#include "temperature.h" #include "ultralcd.h" #ifdef ULTRA_LCD #include "MenuStack.h" #include "Marlin.h" #include "language.h" #include "cardreader.h" #include "temperature.h" #include "stepper.h" #include "ConfigurationStore.h" #include #include "Timer.h" #include "util.h" #include "mesh_bed_leveling.h" //#include "Configuration.h" #include "cmdqueue.h" #include "SdFatUtil.h" #ifdef PAT9125 #include "pat9125.h" #endif //PAT9125 #ifdef TMC2130 #include "tmc2130.h" #endif //TMC2130 #include int lcd_puts_P(const char* str) { return fputs_P(str, lcdout); } int lcd_printf_P(const char* format, ...) { va_list args; va_start(args, format); int ret = vfprintf_P(lcdout, format, args); va_end(args); return ret; } int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */ extern int lcd_change_fil_state; extern bool fans_check_enabled; extern bool filament_autoload_enabled; #ifdef PAT9125 extern bool fsensor_not_responding; extern bool fsensor_enabled; #endif //PAT9125 //Function pointer to menu functions. static void lcd_sd_updir(); struct EditMenuParentState { //prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings. menuFunc_t prevMenu; uint16_t prevEncoderPosition; //Variables used when editing values. const char* editLabel; void* editValue; int32_t minEditValue, maxEditValue; // menuFunc_t callbackFunc; }; union MenuData { struct BabyStep { // 29B total int8_t status; int babystepMem[3]; float babystepMemMM[3]; } babyStep; struct SupportMenu { // 6B+16B=22B total int8_t status; bool is_flash_air; uint8_t ip[4]; char ip_str[3*4+3+1]; } supportMenu; struct AdjustBed { // 6+13+16=35B // editMenuParentState is used when an edit menu is entered, so it knows // the return menu and encoder state. struct EditMenuParentState editMenuParentState; int8_t status; int8_t left; int8_t right; int8_t front; int8_t rear; int left2; int right2; int front2; int rear2; } adjustBed; struct TuneMenu { // editMenuParentState is used when an edit menu is entered, so it knows // the return menu and encoder state. struct EditMenuParentState editMenuParentState; // To recognize, whether the menu has been just initialized. int8_t status; // Backup of extrudemultiply, to recognize, that the value has been changed and // it needs to be applied. int16_t extrudemultiply; } tuneMenu; // editMenuParentState is used when an edit menu is entered, so it knows // the return menu and encoder state. struct EditMenuParentState editMenuParentState; struct AutoLoadFilamentMenu { //ShortTimer timer; char dummy; } autoLoadFilamentMenu; struct _Lcd_moveMenu { bool initialized; bool endstopsEnabledPrevious; } _lcd_moveMenu; }; // State of the currently active menu. // C Union manages sharing of the static memory by all the menus. union MenuData menuData = { 0 }; union Data { byte b[2]; int value; }; static MenuStack menuStack; int8_t ReInitLCD = 0; int8_t SDscrool = 0; int8_t SilentModeMenu = SILENT_MODE_OFF; int8_t FSensorStateMenu = 1; int8_t CrashDetectMenu = 1; extern void fsensor_block(); extern void fsensor_unblock(); extern bool fsensor_enable(); extern void fsensor_disable(); #ifdef TMC2130 extern void crashdet_enable(); extern void crashdet_disable(); #endif //TMC2130 #ifdef SNMM uint8_t snmm_extruder = 0; #endif #ifdef SDCARD_SORT_ALPHA bool presort_flag = false; #endif int lcd_commands_type=LCD_COMMAND_IDLE; int lcd_commands_step=0; bool isPrintPaused = false; uint8_t farm_mode = 0; int farm_no = 0; int farm_timer = 8; int farm_status = 0; bool printer_connected = true; unsigned long display_time; //just timer for showing pid finished message on lcd; float pid_temp = DEFAULT_PID_TEMP; bool long_press_active = false; static ShortTimer longPressTimer; unsigned long button_blanking_time = millis(); bool button_pressed = false; bool menuExiting = false; #ifdef FILAMENT_LCD_DISPLAY unsigned long message_millis = 0; #endif #ifdef ULTIPANEL static float manual_feedrate[] = MANUAL_FEEDRATE; #endif // ULTIPANEL /* !Configuration settings */ uint8_t lcd_status_message_level; char lcd_status_message[LCD_WIDTH + 1] = ""; //////WELCOME! unsigned char firstrun = 1; #include "ultralcd_implementation_hitachi_HD44780.h" static const char separator[] PROGMEM = "--------------------"; /** forward declarations **/ static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines); // void