/* -*- c++ -*- */
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h"
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#include "mesh_bed_calibration.h"
#endif
#include "ultralcd.h"
#include "Configuration_prusa.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "watchdog.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "util.h"
#include
#include "Dcodes.h"
#ifdef SWSPI
#include "swspi.h"
#endif //SWSPI
#ifdef SWI2C
#include "swi2c.h"
#endif //SWI2C
#ifdef PAT9125
#include "pat9125.h"
#include "fsensor.h"
#endif //PAT9125
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#endif
#ifdef ULTRALCD
#include "ultralcd.h"
#endif
#if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include
#endif
#define VERSION_STRING "1.0.2"
#include "ultralcd.h"
#include "cmdqueue.h"
// Macros for bit masks
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
//Macro for print fan speed
#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// PRUSA CODES
// P F - Returns FW versions
// P R - Returns revision of printer
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S or P
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G80 - Automatic mesh bed leveling
// G81 - Print bed profile
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F
// M112 - Emergency stop
// M113 - Get or set the timeout interval for Host Keepalive "busy" messages
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T X Y
// M220 S- set speed factor override percentage
// M221 S- set extrude factor override percentage
// M226 P S- Wait until the specified pin reaches the state required
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S P
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S.
// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control. Optional D to set delay in centimeters between sensor and extruder
// M406 - Turn off Filament Sensor extrusion control
// M407 - Displays measured filament diameter
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM)
// M509 - force language selection on next restart
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M605 - Set dual x-carriage movement mode: S [ X R ]
// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
//Stepper Movement Variables
//===========================================================================
//=============================imported variables============================
//===========================================================================
//===========================================================================
//=============================public variables=============================
//===========================================================================
#ifdef SDSUPPORT
CardReader card;
#endif
unsigned long PingTime = millis();
union Data
{
byte b[2];
int value;
};
float homing_feedrate[] = HOMING_FEEDRATE;
// Currently only the extruder axis may be switched to a relative mode.
// Other axes are always absolute or relative based on the common relative_mode flag.
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
int extrudemultiply=100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = {100
#if EXTRUDERS > 1
, 100
#if EXTRUDERS > 2
, 100
#endif
#endif
};
int bowden_length[4] = {385, 385, 385, 385};
bool is_usb_printing = false;
bool homing_flag = false;
bool temp_cal_active = false;
unsigned long kicktime = millis()+100000;
unsigned int usb_printing_counter;
int lcd_change_fil_state = 0;
int feedmultiplyBckp = 100;
float HotendTempBckp = 0;
int fanSpeedBckp = 0;
float pause_lastpos[4];
unsigned long pause_time = 0;
unsigned long start_pause_print = millis();
unsigned long t_fan_rising_edge = millis();
//unsigned long load_filament_time;
bool mesh_bed_leveling_flag = false;
bool mesh_bed_run_from_menu = false;
unsigned char lang_selected = 0;
int8_t FarmMode = 0;
bool prusa_sd_card_upload = false;
unsigned int status_number = 0;
unsigned long total_filament_used;
unsigned int heating_status;
unsigned int heating_status_counter;
bool custom_message;
bool loading_flag = false;
unsigned int custom_message_type;
unsigned int custom_message_state;
char snmm_filaments_used = 0;
float distance_from_min[2];
bool fan_state[2];
int fan_edge_counter[2];
int fan_speed[2];
char dir_names[3][9];
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
#if EXTRUDERS > 1
, DEFAULT_NOMINAL_FILAMENT_DIA
#if EXTRUDERS > 2
, DEFAULT_NOMINAL_FILAMENT_DIA
#endif
#endif
};
float volumetric_multiplier[EXTRUDERS] = {1.0
#if EXTRUDERS > 1
, 1.0
#if EXTRUDERS > 2
, 1.0
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homing[3]={0,0,0};
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
float zprobe_zoffset;
// Extruder offset
#if EXTRUDERS > 1
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
};
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef FWRETRACT
bool autoretract_enabled=false;
bool retracted[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
bool retracted_swap[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
#ifdef ULTIPANEL
#ifdef PS_DEFAULT_OFF
bool powersupply = false;
#else
bool powersupply = true;
#endif
#endif
bool cancel_heatup = false ;
#ifdef HOST_KEEPALIVE_FEATURE
int busy_state = NOT_BUSY;
static long prev_busy_signal_ms = -1;
uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
#else
#define host_keepalive();
#define KEEPALIVE_STATE(n);
#endif
#ifdef FILAMENT_SENSOR
//Variables for Filament Sensor input
float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int delay_index1=0; //index into ring buffer
int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist=0; //delay distance counter
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
//===========================================================================
//=============================Private Variables=============================
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
// For tracing an arc
static float offset[3] = {0.0, 0.0, 0.0};
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
// Determines Absolute or Relative Coordinates.
// Also there is bool axis_relative_modes[] per axis flag.
static bool relative_mode = false;
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
//static float tt = 0;
//static float bt = 0;
//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
unsigned long starttime=0;
unsigned long stoptime=0;
unsigned long _usb_timer = 0;
static uint8_t tmp_extruder;
bool extruder_under_pressure = true;
bool Stopped=false;
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
bool CooldownNoWait = true;
bool target_direction;
//Insert variables if CHDK is defined
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif
//===========================================================================
//=============================Routines======================================
//===========================================================================
void get_arc_coordinates();
bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
#ifdef SDSUPPORT
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif //!SDSUPPORT
void setup_killpin()
{
#if defined(KILL_PIN) && KILL_PIN > -1
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN,HIGH);
#endif
}
// Set home pin
void setup_homepin(void)
{
#if defined(HOME_PIN) && HOME_PIN > -1
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN,HIGH);
#endif
}
void setup_photpin()
{
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
#if defined(PS_DEFAULT_OFF)
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init()
{
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
servos[0].attach(SERVO0_PIN);
#endif
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
servos[1].attach(SERVO1_PIN);
#endif
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
servos[2].attach(SERVO2_PIN);
#endif
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
servos[3].attach(SERVO3_PIN);
#endif
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
}
static void lcd_language_menu();
void stop_and_save_print_to_ram(float z_move, float e_move);
void restore_print_from_ram_and_continue(float e_move);
extern int8_t CrashDetectMenu;
void crashdet_enable()
{
MYSERIAL.println("crashdet_enable");
tmc2130_sg_stop_on_crash = true;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
CrashDetectMenu = 1;
}
void crashdet_disable()
{
MYSERIAL.println("crashdet_disable");
tmc2130_sg_stop_on_crash = false;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
CrashDetectMenu = 0;
}
void crashdet_stop_and_save_print()
{
stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
}
void crashdet_restore_print_and_continue()
{
restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
// babystep_apply();
}
void crashdet_stop_and_save_print2()
{
cli();
planner_abort_hard(); //abort printing
cmdqueue_reset(); //empty cmdqueue
card.sdprinting = false;
card.closefile();
sei();
}
void crashdet_detected()
{
printf("CRASH_DETECTED");
/* while (!is_buffer_empty())
{
process_commands();
cmdqueue_pop_front();
}*/
st_synchronize();
lcd_update_enable(true);
lcd_implementation_clear();
lcd_update(2);
// Increment crash counter
uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
crash_count++;
eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
#ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
bool yesno = true;
#else
bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
#endif
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(WELCOME_MSG);
if (yesno)
{
enquecommand_P(PSTR("G28 X"));
enquecommand_P(PSTR("G28 Y"));
enquecommand_P(PSTR("CRASH_RECOVER"));
}
else
{
enquecommand_P(PSTR("CRASH_CANCEL"));
}
}
void crashdet_recover()
{
crashdet_restore_print_and_continue();
tmc2130_sg_stop_on_crash = true;
}
void crashdet_cancel()
{
card.sdprinting = false;
card.closefile();
tmc2130_sg_stop_on_crash = true;
}
#ifdef MESH_BED_LEVELING
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
#endif
// Factory reset function
// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
// Level input parameter sets depth of reset
// Quiet parameter masks all waitings for user interact.
int er_progress = 0;
void factory_reset(char level, bool quiet)
{
lcd_implementation_clear();
int cursor_pos = 0;
switch (level) {
// Level 0: Language reset
case 0:
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
lcd_force_language_selection();
break;
//Level 1: Reset statistics
case 1:
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
lcd_menu_statistics();
break;
// Level 2: Prepare for shipping
case 2:
//lcd_printPGM(PSTR("Factory RESET"));
//lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
// Force language selection at the next boot up.
lcd_force_language_selection();
// Force the "Follow calibration flow" message at the next boot up.
calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
farm_no = 0;
farm_mode == false;
eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
//_delay_ms(2000);
break;
// Level 3: erase everything, whole EEPROM will be set to 0xFF
case 3:
lcd_printPGM(PSTR("Factory RESET"));
lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
er_progress = 0;
lcd_print_at_PGM(3, 3, PSTR(" "));
lcd_implementation_print_at(3, 3, er_progress);
// Erase EEPROM
for (int i = 0; i < 4096; i++) {
eeprom_write_byte((uint8_t*)i, 0xFF);
if (i % 41 == 0) {
er_progress++;
lcd_print_at_PGM(3, 3, PSTR(" "));
lcd_implementation_print_at(3, 3, er_progress);
lcd_printPGM(PSTR("%"));
}
}
break;
case 4:
bowden_menu();
break;
default:
break;
}
}
#include "LiquidCrystal.h"
extern LiquidCrystal lcd;
FILE _lcdout = {0};
int lcd_putchar(char c, FILE *stream)
{
lcd.write(c);
return 0;
}
FILE _uartout = {0};
int uart_putchar(char c, FILE *stream)
{
MYSERIAL.write(c);
return 0;
}
void lcd_splash()
{
// lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
// lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
// lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
}
// "Setup" function is called by the Arduino framework on startup.
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
// are initialized by the main() routine provided by the Arduino framework.
void setup()
{
lcd_init();
fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
lcd_splash();
setup_killpin();
setup_powerhold();
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
if (farm_no == 0xFFFF) farm_no = 0;
if (farm_mode)
{
prusa_statistics(8);
selectedSerialPort = 1;
}
else
selectedSerialPort = 0;
MYSERIAL.begin(BAUDRATE);
fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
stdout = uartout;
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
#if 0
SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
for (int i = 0; i < 4096; ++i) {
int b = eeprom_read_byte((unsigned char*)i);
if (b != 255) {
SERIAL_ECHO(i);
SERIAL_ECHO(":");
SERIAL_ECHO(b);
SERIAL_ECHOLN("");
}
}
SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
#endif
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
/* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
if (mcu & 1) puts_P(MSG_POWERUP);
if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
MCUSR = 0;
//SERIAL_ECHORPGM(MSG_MARLIN);
//SERIAL_ECHOLNRPGM(VERSION_STRING);
#ifdef STRING_VERSION_CONFIG_H
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
SERIAL_ECHORPGM(MSG_AUTHOR);
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif
#endif
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_FREE_MEMORY);
SERIAL_ECHO(freeMemory());
SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
//lcd_update_enable(false); // why do we need this?? - andre
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings(EEPROM_OFFSET);
SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
tp_init(); // Initialize temperature loop
lcd_splash(); // we need to do this again, because tp_init() kills lcd
plan_init(); // Initialize planner;
watchdog_init();
#ifdef TMC2130
uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
if (crashdet)
{
crashdet_enable();
MYSERIAL.println("CrashDetect ENABLED!");
}
else
{
crashdet_disable();
MYSERIAL.println("CrashDetect DISABLED");
}
#endif //TMC2130
#ifdef PAT9125
int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
if (!pat9125) fsensor = 0; //disable sensor
puts_P(PSTR("FSensor "));
if (fsensor)
{
puts_P(PSTR("ENABLED\n"));
fsensor_enable();
}
else
{
puts_P(PSTR("DISABLED\n"));
fsensor_disable();
}
#endif //PAT9125
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
// Reset the machine correction matrix.
// It does not make sense to load the correction matrix until the machine is homed.
world2machine_reset();
KEEPALIVE_STATE(PAUSED_FOR_USER);
if (!READ(BTN_ENC))
{
_delay_ms(1000);
if (!READ(BTN_ENC))
{
lcd_implementation_clear();
lcd_printPGM(PSTR("Factory RESET"));
SET_OUTPUT(BEEPER);
WRITE(BEEPER, HIGH);
while (!READ(BTN_ENC));
WRITE(BEEPER, LOW);
_delay_ms(2000);
char level = reset_menu();
factory_reset(level, false);
switch (level) {
case 0: _delay_ms(0); break;
case 1: _delay_ms(0); break;
case 2: _delay_ms(0); break;
case 3: _delay_ms(0); break;
}
// _delay_ms(100);
/*
#ifdef MESH_BED_LEVELING
_delay_ms(2000);
if (!READ(BTN_ENC))
{
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
_delay_ms(200);
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
int _z = 0;
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
}
else
{
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
}
#endif // mesh */
}
}
else
{
//_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
}
#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
#endif
#ifdef DIGIPOT_I2C
digipot_i2c_init();
#endif
setup_homepin();
if (1) {
SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
// try to run to zero phase before powering the Z motor.
// Move in negative direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
// Round the current micro-micro steps to micro steps.
for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
// Until the phase counter is reset to zero.
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
delay(2);
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
delay(2);
}
SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
}
#if defined(Z_AXIS_ALWAYS_ON)
enable_z();
#endif
farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
if (farm_no == 0xFFFF) farm_no = 0;
if (farm_mode)
{
prusa_statistics(8);
}
// Enable Toshiba FlashAir SD card / WiFi enahanced card.
card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
// but this times out if a blocking dialog is shown in setup().
card.initsd();
if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
// where all the EEPROM entries are set to 0x0ff.
// Once a firmware boots up, it forces at least a language selection, which changes
// EEPROM_LANG to number lower than 0x0ff.
