plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder); //Set E position to original plan_set_e_position(lastpos[E_AXIS]); //Recover feed rate feedmultiply=feedmultiplyBckp; char cmd[9]; sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp); enquecommand(cmd); lcd_setstatuspgm(WELCOME_MSG); custom_message = false; custom_message_type = 0; #ifdef PAT9125 fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting if (fsensor_M600) { cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front st_synchronize(); while (!is_buffer_empty()) { process_commands(); cmdqueue_pop_front(); } fsensor_enable(); fsensor_restore_print_and_continue(); } #endif //PAT9125 } break; #endif //FILAMENTCHANGEENABLE case 601: { if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE; } break; case 602: { if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME; } break; #ifdef PINDA_THERMISTOR case 860: // M860 - Wait for PINDA thermistor to reach target temperature. { int setTargetPinda = 0; if (code_seen('S')) { setTargetPinda = code_value(); } else { break; } LCD_MESSAGERPGM(MSG_PLEASE_WAIT); SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:"); SERIAL_PROTOCOL(setTargetPinda); SERIAL_PROTOCOLLN(""); codenum = millis(); cancel_heatup = false; KEEPALIVE_STATE(NOT_BUSY); while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) { if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting. { SERIAL_PROTOCOLPGM("P:"); SERIAL_PROTOCOL_F(current_temperature_pinda, 1); SERIAL_PROTOCOLPGM("/"); SERIAL_PROTOCOL(setTargetPinda); SERIAL_PROTOCOLLN(""); codenum = millis(); } manage_heater(); manage_inactivity(); lcd_update(); } LCD_MESSAGERPGM(MSG_OK); break; } case 861: // M861 - Set/Read PINDA temperature compensation offsets if (code_seen('?')) { // ? - Print out current EEPRO offset values uint8_t cal_status = calibration_status_pinda(); cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0"); SERIAL_PROTOCOLLN("index, temp, ustep, um"); for (uint8_t i = 0; i < 6; i++) { uint16_t usteps = 0; if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1)); float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS]; i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1); SERIAL_PROTOCOLPGM(", "); SERIAL_PROTOCOL(35 + (i * 5)); SERIAL_PROTOCOLPGM(", "); SERIAL_PROTOCOL(usteps); SERIAL_PROTOCOLPGM(", "); SERIAL_PROTOCOL(mm * 1000); SERIAL_PROTOCOLLN(""); } } else if (code_seen('!')) { // ! - Set factory default values eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps SERIAL_PROTOCOLLN("factory restored"); } else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation) eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 0); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 0); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 0); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 0); eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 0); SERIAL_PROTOCOLLN("zerorized"); } else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I uint16_t usteps = code_value(); if (code_seen('I')) { byte index = code_value(); if ((index >= 0) && (index < 5)) { eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + index, usteps); SERIAL_PROTOCOLLN("OK"); SERIAL_PROTOCOLLN("index, temp, ustep, um"); for (uint8_t i = 0; i < 6; i++) { uint16_t usteps = 0; if (i > 0) usteps = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1)); float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS]; i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1); SERIAL_PROTOCOLPGM(", "); SERIAL_PROTOCOL(35 + (i * 5)); SERIAL_PROTOCOLPGM(", "); SERIAL_PROTOCOL(usteps); SERIAL_PROTOCOLPGM(", "); SERIAL_PROTOCOL(mm * 1000); SERIAL_PROTOCOLLN(""); } } } } else { SERIAL_PROTOCOLPGM("no valid command"); } break; #endif //PINDA_THERMISTOR #ifdef LIN_ADVANCE case 900: // M900: Set LIN_ADVANCE options. gcode_M900(); break; #endif case 907: // M907 Set digital trimpot motor current using axis codes. { #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 for(int i=0;i -1 uint8_t channel,current; if(code_seen('P')) channel=code_value(); if(code_seen('S')) current=code_value(); digitalPotWrite(channel, current); #endif } break; #ifdef TMC2130 case 910: // M910 TMC2130 init { tmc2130_init(); } break; case 911: // M911 Set TMC2130 holding currents { if (code_seen('X')) tmc2130_set_current_h(0, code_value()); if (code_seen('Y')) tmc2130_set_current_h(1, code_value()); if (code_seen('Z')) tmc2130_set_current_h(2, code_value()); if (code_seen('E')) tmc2130_set_current_h(3, code_value()); } break; case 912: // M912 Set TMC2130 running currents { if (code_seen('X')) tmc2130_set_current_r(0, code_value()); if (code_seen('Y')) tmc2130_set_current_r(1, code_value()); if (code_seen('Z')) tmc2130_set_current_r(2, code_value()); if (code_seen('E')) tmc2130_set_current_r(3, code_value()); } break; case 913: // M913 Print TMC2130 currents { tmc2130_print_currents(); } break; case 914: // M914 Set normal mode { tmc2130_mode = TMC2130_MODE_NORMAL; tmc2130_init(); } break; case 915: // M915 Set silent mode { tmc2130_mode = TMC2130_MODE_SILENT; tmc2130_init(); } break; case 916: // M916 Set sg_thrs { if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value(); if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value(); if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value(); if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value(); MYSERIAL.print("tmc2130_sg_thr[X]="); MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC); MYSERIAL.print("tmc2130_sg_thr[Y]="); MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC); MYSERIAL.print("tmc2130_sg_thr[Z]="); MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC); MYSERIAL.print("tmc2130_sg_thr[E]="); MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC); } break; case 917: // M917 Set TMC2130 pwm_ampl { if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value()); if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value()); if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value()); if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value()); } break; case 918: // M918 Set TMC2130 pwm_grad { if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value()); if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value()); if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value()); if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value()); } break; #endif //TMC2130 case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. { #ifdef TMC2130 if(code_seen('E')) { uint16_t res_new = code_value(); if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128)) { st_synchronize(); uint8_t axis = E_AXIS; uint16_t res = tmc2130_get_res(axis); tmc2130_set_res(axis, res_new); if (res_new > res) { uint16_t fac = (res_new / res); axis_steps_per_unit[axis] *= fac; position[E_AXIS] *= fac; } else { uint16_t fac = (res / res_new); axis_steps_per_unit[axis] /= fac; position[E_AXIS] /= fac; } } } #else //TMC2130 #if defined(X_MS1_PIN) && X_MS1_PIN > -1 if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); for(int i=0;i -1 if(code_seen('S')) switch((int)code_value()) { case 