copy_and_scalePID_i(); // void copy_and_scalePID_d(); /* Different menus */ static void lcd_status_screen(); #ifdef ULTIPANEL extern bool powersupply; static void lcd_main_menu(); static void lcd_tune_menu(); static void lcd_prepare_menu(); //static void lcd_move_menu(); static void lcd_settings_menu(); static void lcd_calibration_menu(); static void lcd_control_temperature_menu(); static void lcd_control_temperature_preheat_pla_settings_menu(); static void lcd_control_temperature_preheat_abs_settings_menu(); static void lcd_control_motion_menu(); static void lcd_control_volumetric_menu(); static void lcd_settings_menu_back(); static void prusa_stat_printerstatus(int _status); static void prusa_stat_farm_number(); static void prusa_stat_temperatures(); static void prusa_stat_printinfo(); static void lcd_farm_no(); static void lcd_menu_extruder_info(); static void lcd_menu_xyz_y_min(); static void lcd_menu_xyz_skew(); static void lcd_menu_xyz_offset(); #if defined(TMC2130) || defined(PAT9125) static void lcd_menu_fails_stats(); #endif //TMC2130 or PAT9125 void lcd_finishstatus(); #ifdef DOGLCD static void lcd_set_contrast(); #endif static void lcd_control_retract_menu(); static void lcd_sdcard_menu(); #ifdef DELTA_CALIBRATION_MENU static void lcd_delta_calibrate_menu(); #endif // DELTA_CALIBRATION_MENU static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened /* Different types of actions that can be used in menu items. */ static void menu_action_back(menuFunc_t data = 0); #define menu_action_back_RAM menu_action_back static void menu_action_submenu(menuFunc_t data); static void menu_action_gcode(const char* pgcode); static void menu_action_function(menuFunc_t data); static void menu_action_setlang(unsigned char lang); static void menu_action_sdfile(const char* filename, char* longFilename); static void menu_action_sddirectory(const char* filename, char* longFilename); static void menu_action_setting_edit_bool(const char* pstr, bool* ptr); static void menu_action_setting_edit_wfac(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue); static void menu_action_setting_edit_mres(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue); static void menu_action_setting_edit_byte3(const char* pstr, uint8_t* ptr, uint8_t minValue, uint8_t maxValue); static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue); /* static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc); static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc); */ #define ENCODER_FEEDRATE_DEADZONE 10 #if !defined(LCD_I2C_VIKI) #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 5 #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #else #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #endif /* Helper macros for menus */ #define START_MENU() do { \ if (encoderPosition > 0x8000) encoderPosition = 0; \ if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\ uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \ bool wasClicked = LCD_CLICKED;\ for(uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \ _menuItemNr = 0; #define MENU_ITEM(type, label, args...) do { \ if (_menuItemNr == _lineNr) { \ if (lcdDrawUpdate) { \ const char* _label_pstr = (label); \ if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \ lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \ }else{\ lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \ }\ }\ if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) {\ lcd_quick_feedback(); \ menu_action_ ## type ( args ); \ return;\ }\ }\ _menuItemNr++;\ } while(0) #define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0) #define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, (label) , ## args ) #define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, (label) , ## args ) #define END_MENU() \ if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \ if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \ } } while(0) /** Used variables to keep track of the menu */ #ifndef REPRAPWORLD_KEYPAD volatile uint8_t buttons;//Contains the bits of the currently pressed buttons. #else volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values #endif #ifdef LCD_HAS_SLOW_BUTTONS volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons. #endif uint8_t currentMenuViewOffset; /* scroll offset in the current menu */ uint8_t lastEncoderBits; uint32_t