// 1) Set a high power mode.
eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
}
#ifdef SNMM
if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
int _z = BOWDEN_LENGTH;
for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
}
#endif
// In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
// If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
// is being written into the EEPROM, so the update procedure will be triggered only once.
lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
if (lang_selected >= LANG_NUM){
lcd_mylang();
}
if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
temp_cal_active = false;
} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
temp_cal_active = true;
}
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
}
check_babystep(); //checking if Z babystep is in allowed range
setup_uvlo_interrupt();
setup_fan_interrupt();
fsensor_setup_interrupt();
for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
#ifndef DEBUG_DISABLE_STARTMSGS
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
lcd_wizard(0);
}
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Show the message.
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
}
else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
lcd_update_enable(true);
}
else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
//lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
lcd_update_enable(true);
}
else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
}
}
KEEPALIVE_STATE(IN_PROCESS);
#endif //DEBUG_DISABLE_STARTMSGS
lcd_update_enable(true);
lcd_implementation_clear();
lcd_update(2);
// Store the currently running firmware into an eeprom,
// so the next time the firmware gets updated, it will know from which version it has been updated.
update_current_firmware_version_to_eeprom();
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
/*
if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
else {
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(WELCOME_MSG);
}
*/
manage_heater(); // Update temperatures
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL.println("Power panic detected!");
MYSERIAL.print("Current bed temp:");
MYSERIAL.println(degBed());
MYSERIAL.print("Saved bed temp:");
MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
#endif
if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL.println("Automatic recovery!");
#endif
recover_print(1);
}
else{
#ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
MYSERIAL.println("Normal recovery!");
#endif
if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
else {
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(WELCOME_MSG);
}
}
}
KEEPALIVE_STATE(NOT_BUSY);
wdt_enable(WDTO_4S);
}
void trace();
#define CHUNK_SIZE 64 // bytes
#define SAFETY_MARGIN 1
char chunk[CHUNK_SIZE+SAFETY_MARGIN];
int chunkHead = 0;
int serial_read_stream() {
setTargetHotend(0, 0);
setTargetBed(0);
lcd_implementation_clear();
lcd_printPGM(PSTR(" Upload in progress"));
// first wait for how many bytes we will receive
uint32_t bytesToReceive;
// receive the four bytes
char bytesToReceiveBuffer[4];
for (int i=0; i<4; i++) {
int data;
while ((data = MYSERIAL.read()) == -1) {};
bytesToReceiveBuffer[i] = data;
}
// make it a uint32
memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
// we're ready, notify the sender
MYSERIAL.write('+');
// lock in the routine
uint32_t receivedBytes = 0;
while (prusa_sd_card_upload) {
int i;
for (i=0; i 0 && millis()-_usb_timer > 1000)
{
is_usb_printing = true;
usb_printing_counter--;
_usb_timer = millis();
}
if (usb_printing_counter == 0)
{
is_usb_printing = false;
}
if (prusa_sd_card_upload)
{
//we read byte-by byte
serial_read_stream();
} else
{
get_command();
#ifdef SDSUPPORT
card.checkautostart(false);
#endif
if(buflen)
{
cmdbuffer_front_already_processed = false;
#ifdef SDSUPPORT
if(card.saving)
{
// Saving a G-code file onto an SD-card is in progress.
// Saving starts with M28, saving until M29 is seen.
if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
card.write_command(CMDBUFFER_CURRENT_STRING);
if(card.logging)
process_commands();
else
SERIAL_PROTOCOLLNRPGM(MSG_OK);
} else {
card.closefile();
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
}
} else {
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
if (! cmdbuffer_front_already_processed && buflen)
{
cli();
union {
struct {
char lo;
char hi;
} lohi;
uint16_t value;
} sdlen;
sdlen.value = 0;
if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
sdlen.lohi.lo = cmdbuffer[bufindr + 1];
sdlen.lohi.hi = cmdbuffer[bufindr + 2];
}
cmdqueue_pop_front();
planner_add_sd_length(sdlen.value);
sei();
}
host_keepalive();
}
}
//check heater every n milliseconds
manage_heater();
isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
checkHitEndstops();
lcd_update();
#ifdef PAT9125
fsensor_update();
#endif //PAT9125
#ifdef TMC2130
tmc2130_check_overtemp();
if (tmc2130_sg_crash)
{
tmc2130_sg_crash = false;
// crashdet_stop_and_save_print();
enquecommand_P((PSTR("CRASH_DETECTED")));
}
#endif //TMC2130
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); } \
type array##_ext(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static void axis_is_at_home(int axis) {
current_position[axis] = base_home_pos(axis) + add_homing[axis];
min_pos[axis] = base_min_pos(axis) + add_homing[axis];
max_pos[axis] = base_max_pos(axis) + add_homing[axis];
}
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
static void setup_for_endstop_move(bool enable_endstops_now = true) {
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(enable_endstops_now);
}
static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
// corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() {
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_retract_mm(Z_AXIS);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// move back down slowly to find bed
feedrate = homing_feedrate[Z_AXIS]/4;
zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = XY_TRAVEL_SPEED;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = oldFeedRate;
}
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
run_z_probe();
float measured_z = current_position[Z_AXIS];
SERIAL_PROTOCOLRPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: ");
SERIAL_PROTOCOL(x);
SERIAL_PROTOCOLPGM(" y: ");
SERIAL_PROTOCOL(y);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(measured_z);
SERIAL_PROTOCOLPGM("\n");
return measured_z;
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef LIN_ADVANCE
/**
* M900: Set and/or Get advance K factor and WH/D ratio
*
* K Set advance K factor
* R Set ratio directly (overrides WH/D)
* W H D Set ratio from WH/D
*/
inline void gcode_M900() {
st_synchronize();
const float newK = code_seen('K') ? code_value_float() : -1;
if (newK >= 0) extruder_advance_k = newK;
float newR = code_seen('R') ? code_value_float() : -1;
if (newR < 0) {
const float newD = code_seen('D') ? code_value_float() : -1,
newW = code_seen('W') ? code_value_float() : -1,
newH = code_seen('H') ? code_value_float() : -1;
if (newD >= 0 && newW >= 0 && newH >= 0)
newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
}
if (newR >= 0) advance_ed_ratio = newR;
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Advance K=");
SERIAL_ECHOLN(extruder_advance_k);
SERIAL_ECHOPGM(" E/D=");
const float ratio = advance_ed_ratio;
if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
}
#endif // LIN_ADVANCE
bool check_commands() {
bool end_command_found = false;
while (buflen)
{
if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
if (!cmdbuffer_front_already_processed)
cmdqueue_pop_front();
cmdbuffer_front_already_processed = false;
}
return end_command_found;
}
#ifdef TMC2130
bool calibrate_z_auto()
{
//lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
lcd_implementation_clear();
lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
bool endstops_enabled = enable_endstops(true);
int axis_up_dir = -home_dir(Z_AXIS);
tmc2130_home_enter(Z_AXIS_MASK);
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
set_destination_to_current();
destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
feedrate = homing_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
tmc2130_home_restart(Z_AXIS);
st_synchronize();
// current_position[axis] = 0;
// plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
tmc2130_home_exit();
enable_endstops(false);
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
set_destination_to_current();
destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
feedrate = homing_feedrate[Z_AXIS] / 2;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
enable_endstops(endstops_enabled);
current_position[Z_AXIS] = Z_MAX_POS+2.0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
return true;
}
#endif //TMC2130
void homeaxis(int axis)
{
bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
{
int axis_home_dir = home_dir(axis);
feedrate = homing_feedrate[axis];
#ifdef TMC2130
tmc2130_home_enter(X_AXIS_MASK << axis);
#endif
// Move right a bit, so that the print head does not touch the left end position,
// and the following left movement has a chance to achieve the required velocity
// for the stall guard to work.
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// destination[axis] = 11.f;
destination[axis] = 3.f;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// Move left away from the possible collision with the collision detection disabled.
endstops_hit_on_purpose();
enable_endstops(false);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = - 1.;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// Now continue to move up to the left end stop with the collision detection enabled.
enable_endstops(true);
destination[axis] = - 1.1 * max_length(axis);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// Move right from the collision to a known distance from the left end stop with the collision detection disabled.
endstops_hit_on_purpose();
enable_endstops(false);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 10.f;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
// Now move left up to the collision, this time with a repeatable velocity.
enable_endstops(true);
destination[axis] = - 15.f;
feedrate = homing_feedrate[axis]/2;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(axis);
axis_known_position[axis] = true;
#ifdef TMC2130
tmc2130_home_exit();
#endif
// Move the X carriage away from the collision.
// If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
endstops_hit_on_purpose();
enable_endstops(false);
{
// Two full periods (4 full steps).
float gap = 0.32f * 2.f;
current_position[axis] -= gap;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
current_position[axis] += gap;
}
destination[axis] = current_position[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
st_synchronize();
feedrate = 0.0;
}
else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
{
int axis_home_dir = home_dir(axis);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
axis_known_position[axis] = true;
}
enable_endstops(endstops_enabled);
}
/**/
void home_xy()
{
set_destination_to_current();
homeaxis(X_AXIS);
homeaxis(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
endstops_hit_on_purpose();
}
void refresh_cmd_timeout(void)
{
previous_millis_cmd = millis();
}
#ifdef FWRETRACT
void retract(bool retracting, bool swapretract = false) {
if(retracting && !retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
if (swapretract) {
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
} else {
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_feedrate*60;
retracted[active_extruder]=true;
prepare_move();
current_position[Z_AXIS]-=retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
prepare_move();
feedrate = oldFeedrate;
} else if(!retracting && retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[Z_AXIS]+=retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
//prepare_move();
if (swapretract) {
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
} else {
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_recover_feedrate*60;
retracted[active_extruder]=false;
prepare_move();
feedrate = oldFeedrate;
}
} //retract
#endif //FWRETRACT
void trace() {
tone(BEEPER, 440);
delay(25);
noTone(BEEPER);
delay(20);
}
/*
void ramming() {
// float tmp[4] = DEFAULT_MAX_FEEDRATE;
if (current_temperature[0] < 230) {
//PLA
max_feedrate[E_AXIS] = 50;
//current_position[E_AXIS] -= 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
//current_position[E_AXIS] += 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
current_position[E_AXIS] += 5.4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
current_position[E_AXIS] += 3.2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
st_synchronize();
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= 82;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
current_position[E_AXIS] -= 20;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 10;
st_synchronize();
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] += 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
current_position[E_AXIS] += 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
current_position[E_AXIS] -= 10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
st_synchronize();
}
else {
//ABS
max_feedrate[E_AXIS] = 50;
//current_position[E_AXIS] -= 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
//current_position[E_AXIS] += 8;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
current_position[E_AXIS] += 4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
//current_position[X_AXIS] += 23; //delay
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
//current_position[X_AXIS] -= 23; //delay
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
delay(4700);
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= 92;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
st_synchronize();
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] += 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
current_position[E_AXIS] -= 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
st_synchronize();
}
}
*/
bool gcode_M45(bool onlyZ) {
bool final_result = false;
// Only Z calibration?
if (!onlyZ) {
setTargetBed(0);
setTargetHotend(0, 0);
setTargetHotend(0, 1);
setTargetHotend(0, 2);
adjust_bed_reset(); //reset bed level correction
}
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable(false);
// Let the planner use the uncorrected coordinates.
mbl.reset();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Reset the baby step value applied without moving the axes.
babystep_reset();
// Mark all axes as in a need for homing.
memset(axis_known_position, 0, sizeof(axis_known_position));
// Home in the XY plane.
//set_destination_to_current();
setup_for_endstop_move();
lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
home_xy();
// Let the user move the Z axes up to the end stoppers.
#ifdef TMC2130
if (calibrate_z_auto()) {
#else //TMC2130
if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
#endif //TMC2130
refresh_cmd_timeout();
//if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
// lcd_wait_for_cool_down();
//}
if(!onlyZ){
KEEPALIVE_STATE(PAUSED_FOR_USER);
bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
KEEPALIVE_STATE(IN_HANDLER);
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
lcd_implementation_print_at(0, 2, 1);
lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
}
// Move the print head close to the bed.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
//#ifdef TMC2130
// tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
//#endif
int8_t verbosity_level = 0;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
if (onlyZ) {
clean_up_after_endstop_move();
// Z only calibration.
// Load the machine correction matrix
world2machine_initialize();
// and correct the current_position to match the transformed coordinate system.
world2machine_update_current();
//FIXME
bool result = sample_mesh_and_store_reference();
if (result) {
if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
// Shipped, the nozzle height has been set already. The user can start printing now.
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
// babystep_apply();
}
}
else {
// Reset the baby step value and the baby step applied flag.
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Complete XYZ calibration.
uint8_t point_too_far_mask = 0;
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
if (result >= 0) {
point_too_far_mask = 0;
// Second half: The fine adjustment.
// Let the planner use the uncorrected coordinates.
mbl.reset();
world2machine_reset();
// Home in the XY plane.
setup_for_endstop_move();
home_xy();
result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
// if (result >= 0) babystep_apply();
}
lcd_bed_calibration_show_result(result, point_too_far_mask);
if (result >= 0) {
// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
final_result = true;
}
}
#ifdef TMC2130
tmc2130_home_exit();
#endif
}
else {
// Timeouted.