1: for(int i=0;i 5) WRITE(BEEPER, LOW); delay_keep_alive(100); counterBeep++; } WRITE(BEEPER, LOW); st_synchronize(); while (lcd_clicked()) delay_keep_alive(100); lcd_update_enable(true); lcd_setstatuspgm(WELCOME_MSG); custom_message = false; custom_message_type = 0; #ifdef PAT9125 fsensor_enabled = old_fsensor_enabled; #endif //PAT9125 #endif } break; case 999: // M999: Restart after being stopped Stopped = false; lcd_reset_alert_level(); gcode_LastN = Stopped_gcode_LastN; FlushSerialRequestResend(); break; default: printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE); } } // end if(code_seen('M')) (end of M codes) else if(code_seen('T')) { int index; st_synchronize(); for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++); if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') { SERIAL_ECHOLNPGM("Invalid T code."); } else { if (*(strchr_pointer + index) == '?') { tmp_extruder = choose_extruder_menu(); } else { tmp_extruder = code_value(); } snmm_filaments_used |= (1 << tmp_extruder); //for stop print #ifdef SNMM #ifdef LIN_ADVANCE if (snmm_extruder != tmp_extruder) clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so. #endif snmm_extruder = tmp_extruder; delay(100); disable_e0(); disable_e1(); disable_e2(); pinMode(E_MUX0_PIN, OUTPUT); pinMode(E_MUX1_PIN, OUTPUT); pinMode(E_MUX2_PIN, OUTPUT); delay(100); SERIAL_ECHO_START; SERIAL_ECHO("T:"); SERIAL_ECHOLN((int)tmp_extruder); switch (tmp_extruder) { case 1: WRITE(E_MUX0_PIN, HIGH); WRITE(E_MUX1_PIN, LOW); WRITE(E_MUX2_PIN, LOW); break; case 2: WRITE(E_MUX0_PIN, LOW); WRITE(E_MUX1_PIN, HIGH); WRITE(E_MUX2_PIN, LOW); break; case 3: WRITE(E_MUX0_PIN, HIGH); WRITE(E_MUX1_PIN, HIGH); WRITE(E_MUX2_PIN, LOW); break; default: WRITE(E_MUX0_PIN, LOW); WRITE(E_MUX1_PIN, LOW); WRITE(E_MUX2_PIN, LOW); break; } delay(100); #else if (tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_ECHOPGM("T"); SERIAL_PROTOCOLLN((int)tmp_extruder); SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER); } else { boolean make_move = false; if (code_seen('F')) { make_move = true; next_feedrate = code_value(); if (next_feedrate > 0.0) { feedrate = next_feedrate; } } #if EXTRUDERS > 1 if (tmp_extruder != active_extruder) { // Save current position to return to after applying extruder offset memcpy(destination, current_position, sizeof(destination)); // Offset extruder (only by XY) int i; for (i = 0; i < 2; i++) { current_position[i] = current_position[i] - extruder_offset[i][active_extruder] + extruder_offset[i][tmp_extruder]; } // Set the new active extruder and position active_extruder = tmp_extruder; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); // Move to the old position if 'F' was in the parameters if (make_move && Stopped == false) { prepare_move(); } } #endif SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER); SERIAL_PROTOCOLLN((int)active_extruder); } #endif } } // end if(code_seen('T')) (end of T codes) #ifdef DEBUG_DCODES else if (code_seen('D')) // D codes (debug) { switch((int)code_value()) { case -1: // D-1 - Endless loop dcode__1(); break; case 0: // D0 - Reset dcode_0(); break; case 1: // D1 - Clear EEPROM dcode_1(); break; case 2: // D2 - Read/Write RAM dcode_2(); break; case 3: // D3 - Read/Write EEPROM dcode_3(); break; case 4: // D4 - Read/Write PIN dcode_4(); break; case 5: // D5 - Read/Write FLASH // dcode_5(); break; break; case 6: // D6 - Read/Write external FLASH dcode_6(); break; case 7: // D7 - Read/Write Bootloader dcode_7(); break; case 8: // D8 - Read/Write PINDA dcode_8(); break; case 9: // D9 - Read/Write ADC dcode_9(); break; case 10: // D10 - XYZ calibration = OK dcode_10(); break; #ifdef TMC2130 case 2130: // D9125 - TMC2130 dcode_2130(); break; #endif //TMC2130 #ifdef PAT9125 case 9125: // D9125 - PAT9125 dcode_9125(); break; #endif //PAT9125 } } #endif //DEBUG_DCODES else { SERIAL_ECHO_START; SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHO(CMDBUFFER_CURRENT_STRING); SERIAL_ECHOLNPGM("\"(2)"); } KEEPALIVE_STATE(NOT_BUSY); ClearToSend(); } void FlushSerialRequestResend() { //char cmdbuffer[bufindr][100]="Resend:"; MYSERIAL.flush(); SERIAL_PROTOCOLRPGM(MSG_RESEND); SERIAL_PROTOCOLLN(gcode_LastN + 1); previous_millis_cmd = millis(); SERIAL_PROTOCOLLNRPGM(MSG_OK); } // Confirm the execution of a command, if sent from a serial line. // Execution of a command from a SD card will not be confirmed. void ClearToSend() { previous_millis_cmd = millis(); if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) SERIAL_PROTOCOLLNRPGM(MSG_OK); } #if MOTHERBOARD == 200 || MOTHERBOARD == 203 void update_currents() { float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT; float tmp_motor[3]; //SERIAL_ECHOLNPGM("Currents updated: "); if (destination[Z_AXIS] < Z_SILENT) { //SERIAL_ECHOLNPGM("LOW"); for (uint8_t i = 0; i < 3; i++) { st_current_set(i, current_low[i]); /*MYSERIAL.print(int(i)); SERIAL_ECHOPGM(": "); MYSERIAL.println(current_low[i]);*/ } } else if (destination[Z_AXIS] > Z_HIGH_POWER) { //SERIAL_ECHOLNPGM("HIGH"); for (uint8_t i = 0; i < 3; i++) { st_current_set(i, current_high[i]); /*MYSERIAL.print(int(i)); SERIAL_ECHOPGM(": "); MYSERIAL.println(current_high[i]);*/ } } else { for (uint8_t i = 0; i < 3; i++) { float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT)); tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q; st_current_set(i, tmp_motor[i]); /*MYSERIAL.print(int(i)); SERIAL_ECHOPGM(": "); MYSERIAL.println(tmp_motor[i]);*/ } } } #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203 void get_coordinates() { bool seen[4]={false,false,false,false}; for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { bool relative = axis_relative_modes[i] || relative_mode; destination[i] = (float)code_value(); if (i == E_AXIS) { float emult = extruder_multiplier[active_extruder]; if (emult != 1.) { if (! relative) { destination[i] -= current_position[i]; relative = true; } destination[i] *= emult; } } if (relative) destination[i] += current_position[i]; seen[i]=true; #if MOTHERBOARD == 200 || MOTHERBOARD == 203 if (i == Z_AXIS && SilentModeMenu == 2) update_currents(); #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203 } else destination[i] = current_position[i]; //Are these else lines really needed? } if(code_seen('F')) { next_feedrate = code_value(); #ifdef MAX_SILENT_FEEDRATE if (tmc2130_mode == TMC2130_MODE_SILENT) if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE; #endif //MAX_SILENT_FEEDRATE if(next_feedrate > 0.0) feedrate = next_feedrate; if (!seen[0] && !seen[1] && !seen[2] && seen[3]) { // float e_max_speed = // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60) } } } void get_arc_coordinates() { #ifdef SF_ARC_FIX bool relative_mode_backup = relative_mode; relative_mode = true; #endif get_coordinates(); #ifdef SF_ARC_FIX relative_mode=relative_mode_backup; #endif if(code_seen('I')) { offset[0] = code_value(); } else { offset[0] = 0.0; } if(code_seen('J')) { offset[1] = code_value(); } else { offset[1] = 0.0; } } void clamp_to_software_endstops(float target[3]) { #ifdef DEBUG_DISABLE_SWLIMITS return; #endif //DEBUG_DISABLE_SWLIMITS