encoderPosition; #if (SDCARDDETECT > 0) bool lcd_oldcardstatus; #endif #endif //ULTIPANEL menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */ uint32_t lcd_next_update_millis; uint8_t lcd_status_update_delay; bool ignore_click = false; bool wait_for_unclick; uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */ // place-holders for Ki and Kd edits #ifdef PIDTEMP // float raw_Ki, raw_Kd; #endif /** * @brief Go to menu * * In MENU_ITEM(submenu,... ) use MENU_ITEM(back,...) or * menu_action_back() and menu_action_submenu() instead, otherwise menuStack will be broken. * * It is acceptable to call lcd_goto_menu(menu) directly from MENU_ITEM(function,...), if destination menu * is the same, from which function was called. * * @param menu target menu * @param encoder position in target menu * @param feedback * * true sound feedback (click) * * false no feedback * @param reset_menu_state * * true reset menu state global union * * false do not reset menu state global union */ static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder = 0, const bool feedback = true, bool reset_menu_state = true) { asm("cli"); if (currentMenu != menu) { currentMenu = menu; encoderPosition = encoder; asm("sei"); if (reset_menu_state) { // Resets the global shared C union. // This ensures, that the menu entered will find out, that it shall initialize itself. memset(&menuData, 0, sizeof(menuData)); } if (feedback) lcd_quick_feedback(); // For LCD_PROGRESS_BAR re-initialize the custom characters #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) lcd_set_custom_characters(menu == lcd_status_screen); #endif } else asm("sei"); } /* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */ static void lcd_status_screen() { if (firstrun == 1) { firstrun = 0; if(lcd_status_message_level == 0){ strncpy_P(lcd_status_message, _T(WELCOME_MSG), LCD_WIDTH); lcd_finishstatus(); } if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255) { eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0); eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0); } } if (lcd_status_update_delay) lcd_status_update_delay--; else lcdDrawUpdate = 1; if (lcdDrawUpdate) { ReInitLCD++; if (ReInitLCD == 30) { lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); ReInitLCD = 0 ; } else { if ((ReInitLCD % 10) == 0) { //lcd_implementation_nodisplay(); lcd_implementation_init_noclear( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); } } //lcd_implementation_display(); lcd_implementation_status_screen(); //lcd_implementation_clear(); if (farm_mode) { farm_timer--; if (farm_timer < 1) { farm_timer = 10; prusa_statistics(0); } switch (farm_timer) { case 8: prusa_statistics(21); break; case 5: if (IS_SD_PRINTING) { prusa_statistics(20); } break; } } // end of farm_mode lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */ if (lcd_commands_type != LCD_COMMAND_IDLE) { lcd_commands(); } } // end of lcdDrawUpdate #ifdef ULTIPANEL bool current_click = LCD_CLICKED; if (ignore_click) { if (wait_for_unclick) { if (!current_click) { ignore_click = wait_for_unclick = false; } else { current_click = false; } } else if (current_click) { lcd_quick_feedback(); wait_for_unclick = true; current_click = false; } } if (current_click && (lcd_commands_type != LCD_COMMAND_STOP_PRINT)) //click is aborted unless stop print finishes { menuStack.reset(); //redundant, as already done in lcd_return_to_status(), just to be sure menu_action_submenu(lcd_main_menu); lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); #ifdef FILAMENT_LCD_DISPLAY message_millis = millis(); // get status message to show up for a while #endif } #ifdef ULTIPANEL_FEEDMULTIPLY // Dead zone at 100% feedrate if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) || (feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100)) { encoderPosition = 0; feedmultiply = 100; } if (feedmultiply == 100 && int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE) { feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } else if (feedmultiply != 100) { feedmultiply += int(encoderPosition); encoderPosition = 0; } #endif //ULTIPANEL_FEEDMULTIPLY if (feedmultiply < 10) feedmultiply = 10; else if (feedmultiply > 999) feedmultiply = 999; #endif //ULTIPANEL /*if (farm_mode && !printer_connected) { lcd.setCursor(0, 3); lcd_printPGM(_i("Printer