}
lcd_update_enable(true);
return final_result;
}
void gcode_M701() {
#ifdef SNMM
extr_adj(snmm_extruder);//loads current extruder
#else
enable_z();
custom_message = true;
custom_message_type = 2;
lcd_setstatuspgm(MSG_LOADING_FILAMENT);
current_position[E_AXIS] += 70;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
current_position[E_AXIS] += 25;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
st_synchronize();
if (!farm_mode && loading_flag) {
bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
while (!clean) {
lcd_update_enable(true);
lcd_update(2);
current_position[E_AXIS] += 25;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
st_synchronize();
clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
}
}
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(WELCOME_MSG);
disable_z();
loading_flag = false;
custom_message = false;
custom_message_type = 0;
#endif
}
void process_commands()
{
#ifdef FILAMENT_RUNOUT_SUPPORT
SET_INPUT(FR_SENS);
#endif
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM("Processing a GCODE command: ");
SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("In cmdqueue: ");
SERIAL_ECHO(buflen);
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
unsigned long codenum; //throw away variable
char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
float x_tmp, y_tmp, z_tmp, real_z;
#endif
// PRUSA GCODES
KEEPALIVE_STATE(IN_HANDLER);
#ifdef SNMM
float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
int8_t SilentMode;
#endif
if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
starpos = (strchr(strchr_pointer + 5, '*'));
if (starpos != NULL)
*(starpos) = '\0';
lcd_setstatus(strchr_pointer + 5);
}
else if(code_seen("CRASH_DETECTED"))
crashdet_detected();
else if(code_seen("CRASH_RECOVER"))
crashdet_recover();
else if(code_seen("CRASH_CANCEL"))
crashdet_cancel();
else if(code_seen("PRUSA")){
if (code_seen("Ping")) { //PRUSA Ping
if (farm_mode) {
PingTime = millis();
//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
}
}
else if (code_seen("PRN")) {
MYSERIAL.println(status_number);
}else if (code_seen("FAN")) {
MYSERIAL.print("E0:");
MYSERIAL.print(60*fan_speed[0]);
MYSERIAL.println(" RPM");
MYSERIAL.print("PRN0:");
MYSERIAL.print(60*fan_speed[1]);
MYSERIAL.println(" RPM");
}else if (code_seen("fn")) {
if (farm_mode) {
MYSERIAL.println(farm_no);
}
else {
MYSERIAL.println("Not in farm mode.");
}
}else if (code_seen("fv")) {
// get file version
#ifdef SDSUPPORT
card.openFile(strchr_pointer + 3,true);
while (true) {
uint16_t readByte = card.get();
MYSERIAL.write(readByte);
if (readByte=='\n') {
break;
}
}
card.closefile();
#endif // SDSUPPORT
} else if (code_seen("M28")) {
trace();
prusa_sd_card_upload = true;
card.openFile(strchr_pointer+4,false);
} else if (code_seen("SN")) {
if (farm_mode) {
selectedSerialPort = 0;
MSerial.write(";S");
// S/N is:CZPX0917X003XC13518
int numbersRead = 0;
while (numbersRead < 19) {
while (MSerial.available() > 0) {
uint8_t serial_char = MSerial.read();
selectedSerialPort = 1;
MSerial.write(serial_char);
numbersRead++;
selectedSerialPort = 0;
}
}
selectedSerialPort = 1;
MSerial.write('\n');
/*for (int b = 0; b < 3; b++) {
tone(BEEPER, 110);
delay(50);
noTone(BEEPER);
delay(50);
}*/
} else {
MYSERIAL.println("Not in farm mode.");
}
} else if(code_seen("Fir")){
SERIAL_PROTOCOLLN(FW_version);
} else if(code_seen("Rev")){
SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
} else if(code_seen("Lang")) {
lcd_force_language_selection();
} else if(code_seen("Lz")) {
EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
} else if (code_seen("SERIAL LOW")) {
MYSERIAL.println("SERIAL LOW");
MYSERIAL.begin(BAUDRATE);
return;
} else if (code_seen("SERIAL HIGH")) {
MYSERIAL.println("SERIAL HIGH");
MYSERIAL.begin(1152000);
return;
} else if(code_seen("Beat")) {
// Kick farm link timer
kicktime = millis();
} else if(code_seen("FR")) {
// Factory full reset
factory_reset(0,true);
}
//else if (code_seen('Cal')) {
// lcd_calibration();
// }
}
else if (code_seen('^')) {
// nothing, this is a version line
} else if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
if(Stopped == false) {
#ifdef FILAMENT_RUNOUT_SUPPORT
if(READ(FR_SENS)){
feedmultiplyBckp=feedmultiply;
float target[4];
float lastpos[4];
target[X_AXIS]=current_position[X_AXIS];
target[Y_AXIS]=current_position[Y_AXIS];
target[Z_AXIS]=current_position[Z_AXIS];
target[E_AXIS]=current_position[E_AXIS];
lastpos[X_AXIS]=current_position[X_AXIS];
lastpos[Y_AXIS]=current_position[Y_AXIS];
lastpos[Z_AXIS]=current_position[Z_AXIS];
lastpos[E_AXIS]=current_position[E_AXIS];
//retract by E
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
delay(100);
//LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0;
int counterBeep = 0;
lcd_wait_interact();
while(!lcd_clicked()){
cnt++;
manage_heater();
manage_inactivity(true);
//lcd_update();
if(cnt==0)
{
#if BEEPER > 0
if (counterBeep== 500){
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep== 0){
WRITE(BEEPER,HIGH);
}
if (counterBeep== 20){
WRITE(BEEPER,LOW);
}
counterBeep++;
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
}
WRITE(BEEPER,LOW);
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_change_fil_state = 0;
lcd_loading_filament();
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
lcd_change_fil_state = 0;
lcd_alright();
switch(lcd_change_fil_state){
case 2:
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_filament();
break;
case 3:
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_color();
break;
default:
lcd_change_success();
break;
}
}
target[E_AXIS]+= 5;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
//current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
//plan_set_e_position(current_position[E_AXIS]);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
plan_set_e_position(lastpos[E_AXIS]);
feedmultiply=feedmultiplyBckp;
char cmd[9];
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
enquecommand(cmd);
}
#endif
get_coordinates(); // For X Y Z E F
if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
}
#ifdef FWRETRACT
if(autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
retract(!retracted);
return;
}
}
#endif //FWRETRACT
prepare_move();
//ClearToSend();
}
break;
case 2: // G2 - CW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(true);
}
break;
case 3: // G3 - CCW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(false);
}
break;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
st_synchronize();
codenum += millis(); // keep track of when we started waiting
previous_millis_cmd = millis();
while(millis() < codenum) {
manage_heater();
manage_inactivity();
lcd_update();
}
break;
#ifdef FWRETRACT
case 10: // G10 retract
#if EXTRUDERS > 1
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
retract(true,retracted_swap[active_extruder]);
#else
retract(true);
#endif
break;
case 11: // G11 retract_recover
#if EXTRUDERS > 1
retract(false,retracted_swap[active_extruder]);
#else
retract(false);
#endif
break;
#endif //FWRETRACT
case 28: //G28 Home all Axis one at a time
{
st_synchronize();
#if 1
SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
#endif
// Flag for the display update routine and to disable the print cancelation during homing.
homing_flag = true;
// Which axes should be homed?
bool home_x = code_seen(axis_codes[X_AXIS]);
bool home_y = code_seen(axis_codes[Y_AXIS]);
bool home_z = code_seen(axis_codes[Z_AXIS]);
// Either all X,Y,Z codes are present, or none of them.
bool home_all_axes = home_x == home_y && home_x == home_z;
if (home_all_axes)
// No X/Y/Z code provided means to home all axes.
home_x = home_y = home_z = true;
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// For mesh bed leveling deactivate the matrix temporarily.
// It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
// in a single axis only.
// In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
#ifdef MESH_BED_LEVELING
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
#endif
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
if (home_z)
babystep_undo();
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(true);
memcpy(destination, current_position, sizeof(destination));
feedrate = 0.0;
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if(home_z)
homeaxis(Z_AXIS);
#endif
#ifdef QUICK_HOME
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
if(home_x && home_y) //first diagonal move
{
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
int x_axis_home_dir = home_dir(X_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS] max_length(Y_AXIS)) {
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
} else {
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
}
#endif /* QUICK_HOME */
if(home_x)
homeaxis(X_AXIS);
if(home_y)
homeaxis(Y_AXIS);
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING
if(home_z) {
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
{
homeaxis(X_AXIS);
homeaxis(Y_AXIS);
}
// 1st mesh bed leveling measurement point, corrected.
world2machine_initialize();
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
world2machine_reset();
if (destination[Y_AXIS] < Y_MIN_POS)
destination[Y_AXIS] = Y_MIN_POS;
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
feedrate = homing_feedrate[Z_AXIS]/10;
current_position[Z_AXIS] = 0;
enable_endstops(false);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
enable_endstops(true);
endstops_hit_on_purpose();
homeaxis(Z_AXIS);
#else // MESH_BED_LEVELING
homeaxis(Z_AXIS);
#endif // MESH_BED_LEVELING
}
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
if(home_all_axes) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED/60;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
homeaxis(Z_AXIS);
}
// Let's see if X and Y are homed and probe is inside bed area.
if(home_z) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
homeaxis(Z_AXIS);
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
} else {
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
}
}
#endif // Z_SAFE_HOMING
#endif // Z_HOME_DIR < 0
if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING
if(home_z)
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
#endif
// Set the planner and stepper routine positions.
// At this point the mesh bed leveling and world2machine corrections are disabled and current_position
// contains the machine coordinates.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
#ifndef MESH_BED_LEVELING
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
lcd_adjust_z();
#endif
// Load the machine correction matrix
world2machine_initialize();
// and correct the current_position XY axes to match the transformed coordinate system.
world2machine_update_current();
#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
{
if (! home_z && mbl_was_active) {
// Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
mbl.active = true;
// and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
}
}
else
{
st_synchronize();
homing_flag = false;
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
// enquecommand_front_P((PSTR("G80")));
goto case_G80;
}
#endif
if (farm_mode) { prusa_statistics(20); };
homing_flag = false;
SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
break;
}
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
#endif
// Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
// "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
int probePointCounter = 0;
bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
{
int xProbe, xInc;
if (zig)
{
xProbe = LEFT_PROBE_BED_POSITION;
//xEnd = RIGHT_PROBE_BED_POSITION;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION;
//xEnd = LEFT_PROBE_BED_POSITION;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
{
float z_before;
if (probePointCounter == 0)
{
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING;
} else
{
// raise extruder
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
}
float measured_z = probe_pt(xProbe, yProbe, z_before);
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
probePointCounter++;
xProbe += xInc;
}
}
clean_up_after_endstop_move();
// solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined
// Probe at 3 arbitrary points
// probe 1
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// probe 2
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// probe 3
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // AUTO_BED_LEVELING_GRID
st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
{
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("\n");
clean_up_after_endstop_move();
}
break;
#else
case 31: // dock the sled
dock_sled(true);
break;
case 32: // undock the sled
dock_sled(false);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
case 30: // G30 Single Z Probe
{
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
find_bed_induction_sensor_point_z(-10.f, 3);
SERIAL_PROTOCOLRPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_PROTOCOLPGM(" Y: ");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_PROTOCOLPGM(" Z: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
clean_up_after_endstop_move();
}
break;
case 75:
{
for (int i = 40; i <= 110; i++) {
MYSERIAL.print(i);
MYSERIAL.print(" ");
MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
}
}
break;
case 76: //PINDA probe temperature calibration
{
#ifdef PINDA_THERMISTOR
if (true)
{
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G76 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
break;
}
KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
SERIAL_ECHOLNPGM("PINDA probe calibration start");
float zero_z;
int z_shift = 0; //unit: steps
float start_temp = 5 * (int)(current_temperature_pinda / 5);
if (start_temp < 35) start_temp = 35;
if (start_temp < current_temperature_pinda) start_temp += 5;
SERIAL_ECHOPGM("start temperature: ");
MYSERIAL.println(start_temp);
// setTargetHotend(200, 0);
setTargetBed(70 + (start_temp - 30));
custom_message = true;
custom_message_type = 4;
custom_message_state = 1;
custom_message = MSG_TEMP_CALIBRATION;
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (current_temperature_pinda < start_temp)
{
delay_keep_alive(1000);
serialecho_temperatures();
}
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
zero_z = current_position[Z_AXIS];
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("ZERO: ");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOLNPGM("");
int i = -1; for (; i < 5; i++)
{
float temp = (40 + i * 5);
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i + 2);
SERIAL_ECHOLNPGM("/6 (skipped)");
SERIAL_ECHOPGM("PINDA temperature: ");
MYSERIAL.print((40 + i*5));
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(0);
SERIAL_ECHOLNPGM("");
if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
if (start_temp <= temp) break;
}
for (i++; i < 5; i++)
{
float temp = (40 + i * 5);
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i + 2);
SERIAL_ECHOLNPGM("/6");
custom_message_state = i + 2;
setTargetBed(50 + 10 * (temp - 30) / 5);
// setTargetHotend(255, 0);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (current_temperature_pinda < temp)
{
delay_keep_alive(1000);
serialecho_temperatures();
}
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("PINDA temperature: ");
MYSERIAL.print(current_temperature_pinda);
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
SERIAL_ECHOLNPGM("");
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
}
custom_message_type = 0;
custom_message = false;
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
lcd_update_enable(true);
lcd_update(2);
setTargetBed(0); //set bed target temperature back to 0
// setTargetHotend(0,0); //set hotend target temperature back to 0
break;
}
#endif //PINDA_THERMISTOR
setTargetBed(PINDA_MIN_T);
float zero_z;
int z_shift = 0; //unit: steps
int t_c; // temperature
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G76 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
break;
}
SERIAL_ECHOLNPGM("PINDA probe calibration start");
custom_message = true;
custom_message_type = 4;
custom_message_state = 1;
custom_message = MSG_TEMP_CALIBRATION;
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (abs(degBed() - PINDA_MIN_T) > 1) {
delay_keep_alive(1000);
serialecho_temperatures();
}
//enquecommand_P(PSTR("M190 S50"));
for (int i = 0; i < PINDA_HEAT_T; i++) {
delay_keep_alive(1000);
serialecho_temperatures();
}
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
zero_z = current_position[Z_AXIS];
//current_position[Z_AXIS]
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("ZERO: ");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOLNPGM("");
for (int i = 0; i<5; i++) {
SERIAL_ECHOPGM("Step: ");
MYSERIAL.print(i+2);
SERIAL_ECHOLNPGM("/6");
custom_message_state = i + 2;
t_c = 60 + i * 10;
setTargetBed(t_c);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (degBed() < t_c) {
delay_keep_alive(1000);
serialecho_temperatures();
}
for (int i = 0; i < PINDA_HEAT_T; i++) {
delay_keep_alive(1000);
serialecho_temperatures();
}
current_position[Z_AXIS] = 5;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
find_bed_induction_sensor_point_z(-1.f);
z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Temperature: ");
MYSERIAL.print(t_c);
SERIAL_ECHOPGM(" Z shift (mm):");
MYSERIAL.print(current_position[Z_AXIS] - zero_z);
SERIAL_ECHOLNPGM("");
EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
}
custom_message_type = 0;
custom_message = false;
eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
setTargetBed(0); //set bed target temperature back to 0
lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
lcd_update_enable(true);
lcd_update(2);
}
break;
#ifdef DIS
case 77:
{
//G77 X200 Y150 XP100 YP15 XO10 Y015
//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
//G77 X232 Y218 XP116 YP109 XO-11 YO0
float dimension_x = 40;
float dimension_y = 40;
int points_x = 40;
int points_y = 40;
float offset_x = 74;
float offset_y = 33;
if (code_seen('X')) dimension_x = code_value();
if (code_seen('Y')) dimension_y = code_value();
if (code_seen('XP')) points_x = code_value();
if (code_seen('YP')) points_y = code_value();
if (code_seen('XO')) offset_x = code_value();
if (code_seen('YO')) offset_y = code_value();
bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
} break;
#endif
case 79: {
for (int i = 255; i > 0; i = i - 5) {
fanSpeed = i;
//delay_keep_alive(2000);
for (int j = 0; j < 100; j++) {
delay_keep_alive(100);
}
fan_speed[1];
MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
}
}break;
/**
* G80: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* The S0 report the points as below
*
* +----> X-axis
* |
* |
* v Y-axis
*
*/
case 80:
#ifdef MK1BP
break;
#endif //MK1BP
case_G80:
{
mesh_bed_leveling_flag = true;
int8_t verbosity_level = 0;
static bool run = false;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
// Firstly check if we know where we are
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
}
else {
mesh_bed_leveling_flag = false;
}
break;
}
bool temp_comp_start = true;
#ifdef PINDA_THERMISTOR
temp_comp_start = false;
#endif //PINDA_THERMISTOR
if (temp_comp_start)
if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
temp_compensation_start();
run = true;
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
}
else {
mesh_bed_leveling_flag = false;
}
break;
}
run = false;
if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
mesh_bed_leveling_flag = false;
break;
}
// Save custom message state, set a new custom message state to display: Calibrating point 9.