world2machine_clamp(target[0], target[1]); // Clamp the Z coordinate. if (min_software_endstops) { float negative_z_offset = 0; #ifdef ENABLE_AUTO_BED_LEVELING if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; #endif if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; } if (max_software_endstops) { if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; } } #ifdef MESH_BED_LEVELING void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) { float dx = x - current_position[X_AXIS]; float dy = y - current_position[Y_AXIS]; float dz = z - current_position[Z_AXIS]; int n_segments = 0; if (mbl.active) { float len = abs(dx) + abs(dy); if (len > 0) // Split to 3cm segments or shorter. n_segments = int(ceil(len / 30.f)); } if (n_segments > 1) { float de = e - current_position[E_AXIS]; for (int i = 1; i < n_segments; ++ i) { float t = float(i) / float(n_segments); plan_buffer_line( current_position[X_AXIS] + t * dx, current_position[Y_AXIS] + t * dy, current_position[Z_AXIS] + t * dz, current_position[E_AXIS] + t * de, feed_rate, extruder); } } // The rest of the path. plan_buffer_line(x, y, z, e, feed_rate, extruder); current_position[X_AXIS] = x; current_position[Y_AXIS] = y; current_position[Z_AXIS] = z; current_position[E_AXIS] = e; } #endif // MESH_BED_LEVELING void prepare_move() { clamp_to_software_endstops(destination); previous_millis_cmd = millis(); // Do not use feedmultiply for E or Z only moves if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); } else { #ifdef MESH_BED_LEVELING mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); #else plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder); #endif } for(int8_t i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } } void prepare_arc_move(char isclockwise) { float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc // Trace the arc mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. for(int8_t i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } previous_millis_cmd = millis(); } #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 #if defined(FAN_PIN) #if CONTROLLERFAN_PIN == FAN_PIN #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN" #endif #endif unsigned long lastMotor = 0; //Save the time for when a motor was turned on last unsigned long lastMotorCheck = 0; void controllerFan() { if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms { lastMotorCheck = millis(); if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0) #if EXTRUDERS > 2 || !READ(E2_ENABLE_PIN) #endif #if EXTRUDER > 1 #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 || !READ(X2_ENABLE_PIN) #endif || !READ(E1_ENABLE_PIN) #endif || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled... { lastMotor = millis(); //... set time to NOW so the fan will turn on } if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... { digitalWrite(CONTROLLERFAN_PIN, 0); analogWrite(CONTROLLERFAN_PIN, 0); } else { // allows digital or PWM fan output to be used (see M42 handling) digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED); } } } #endif #ifdef TEMP_STAT_LEDS static bool blue_led = false; static bool red_led = false; static uint32_t stat_update = 0; void handle_status_leds(void) { float max_temp = 0.0; if(millis() > stat_update) { stat_update += 500; // Update every 0.5s for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { max_temp = max(max_temp, degHotend(cur_extruder)); max_temp = max(max_temp, degTargetHotend(cur_extruder)); } #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 max_temp = max(max_temp, degTargetBed()); max_temp = max(max_temp, degBed()); #endif if((max_temp > 55.0) && (red_led == false)) { digitalWrite(STAT_LED_RED, 1); digitalWrite(STAT_LED_BLUE, 0); red_led = true; blue_led = false; } if((max_temp < 54.0) && (blue_led == false)) { digitalWrite(STAT_LED_RED, 0); digitalWrite(STAT_LED_BLUE, 1); red_led = false; blue_led = true; } } } #endif #ifdef SAFETYTIMER /** * @brief Turn off heating after 15 minutes of inactivity */ static void handleSafetyTimer() { #if (EXTRUDERS > 1) #error Implemented only for one extruder. #endif //(EXTRUDERS > 1) static Timer safetyTimer; if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0))) { safetyTimer.stop(); } else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running())) { safetyTimer.start(); } else if (safetyTimer.expired(900000ul)) { setTargetBed(0); setTargetHotend(0, 0); } } #endif //SAFETYTIMER void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h { #ifdef PAT9125 if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) { if (fsensor_autoload_enabled) { if (fsensor_check_autoload()) { if (degHotend0() > EXTRUDE_MINTEMP) { fsensor_autoload_check_stop(); tone(BEEPER, 1000); delay_keep_alive(50); noTone(BEEPER); loading_flag = true; enquecommand_front_P((PSTR("M701"))); } else { lcd_update_enable(false); lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_ERROR); lcd.setCursor(0, 2); lcd_printPGM(MSG_PREHEAT_NOZZLE); delay(2000); lcd_implementation_clear(); lcd_update_enable(true); } } } else fsensor_autoload_check_start(); } else if (fsensor_autoload_enabled) fsensor_autoload_check_stop(); #endif //PAT9125 #ifdef SAFETYTIMER handleSafetyTimer(); #endif //SAFETYTIMER #ifdef SAFETYTIMER handleSafetyTimer(); #endif //SAFETYTIMER #if defined(KILL_PIN) && KILL_PIN > -1 static int killCount = 0; // make the inactivity button a bit less responsive const int KILL_DELAY = 10000; #endif if(buflen < (BUFSIZE-1)){ get_command(); } if( (millis() - previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill("", 4); if(stepper_inactive_time) { if( (millis() - previous_millis_cmd) > stepper_inactive_time ) { if(blocks_queued() == false && ignore_stepper_queue == false) { disable_x(); // SERIAL_ECHOLNPGM("manage_inactivity - disable Y"); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); } } } #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH if (chdkActive && (millis() - chdkHigh > CHDK_DELAY)) { chdkActive = false; WRITE(CHDK, LOW); } #endif #if defined(KILL_PIN) && KILL_PIN > -1 // Check if the kill button was pressed and wait just in case it was an accidental // key kill key press // ------------------------------------------------------------------------------- if( 0 == READ(KILL_PIN) ) { killCount++; } else if (killCount > 0) { killCount--; } // Exceeded threshold and we can confirm that it was not accidental // KILL the machine // ---------------------------------------------------------------- if ( killCount >= KILL_DELAY) { kill("", 5); } #endif #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1 controllerFan(); //Check if fan should be turned on to cool stepper drivers down #endif #ifdef EXTRUDER_RUNOUT_PREVENT if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 ) if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP) { bool oldstatus=READ(E0_ENABLE_PIN); enable_e0(); float oldepos=current_position[E_AXIS]; float oldedes=destination[E_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder); current_position[E_AXIS]=oldepos; destination[E_AXIS]=oldedes; plan_set_e_position(oldepos); previous_millis_cmd=millis(); st_synchronize(); WRITE(E0_ENABLE_PIN,oldstatus); } #endif #ifdef TEMP_STAT_LEDS handle_status_leds(); #endif check_axes_activity(); } void kill(const char *full_screen_message, unsigned char id) { SERIAL_ECHOPGM("KILL: "); MYSERIAL.println(int(id)); //return; cli(); // Stop interrupts disable_heater(); disable_x(); // SERIAL_ECHOLNPGM("kill - disable Y"); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); #if defined(PS_ON_PIN) && PS_ON_PIN > -1 pinMode(PS_ON_PIN,INPUT); #endif SERIAL_ERROR_START; SERIAL_ERRORLNRPGM(MSG_ERR_KILLED); if (full_screen_message != NULL) { SERIAL_ERRORLNRPGM(full_screen_message); lcd_display_message_fullscreen_P(full_screen_message); } else { LCD_ALERTMESSAGERPGM(MSG_KILLED); } // FMC small patch to update the LCD before ending sei(); // enable interrupts for ( int i=5; i--; lcd_update()) { delay(200); } cli(); // disable interrupts suicide(); while(1) { #ifdef WATCHDOG wdt_reset(); #endif //WATCHDOG /* Intentionally left empty */ } // Wait for reset } void Stop() { disable_heater(); if(Stopped == false) { Stopped = true; Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart SERIAL_ERROR_START; SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED); LCD_MESSAGERPGM(MSG_STOPPED); } } bool IsStopped() { return Stopped; }; #ifdef FAST_PWM_FAN void setPwmFrequency(uint8_t pin, int val) { val &= 0x07; switch(digitalPinToTimer(pin)) { #if defined(TCCR0A) case TIMER0A: case TIMER0B: // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); // TCCR0B |= val; break; #endif #if defined(TCCR1A) case TIMER1A: case TIMER1B: // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR1B |= val; break; #endif #if defined(TCCR2) case TIMER2: case TIMER2: TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); TCCR2 |= val; break; #endif #if defined(TCCR2A) case TIMER2A: case TIMER2B: TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); TCCR2B |= val; break; #endif #if defined(TCCR3A) case TIMER3A: case TIMER3B: case TIMER3C: TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); TCCR3B |= val; break; #endif #if defined(TCCR4A) case TIMER4A: case TIMER4B: case TIMER4C: TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); TCCR4B |= val; break; #endif #if defined(TCCR5A) case TIMER5A: case TIMER5B: case TIMER5C: TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); TCCR5B |= val; break; #endif } } #endif //FAST_PWM_FAN bool setTargetedHotend(int code){ tmp_extruder = active_extruder; if(code_seen('T')) { tmp_extruder = code_value(); if(tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; switch(code){ case 104: SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER); break; case 105: SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER); break; case 109: SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER); break; case 218: SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER); break; case 221: SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER); break; } SERIAL_PROTOCOLLN((int)tmp_extruder); return true; } } return false; } void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s { if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) { eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); } unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000)); total_filament_used = 0; } float calculate_extruder_multiplier(float diameter) { float out = 1.f; if (volumetric_enabled && diameter > 0.f) { float area = M_PI * diameter * diameter * 0.25; out = 1.f / area; } if (extrudemultiply != 100) out *= float(extrudemultiply) * 0.01f; return out; } void calculate_extruder_multipliers() { extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]); #if EXTRUDERS > 1 extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]); #if EXTRUDERS > 2 extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]); #endif #endif } void delay_keep_alive(unsigned int ms) { for (;;) { manage_heater(); // Manage inactivity, but don't disable steppers on timeout. manage_inactivity(true); lcd_update(); if (ms == 0) break; else if (ms >= 50) { delay(50); ms -= 50; } else { delay(ms); ms = 0; } } } void wait_for_heater(long codenum) { #ifdef TEMP_RESIDENCY_TIME long residencyStart; residencyStart = -1; /* continue to loop until we have reached the target temp _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ while ((!cancel_heatup) && ((residencyStart == -1) || (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) { #else while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) { #endif //TEMP_RESIDENCY_TIME if ((millis() - codenum) > 1000UL) { //Print Temp Reading and remaining time every 1 second while heating up/cooling down if (!farm_mode) { SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL((int)tmp_extruder); #ifdef TEMP_RESIDENCY_TIME SERIAL_PROTOCOLPGM(" W:"); if (residencyStart > -1) { codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; SERIAL_PROTOCOLLN(codenum); } else { SERIAL_PROTOCOLLN("?"); } } #else SERIAL_PROTOCOLLN(""); #endif codenum = millis(); } manage_heater(); manage_inactivity(); lcd_update(); #ifdef TEMP_RESIDENCY_TIME /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time or when current temp falls outside the hysteresis after target temp was reached */ if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) || (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) || (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS)) { residencyStart = millis(); } #endif //TEMP_RESIDENCY_TIME } } void check_babystep() { int babystep_z; EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z); if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) { babystep_z = 0; //if babystep value is out of min max range, set it to 0 SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0"); EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z); lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue.")); lcd_update_enable(true); } } #ifdef DIS void d_setup() { pinMode(D_DATACLOCK, INPUT_PULLUP); pinMode(D_DATA, INPUT_PULLUP); pinMode(D_REQUIRE, OUTPUT); digitalWrite(D_REQUIRE, HIGH); } float d_ReadData() { int digit[13]; String mergeOutput; float output; digitalWrite(D_REQUIRE, HIGH); for (int i = 0; i<13; i++) { for (int j = 0; j < 4; j++) { while (digitalRead(D_DATACLOCK) == LOW) {} while (digitalRead(D_DATACLOCK) == HIGH) {} bitWrite(digit[i], j, digitalRead(D_DATA)); } } digitalWrite(D_REQUIRE, LOW); mergeOutput = ""; output = 0; for (int r = 5; r <= 10; r++) //Merge digits { mergeOutput += digit[r]; } output = mergeOutput.toFloat(); if (digit[4] == 8) //Handle sign { output *= -1; } for (int i = digit[11]; i > 0; i--) //Handle floating point { output /= 10; } return output; } void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) { int t1 = 0; int t_delay = 0; int digit[13]; int m; char str[3]; //String mergeOutput; char mergeOutput[15]; float output; int mesh_point = 0; //index number of calibration point float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER); float mesh_home_z_search = 4; float row[x_points_num]; int ix = 0; int iy = 0; char* filename_wldsd = "wldsd.txt"; char data_wldsd[70]; char