disconnected"));////MSG_PRINTER_DISCONNECTED c=20 r=1 }*/ //#define FSENS_FACTOR (2580.8/50) //filament sensor factor [steps / encoder counts] //#define FSENS_FACTOR (2580.8/45.3) //filament sensor factor [steps / encoder counts] //lcd.setCursor(0, 3); //lcd_implementation_print(" "); //lcd.setCursor(0, 3); //lcd_implementation_print(pat9125_x); //lcd.setCursor(6, 3); //lcd_implementation_print(pat9125_y); //lcd.setCursor(12, 3); //lcd_implementation_print(pat9125_b); } #ifdef ULTIPANEL void lcd_commands() { if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE) { if(lcd_commands_step == 0) { if (card.sdprinting) { card.pauseSDPrint(); lcd_setstatuspgm(_T(MSG_FINISHING_MOVEMENTS)); lcdDrawUpdate = 3; lcd_commands_step = 1; } else { lcd_commands_type = 0; } } if (lcd_commands_step == 1 && !blocks_queued() && !homing_flag) { lcd_setstatuspgm(_i("Print paused"));////MSG_PRINT_PAUSED c=20 r=1 isPrintPaused = true; long_pause(); lcd_commands_type = 0; lcd_commands_step = 0; } } if (lcd_commands_type == LCD_COMMAND_LONG_PAUSE_RESUME) { char cmd1[30]; if (lcd_commands_step == 0) { lcdDrawUpdate = 3; lcd_commands_step = 4; } if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty()) { //recover feedmultiply; cmd_buffer_empty() ensures that card.sdprinting is synchronized with buffered commands and thus print cant be paused until resume is finished sprintf_P(cmd1, PSTR("M220 S%d"), saved_feedmultiply); enquecommand(cmd1); isPrintPaused = false; pause_time += (millis() - start_pause_print); //accumulate time when print is paused for correct statistics calculation card.startFileprint(); lcd_commands_step = 0; lcd_commands_type = 0; } if (lcd_commands_step == 2 && !blocks_queued()) { //turn on fan, move Z and unretract sprintf_P(cmd1, PSTR("M106 S%d"), fanSpeedBckp); enquecommand(cmd1); strcpy(cmd1, "G1 Z"); strcat(cmd1, ftostr32(pause_lastpos[Z_AXIS])); enquecommand(cmd1); if (axis_relative_modes[3] == false) { enquecommand_P(PSTR("M83")); // set extruder to relative mode enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION))); //unretract enquecommand_P(PSTR("M82")); // set extruder to absolute mode } else { enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION))); //unretract } lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { //wait for nozzle to reach target temp strcpy(cmd1, "M109 S"); strcat(cmd1, ftostr3(HotendTempBckp)); enquecommand(cmd1); lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { //set temperature back and move xy strcpy(cmd1, "M104 S"); strcat(cmd1, ftostr3(HotendTempBckp)); enquecommand(cmd1); enquecommand_P(PSTR("G90")); //absolute positioning strcpy(cmd1, "G1 X"); strcat(cmd1, ftostr32(pause_lastpos[X_AXIS])); strcat(cmd1, " Y"); strcat(cmd1, ftostr32(pause_lastpos[Y_AXIS])); enquecommand(cmd1); lcd_setstatuspgm(_T(MSG_RESUMING_PRINT)); lcd_commands_step = 3; } } #ifdef SNMM if (lcd_commands_type == LCD_COMMAND_V2_CAL) { char cmd1[30]; float width = 0.4; float length = 20 - width; float extr = count_e(0.2, width, length); float extr_short_segment = count_e(0.2, width, width); if (lcd_commands_step>1) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen if (lcd_commands_step == 0) { lcd_commands_step = 10; } if (lcd_commands_step == 10 && !blocks_queued() && cmd_buffer_empty()) { enquecommand_P(PSTR("M107")); enquecommand_P(PSTR("M104 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(PSTR("M140 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(PSTR("T0")); enquecommand_P(_T(MSG_M117_V2_CALIBRATION)); enquecommand_P(PSTR("G87")); //sets calibration status enquecommand_P(PSTR("G28")); enquecommand_P(PSTR("G21")); //set units to millimeters enquecommand_P(PSTR("G90")); //use absolute coordinates enquecommand_P(PSTR("M83")); //use relative distances for extrusion enquecommand_P(PSTR("G92 E0")); enquecommand_P(PSTR("M203 E100")); enquecommand_P(PSTR("M92 E140")); lcd_commands_step = 9; } if (lcd_commands_step == 9 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; enquecommand_P(PSTR("G1 Z0.250 F7200.000")); enquecommand_P(PSTR("G1 X50.0 E80.0 F1000.0")); enquecommand_P(PSTR("G1 X160.0 E20.0 F1000.0")); enquecommand_P(PSTR("G1 Z0.200 F7200.000")); enquecommand_P(PSTR("G1 X220.0 E13 F1000.0")); enquecommand_P(PSTR("G1 X240.0 E0 F1000.0")); enquecommand_P(PSTR("G92 