bool custom_message_old = custom_message;
unsigned int custom_message_type_old = custom_message_type;
unsigned int custom_message_state_old = custom_message_state;
custom_message = true;
custom_message_type = 1;
custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
lcd_update(1);
mbl.reset(); //reset mesh bed leveling
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
babystep_undo();
// Cycle through all points and probe them
// First move up. During this first movement, the babystepping will be reverted.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
// The move to the first calibration point.
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
}
#endif //SUPPORT_VERBOSITY
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
// Wait until the move is finished.
st_synchronize();
int mesh_point = 0; //index number of calibration point
int ix = 0;
int iy = 0;
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
}
#endif // SUPPORT_VERBOSITY
setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
const char *kill_message = NULL;
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
// Get coords of a measuring point.
ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
float z0 = 0.f;
if (has_z && mesh_point > 0) {
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
z0 = mbl.z_values[0][0] + *reinterpret_cast(&z_offset_u) * 0.01;
//#if 0
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Bed leveling, point: ");
MYSERIAL.print(mesh_point);
SERIAL_ECHOPGM(", calibration z: ");
MYSERIAL.print(z0, 5);
SERIAL_ECHOLNPGM("");
}
#endif // SUPPORT_VERBOSITY
//#endif
}
// Move Z up to MESH_HOME_Z_SEARCH.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
// Move to XY position of the sensor point.
current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
SERIAL_PROTOCOL(mesh_point);
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
}
#endif // SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
st_synchronize();
// Go down until endstop is hit
const float Z_CALIBRATION_THRESHOLD = 1.f;
if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
break;
}
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
break;
}
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
break;
}
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
SERIAL_ECHOPGM("X: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Y: ");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
}
#endif // SUPPORT_VERBOSITY
float offset_z = 0;
#ifdef PINDA_THERMISTOR
offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
#endif //PINDA_THERMISTOR
// #ifdef SUPPORT_VERBOSITY
// if (verbosity_level >= 1)
{
SERIAL_ECHOPGM("mesh bed leveling: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOPGM(" offset: ");
MYSERIAL.print(offset_z, 5);
SERIAL_ECHOLNPGM("");
}
// #endif // SUPPORT_VERBOSITY
mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
custom_message_state--;
mesh_point++;
lcd_update(1);
}
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
}
#endif // SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
kill(kill_message);
SERIAL_ECHOLNPGM("killed");
}
clean_up_after_endstop_move();
SERIAL_ECHOLNPGM("clean up finished ");
bool apply_temp_comp = true;
#ifdef PINDA_THERMISTOR
apply_temp_comp = false;
#endif
if (apply_temp_comp)
if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
SERIAL_ECHOLNPGM("babystep applied");
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
#ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
}
#endif // SUPPORT_VERBOSITY
for (uint8_t i = 0; i < 4; ++i) {
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
long correction = 0;
if (code_seen(codes[i]))
correction = code_value_long();
else if (eeprom_bed_correction_valid) {
unsigned char *addr = (i < 2) ?
((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
correction = eeprom_read_int8(addr);
}
if (correction == 0)
continue;
float offset = float(correction) * 0.001f;
if (fabs(offset) > 0.101f) {
SERIAL_ERROR_START;
SERIAL_ECHOPGM("Excessive bed leveling correction: ");
SERIAL_ECHO(offset);
SERIAL_ECHOLNPGM(" microns");
}
else {
switch (i) {
case 0:
for (uint8_t row = 0; row < 3; ++row) {
mbl.z_values[row][1] += 0.5f * offset;
mbl.z_values[row][0] += offset;
}
break;
case 1:
for (uint8_t row = 0; row < 3; ++row) {
mbl.z_values[row][1] += 0.5f * offset;
mbl.z_values[row][2] += offset;
}
break;
case 2:
for (uint8_t col = 0; col < 3; ++col) {
mbl.z_values[1][col] += 0.5f * offset;
mbl.z_values[0][col] += offset;
}
break;
case 3:
for (uint8_t col = 0; col < 3; ++col) {
mbl.z_values[1][col] += 0.5f * offset;
mbl.z_values[2][col] += offset;
}
break;
}
}
}
SERIAL_ECHOLNPGM("Bed leveling correction finished");
mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
SERIAL_ECHOLNPGM("Upsample finished");
mbl.active = 1; //activate mesh bed leveling
SERIAL_ECHOLNPGM("Mesh bed leveling activated");
go_home_with_z_lift();
SERIAL_ECHOLNPGM("Go home finished");
//unretract (after PINDA preheat retraction)
if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
current_position[E_AXIS] += DEFAULT_RETRACTION;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
}
KEEPALIVE_STATE(NOT_BUSY);
// Restore custom message state
custom_message = custom_message_old;
custom_message_type = custom_message_type_old;
custom_message_state = custom_message_state_old;
mesh_bed_leveling_flag = false;
mesh_bed_run_from_menu = false;
lcd_update(2);
}
break;
/**
* G81: Print mesh bed leveling status and bed profile if activated
*/
case 81:
if (mbl.active) {
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
}
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
break;
#if 0
/**
* G82: Single Z probe at current location
*
* WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
*
*/
case 82:
SERIAL_PROTOCOLLNPGM("Finding bed ");
setup_for_endstop_move();
find_bed_induction_sensor_point_z();
clean_up_after_endstop_move();
SERIAL_PROTOCOLPGM("Bed found at: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
break;
/**
* G83: Prusa3D specific: Babystep in Z and store to EEPROM
*/
case 83:
{
int babystepz = code_seen('S') ? code_value() : 0;
int BabyPosition = code_seen('P') ? code_value() : 0;
if (babystepz != 0) {
//FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
// Is the axis indexed starting with zero or one?
if (BabyPosition > 4) {
SERIAL_PROTOCOLLNPGM("Index out of bounds");
}else{
// Save it to the eeprom
babystepLoadZ = babystepz;
EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
// adjust the Z
babystepsTodoZadd(babystepLoadZ);
}
}
}
break;
/**
* G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
*/
case 84:
babystepsTodoZsubtract(babystepLoadZ);
// babystepLoadZ = 0;
break;
/**
* G85: Prusa3D specific: Pick best babystep
*/
case 85:
lcd_pick_babystep();
break;
#endif
/**
* G86: Prusa3D specific: Disable babystep correction after home.
* This G-code will be performed at the start of a calibration script.
*/
case 86:
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
break;
/**
* G87: Prusa3D specific: Enable babystep correction after home
* This G-code will be performed at the end of a calibration script.
*/
case 87:
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
break;
/**
* G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
*/
case 88:
break;
#endif // ENABLE_MESH_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) {
if(i == E_AXIS) {
current_position[i] = code_value();
plan_set_e_position(current_position[E_AXIS]);
}
else {
current_position[i] = code_value()+add_homing[i];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
}
}
break;
case 98: //activate farm mode
farm_mode = 1;
PingTime = millis();
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
break;
case 99: //deactivate farm mode
farm_mode = 0;
lcd_printer_connected();
eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
lcd_update(2);
break;
}
} // end if(code_seen('G'))
else if(code_seen('M'))
{
int index;
for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
/*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
SERIAL_ECHOLNPGM("Invalid M code");
} else
switch((int)code_value())
{
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
{
char *src = strchr_pointer + 2;
codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value(); // milliseconds to wait
hasP = codenum > 0;
}
if (code_seen('S')) {
codenum = code_value() * 1000; // seconds to wait
hasS = codenum > 0;
}
starpos = strchr(src, '*');
if (starpos != NULL) *(starpos) = '\0';
while (*src == ' ') ++src;
if (!hasP && !hasS && *src != '\0') {
lcd_setstatus(src);
} else {
LCD_MESSAGERPGM(MSG_USERWAIT);
}
lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
st_synchronize();
previous_millis_cmd = millis();
if (codenum > 0){
codenum += millis(); // keep track of when we started waiting
KEEPALIVE_STATE(PAUSED_FOR_USER);
while(millis() < codenum && !lcd_clicked()){
manage_heater();
manage_inactivity(true);
lcd_update();
}
KEEPALIVE_STATE(IN_HANDLER);
lcd_ignore_click(false);
}else{
if (!lcd_detected())
break;
KEEPALIVE_STATE(PAUSED_FOR_USER);
while(!lcd_clicked()){
manage_heater();
manage_inactivity(true);
lcd_update();
}
KEEPALIVE_STATE(IN_HANDLER);
}
if (IS_SD_PRINTING)
LCD_MESSAGERPGM(MSG_RESUMING);
else
LCD_MESSAGERPGM(WELCOME_MSG);
}
break;
#endif
case 17:
LCD_MESSAGERPGM(MSG_NO_MOVE);
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
break;
case 21: // M21 - init SD card
card.initsd();
break;
case 22: //M22 - release SD card
card.release();
break;
case 23: //M23 - Select file
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos)='\0';
card.openFile(strchr_pointer + 4,true);
break;
case 24: //M24 - Start SD print
card.startFileprint();
starttime=millis();
break;
case 25: //M25 - Pause SD print
card.pauseSDPrint();
break;
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')) {
card.setIndex(code_value_long());
}
break;
case 27: //M27 - Get SD status
card.getStatus();
break;
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openFile(strchr_pointer+4,false);
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break;
case 30: //M30 Delete File
if (card.cardOK){
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
}
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL)
{
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
}
else
namestartpos++; //to skip the '!'
if(starpos!=NULL)
*(starpos)='\0';
bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
if(strchr_pointer= 0 && pin_status <= 255)
pin_number = code_value();
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
#if defined(FAN_PIN) && FAN_PIN > -1
if (pin_number == FAN_PIN)
fanSpeed = pin_status;
#endif
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
break;
case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
// Reset the baby step value and the baby step applied flag.
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Reset the skew and offset in both RAM and EEPROM.
reset_bed_offset_and_skew();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
break;
case 45: // M45: Prusa3D: bed skew and offset with manual Z up
{
bool only_Z = code_seen('Z');
gcode_M45(only_Z);
}
break;
/*
case 46:
{
// M46: Prusa3D: Show the assigned IP address.
uint8_t ip[4];
bool hasIP = card.ToshibaFlashAir_GetIP(ip);
if (hasIP) {
SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
SERIAL_ECHO(int(ip[0]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[1]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[2]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[3]));
SERIAL_ECHOLNPGM("");
} else {
SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
}
break;
}
*/
case 47:
// M47: Prusa3D: Show end stops dialog on the display.
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_diag_show_end_stops();
KEEPALIVE_STATE(IN_HANDLER);
break;
#if 0
case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
{
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable(false);
// Let the planner use the uncorrected coordinates.
mbl.reset();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Move the print head close to the bed.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
// Home in the XY plane.
set_destination_to_current();
setup_for_endstop_move();
home_xy();
int8_t verbosity_level = 0;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
bool success = scan_bed_induction_points(verbosity_level);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
lcd_update_enable(true);
break;
}
#endif
// M48 Z-Probe repeatability measurement function.
//
// Usage: M48
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST
case 48: // M48 Z-Probe repeatability
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#endif
double sum=0.0;
double mean=0.0;
double sigma=0.0;
double sample_set[50];
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
double X_current, Y_current, Z_current;
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level<0 || verbose_level>4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
goto Sigma_Exit;
}
}
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
}
if (code_seen('n')) {
n_samples = code_value();
if (n_samples<4 || n_samples>50 ) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
goto Sigma_Exit;
}
}
X_current = X_probe_location = st_get_position_mm(X_AXIS);
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
ext_position = st_get_position_mm(E_AXIS);
if (code_seen('X') || code_seen('x') ) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_locationX_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('Y') || code_seen('y') ) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_locationY_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('L') || code_seen('l') ) {
n_legs = code_value();
if ( n_legs==1 )
n_legs = 2;
if ( n_legs<0 || n_legs>15 ) {
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
goto Sigma_Exit;
}
}
//
// Do all the preliminary setup work. First raise the probe.