numb_wldsd[10]; d_setup(); if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) { // We don't know where we are! HOME! // Push the commands to the front of the message queue in the reverse order! // There shall be always enough space reserved for these commands. repeatcommand_front(); // repeat G80 with all its parameters enquecommand_front_P((PSTR("G28 W0"))); enquecommand_front_P((PSTR("G1 Z5"))); return; } bool custom_message_old = custom_message; unsigned int custom_message_type_old = custom_message_type; unsigned int custom_message_state_old = custom_message_state; custom_message = true; custom_message_type = 1; custom_message_state = (x_points_num * y_points_num) + 10; lcd_update(1); mbl.reset(); babystep_undo(); card.openFile(filename_wldsd, false); current_position[Z_AXIS] = mesh_home_z_search; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20; int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60; int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40; setup_for_endstop_move(false); SERIAL_PROTOCOLPGM("Num X,Y: "); SERIAL_PROTOCOL(x_points_num); SERIAL_PROTOCOLPGM(","); SERIAL_PROTOCOL(y_points_num); SERIAL_PROTOCOLPGM("\nZ search height: "); SERIAL_PROTOCOL(mesh_home_z_search); SERIAL_PROTOCOLPGM("\nDimension X,Y: "); SERIAL_PROTOCOL(x_dimension); SERIAL_PROTOCOLPGM(","); SERIAL_PROTOCOL(y_dimension); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); while (mesh_point != x_points_num * y_points_num) { ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1 iy = mesh_point / x_points_num; if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag float z0 = 0.f; current_position[Z_AXIS] = mesh_home_z_search; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder); st_synchronize(); current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x; current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder); st_synchronize(); if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point break; card.closefile(); } //memset(numb_wldsd, 0, sizeof(numb_wldsd)); //dtostrf(d_ReadData(), 8, 5, numb_wldsd); //strcat(data_wldsd, numb_wldsd); //MYSERIAL.println(data_wldsd); //delay(1000); //delay(3000); //t1 = millis(); //while (digitalRead(D_DATACLOCK) == LOW) {} //while (digitalRead(D_DATACLOCK) == HIGH) {} memset(digit, 0, sizeof(digit)); //cli(); digitalWrite(D_REQUIRE, LOW); for (int i = 0; i<13; i++) { //t1 = millis(); for (int j = 0; j < 4; j++) { while (digitalRead(D_DATACLOCK) == LOW) {} while (digitalRead(D_DATACLOCK) == HIGH) {} bitWrite(digit[i], j, digitalRead(D_DATA)); } //t_delay = (millis() - t1); //SERIAL_PROTOCOLPGM(" "); //SERIAL_PROTOCOL_F(t_delay, 5); //SERIAL_PROTOCOLPGM(" "); } //sei(); digitalWrite(D_REQUIRE, HIGH); mergeOutput[0] = '\0'; output = 0; for (int r = 5; r <= 10; r++) //Merge digits { sprintf(str, "%d", digit[r]); strcat(mergeOutput, str); } output = atof(mergeOutput); if (digit[4] == 8) //Handle sign { output *= -1; } for (int i = digit[11]; i > 0; i--) //Handle floating point { output *= 0.1; } //output = d_ReadData(); //row[ix] = current_position[Z_AXIS]; memset(data_wldsd, 0, sizeof(data_wldsd)); for (int i = 0; i <3; i++) { memset(numb_wldsd, 0, sizeof(numb_wldsd)); dtostrf(current_position[i], 8, 5, numb_wldsd); strcat(data_wldsd, numb_wldsd); strcat(data_wldsd, ";"); } memset(numb_wldsd, 0, sizeof(numb_wldsd)); dtostrf(output, 8, 5, numb_wldsd); strcat(data_wldsd, numb_wldsd); //strcat(data_wldsd, ";"); card.write_command(data_wldsd); //row[ix] = d_ReadData(); row[ix] = output; // current_position[Z_AXIS]; if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) { for (int i = 0; i < x_points_num; i++) { SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOL_F(row[i], 5); } SERIAL_PROTOCOLPGM("\n"); } custom_message_state--; mesh_point++; lcd_update(1); } card.closefile(); } #endif void temp_compensation_start() { custom_message = true; custom_message_type = 5; custom_message_state = PINDA_HEAT_T + 1; lcd_update(2); if (degHotend(active_extruder) > EXTRUDE_MINTEMP) { current_position[E_AXIS] -= DEFAULT_RETRACTION; } plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); current_position[X_AXIS] = PINDA_PREHEAT_X; current_position[Y_AXIS] = PINDA_PREHEAT_Y; current_position[Z_AXIS] = PINDA_PREHEAT_Z; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); st_synchronize(); while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000); for (int i = 0; i < PINDA_HEAT_T; i++) { delay_keep_alive(1000); custom_message_state = PINDA_HEAT_T - i; if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed else lcd_update(1); } custom_message_type = 0; custom_message_state = 0; custom_message = false; } void temp_compensation_apply() { int i_add; int compensation_value; int z_shift = 0; float z_shift_mm; if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) { if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) { i_add = (target_temperature_bed - 60) / 10; EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift); z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS]; }else { //interpolation z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS]; } SERIAL_PROTOCOLPGM("\n"); SERIAL_PROTOCOLPGM("Z shift applied:"); MYSERIAL.print(z_shift_mm); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder); st_synchronize(); plan_set_z_position(current_position[Z_AXIS]); } else { //we have no temp compensation data } } float temp_comp_interpolation(float inp_temperature) { //cubic spline interpolation int n, i, j, k; float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp; int shift[10]; int temp_C[10]; n = 6; //number of measured points shift[0] = 0; for (i = 0; i < n; i++) { if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM temp_C[i] = 50 + i * 10; //temperature in C #ifdef PINDA_THERMISTOR temp_C[i] = 35 + i * 5; //temperature in C #else temp_C[i] = 50 + i * 10; //temperature in C #endif x[i] = (float)temp_C[i]; f[i] = (float)shift[i]; } if (inp_temperature < x[0]) return 0; for (i = n - 1; i>0; i--) { F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]); h[i - 1] = x[i] - x[i - 1]; } //*********** formation of h, s , f matrix ************** for (i = 1; i0; i--) { sum = 0; for (j = i; j <= n - 2; j++) sum += m[i][j] * s[j]; s[i] = (m[i][n - 1] - sum) / m[i][i]; } for (i = 0; i x[i + 1])) { a = (s[i + 1] - s[i]) / (6 * h[i]); b = s[i] / 2; c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6; d = f[i]; sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d; } return sum; } #ifdef PINDA_THERMISTOR float temp_compensation_pinda_thermistor_offset(float temperature_pinda) { if (!temp_cal_active) return 0; if (!calibration_status_pinda()) return 0; return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS]; } #endif //PINDA_THERMISTOR void long_pause() //long pause print { st_synchronize(); //save currently set parameters to global variables saved_feedmultiply = feedmultiply; HotendTempBckp = degTargetHotend(active_extruder); fanSpeedBckp = fanSpeed; start_pause_print = millis(); //save position pause_lastpos[X_AXIS] = current_position[X_AXIS]; pause_lastpos[Y_AXIS] = current_position[Y_AXIS]; pause_lastpos[Z_AXIS] = current_position[Z_AXIS]; pause_lastpos[E_AXIS] = current_position[E_AXIS]; //retract