E0.0")); enquecommand_P(PSTR("G21")); enquecommand_P(PSTR("G90")); enquecommand_P(PSTR("M83")); enquecommand_P(PSTR("G1 E-4 F2100.00000")); enquecommand_P(PSTR("G1 Z0.150 F7200.000")); enquecommand_P(PSTR("M204 S1000")); enquecommand_P(PSTR("G1 F4000")); lcd_implementation_clear(); lcd_goto_menu(lcd_babystep_z, 0, false); lcd_commands_step = 8; } if (lcd_commands_step == 8 && !blocks_queued() && cmd_buffer_empty()) //draw meander { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; enquecommand_P(PSTR("G1 X50 Y155")); enquecommand_P(PSTR("G1 X60 Y155 E4")); enquecommand_P(PSTR("G1 F1080")); enquecommand_P(PSTR("G1 X75 Y155 E2.5")); enquecommand_P(PSTR("G1 X100 Y155 E2")); enquecommand_P(PSTR("G1 X200 Y155 E2.62773")); enquecommand_P(PSTR("G1 X200 Y135 E0.66174")); enquecommand_P(PSTR("G1 X50 Y135 E3.62773")); enquecommand_P(PSTR("G1 X50 Y115 E0.49386")); enquecommand_P(PSTR("G1 X200 Y115 E3.62773")); enquecommand_P(PSTR("G1 X200 Y95 E0.49386")); enquecommand_P(PSTR("G1 X50 Y95 E3.62773")); enquecommand_P(PSTR("G1 X50 Y75 E0.49386")); enquecommand_P(PSTR("G1 X200 Y75 E3.62773")); enquecommand_P(PSTR("G1 X200 Y55 E0.49386")); enquecommand_P(PSTR("G1 X50 Y55 E3.62773")); lcd_commands_step = 7; } if (lcd_commands_step == 7 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; strcpy(cmd1, "G1 X50 Y35 E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); for (int i = 0; i < 4; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 6; } if (lcd_commands_step == 6 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 4; i < 8; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 5; } if (lcd_commands_step == 5 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 8; i < 12; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 4; } if (lcd_commands_step == 4 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 12; i < 16; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; enquecommand_P(PSTR("G1 E-0.07500 F2100.00000")); enquecommand_P(PSTR("G4 S0")); enquecommand_P(PSTR("G1 E-4 F2100.00000")); enquecommand_P(PSTR("G1 Z0.5 F7200.000")); enquecommand_P(PSTR("G1 X245 Y1")); enquecommand_P(PSTR("G1 X240 E4")); enquecommand_P(PSTR("G1 F4000")); enquecommand_P(PSTR("G1 X190 E2.7")); enquecommand_P(PSTR("G1 F4600")); enquecommand_P(PSTR("G1 X110 E2.8")); enquecommand_P(PSTR("G1 F5200")); enquecommand_P(PSTR("G1 X40 E3")); enquecommand_P(PSTR("G1 E-15.0000 F5000")); enquecommand_P(PSTR("G1 E-50.0000 F5400")); enquecommand_P(PSTR("G1 E-15.0000 F3000")); enquecommand_P(PSTR("G1 E-12.0000 F2000")); enquecommand_P(PSTR("G1 F1600")); lcd_commands_step = 2; } if (lcd_commands_step == 2 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; enquecommand_P(PSTR("G1 X0 Y1 E3.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-5.0000")); enquecommand_P(PSTR("G1 F2000")); enquecommand_P(PSTR("G1 X0 Y1 E5.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-5.0000")); enquecommand_P(PSTR("G1 F2400")); enquecommand_P(PSTR("G1 X0 Y1 E5.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-5.0000")); enquecommand_P(PSTR("G1 F2400")); enquecommand_P(PSTR("G1 X0 Y1 E5.0000")); enquecommand_P(PSTR("G1 X50 Y1 E-3.0000")); enquecommand_P(PSTR("G4 S0")); enquecommand_P(PSTR("M107")); enquecommand_P(PSTR("M104 S0")); enquecommand_P(PSTR("M140 S0")); enquecommand_P(PSTR("G1 X10 Y180 F4000")); enquecommand_P(PSTR("G1 Z10 F1300.000")); enquecommand_P(PSTR("M84")); lcd_commands_step = 1; } if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty()) { lcd_setstatuspgm(_T(WELCOME_MSG)); lcd_commands_step = 0; lcd_commands_type = 0; if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { lcd_wizard(10); } } } #else //if not SNMM if (lcd_commands_type == LCD_COMMAND_V2_CAL) { char cmd1[30]; float width = 0.4; float length = 20 - width; float extr = count_e(0.2, width, length); float extr_short_segment = count_e(0.2, width, width); if(lcd_commands_step>1) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen if (lcd_commands_step == 0) { lcd_commands_step = 9; } if (lcd_commands_step == 9 && !blocks_queued() && cmd_buffer_empty()) { enquecommand_P(PSTR("M107")); enquecommand_P(PSTR("M104 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(PSTR("M140 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M190 S" STRINGIFY(PLA_PREHEAT_HPB_TEMP))); enquecommand_P(PSTR("M109 