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_buffer_line( X_current, Y_current, Z_start_location,
ext_position,
homing_feedrate[Z_AXIS]/60,
active_extruder);
st_synchronize();
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if (verbose_level > 2)
SERIAL_PROTOCOL("Positioning probe for the test.\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
//
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
setup_for_endstop_move();
run_z_probe();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
for( n=0; nX_MAX_POS)
X_current = X_MAX_POS;
if ( Y_currentY_MAX_POS)
Y_current = Y_MAX_POS;
if (verbose_level>3 ) {
SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_PROTOCOLLNPGM("");
}
do_blocking_move_to( X_current, Y_current, Z_current );
}
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
}
setup_for_endstop_move();
run_z_probe();
sample_set[n] = current_position[Z_AXIS];
//
// Get the current mean for the data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + sample_set[j];
}
mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
}
sigma = sqrt( sum / (double (n+1)) );
if (verbose_level > 1) {
SERIAL_PROTOCOL(n+1);
SERIAL_PROTOCOL(" of ");
SERIAL_PROTOCOL(n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
}
if (verbose_level > 2) {
SERIAL_PROTOCOL(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOL(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize();
}
delay(1000);
clean_up_after_endstop_move();
// enable_endstops(true);
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM("\n");
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");
Sigma_Exit:
break;
}
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
case 104: // M104
if(setTargetedHotend(104)){
break;
}
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
setWatch();
break;
case 112: // M112 -Emergency Stop
kill("", 3);
break;
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
case 105 : // M105
if(setTargetedHotend(105)){
break;
}
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(),1);
#endif //TEMP_BED_PIN
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
}
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#ifdef PINDA_THERMISTOR
SERIAL_PROTOCOLPGM(" P:");
SERIAL_PROTOCOL_F(current_temperature_pinda,1);
#endif //PINDA_THERMISTOR
#ifdef AMBIENT_THERMISTOR
SERIAL_PROTOCOLPGM(" A:");
SERIAL_PROTOCOL_F(current_temperature_ambient,1);
#endif //AMBIENT_THERMISTOR
#ifdef SHOW_TEMP_ADC_VALUES
{float raw = 0.0;
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM("C->");
raw = rawBedTemp();
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
SERIAL_PROTOCOLPGM(" Rb->");
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
SERIAL_PROTOCOLPGM(" Rxb->");
SERIAL_PROTOCOL_F(raw, 5);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM("C->");
raw = rawHotendTemp(cur_extruder);
SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
SERIAL_PROTOCOLPGM(" Rt");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM("->");
SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
SERIAL_PROTOCOLPGM(" Rx");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM("->");
SERIAL_PROTOCOL_F(raw, 5);
}}
#endif
SERIAL_PROTOCOLLN("");
KEEPALIVE_STATE(NOT_BUSY);
return;
break;
case 109:
{// M109 - Wait for extruder heater to reach target.
if(setTargetedHotend(109)){
break;
}
LCD_MESSAGERPGM(MSG_HEATING);
heating_status = 1;
if (farm_mode) { prusa_statistics(1); };
#ifdef AUTOTEMP
autotemp_enabled=false;
#endif
if (code_seen('S')) {
setTargetHotend(code_value(), tmp_extruder);
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
CooldownNoWait = false;
}
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
if (code_seen('B')) autotemp_max=code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
autotemp_enabled=true;
}
#endif
setWatch();
codenum = millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
KEEPALIVE_STATE(NOT_BUSY);
cancel_heatup = false;
wait_for_heater(codenum); //loops until target temperature is reached
LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
KEEPALIVE_STATE(IN_HANDLER);
heating_status = 2;
if (farm_mode) { prusa_statistics(2); };
//starttime=millis();
previous_millis_cmd = millis();
}
break;
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
LCD_MESSAGERPGM(MSG_BED_HEATING);
heating_status = 3;
if (farm_mode) { prusa_statistics(1); };
if (code_seen('S'))
{
setTargetBed(code_value());
CooldownNoWait = true;
}
else if (code_seen('R'))
{
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
KEEPALIVE_STATE(NOT_BUSY);
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
{
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
if (!farm_mode) {
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN("");
}
codenum = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
}
LCD_MESSAGERPGM(MSG_BED_DONE);
KEEPALIVE_STATE(IN_HANDLER);
heating_status = 4;
previous_millis_cmd = millis();
#endif
break;
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
}
else {
fanSpeed=255;
}
break;
case 107: //M107 Fan Off
fanSpeed = 0;
break;
#endif //FAN_PIN
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#ifdef ULTIPANEL
powersupply = true;
LCD_MESSAGERPGM(WELCOME_MSG);
lcd_update();
#endif
break;
#endif
case 81: // M81 - Turn off Power Supply
disable_heater();
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
fanSpeed = 0;
delay(1000); // Wait a little before to switch off
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize();
suicide();
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#ifdef ULTIPANEL
powersupply = false;
LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
/*
MACHNAME = "Prusa i3"
MSGOFF = "Vypnuto"
"Prusai3"" ""vypnuto""."
"Prusa i3"" "MSG_ALL[lang_selected][50]"."
*/
lcd_update();
#endif
break;
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18: //compatibility
case 84: // M84
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else
{
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis)
{
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
}
else
{
st_synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if (code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
}
#endif
}
}
snmm_filaments_used = 0;
break;
case 85: // M85
if(code_seen('S')) {
max_inactive_time = code_value() * 1000;
}
break;
case 92: // M92
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
if(i == 3) { // E
float value = code_value();
if(value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_jerk[E_AXIS] *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
axis_steps_per_unit[i] = value;
}
else {
axis_steps_per_unit[i] = code_value();
}
}
}
break;
#ifdef HOST_KEEPALIVE_FEATURE
case 113: // M113 - Get or set Host Keepalive interval
if (code_seen('S')) {
host_keepalive_interval = (uint8_t)code_value_short();
// NOMORE(host_keepalive_interval, 60);
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
SERIAL_PROTOCOLLN("");
}
break;
#endif
case 115: // M115
if (code_seen('V')) {
// Report the Prusa version number.
SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
} else if (code_seen('U')) {
// Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
// pause the print and ask the user to upgrade the firmware.
show_upgrade_dialog_if_version_newer(++ strchr_pointer);
} else {
SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
}
break;
/* case 117: // M117 display message
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos!=NULL)
*(starpos)='\0';
lcd_setstatus(strchr_pointer + 5);
break;*/
case 114: // M114
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
SERIAL_PROTOCOLLN("");
break;
case 120: // M120
enable_endstops(false) ;
break;
case 121: // M121
enable_endstops(true) ;
break;
case 119: // M119
SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
SERIAL_PROTOCOLLN("");
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_X_MIN);
if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_X_MAX);
if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
{
byte red;
byte grn;
byte blu;
if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu);
}
break;
#endif //BLINKM
case 200: // M200 D set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
{
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
break;
}
}
float area = .0;
if(code_seen('D')) {
float diameter = (float)code_value();
if (diameter == 0.0) {
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = false;
} else {
filament_size[tmp_extruder] = (float)code_value();
// make sure all extruders have some sane value for the filament size
filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
#if EXTRUDERS > 1
filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
#if EXTRUDERS > 2
filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
#endif
#endif
volumetric_enabled = true;
}
} else {
//reserved for setting filament diameter via UFID or filament measuring device
break;
}
calculate_volumetric_multipliers();
}
break;
case 201: // M201
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value();
if(code_seen('T')) mintravelfeedrate = code_value();
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
if(code_seen('E')) max_jerk[E_AXIS] = code_value();
}
break;
case 206: // M206 additional homing offset
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
}
break;
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
{
if(code_seen('S'))
{
retract_length = code_value() ;
}
if(code_seen('F'))
{
retract_feedrate = code_value()/60 ;
}
if(code_seen('Z'))
{
retract_zlift = code_value() ;
}
}break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if(code_seen('S'))
{
retract_recover_length = code_value() ;
}
if(code_seen('F'))
{
retract_recover_feedrate = code_value()/60 ;
}
}break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if(code_seen('S'))
{
int t= code_value() ;
switch(t)
{
case 0:
{
autoretract_enabled=false;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
case 1:
{
autoretract_enabled=true;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
default:
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(1)");
}
}
}break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T X Y
{
if(setTargetedHotend(218)){
break;
}
if(code_seen('X'))
{
extruder_offset[X_AXIS][tmp_extruder] = code_value();
}
if(code_seen('Y'))
{
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
}
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
{
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
}
SERIAL_ECHOLN("");
}break;
#endif
case 220: // M220 S- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
}
}
break;
case 221: // M221 S- set extrude factor override percentage
{
if(code_seen('S'))
{
int tmp_code = code_value();
if (code_seen('T'))
{
if(setTargetedHotend(221)){
break;
}
extruder_multiply[tmp_extruder] = tmp_code;
}
else
{
extrudemultiply = tmp_code ;
}
}
}
break;
case 226: // M226 P S- Wait until the specified pin reaches the state required
{
if(code_seen('P')){
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state
if(pin_state >= -1 && pin_state <= 1){
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
int target = LOW;
st_synchronize();
pinMode(pin_number, INPUT);
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while(digitalRead(pin_number) != target){
manage_heater();
manage_inactivity();
lcd_update();
}
}
}
}
}
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
case 300: // M300
{
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0)
{
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
noTone(BEEPER);
#elif defined(ULTRALCD)
lcd_buzz(beepS, beepP);
#elif defined(LCD_USE_I2C_BUZZER)
lcd_buzz(beepP, beepS);
#endif
}
else
{
delay(beepP);
}
}
break;
#endif // M300
#ifdef PIDTEMP
case 301: // M301
{
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = scalePID_i(code_value());
if(code_seen('D')) Kd = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE
if(code_seen('C')) Kc = code_value();
#endif
updatePID();
SERIAL_PROTOCOLRPGM(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(Ki));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(Kd));
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(Kc);
#endif
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
{
if(code_seen('P')) bedKp = code_value();
if(code_seen('I')) bedKi = scalePID_i(code_value());
if(code_seen('D')) bedKd = scalePID_d(code_value());
updatePID();
SERIAL_PROTOCOLRPGM(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(bedKi));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
#ifdef CHDK
SET_OUTPUT(CHDK);
WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#else
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
const uint8_t NUM_PULSES=16;
const float PULSE_LENGTH=0.01524;
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif
#endif //chdk end if
}
break;
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C (value 0..63)
{
if (code_seen('C')) {
lcd_setcontrast( ((int)code_value())&63 );
}
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_PROTOCOLLN("");
}
break;
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
{
float temp = .0;
if (code_seen('S')) temp=code_value();
set_extrude_min_temp(temp);
}
break;
#endif
case 303: // M303 PID autotune
{
float temp = 150.0;
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value();
if (code_seen('C')) c=code_value();
PID_autotune(temp, e, c);
}
break;
case 400: // M400 finish all moves
{
st_synchronize();
}
break;
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
{
#if (FILWIDTH_PIN > -1)
if(code_seen('N')) filament_width_nominal=code_value();
else{
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
#endif
}
break;
case 405: //M405 Turn on filament sensor for control
{
if(code_seen('D')) meas_delay_cm=code_value();
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
meas_delay_cm = MAX_MEASUREMENT_DELAY;
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
{
int temp_ratio = widthFil_to_size_ratio();
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
}
delay_index1=0;
delay_index2=0;
}
filament_sensor = true ;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrudemultiply);
}
break;
case 406: //M406 Turn off filament sensor for control
{
filament_sensor = false ;
}
break;
case 407: //M407 Display measured filament diameter
{
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
break;
#endif
case 500: // M500 Store settings in EEPROM
{
Config_StoreSettings(EEPROM_OFFSET);
}
break;
case 501: // M501 Read settings from EEPROM
{
Config_RetrieveSettings(EEPROM_OFFSET);
}
break;
case 502: // M502 Revert to default settings
{
Config_ResetDefault();
}
break;
case 503: // M503 print settings currently in memory
{
Config_PrintSettings();
}
break;
case 509: //M509 Force language selection
{
lcd_force_language_selection();
SERIAL_ECHO_START;
SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
}
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
{
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
}
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
{
float value;
if (code_seen('Z'))
{
value = code_value();