current_position[E_AXIS] -= DEFAULT_RETRACTION; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder); //lift z current_position[Z_AXIS] += Z_PAUSE_LIFT; if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder); //set nozzle target temperature to 0 setTargetHotend(0, 0); setTargetHotend(0, 1); setTargetHotend(0, 2); //Move XY to side current_position[X_AXIS] = X_PAUSE_POS; current_position[Y_AXIS] = Y_PAUSE_POS; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder); // Turn off the print fan fanSpeed = 0; st_synchronize(); } void serialecho_temperatures() { float tt = degHotend(active_extruder); SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOL(tt); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL((int)active_extruder); SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(degBed(), 1); SERIAL_PROTOCOLLN(""); } extern uint32_t sdpos_atomic; #ifdef UVLO_SUPPORT void uvlo_() { unsigned long time_start = millis(); bool sd_print = card.sdprinting; // Conserve power as soon as possible. disable_x(); disable_y(); disable_e0(); #ifdef TMC2130 tmc2130_set_current_h(Z_AXIS, 20); tmc2130_set_current_r(Z_AXIS, 20); tmc2130_set_current_h(E_AXIS, 20); tmc2130_set_current_r(E_AXIS, 20); #endif //TMC2130 // Indicate that the interrupt has been triggered. // SERIAL_ECHOLNPGM("UVLO"); // Read out the current Z motor microstep counter. This will be later used // for reaching the zero full step before powering off. uint16_t z_microsteps = 0; #ifdef TMC2130 z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS); #endif //TMC2130 // Calculate the file position, from which to resume this print. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue { uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner sd_position -= sdlen_planner; uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue sd_position -= sdlen_cmdqueue; if (sd_position < 0) sd_position = 0; } // Backup the feedrate in mm/min. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling // are in action. planner_abort_hard(); // Store the current extruder position. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS)); eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1); // Clean the input command queue. cmdqueue_reset(); card.sdprinting = false; // card.closefile(); // Enable stepper driver interrupt to move Z axis. // This should be fine as the planner and command queues are empty and the SD card printing is disabled. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue, // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking. sei(); plan_buffer_line( current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] - DEFAULT_RETRACTION, 95, active_extruder); st_synchronize(); disable_e0(); plan_buffer_line( current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], current_position[E_AXIS] - DEFAULT_RETRACTION, 40, active_extruder); st_synchronize(); disable_e0(); plan_buffer_line( current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS], current_position[E_AXIS] - DEFAULT_RETRACTION, 40, active_extruder); st_synchronize(); disable_e0(); disable_z(); // Move Z up to the next 0th full step. // Write the file position. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position); // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; // Scale the z value to 1u resolution. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0; eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v)); } // Read out the current Z motor microstep counter. This will be later used // for reaching the zero full step before powering off. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps); // Store the current position. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]); eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]); eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]); // Store the current feed rate, temperatures and fan speed. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp); eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]); eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed); eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed); // Finaly store the "power outage" flag. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1); st_synchronize(); SERIAL_ECHOPGM("stps"); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS)); disable_z(); // Increment power failure counter eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1); eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1); SERIAL_ECHOLNPGM("UVLO - end"); MYSERIAL.println(millis() - time_start); #if 0 // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); st_synchronize(); #endif cli(); volatile unsigned int ppcount = 0; SET_OUTPUT(BEEPER); WRITE(BEEPER, HIGH); for(ppcount = 0; ppcount < 2000; ppcount ++){ asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz } WRITE(BEEPER, LOW); while(1){ #if 1 WRITE(BEEPER, LOW); for(ppcount = 0; ppcount < 8000; ppcount ++){ asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz } #endif }; } #endif //UVLO_SUPPORT #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1)) void setup_fan_interrupt() { //INT7 DDRE &= ~(1 << 7); //input pin PORTE &= ~(1 << 7); //no internal pull-up //start with sensing rising edge EICRB &= ~(1 << 6); EICRB |= (1 << 7); //enable INT7 interrupt EIMSK |= (1 << 7); } // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances), // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account). ISR(INT7_vect) { //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher if (fanSpeed < MIN_PRINT_FAN_SPEED) return; if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge t_fan_rising_edge = millis_nc(); } else { //interrupt was triggered by falling edge if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse } } EICRB ^= (1 << 6); //change edge } #endif #ifdef UVLO_SUPPORT void setup_uvlo_interrupt() { DDRE &= ~(1 << 4); //input pin PORTE &= ~(1 << 4); //no internal pull-up //sensing falling edge EICRB |= (1 << 0); EICRB &= ~(1 << 1); //enable INT4 interrupt EIMSK |= (1 << 4); } ISR(INT4_vect) { EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once SERIAL_ECHOLNPGM("INT4"); if (IS_SD_PRINTING) uvlo_(); } void recover_print(uint8_t automatic) { char cmd[30]; lcd_update_enable(true); lcd_update(2); lcd_setstatuspgm(MSG_RECOVERING_PRINT); recover_machine_state_after_power_panic(); // Set the target bed and nozzle temperatures. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]); enquecommand(cmd); sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed); enquecommand(cmd); // Lift the print head, so one may remove the excess priming material. if (current_position[Z_AXIS] < 25) enquecommand_P(PSTR("G1 Z25 F800")); // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status. enquecommand_P(PSTR("G28 X Y")); // Set the target bed and nozzle temperatures and wait. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]); enquecommand(cmd); sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed); enquecommand(cmd); enquecommand_P(PSTR("M83")); //E axis relative mode //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure // If not automatically recoreverd (long power loss), extrude extra filament to stabilize if(automatic == 0){ enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure } enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480")); // Mark the power panic status as inactive. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0); /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp delay_keep_alive(1000); }*/ SERIAL_ECHOPGM("After waiting for temp:"); SERIAL_ECHOPGM("Current position X_AXIS:"); MYSERIAL.println(current_position[X_AXIS]); SERIAL_ECHOPGM("Current position Y_AXIS:"); MYSERIAL.println(current_position[Y_AXIS]); // Restart the print. restore_print_from_eeprom(); SERIAL_ECHOPGM("current_position[Z_AXIS]:"); MYSERIAL.print(current_position[Z_AXIS]); SERIAL_ECHOPGM("current_position[E_AXIS]:"); MYSERIAL.print(current_position[E_AXIS]); } void recover_machine_state_after_power_panic() { char cmd[30]; // 1) Recover the logical cordinates at the time of the power panic. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)); current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)); // Recover the logical coordinate of the Z axis at the time of the power panic. // The current position after power panic is moved to the next closest 0th full step. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) + UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS]; if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) { current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E)); sprintf_P(cmd, PSTR("G92 E")); dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd)); enquecommand(cmd); } memcpy(destination, current_position, sizeof(destination)); SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); print_world_coordinates(); // 2) Initialize the logical to physical coordinate system transformation. world2machine_initialize(); // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case. mbl.active = false; for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) { uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1 uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS; // Scale the z value to 10u resolution. int16_t v; eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2); if (v != 0) mbl.active = true; mbl.z_values[iy][ix] = float(v) * 0.001f; } if (mbl.active) mbl.upsample_3x3(); // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); // print_mesh_bed_leveling_table(); // 4) Load the baby stepping value, which is expected to be active at the time of power panic. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis. babystep_load(); // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); // 6) Power up the motors, mark their positions as known. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway. axis_known_position[X_AXIS] = true; enable_x(); axis_known_position[Y_AXIS] = true; enable_y(); axis_known_position[Z_AXIS] = true; enable_z(); SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial "); print_physical_coordinates(); // 7) Recover the target temperatures. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND); target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED); } void restore_print_from_eeprom() { float x_rec, y_rec, z_pos; int feedrate_rec; uint8_t fan_speed_rec; char cmd[30]; char* c; char filename[13]; uint8_t depth = 0; char dir_name[9]; fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED); EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec); SERIAL_ECHOPGM("Feedrate:"); MYSERIAL.println(feedrate_rec); depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH); MYSERIAL.println(int(depth)); for (int i = 0; i < depth; i++) { for (int j = 0; j < 8; j++) { dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i); } dir_name[8] = '\0'; MYSERIAL.println(dir_name); card.chdir(dir_name); } for (int i = 0; i < 8; i++) { filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i); } filename[8] = '\0'; MYSERIAL.print(filename); strcat_P(filename, PSTR(".gco")); sprintf_P(cmd, PSTR("M23 %s"), filename); for (c = &cmd[4]; *c; c++) *c = tolower(*c); enquecommand(cmd); uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION)); SERIAL_ECHOPGM("Position read from eeprom:"); MYSERIAL.println(position); // E axis relative mode. enquecommand_P(PSTR("M83")); // Move to the XY print position in logical coordinates, where the print has been killed. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)))); strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)))); strcat_P(cmd, PSTR(" F2000")); enquecommand(cmd); // Move the Z axis down to the print, in logical coordinates. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)))); enquecommand(cmd); // Unretract. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480")); // Set the feedrate saved at the power panic. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec); enquecommand(cmd); if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) { float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E)); enquecommand_P(PSTR("M82")); //E axis abslute mode } // Set the fan speed saved at the power panic. strcpy_P(cmd, PSTR("M106 S")); strcat(cmd, itostr3(int(fan_speed_rec))); enquecommand(cmd); // Set a position in the file. sprintf_P(cmd, PSTR("M26 S%lu"), position); enquecommand(cmd); // Start SD print. enquecommand_P(PSTR("M24")); } #endif //UVLO_SUPPORT //////////////////////////////////////////////////////////////////////////////// // new save/restore printing //extern uint32_t sdpos_atomic; bool saved_printing = false; uint32_t saved_sdpos = 0; float saved_pos[4] = {0, 0, 0, 0}; // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min. float saved_feedrate2 = 0; uint8_t saved_active_extruder = 0; bool saved_extruder_under_pressure = false; void stop_and_save_print_to_ram(float z_move, float e_move) { if (saved_printing) return; cli(); unsigned char nplanner_blocks = number_of_blocks(); saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner saved_sdpos -= sdlen_planner; uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue saved_sdpos -= sdlen_cmdqueue; #if 0 SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC); SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC); SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC); SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC); SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC); SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC); SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC); { card.setIndex(saved_sdpos); SERIAL_ECHOLNPGM("Content of planner buffer: "); for (unsigned int idx = 0; idx < sdlen_planner; ++ idx) MYSERIAL.print(char(card.get())); SERIAL_ECHOLNPGM("Content of command buffer: "); for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx) MYSERIAL.print(char(card.get())); SERIAL_ECHOLNPGM("End of command buffer"); } { // Print the content of the planner buffer, line by line: card.setIndex(saved_sdpos); int8_t iline = 0; for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) { SERIAL_ECHOPGM("Planner line (from file): "); MYSERIAL.print(int(iline), DEC); SERIAL_ECHOPGM(", length: "); MYSERIAL.print(block_buffer[idx].sdlen, DEC); SERIAL_ECHOPGM(", steps: ("); MYSERIAL.print(block_buffer[idx].steps_x, DEC); SERIAL_ECHOPGM(","); MYSERIAL.print(block_buffer[idx].steps_y, DEC); SERIAL_ECHOPGM(","); MYSERIAL.print(block_buffer[idx].steps_z, DEC); SERIAL_ECHOPGM(","); MYSERIAL.print(block_buffer[idx].steps_e, DEC); SERIAL_ECHOPGM("), events: "); MYSERIAL.println(block_buffer[idx].step_event_count, DEC); for (int len = block_buffer[idx].sdlen; len > 0; -- len) MYSERIAL.print(char(card.get())); } } { // Print the content of the command buffer, line by line: int8_t iline = 0; union { struct { char lo; char hi; } lohi; uint16_t value; } sdlen_single; int _bufindr = bufindr; for (int _buflen = buflen; _buflen > 0; ++ iline) { if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) { sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1]; sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2]; } SERIAL_ECHOPGM("Buffer line (from buffer): "); MYSERIAL.print(int(iline), DEC); SERIAL_ECHOPGM(", type: "); MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC); SERIAL_ECHOPGM(", len: "); MYSERIAL.println(sdlen_single.value, DEC); // Print the content of the buffer line. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE); SERIAL_ECHOPGM("Buffer line (from file): "); MYSERIAL.print(int(iline), DEC); MYSERIAL.println(int(iline), DEC); for (; sdlen_single.value > 0; -- sdlen_single.value) MYSERIAL.print(char(card.get())); if (-- _buflen == 0) break; // First skip the current command ID and iterate up to the end of the string. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ; // Second, skip the end of string null character and iterate until a nonzero command ID is found. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ; // If the end of the buffer was empty, if (_bufindr == sizeof(cmdbuffer)) { // skip to the start and find the nonzero command. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ; } } } #endif #if 0 saved_feedrate2 = feedrate; //save feedrate #else // Try to deduce the feedrate from the first block of the planner. // Speed is in mm/min. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate; #endif planner_abort_hard(); //abort printing memcpy(saved_pos, current_position, sizeof(saved_pos)); saved_active_extruder = active_extruder; //save active_extruder saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused cmdqueue_reset(); //empty cmdqueue card.sdprinting = false; // card.closefile(); saved_printing = true; // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts. st_reset_timer(); sei(); if ((z_move != 0) || (e_move != 0)) { // extruder or z move #if 1 // Rather than calling plan_buffer_line directly, push the move into the command queue, char buf[48]; strcpy_P(buf, PSTR("G1 Z")); dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf)); strcat_P(buf, PSTR(" E")); // Relative extrusion dtostrf(e_move, 6, 3, buf + strlen(buf)); strcat_P(buf, PSTR(" F")); dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf)); // At this point the command queue is empty. enquecommand(buf, false); // If this call is invoked from the main Arduino loop() function, let the caller know that the command // in the command queue is not the original command, but a new one, so it should not be removed from the queue. repeatcommand_front(); #else plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder); st_synchronize(); //wait moving memcpy(current_position, saved_pos, sizeof(saved_pos)); memcpy(destination, current_position, sizeof(destination)); #endif } } void restore_print_from_ram_and_continue(float e_move) { if (!saved_printing) return; // for (int axis = X_AXIS; axis <= E_AXIS; axis++) // current_position[axis] = st_get_position_mm(axis); active_extruder = saved_active_extruder; //restore active_extruder feedrate = saved_feedrate2; //restore feedrate float e = saved_pos[E_AXIS] - e_move; plan_set_e_position(e); plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder); st_synchronize(); memcpy(current_position, saved_pos, sizeof(saved_pos)); memcpy(destination, current_position, sizeof(destination)); card.setIndex(saved_sdpos); sdpos_atomic = saved_sdpos; card.sdprinting = true; saved_printing = false; printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this } void print_world_coordinates() { SERIAL_ECHOPGM("world coordinates: ("); MYSERIAL.print(current_position[X_AXIS], 3); SERIAL_ECHOPGM(", "); MYSERIAL.print(current_position[Y_AXIS], 3); SERIAL_ECHOPGM(", "); MYSERIAL.print(current_position[Z_AXIS], 3); SERIAL_ECHOLNPGM(")"); } void print_physical_coordinates() { SERIAL_ECHOPGM("physical coordinates: ("); MYSERIAL.print(st_get_position_mm(X_AXIS), 3); SERIAL_ECHOPGM(", "); MYSERIAL.print(st_get_position_mm(Y_AXIS), 3); SERIAL_ECHOPGM(", "); MYSERIAL.print(st_get_position_mm(Z_AXIS), 3); SERIAL_ECHOLNPGM(")"); } void print_mesh_bed_leveling_table() { SERIAL_ECHOPGM("mesh bed leveling: "); for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y) for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) { MYSERIAL.print(mbl.z_values[y][x], 3); SERIAL_ECHOPGM(" "); } SERIAL_ECHOLNPGM(""); } #define FIL_LOAD_LENGTH 60 void extr_unload2() { //unloads filament // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; // int8_t SilentMode; uint8_t snmm_extruder = 0; if (degHotend0() > EXTRUDE_MINTEMP) { lcd_implementation_clear(); lcd_display_message_fullscreen_P(PSTR("")); max_feedrate[E_AXIS] = 50; lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT); // lcd.print(" "); // lcd.print(snmm_extruder + 1); lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT); if (current_position[Z_AXIS] < 15) { current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder); } current_position[E_AXIS] += 10; //extrusion plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder); // st_current_set(2, E_MOTOR_HIGH_CURRENT); if (current_temperature[0] < 230) { //PLA & all other filaments current_position[E_AXIS] += 5.4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); current_position[E_AXIS] += 3.2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[E_AXIS] += 3; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); } else { //ABS current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); current_position[E_AXIS] += 4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); /*current_position[X_AXIS] += 23; //delay plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay current_position[X_AXIS] -= 23; //delay plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/ delay_keep_alive(4700); } max_feedrate[E_AXIS] = 80; current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); st_synchronize(); //st_current_init(); // if (SilentMode == 1) st_current_set(2, tmp_motor[2]); //set back to normal operation currents // else st_current_set(2, tmp_motor_loud[2]); lcd_update_enable(true); // lcd_return_to_status(); max_feedrate[E_AXIS] = 50; } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(MSG_ERROR); lcd.setCursor(0, 2); lcd_printPGM(MSG_PREHEAT_NOZZLE); delay(2000); lcd_implementation_clear(); } // lcd_return_to_status(); }