S" STRINGIFY(PLA_PREHEAT_HOTEND_TEMP))); enquecommand_P(_T(MSG_M117_V2_CALIBRATION)); enquecommand_P(PSTR("G28")); enquecommand_P(PSTR("G92 E0.0")); lcd_commands_step = 8; } if (lcd_commands_step == 8 && !blocks_queued() && cmd_buffer_empty()) { lcd_implementation_clear(); menuStack.reset(); menu_action_submenu(lcd_babystep_z); enquecommand_P(PSTR("G1 X60.0 E9.0 F1000.0")); //intro line enquecommand_P(PSTR("G1 X100.0 E12.5 F1000.0")); //intro line enquecommand_P(PSTR("G92 E0.0")); enquecommand_P(PSTR("G21")); //set units to millimeters enquecommand_P(PSTR("G90")); //use absolute coordinates enquecommand_P(PSTR("M83")); //use relative distances for extrusion enquecommand_P(PSTR("G1 E-1.50000 F2100.00000")); enquecommand_P(PSTR("G1 Z0.150 F7200.000")); enquecommand_P(PSTR("M204 S1000")); //set acceleration enquecommand_P(PSTR("G1 F4000")); lcd_commands_step = 7; } if (lcd_commands_step == 7 && !blocks_queued() && cmd_buffer_empty()) //draw meander { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; //just opposite direction /*enquecommand_P(PSTR("G1 X50 Y55")); enquecommand_P(PSTR("G1 F1080")); enquecommand_P(PSTR("G1 X200 Y55 E3.62773")); enquecommand_P(PSTR("G1 X200 Y75 E0.49386")); enquecommand_P(PSTR("G1 X50 Y75 E3.62773")); enquecommand_P(PSTR("G1 X50 Y95 E0.49386")); enquecommand_P(PSTR("G1 X200 Y95 E3.62773")); enquecommand_P(PSTR("G1 X200 Y115 E0.49386")); enquecommand_P(PSTR("G1 X50 Y115 E3.62773")); enquecommand_P(PSTR("G1 X50 Y135 E0.49386")); enquecommand_P(PSTR("G1 X200 Y135 E3.62773")); enquecommand_P(PSTR("G1 X200 Y155 E0.66174")); enquecommand_P(PSTR("G1 X100 Y155 E2.62773")); enquecommand_P(PSTR("G1 X75 Y155 E2")); enquecommand_P(PSTR("G1 X50 Y155 E2.5")); enquecommand_P(PSTR("G1 E - 0.07500 F2100.00000"));*/ enquecommand_P(PSTR("G1 X50 Y155")); enquecommand_P(PSTR("G1 F1080")); enquecommand_P(PSTR("G1 X75 Y155 E2.5")); enquecommand_P(PSTR("G1 X100 Y155 E2")); enquecommand_P(PSTR("G1 X200 Y155 E2.62773")); enquecommand_P(PSTR("G1 X200 Y135 E0.66174")); enquecommand_P(PSTR("G1 X50 Y135 E3.62773")); enquecommand_P(PSTR("G1 X50 Y115 E0.49386")); enquecommand_P(PSTR("G1 X200 Y115 E3.62773")); enquecommand_P(PSTR("G1 X200 Y95 E0.49386")); enquecommand_P(PSTR("G1 X50 Y95 E3.62773")); enquecommand_P(PSTR("G1 X50 Y75 E0.49386")); enquecommand_P(PSTR("G1 X200 Y75 E3.62773")); enquecommand_P(PSTR("G1 X200 Y55 E0.49386")); enquecommand_P(PSTR("G1 X50 Y55 E3.62773")); strcpy(cmd1, "G1 X50 Y35 E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); lcd_commands_step = 6; } if (lcd_commands_step == 6 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 0; i < 4; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 5; } if (lcd_commands_step == 5 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 4; i < 8; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 4; } if (lcd_commands_step == 4 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 8; i < 12; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; for (int i = 12; i < 16; i++) { strcpy(cmd1, "G1 X70 Y"); strcat(cmd1, ftostr32(35 - i*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); strcpy(cmd1, "G1 X50 Y"); strcat(cmd1, ftostr32(35 - (2 * i + 1)*width)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr)); enquecommand(cmd1); strcpy(cmd1, "G1 Y"); strcat(cmd1, ftostr32(35 - (i + 1)*width * 2)); strcat(cmd1, " E"); strcat(cmd1, ftostr43(extr_short_segment)); enquecommand(cmd1); } lcd_commands_step = 2; } if (lcd_commands_step == 2 && !blocks_queued() && cmd_buffer_empty()) { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; enquecommand_P(PSTR("G1 E-0.07500 F2100.00000")); enquecommand_P(PSTR("M107")); //turn off printer fan enquecommand_P(PSTR("M104 S0")); // turn off temperature enquecommand_P(PSTR("M140 S0")); // turn off heatbed enquecommand_P(PSTR("G1 Z10 F1300.000")); enquecommand_P(PSTR("G1 X10 Y180 F4000")); //home X axis enquecommand_P(PSTR("M84"));// disable motors lcd_timeoutToStatus = millis() - 1; //if user dont confirm live adjust Z value by pressing the knob, we are saving last value by timeout to status screen lcd_commands_step = 1; } if (lcd_commands_step == 1 && !blocks_queued() && cmd_buffer_empty()) { lcd_setstatuspgm(_T(WELCOME_MSG)); lcd_commands_step = 0; lcd_commands_type = 0; if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) { lcd_wizard(10); } } } #endif // not SNMM