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
{
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
SERIAL_PROTOCOLLN("");
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHORPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
SERIAL_ECHORPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
SERIAL_PROTOCOLLN("");
}
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
SERIAL_ECHO(-zprobe_zoffset);
SERIAL_PROTOCOLLN("");
}
break;
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{
MYSERIAL.println("!!!!M600!!!!");
bool old_fsensor_enabled = fsensor_enabled;
fsensor_enabled = false; //temporary solution for unexpected restarting
st_synchronize();
float target[4];
float lastpos[4];
if (farm_mode)
{
prusa_statistics(22);
}
feedmultiplyBckp=feedmultiply;
int8_t TooLowZ = 0;
target[X_AXIS]=current_position[X_AXIS];
target[Y_AXIS]=current_position[Y_AXIS];
target[Z_AXIS]=current_position[Z_AXIS];
target[E_AXIS]=current_position[E_AXIS];
lastpos[X_AXIS]=current_position[X_AXIS];
lastpos[Y_AXIS]=current_position[Y_AXIS];
lastpos[Z_AXIS]=current_position[Z_AXIS];
lastpos[E_AXIS]=current_position[E_AXIS];
//Restract extruder
if(code_seen('E'))
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FIRSTRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//Lift Z
if(code_seen('Z'))
{
target[Z_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_ZADD
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
if(target[Z_AXIS] < 10){
target[Z_AXIS]+= 10 ;
TooLowZ = 1;
}else{
TooLowZ = 0;
}
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
//Move XY to side
if(code_seen('X'))
{
target[X_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_XPOS
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
#endif
}
if(code_seen('Y'))
{
target[Y_AXIS]= code_value();
}
else
{
#ifdef FILAMENTCHANGE_YPOS
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
st_synchronize();
KEEPALIVE_STATE(PAUSED_FOR_USER);
uint8_t cnt = 0;
int counterBeep = 0;
lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
while (!lcd_clicked()) {
cnt++;
manage_heater();
manage_inactivity(true);
/*#ifdef SNMM
target[E_AXIS] += 0.002;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
#endif // SNMM*/
if (cnt == 0)
{
#if BEEPER > 0
if (counterBeep == 500) {
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep == 0) {
WRITE(BEEPER, HIGH);
}
if (counterBeep == 20) {
WRITE(BEEPER, LOW);
}
counterBeep++;
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000 / 6, 100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
}
WRITE(BEEPER, LOW);
lcd_change_fil_state = 0;
while (lcd_change_fil_state == 0) {
lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
KEEPALIVE_STATE(IN_HANDLER);
custom_message = true;
lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
// Unload filament
if (code_seen('L'))
{
target[E_AXIS] += code_value();
}
else
{
#ifdef SNMM
#else
#ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
#endif
#endif // SNMM
}
#ifdef SNMM
target[E_AXIS] += 12;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
target[E_AXIS] += 6;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
st_synchronize();
target[E_AXIS] += (FIL_COOLING);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
target[E_AXIS] += (FIL_COOLING*-1);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
st_synchronize();
#else
// plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
#endif // SNMM
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
delay(100);
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
//lcd_return_to_status();
lcd_update_enable(true);
}
//Wait for user to insert filament
lcd_wait_interact();
//load_filament_time = millis();
KEEPALIVE_STATE(PAUSED_FOR_USER);
pat9125_update_y(); //update sensor
uint16_t y_old = pat9125_y; //save current y value
uint8_t change_cnt = 0; //reset number of changes counter
while(!lcd_clicked())
{
manage_heater();
manage_inactivity(true);
pat9125_update_y(); //update sensor
if (y_old != pat9125_y) //? y value is different
{
if ((y_old - pat9125_y) > 0) //? delta-y value is positive (inserting)
change_cnt++; //increment change counter
y_old = pat9125_y; //save current value
if (change_cnt > 20) break; //number of positive changes > 20, start loading
}
/*#ifdef SNMM
target[E_AXIS] += 0.002;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
#endif // SNMM*/
}
//WRITE(BEEPER, LOW);
KEEPALIVE_STATE(IN_HANDLER);
#ifdef SNMM
display_loading();
KEEPALIVE_STATE(PAUSED_FOR_USER);
do {
target[E_AXIS] += 0.002;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
delay_keep_alive(2);
} while (!lcd_clicked());
KEEPALIVE_STATE(IN_HANDLER);
/*if (millis() - load_filament_time > 2) {
load_filament_time = millis();
target[E_AXIS] += 0.001;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
}*/
//Filament inserted
//Feed the filament to the end of nozzle quickly
st_synchronize();
target[E_AXIS] += bowden_length[snmm_extruder];
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
target[E_AXIS] += FIL_LOAD_LENGTH - 60;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
target[E_AXIS] += 40;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
target[E_AXIS] += 10;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
#else
target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
#endif // SNMM
//Extrude some filament
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
//Wait for user to check the state
lcd_change_fil_state = 0;
lcd_loading_filament();
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
lcd_change_fil_state = 0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_alright();
KEEPALIVE_STATE(IN_HANDLER);
switch(lcd_change_fil_state){
// Filament failed to load so load it again
case 2:
#ifdef SNMM
display_loading();
do {
target[E_AXIS] += 0.002;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
delay_keep_alive(2);
} while (!lcd_clicked());
st_synchronize();
target[E_AXIS] += bowden_length[snmm_extruder];
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
target[E_AXIS] += FIL_LOAD_LENGTH - 60;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
target[E_AXIS] += 40;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
target[E_AXIS] += 10;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
#else
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
#endif
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
lcd_loading_filament();
break;
// Filament loaded properly but color is not clear
case 3:
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_color();
break;
// Everything good
default:
lcd_change_success();
lcd_update_enable(true);
break;
}
}
//Not let's go back to print
//Feed a little of filament to stabilize pressure
target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
//Retract
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
//Move XY back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
//Move Z back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
//Unretract
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//Set E position to original
plan_set_e_position(lastpos[E_AXIS]);
//Recover feed rate
feedmultiply=feedmultiplyBckp;
char cmd[9];
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
enquecommand(cmd);
lcd_setstatuspgm(WELCOME_MSG);
custom_message = false;
custom_message_type = 0;
fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
#ifdef PAT9125
if (fsensor_M600)
{
cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
st_synchronize();
while (!is_buffer_empty())
{
process_commands();
cmdqueue_pop_front();
}
fsensor_enable();
fsensor_restore_print_and_continue();
}
#endif //PAT9125
}
break;
#endif //FILAMENTCHANGEENABLE
case 601: {
if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
}
break;
case 602: {
if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
}
break;
#ifdef LIN_ADVANCE
case 900: // M900: Set LIN_ADVANCE options.
gcode_M900();
break;
#endif
case 907: // M907 Set digital trimpot motor current using axis codes.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for(int i=0;i -1
uint8_t channel,current;
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
digitalPotWrite(channel, current);
#endif
}
break;
case 910: // M910 TMC2130 init
{
tmc2130_init();
}
break;
case 911: // M911 Set TMC2130 holding currents
{
if (code_seen('X')) tmc2130_set_current_h(0, code_value());
if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
if (code_seen('E')) tmc2130_set_current_h(3, code_value());
}
break;
case 912: // M912 Set TMC2130 running currents
{
if (code_seen('X')) tmc2130_set_current_r(0, code_value());
if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
if (code_seen('E')) tmc2130_set_current_r(3, code_value());
}
break;
case 913: // M913 Print TMC2130 currents
{
tmc2130_print_currents();
}
break;
case 914: // M914 Set normal mode
{
tmc2130_mode = TMC2130_MODE_NORMAL;
tmc2130_init();
}
break;
case 915: // M915 Set silent mode
{
tmc2130_mode = TMC2130_MODE_SILENT;
tmc2130_init();
}
break;
case 916: // M916 Set sg_thrs
{
if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
MYSERIAL.print("tmc2130_sg_thr[X]=");
MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
MYSERIAL.print("tmc2130_sg_thr[Y]=");
MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
MYSERIAL.print("tmc2130_sg_thr[Z]=");
MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
MYSERIAL.print("tmc2130_sg_thr[E]=");
MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
}
break;
case 917: // M917 Set TMC2130 pwm_ampl
{
if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
}
break;
case 918: // M918 Set TMC2130 pwm_grad
{
if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
}
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i -1
if(code_seen('S')) switch((int)code_value())
{
case 1:
for(int i=0;i '9') && *(strchr_pointer + index) != '?') {
SERIAL_ECHOLNPGM("Invalid T code.");
}
else {
if (*(strchr_pointer + index) == '?') {
tmp_extruder = choose_extruder_menu();
}
else {
tmp_extruder = code_value();
}
snmm_filaments_used |= (1 << tmp_extruder); //for stop print
#ifdef SNMM
#ifdef LIN_ADVANCE
if (snmm_extruder != tmp_extruder)
clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
#endif
snmm_extruder = tmp_extruder;
delay(100);
disable_e0();
disable_e1();
disable_e2();
pinMode(E_MUX0_PIN, OUTPUT);
pinMode(E_MUX1_PIN, OUTPUT);
pinMode(E_MUX2_PIN, OUTPUT);
delay(100);
SERIAL_ECHO_START;
SERIAL_ECHO("T:");
SERIAL_ECHOLN((int)tmp_extruder);
switch (tmp_extruder) {
case 1:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, LOW);
WRITE(E_MUX2_PIN, LOW);
break;
case 2:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, HIGH);
WRITE(E_MUX2_PIN, LOW);
break;
case 3:
WRITE(E_MUX0_PIN, HIGH);
WRITE(E_MUX1_PIN, HIGH);
WRITE(E_MUX2_PIN, LOW);
break;
default:
WRITE(E_MUX0_PIN, LOW);
WRITE(E_MUX1_PIN, LOW);
WRITE(E_MUX2_PIN, LOW);
break;
}
delay(100);
#else
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM("T");
SERIAL_PROTOCOLLN((int)tmp_extruder);
SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
}
else {
boolean make_move = false;
if (code_seen('F')) {
make_move = true;
next_feedrate = code_value();
if (next_feedrate > 0.0) {
feedrate = next_feedrate;
}
}
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
// Offset extruder (only by XY)
int i;
for (i = 0; i < 2; i++) {
current_position[i] = current_position[i] -
extruder_offset[i][active_extruder] +
extruder_offset[i][tmp_extruder];
}
// Set the new active extruder and position
active_extruder = tmp_extruder;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Move to the old position if 'F' was in the parameters
if (make_move && Stopped == false) {
prepare_move();
}
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
}
#endif
}
} // end if(code_seen('T')) (end of T codes)
#ifdef DEBUG_DCODES
else if (code_seen('D')) // D codes (debug)
{
switch((int)code_value())
{
case -1: // D-1 - Endless loop
dcode__1(); break;
case 0: // D0 - Reset
dcode_0(); break;
case 1: // D1 - Clear EEPROM
dcode_1(); break;
case 2: // D2 - Read/Write RAM
dcode_2(); break;
case 3: // D3 - Read/Write EEPROM
dcode_3(); break;
case 4: // D4 - Read/Write PIN
dcode_4(); break;
case 5: // D5 - Read/Write FLASH
// dcode_5(); break;
break;
case 6: // D6 - Read/Write external FLASH
dcode_6(); break;
case 7: // D7 - Read/Write Bootloader
dcode_7(); break;
case 8: // D8 - Read/Write PINDA
dcode_8(); break;
case 10: // D10 - XYZ calibration = OK
dcode_10(); break;
case 12: //D12 - Reset failstat counters
dcode_12(); break;
case 2130: // D9125 - TMC2130
dcode_2130(); break;
case 9125: // D9125 - PAT9125
dcode_9125(); break;
}
}
#endif //DEBUG_DCODES
else
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"(2)");
}
KEEPALIVE_STATE(NOT_BUSY);
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLRPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ClearToSend();
}
// Confirm the execution of a command, if sent from a serial line.
// Execution of a command from a SD card will not be confirmed.
void ClearToSend()
{
previous_millis_cmd = millis();
if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
SERIAL_PROTOCOLLNRPGM(MSG_OK);
}
void get_coordinates()
{
bool seen[4]={false,false,false,false};
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i]))
{
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
seen[i]=true;
}
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
#ifdef MAX_SILENT_FEEDRATE
if (tmc2130_mode == TMC2130_MODE_SILENT)
if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
#endif //MAX_SILENT_FEEDRATE
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void get_arc_coordinates()
{
#ifdef SF_ARC_FIX
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_coordinates();
#ifdef SF_ARC_FIX
relative_mode=relative_mode_backup;
#endif
if(code_seen('I')) {
offset[0] = code_value();
}
else {
offset[0] = 0.0;
}
if(code_seen('J')) {
offset[1] = code_value();
}
else {
offset[1] = 0.0;
}
}
void clamp_to_software_endstops(float target[3])
{
#ifdef DEBUG_DISABLE_SWLIMITS
return;
#endif //DEBUG_DISABLE_SWLIMITS
world2machine_clamp(target[0], target[1]);
// Clamp the Z coordinate.
if (min_software_endstops) {
float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
#endif
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
}
if (max_software_endstops) {
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
}
}
#ifdef MESH_BED_LEVELING
void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
float dx = x - current_position[X_AXIS];
float dy = y - current_position[Y_AXIS];
float dz = z - current_position[Z_AXIS];
int n_segments = 0;
if (mbl.active) {
float len = abs(dx) + abs(dy);
if (len > 0)
// Split to 3cm segments or shorter.
n_segments = int(ceil(len / 30.f));
}
if (n_segments > 1) {
float de = e - current_position[E_AXIS];
for (int i = 1; i < n_segments; ++ i) {
float t = float(i) / float(n_segments);
plan_buffer_line(
current_position[X_AXIS] + t * dx,
current_position[Y_AXIS] + t * dy,
current_position[Z_AXIS] + t * dz,
current_position[E_AXIS] + t * de,
feed_rate, extruder);
}
}
// The rest of the path.
plan_buffer_line(x, y, z, e, feed_rate, extruder);
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
current_position[Z_AXIS] = z;
current_position[E_AXIS] = e;
}
#endif // MESH_BED_LEVELING
void prepare_move()
{
clamp_to_software_endstops(destination);
previous_millis_cmd = millis();
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#endif
}
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
previous_millis_cmd = millis();
}
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
#if defined(FAN_PIN)
#if CONTROLLERFAN_PIN == FAN_PIN
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
#endif
#endif
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;
void controllerFan()
{
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
{
lastMotorCheck = millis();
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
#if EXTRUDERS > 2
|| !READ(E2_ENABLE_PIN)
#endif
#if EXTRUDER > 1
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|| !READ(X2_ENABLE_PIN)
#endif
|| !READ(E1_ENABLE_PIN)
#endif
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
{
lastMotor = millis(); //... set time to NOW so the fan will turn on
}
if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
digitalWrite(CONTROLLERFAN_PIN, 0);
analogWrite(CONTROLLERFAN_PIN, 0);
}
else
{
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
}
}
}
#endif
#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;
void handle_status_leds(void) {
float max_temp = 0.0;
if(millis() > stat_update) {
stat_update += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
max_temp = max(max_temp, degHotend(cur_extruder));
max_temp = max(max_temp, degTargetHotend(cur_extruder));
}
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
max_temp = max(max_temp, degTargetBed());
max_temp = max(max_temp, degBed());
#endif
if((max_temp > 55.0) && (red_led == false)) {
digitalWrite(STAT_LED_RED, 1);
digitalWrite(STAT_LED_BLUE, 0);
red_led = true;
blue_led = false;
}
if((max_temp < 54.0) && (blue_led == false)) {
digitalWrite(STAT_LED_RED, 0);
digitalWrite(STAT_LED_BLUE, 1);
red_led = false;
blue_led = true;
}
}
}
#endif
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
#if defined(KILL_PIN) && KILL_PIN > -1
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 10000;
#endif
if(buflen < (BUFSIZE-1)){
get_command();
}
if( (millis() - previous_millis_cmd) > max_inactive_time )
if(max_inactive_time)
kill("", 4);
if(stepper_inactive_time) {
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
{
if(blocks_queued() == false && ignore_stepper_queue == false) {
disable_x();
// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
}
}
}
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
{
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if defined(KILL_PIN) && KILL_PIN > -1
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
if( 0 == READ(KILL_PIN) )
{
killCount++;
}
else if (killCount > 0)
{
killCount--;
}
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if ( killCount >= KILL_DELAY)
{
kill("", 5);
}
#endif
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif
#ifdef EXTRUDER_RUNOUT_PREVENT
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
{
bool oldstatus=READ(E0_ENABLE_PIN);
enable_e0();
float oldepos=current_position[E_AXIS];
float oldedes=destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
current_position[E_AXIS]=oldepos;
destination[E_AXIS]=oldedes;
plan_set_e_position(oldepos);
previous_millis_cmd=millis();
st_synchronize();
WRITE(E0_ENABLE_PIN,oldstatus);
}
#endif
#ifdef TEMP_STAT_LEDS
handle_status_leds();
#endif
check_axes_activity();
}
void kill(const char *full_screen_message, unsigned char id)
{
SERIAL_ECHOPGM("KILL: ");
MYSERIAL.println(int(id));
//return;
cli(); // Stop interrupts
disable_heater();
disable_x();
// SERIAL_ECHOLNPGM("kill - disable Y");
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
if (full_screen_message != NULL) {
SERIAL_ERRORLNRPGM(full_screen_message);
lcd_display_message_fullscreen_P(full_screen_message);
} else {
LCD_ALERTMESSAGERPGM(MSG_KILLED);
}
// FMC small patch to update the LCD before ending
sei(); // enable interrupts
for ( int i=5; i--; lcd_update())
{
delay(200);
}
cli(); // disable interrupts
suicide();
while(1)
{
wdt_reset();
/* Intentionally left empty */
} // Wait for reset
}
void Stop()
{
disable_heater();
if(Stopped == false) {
Stopped = true;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
LCD_MESSAGERPGM(MSG_STOPPED);
}
}
bool IsStopped() { return Stopped; };
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
val &= 0x07;
switch(digitalPinToTimer(pin))
{
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif //FAST_PWM_FAN
bool setTargetedHotend(int code){
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
switch(code){
case 104:
SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
break;
case 105:
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
break;
case 109:
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
break;
case 218:
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
break;
case 221:
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
break;
}
SERIAL_PROTOCOLLN((int)tmp_extruder);
return true;
}
}
return false;
}
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
{
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
{
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
}
unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
total_filament_used = 0;
}
float calculate_volumetric_multiplier(float diameter) {
float area = .0;
float radius = .0;
radius = diameter * .5;
if (! volumetric_enabled || radius == 0) {
area = 1;
}
else {
area = M_PI * pow(radius, 2);
}
return 1.0 / area;
}
void calculate_volumetric_multipliers() {
volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
#if EXTRUDERS > 1
volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
#if EXTRUDERS > 2
volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
#endif
#endif
}
void delay_keep_alive(unsigned int ms)
{
for (;;) {
manage_heater();
// Manage inactivity, but don't disable steppers on timeout.
manage_inactivity(true);
lcd_update();
if (ms == 0)
break;
else if (ms >= 50) {
delay(50);
ms -= 50;
} else {
delay(ms);
ms = 0;
}
}
}
void wait_for_heater(long codenum) {
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while ((!cancel_heatup) && ((residencyStart == -1) ||
(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
#else
while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
#endif //TEMP_RESIDENCY_TIME
if ((millis() - codenum) > 1000UL)
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
if (!farm_mode) {
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)tmp_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if (residencyStart > -1)
{
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN(codenum);
}
else
{
SERIAL_PROTOCOLLN("?");
}
}
#else
SERIAL_PROTOCOLLN("");
#endif
codenum = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
{
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
}
void check_babystep() {
int babystep_z;
EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
babystep_z = 0; //if babystep value is out of min max range, set it to 0
SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
lcd_update_enable(true);
}
}
#ifdef DIS
void d_setup()
{
pinMode(D_DATACLOCK, INPUT_PULLUP);
pinMode(D_DATA, INPUT_PULLUP);
pinMode(D_REQUIRE, OUTPUT);
digitalWrite(D_REQUIRE, HIGH);
}
float d_ReadData()
{
int digit[13];
String mergeOutput;
float output;
digitalWrite(D_REQUIRE, HIGH);
for (int i = 0; i<13; i++)
{
for (int j = 0; j < 4; j++)
{
while (digitalRead(D_DATACLOCK) == LOW) {}
while (digitalRead(D_DATACLOCK) == HIGH) {}
bitWrite(digit[i], j, digitalRead(D_DATA));
}
}
digitalWrite(D_REQUIRE, LOW);
mergeOutput = "";
output = 0;
for (int r = 5; r <= 10; r++) //Merge digits
{
mergeOutput += digit[r];
}
output = mergeOutput.toFloat();
if (digit[4] == 8) //Handle sign
{
output *= -1;
}
for (int i = digit[11]; i > 0; i--) //Handle floating point
{
output /= 10;
}
return output;
}
void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
int t1 = 0;
int t_delay = 0;
int digit[13];
int m;
char str[3];
//String mergeOutput;
char mergeOutput[15];
float output;
int mesh_point = 0; //index number of calibration point
float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
float mesh_home_z_search = 4;
float row[x_points_num];
int ix = 0;
int iy = 0;
char* filename_wldsd = "wldsd.txt";
char data_wldsd[70];
char numb_wldsd[10];
d_setup();
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
enquecommand_front_P((PSTR("G1 Z5")));
return;
}
bool custom_message_old = custom_message;
unsigned int custom_message_type_old = custom_message_type;
unsigned int custom_message_state_old = custom_message_state;
custom_message = true;
custom_message_type = 1;
custom_message_state = (x_points_num * y_points_num) + 10;
lcd_update(1);
mbl.reset();
babystep_undo();
card.openFile(filename_wldsd, false);
current_position[Z_AXIS] = mesh_home_z_search;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
setup_for_endstop_move(false);
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(x_points_num);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(y_points_num);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(mesh_home_z_search);
SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
SERIAL_PROTOCOL(x_dimension);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(y_dimension);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
while (mesh_point != x_points_num * y_points_num) {
ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / x_points_num;
if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
float z0 = 0.f;
current_position[Z_AXIS] = mesh_home_z_search;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
st_synchronize();
if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
break;
card.closefile();
}
//memset(numb_wldsd, 0, sizeof(numb_wldsd));
//dtostrf(d_ReadData(), 8, 5, numb_wldsd);
//strcat(data_wldsd, numb_wldsd);
//MYSERIAL.println(data_wldsd);
//delay(1000);
//delay(3000);
//t1 = millis();
//while (digitalRead(D_DATACLOCK) == LOW) {}
//while (digitalRead(D_DATACLOCK) == HIGH) {}
memset(digit, 0, sizeof(digit));
//cli();
digitalWrite(D_REQUIRE, LOW);
for (int i = 0; i<13; i++)
{
//t1 = millis();
for (int j = 0; j < 4; j++)
{
while (digitalRead(D_DATACLOCK) == LOW) {}
while (digitalRead(D_DATACLOCK) == HIGH) {}
bitWrite(digit[i], j, digitalRead(D_DATA));
}
//t_delay = (millis() - t1);
//SERIAL_PROTOCOLPGM(" ");
//SERIAL_PROTOCOL_F(t_delay, 5);
//SERIAL_PROTOCOLPGM(" ");
}
//sei();
digitalWrite(D_REQUIRE, HIGH);
mergeOutput[0] = '\0';
output = 0;
for (int r = 5; r <= 10; r++) //Merge digits
{
sprintf(str, "%d", digit[r]);
strcat(mergeOutput, str);
}
output = atof(mergeOutput);
if (digit[4] == 8) //Handle sign
{
output *= -1;
}
for (int i = digit[11]; i > 0; i--) //Handle floating point
{
output *= 0.1;
}
//output = d_ReadData();
//row[ix] = current_position[Z_AXIS];
memset(data_wldsd, 0, sizeof(data_wldsd));
for (int i = 0; i <3; i++) {
memset(numb_wldsd, 0, sizeof(numb_wldsd));
dtostrf(current_position[i], 8, 5, numb_wldsd);
strcat(data_wldsd, numb_wldsd);
strcat(data_wldsd, ";");
}
memset(numb_wldsd, 0, sizeof(numb_wldsd));
dtostrf(output, 8, 5, numb_wldsd);
strcat(data_wldsd, numb_wldsd);
//strcat(data_wldsd, ";");
card.write_command(data_wldsd);
//row[ix] = d_ReadData();
row[ix] = output; // current_position[Z_AXIS];
if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
for (int i = 0; i < x_points_num; i++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(row[i], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
custom_message_state--;
mesh_point++;
lcd_update(1);
}
card.closefile();
}
#endif
void temp_compensation_start() {
custom_message = true;
custom_message_type = 5;
custom_message_state = PINDA_HEAT_T + 1;
lcd_update(2);
if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
current_position[E_AXIS] -= DEFAULT_RETRACTION;
}
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
current_position[X_AXIS] = PINDA_PREHEAT_X;
current_position[Y_AXIS] = PINDA_PREHEAT_Y;
current_position[Z_AXIS] = PINDA_PREHEAT_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
st_synchronize();
while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
for (int i = 0; i < PINDA_HEAT_T; i++) {
delay_keep_alive(1000);
custom_message_state = PINDA_HEAT_T - i;
if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
else lcd_update(1);
}
custom_message_type = 0;
custom_message_state = 0;
custom_message = false;
}
void temp_compensation_apply() {
int i_add;
int compensation_value;
int z_shift = 0;
float z_shift_mm;
if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
i_add = (target_temperature_bed - 60) / 10;
EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
}else {
//interpolation
z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
}
SERIAL_PROTOCOLPGM("\n");
SERIAL_PROTOCOLPGM("Z shift applied:");
MYSERIAL.print(z_shift_mm);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
st_synchronize();
plan_set_z_position(current_position[Z_AXIS]);
}
else {
//we have no temp compensation data
}
}
float temp_comp_interpolation(float inp_temperature) {
//cubic spline interpolation
int n, i, j, k;
float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
int shift[10];
int temp_C[10];
n = 6; //number of measured points
shift[0] = 0;
for (i = 0; i < n; i++) {
if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
temp_C[i] = 50 + i * 10; //temperature in C
#ifdef PINDA_THERMISTOR
temp_C[i] = 35 + i * 5; //temperature in C
#else
temp_C[i] = 50 + i * 10; //temperature in C
#endif
x[i] = (float)temp_C[i];
f[i] = (float)shift[i];
}
if (inp_temperature < x[0]) return 0;
for (i = n - 1; i>0; i--) {
F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
h[i - 1] = x[i] - x[i - 1];
}
//*********** formation of h, s , f matrix **************
for (i = 1; i0; i--) {
sum = 0;
for (j = i; j <= n - 2; j++)
sum += m[i][j] * s[j];
s[i] = (m[i][n - 1] - sum) / m[i][i];
}
for (i = 0; i x[i + 1])) {
a = (s[i + 1] - s[i]) / (6 * h[i]);
b = s[i] / 2;
c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
d = f[i];
sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
}
return sum;
}
#ifdef PINDA_THERMISTOR
float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
{
if (!temp_cal_active) return 0;
if (!calibration_status_pinda()) return 0;
return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
}
#endif //PINDA_THERMISTOR
void long_pause() //long pause print
{
st_synchronize();
//save currently set parameters to global variables
saved_feedmultiply = feedmultiply;
HotendTempBckp = degTargetHotend(active_extruder);
fanSpeedBckp = fanSpeed;
start_pause_print = millis();
//save position
pause_lastpos[X_AXIS] = current_position[X_AXIS];
pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
pause_lastpos[E_AXIS] = current_position[E_AXIS];
//retract
current_position[E_AXIS] -= DEFAULT_RETRACTION;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
//lift z
current_position[Z_AXIS] += Z_PAUSE_LIFT;
if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
//set nozzle target temperature to 0
setTargetHotend(0, 0);
setTargetHotend(0, 1);
setTargetHotend(0, 2);
//Move XY to side
current_position[X_AXIS] = X_PAUSE_POS;
current_position[Y_AXIS] = Y_PAUSE_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
// Turn off the print fan
fanSpeed = 0;
st_synchronize();
}
void serialecho_temperatures() {
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN("");
}
extern uint32_t sdpos_atomic;
void uvlo_()
{
unsigned long time_start = millis();
bool sd_print = card.sdprinting;
// Conserve power as soon as possible.
disable_x();
disable_y();
tmc2130_set_current_h(Z_AXIS, 12);
tmc2130_set_current_r(Z_AXIS, 12);
tmc2130_set_current_h(E_AXIS, 20);
tmc2130_set_current_r(E_AXIS, 20);
// Indicate that the interrupt has been triggered.
SERIAL_ECHOLNPGM("UVLO");
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
// Calculate the file position, from which to resume this print.
long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
{
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
sd_position -= sdlen_planner;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
sd_position -= sdlen_cmdqueue;
if (sd_position < 0) sd_position = 0;
}
// Backup the feedrate in mm/min.
int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
// After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
// The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
// are in action.
planner_abort_hard();
// Store the current extruder position.
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
// Clean the input command queue.
cmdqueue_reset();
card.sdprinting = false;
// card.closefile();
// Enable stepper driver interrupt to move Z axis.
// This should be fine as the planner and command queues are empty and the SD card printing is disabled.
//FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
// though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
sei();
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS] - DEFAULT_RETRACTION,
400, active_extruder);
plan_buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
current_position[E_AXIS] - DEFAULT_RETRACTION,
40, active_extruder);
// Move Z up to the next 0th full step.
// Write the file position.
eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
// Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
// Scale the z value to 1u resolution.
int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast(&v));
}
// Read out the current Z motor microstep counter. This will be later used
// for reaching the zero full step before powering off.
eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
// Store the current position.
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
// Store the current feed rate, temperatures and fan speed.
EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
// Finaly store the "power outage" flag.
if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
st_synchronize();
SERIAL_ECHOPGM("stps");
MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
#if 0
// Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize();
#endif
disable_z();
// Increment power failure counter
uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
power_count++;
eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
SERIAL_ECHOLNPGM("UVLO - end");
MYSERIAL.println(millis() - time_start);
cli();
while(1);
}
void setup_fan_interrupt() {
//INT7
DDRE &= ~(1 << 7); //input pin
PORTE &= ~(1 << 7); //no internal pull-up
//start with sensing rising edge
EICRB &= ~(1 << 6);
EICRB |= (1 << 7);
//enable INT7 interrupt
EIMSK |= (1 << 7);
}
ISR(INT7_vect) {
//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
t_fan_rising_edge = millis();
}
else { //interrupt was triggered by falling edge
if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
}
}
EICRB ^= (1 << 6); //change edge
}
void setup_uvlo_interrupt() {
DDRE &= ~(1 << 4); //input pin
PORTE &= ~(1 << 4); //no internal pull-up
//sensing falling edge
EICRB |= (1 << 0);
EICRB &= ~(1 << 1);
//enable INT4 interrupt
EIMSK |= (1 << 4);
}
ISR(INT4_vect) {
EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
SERIAL_ECHOLNPGM("INT4");
if (IS_SD_PRINTING) uvlo_();
}
void recover_print(uint8_t automatic) {
char cmd[30];
lcd_update_enable(true);
lcd_update(2);
lcd_setstatuspgm(MSG_RECOVERING_PRINT);
recover_machine_state_after_power_panic();
// Set the target bed and nozzle temperatures.
sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
enquecommand(cmd);
sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
enquecommand(cmd);
// Lift the print head, so one may remove the excess priming material.
if (current_position[Z_AXIS] < 25)
enquecommand_P(PSTR("G1 Z25 F800"));
// Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
enquecommand_P(PSTR("G28 X Y"));
// Set the target bed and nozzle temperatures and wait.
sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
enquecommand(cmd);
sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
enquecommand(cmd);
enquecommand_P(PSTR("M83")); //E axis relative mode
//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
// If not automatically recoreverd (long power loss), extrude extra filament to stabilize
if(automatic == 0){
enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
}
enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
{
float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
enquecommand_P(PSTR("M82")); //E axis abslute mode
// current_position[E_AXIS] = extruder_abs_pos;
// plan_set_e_position(extruder_abs_pos);
sprintf_P(cmd, PSTR("G92 E"));
dtostrf(extruder_abs_pos, 6, 3, cmd + strlen(cmd));
enquecommand(cmd);
}
// Mark the power panic status as inactive.
eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
delay_keep_alive(1000);
}*/
SERIAL_ECHOPGM("After waiting for temp:");
SERIAL_ECHOPGM("Current position X_AXIS:");
MYSERIAL.println(current_position[X_AXIS]);
SERIAL_ECHOPGM("Current position Y_AXIS:");
MYSERIAL.println(current_position[Y_AXIS]);
// Restart the print.
restore_print_from_eeprom();
SERIAL_ECHOPGM("current_position[Z_AXIS]:");
MYSERIAL.print(current_position[Z_AXIS]);
SERIAL_ECHOPGM("current_position[E_AXIS]:");
MYSERIAL.print(current_position[E_AXIS]);
}
void recover_machine_state_after_power_panic()
{
// 1) Recover the logical cordinates at the time of the power panic.
// The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
// Recover the logical coordinate of the Z axis at the time of the power panic.
// The current position after power panic is moved to the next closest 0th full step.
current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
memcpy(destination, current_position, sizeof(destination));
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
print_world_coordinates();
// 2) Initialize the logical to physical coordinate system transformation.
world2machine_initialize();
// 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
mbl.active = false;
for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
// Scale the z value to 10u resolution.
int16_t v;
eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
if (v != 0)
mbl.active = true;
mbl.z_values[iy][ix] = float(v) * 0.001f;
}
if (mbl.active)
mbl.upsample_3x3();
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
print_mesh_bed_leveling_table();
// 4) Load the baby stepping value, which is expected to be active at the time of power panic.
// The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
babystep_load();
// 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// 6) Power up the motors, mark their positions as known.
//FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
axis_known_position[X_AXIS] = true; enable_x();
axis_known_position[Y_AXIS] = true; enable_y();
axis_known_position[Z_AXIS] = true; enable_z();
SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
print_physical_coordinates();
// 7) Recover the target temperatures.
target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
}
void restore_print_from_eeprom() {
float x_rec, y_rec, z_pos;
int feedrate_rec;
uint8_t fan_speed_rec;
char cmd[30];
char* c;
char filename[13];
uint8_t depth = 0;
char dir_name[9];
fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
SERIAL_ECHOPGM("Feedrate:");
MYSERIAL.println(feedrate_rec);
depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
MYSERIAL.println(int(depth));
for (int i = 0; i < depth; i++) {
for (int j = 0; j < 8; j++) {
dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
}
dir_name[8] = '\0';
MYSERIAL.println(dir_name);
card.chdir(dir_name);
}
for (int i = 0; i < 8; i++) {
filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
}
filename[8] = '\0';
MYSERIAL.print(filename);
strcat_P(filename, PSTR(".gco"));
sprintf_P(cmd, PSTR("M23 %s"), filename);
for (c = &cmd[4]; *c; c++)
*c = tolower(*c);
enquecommand(cmd);
uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
SERIAL_ECHOPGM("Position read from eeprom:");
MYSERIAL.println(position);
// E axis relative mode.
enquecommand_P(PSTR("M83"));
// Move to the XY print position in logical coordinates, where the print has been killed.
strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
strcat_P(cmd, PSTR(" F2000"));
enquecommand(cmd);
// Move the Z axis down to the print, in logical coordinates.
strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
enquecommand(cmd);
// Unretract.
enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
// Set the feedrate saved at the power panic.
sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
enquecommand(cmd);
// Set the fan speed saved at the power panic.
strcpy_P(cmd, PSTR("M106 S"));
strcat(cmd, itostr3(int(fan_speed_rec)));
enquecommand(cmd);
// Set a position in the file.
sprintf_P(cmd, PSTR("M26 S%lu"), position);
enquecommand(cmd);
// Start SD print.
enquecommand_P(PSTR("M24"));
}
////////////////////////////////////////////////////////////////////////////////
// new save/restore printing
//extern uint32_t sdpos_atomic;
bool saved_printing = false;
uint32_t saved_sdpos = 0;
float saved_pos[4] = {0, 0, 0, 0};
// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
float saved_feedrate2 = 0;
uint8_t saved_active_extruder = 0;
bool saved_extruder_under_pressure = false;
void stop_and_save_print_to_ram(float z_move, float e_move)
{
if (saved_printing) return;
cli();
unsigned char nplanner_blocks = number_of_blocks();
saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
saved_sdpos -= sdlen_planner;
uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
saved_sdpos -= sdlen_cmdqueue;
#if 0
SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
{
card.setIndex(saved_sdpos);
SERIAL_ECHOLNPGM("Content of planner buffer: ");
for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
MYSERIAL.print(char(card.get()));
SERIAL_ECHOLNPGM("Content of command buffer: ");
for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
MYSERIAL.print(char(card.get()));
SERIAL_ECHOLNPGM("End of command buffer");
}
{
// Print the content of the planner buffer, line by line:
card.setIndex(saved_sdpos);
int8_t iline = 0;
for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
SERIAL_ECHOPGM("Planner line (from file): ");
MYSERIAL.print(int(iline), DEC);
SERIAL_ECHOPGM(", length: ");
MYSERIAL.print(block_buffer[idx].sdlen, DEC);
SERIAL_ECHOPGM(", steps: (");
MYSERIAL.print(block_buffer[idx].steps_x, DEC);
SERIAL_ECHOPGM(",");
MYSERIAL.print(block_buffer[idx].steps_y, DEC);
SERIAL_ECHOPGM(",");
MYSERIAL.print(block_buffer[idx].steps_z, DEC);
SERIAL_ECHOPGM(",");
MYSERIAL.print(block_buffer[idx].steps_e, DEC);
SERIAL_ECHOPGM("), events: ");
MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
for (int len = block_buffer[idx].sdlen; len > 0; -- len)
MYSERIAL.print(char(card.get()));
}
}
{
// Print the content of the command buffer, line by line:
int8_t iline = 0;
union {
struct {
char lo;
char hi;
} lohi;
uint16_t value;
} sdlen_single;
int _bufindr = bufindr;
for (int _buflen = buflen; _buflen > 0; ++ iline) {
if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
}
SERIAL_ECHOPGM("Buffer line (from buffer): ");
MYSERIAL.print(int(iline), DEC);
SERIAL_ECHOPGM(", type: ");
MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
SERIAL_ECHOPGM(", len: ");
MYSERIAL.println(sdlen_single.value, DEC);
// Print the content of the buffer line.
MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
SERIAL_ECHOPGM("Buffer line (from file): ");
MYSERIAL.print(int(iline), DEC);
MYSERIAL.println(int(iline), DEC);
for (; sdlen_single.value > 0; -- sdlen_single.value)
MYSERIAL.print(char(card.get()));
if (-- _buflen == 0)
break;
// First skip the current command ID and iterate up to the end of the string.
for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
// Second, skip the end of string null character and iterate until a nonzero command ID is found.
for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
// If the end of the buffer was empty,
if (_bufindr == sizeof(cmdbuffer)) {
// skip to the start and find the nonzero command.
for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
}
}
}
#endif
#if 0
saved_feedrate2 = feedrate; //save feedrate
#else
// Try to deduce the feedrate from the first block of the planner.
// Speed is in mm/min.
saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
#endif
planner_abort_hard(); //abort printing
memcpy(saved_pos, current_position, sizeof(saved_pos));
saved_active_extruder = active_extruder; //save active_extruder
saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
cmdqueue_reset(); //empty cmdqueue
card.sdprinting = false;
// card.closefile();
saved_printing = true;
sei();
if ((z_move != 0) || (e_move != 0)) { // extruder or z move
#if 1
// Rather than calling plan_buffer_line directly, push the move into the command queue,
char buf[48];
strcpy_P(buf, PSTR("G1 Z"));
dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
strcat_P(buf, PSTR(" E"));
// Relative extrusion
dtostrf(e_move, 6, 3, buf + strlen(buf));
strcat_P(buf, PSTR(" F"));
dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
// At this point the command queue is empty.
enquecommand(buf, false);
// If this call is invoked from the main Arduino loop() function, let the caller know that the command
// in the command queue is not the original command, but a new one, so it should not be removed from the queue.
repeatcommand_front();
#else
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
st_synchronize(); //wait moving
memcpy(current_position, saved_pos, sizeof(saved_pos));
memcpy(destination, current_position, sizeof(destination));
#endif
}
}
void restore_print_from_ram_and_continue(float e_move)
{
if (!saved_printing) return;
// for (int axis = X_AXIS; axis <= E_AXIS; axis++)
// current_position[axis] = st_get_position_mm(axis);
active_extruder = saved_active_extruder; //restore active_extruder
feedrate = saved_feedrate2; //restore feedrate
float e = saved_pos[E_AXIS] - e_move;
plan_set_e_position(e);
plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
st_synchronize();
memcpy(current_position, saved_pos, sizeof(saved_pos));
memcpy(destination, current_position, sizeof(destination));
card.setIndex(saved_sdpos);
sdpos_atomic = saved_sdpos;
card.sdprinting = true;
saved_printing = false;
}
void print_world_coordinates()
{
SERIAL_ECHOPGM("world coordinates: (");
MYSERIAL.print(current_position[X_AXIS], 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Y_AXIS], 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(current_position[Z_AXIS], 3);
SERIAL_ECHOLNPGM(")");
}
void print_physical_coordinates()
{
SERIAL_ECHOPGM("physical coordinates: (");
MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
SERIAL_ECHOLNPGM(")");
}
void print_mesh_bed_leveling_table()
{
SERIAL_ECHOPGM("mesh bed leveling: ");
for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
MYSERIAL.print(mbl.z_values[y][x], 3);
SERIAL_ECHOPGM(" ");
}
SERIAL_ECHOLNPGM("");
}
#define FIL_LOAD_LENGTH 60
void extr_unload2() { //unloads filament
// float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
// float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
// int8_t SilentMode;
uint8_t snmm_extruder = 0;
if (degHotend0() > EXTRUDE_MINTEMP) {
lcd_implementation_clear();
lcd_display_message_fullscreen_P(PSTR(""));
max_feedrate[E_AXIS] = 50;
lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
// lcd.print(" ");
// lcd.print(snmm_extruder + 1);
lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
if (current_position[Z_AXIS] < 15) {
current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
}
current_position[E_AXIS] += 10; //extrusion
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
// digipot_current(2, E_MOTOR_HIGH_CURRENT);
if (current_temperature[0] < 230) { //PLA & all other filaments
current_position[E_AXIS] += 5.4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
current_position[E_AXIS] += 3.2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
current_position[E_AXIS] += 3;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
}
else { //ABS
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
current_position[E_AXIS] += 3.1;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
current_position[E_AXIS] += 4;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
/*current_position[X_AXIS] += 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
current_position[X_AXIS] -= 23; //delay
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
delay_keep_alive(4700);
}
max_feedrate[E_AXIS] = 80;
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
st_synchronize();
//digipot_init();
// if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
// else digipot_current(2, tmp_motor_loud[2]);
lcd_update_enable(true);
// lcd_return_to_status();
max_feedrate[E_AXIS] = 50;
}
else {
lcd_implementation_clear();
lcd.setCursor(0, 0);
lcd_printPGM(MSG_ERROR);
lcd.setCursor(0, 2);
lcd_printPGM(MSG_PREHEAT_NOZZLE);
delay(2000);
lcd_implementation_clear();
}
// lcd_return_to_status();
}