if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) /// stop print { if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_commands_step = 0; lcd_commands_type = 0; lcd_setstatuspgm(_T(WELCOME_MSG)); custom_message_type = 0; custom_message = false; isPrintPaused = false; } if (lcd_commands_step == 2 && !blocks_queued()) { setTargetBed(0); enquecommand_P(PSTR("M104 S0")); //set hotend temp to 0 manage_heater(); lcd_setstatuspgm(_T(WELCOME_MSG)); cancel_heatup = false; lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { // M84: Disable steppers. enquecommand_P(PSTR("M84")); autotempShutdown(); lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { lcd_setstatuspgm(_T(MSG_PLEASE_WAIT)); // G90: Absolute positioning. enquecommand_P(PSTR("G90")); // M83: Set extruder to relative mode. enquecommand_P(PSTR("M83")); #ifdef X_CANCEL_POS enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000")); #else enquecommand_P(PSTR("G1 X50 Y" STRINGIFY(Y_MAX_POS) " E0 F7000")); #endif lcd_ignore_click(false); #ifdef SNMM lcd_commands_step = 8; #else lcd_commands_step = 3; #endif } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); // G91: Set to relative positioning. enquecommand_P(PSTR("G91")); // Lift up. enquecommand_P(PSTR("G1 Z15 F1500")); if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) lcd_commands_step = 4; else lcd_commands_step = 3; } if (lcd_commands_step == 6 && !blocks_queued()) { lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); cancel_heatup = true; setTargetBed(0); #ifndef SNMM setTargetHotend(0, 0); //heating when changing filament for multicolor setTargetHotend(0, 1); setTargetHotend(0, 2); #endif manage_heater(); custom_message = true; custom_message_type = 2; lcd_commands_step = 5; } if (lcd_commands_step == 7 && !blocks_queued()) { switch(snmm_stop_print_menu()) { case 0: enquecommand_P(PSTR("M702")); break;//all case 1: enquecommand_P(PSTR("M702 U")); break; //used case 2: enquecommand_P(PSTR("M702 C")); break; //current default: enquecommand_P(PSTR("M702")); break; } lcd_commands_step = 3; } if (lcd_commands_step == 8 && !blocks_queued()) { //step 8 is here for delay (going to next step after execution of all gcodes from step 4) lcd_commands_step = 7; } } if (lcd_commands_type == 3) { lcd_commands_type = 0; } if (lcd_commands_type == LCD_COMMAND_FARM_MODE_CONFIRM) /// farm mode confirm { if (lcd_commands_step == 0) { lcd_commands_step = 6; custom_message = true; } if (lcd_commands_step == 1 && !blocks_queued()) { lcd_confirm_print(); lcd_commands_step = 0; lcd_commands_type = 0; } if (lcd_commands_step == 2 && !blocks_queued()) { lcd_commands_step = 1; } if (lcd_commands_step == 3 && !blocks_queued()) { lcd_commands_step = 2; } if (lcd_commands_step == 4 && !blocks_queued()) { enquecommand_P(PSTR("G90")); enquecommand_P(PSTR("G1 X" STRINGIFY(X_CANCEL_POS) " Y" STRINGIFY(Y_CANCEL_POS) " E0 F7000")); lcd_commands_step = 3; } if (lcd_commands_step == 5 && !blocks_queued()) { lcd_commands_step = 4; } if (lcd_commands_step == 6 && !blocks_queued()) { enquecommand_P(PSTR("G91")); enquecommand_P(PSTR("G1 Z15 F1500")); st_synchronize(); #ifdef SNMM lcd_commands_step = 7; #else lcd_commands_step = 5; #endif } } if (lcd_commands_type == LCD_COMMAND_PID_EXTRUDER) { char cmd1[30]; if (lcd_commands_step == 0) { custom_message_type = 3; custom_message_state = 1; custom_message = true; lcdDrawUpdate = 3; lcd_commands_step = 3; } if (lcd_commands_step == 3 && !blocks_queued()) { //PID calibration strcpy(cmd1, "M303 E0 S"); strcat(cmd1, ftostr3(pid_temp)); enquecommand(cmd1); lcd_setstatuspgm(_i("PID cal. "));////MSG_PID_RUNNING c=20 r=1 lcd_commands_step = 2; } if (lcd_commands_step == 2 && pid_tuning_finished) { //saving to eeprom pid_tuning_finished = false; custom_message_state = 0; lcd_setstatuspgm(_i("PID cal. finished"));////MSG_PID_FINISHED c=20 r=1 if (_Kp != 0 || _Ki != 0 || _Kd != 0) { strcpy(cmd1, "M301 P"); strcat(cmd1, ftostr32(_Kp)); strcat(cmd1, " I"); strcat(cmd1, ftostr32(_Ki)); strcat(cmd1, " D"); strcat(cmd1, ftostr32(_Kd)); enquecommand(cmd1); enquecommand_P(PSTR("M500")); } else { SERIAL_ECHOPGM("Invalid PID cal. results. Not stored to EEPROM."); } display_time = millis(); lcd_commands_step = 1; } if ((lcd_commands_step == 1) && ((millis()- display_time)>2000)) { //calibration finished message lcd_setstatuspgm(_T(WELCOME_MSG)); custom_message_type = 0; custom_message = false; pid_temp = DEFAULT_PID_TEMP; lcd_commands_step = 0; lcd_commands_type = 0; } } } static float count_e(float layer_heigth, float extrusion_width, float extrusion_length) { //returns filament length in mm which needs to be extrude to form line with extrusion_length * extrusion_width * layer heigth dimensions float extr = extrusion_length * layer_heigth * extrusion_width / (M_PI * pow(1.75, 2) / 4); return extr; } static void lcd_return_to_status() { lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); lcd_goto_menu(lcd_status_screen, 0, false); menuStack.reset(); } void lcd_sdcard_pause() { lcd_return_to_status(); lcd_commands_type = LCD_COMMAND_LONG_PAUSE; } static void lcd_sdcard_resume() { lcd_return_to_status(); lcd_reset_alert_level(); //for fan speed error lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME; } float move_menu_scale; static void lcd_move_menu_axis(); /* Menu implementation */ void lcd_preheat_farm() { setTargetHotend0(FARM_PREHEAT_HOTEND_TEMP); setTargetBed(FARM_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_farm_nozzle() { setTargetHotend0(FARM_PREHEAT_HOTEND_TEMP); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pla() { setTargetHotend0(PLA_PREHEAT_HOTEND_TEMP); setTargetBed(PLA_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_abs() { setTargetHotend0(ABS_PREHEAT_HOTEND_TEMP); setTargetBed(ABS_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pp() { setTargetHotend0(PP_PREHEAT_HOTEND_TEMP); setTargetBed(PP_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_pet() { setTargetHotend0(PET_PREHEAT_HOTEND_TEMP); setTargetBed(PET_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_hips() { setTargetHotend0(HIPS_PREHEAT_HOTEND_TEMP); setTargetBed(HIPS_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_preheat_flex() { setTargetHotend0(FLEX_PREHEAT_HOTEND_TEMP); setTargetBed(FLEX_PREHEAT_HPB_TEMP); fanSpeed = 0; lcd_return_to_status(); setWatch(); // heater sanity check timer } void lcd_cooldown() { setTargetHotend0(0); setTargetHotend1(0); setTargetHotend2(0); setTargetBed(0); fanSpeed = 0; lcd_return_to_status(); } static void lcd_menu_extruder_info() { //|01234567890123456789| //|Nozzle FAN: RPM| //|Print FAN: RPM| //|Fil. Xd: Yd: | //|Int: Shut: | //---------------------- int fan_speed_RPM[2]; // Display Nozzle fan RPM fan_speed_RPM[0] = 60*fan_speed[0]; fan_speed_RPM[1] = 60*fan_speed[1]; #ifdef PAT9125 // Display X and Y difference from Filament sensor // Display Light intensity from Filament sensor // Frame_Avg register represents the average brightness of all pixels within a frame (324 pixels). This // value ranges from 0(darkest) to 255(brightest). // Display LASER shutter time from Filament sensor // Shutter register is an index of LASER shutter time. It is automatically controlled by the chip's internal // auto-exposure algorithm. When the chip is tracking on a good reflection surface, the Shutter is small. // When the chip is tracking on a poor reflection surface, the Shutter is large. Value ranges from 0 to 46. pat9125_update(); lcd_printf_P(_N( ESC_H(0,0) "Nozzle FAN: %4d RPM\n" "Print FAN: %4d RPM\n" "Fil. Xd:%3d Yd:%3d\n" "Int: %3d Shut: %3d\n" ), fan_speed_RPM[0], fan_speed_RPM[1], pat9125_x, pat9125_y, pat9125_b, pat9125_s ); #else //PAT9125 printf_P(_N( ESC_H(0,0) "Nozzle FAN: %4d RPM\n" "Print FAN: %4d RPM\n" ), fan_speed_RPM[0], fan_speed_RPM[1] ); #endif //PAT9125 if (lcd_clicked()) { menu_action_back(); } } #if defined(TMC2130) && defined(PAT9125) static void lcd_menu_fails_stats_total() { //01234567890123456789 //Total failures // Power failures 000 // Filam. runouts 000 // Crash X 000 Y 000 ////////////////////// uint16_t power = eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT); uint16_t filam = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT); uint16_t crashX = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT); uint16_t crashY = eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT); lcd_printf_P(PSTR(ESC_H(0,0) "Total failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY); if (lcd_clicked()) { lcd_quick_feedback(); menu_action_back(); } } static void lcd_menu_fails_stats_print() { //01234567890123456789 //Last print failures // Power failures 000 // Filam. runouts 000 // Crash X 000 Y 000 ////////////////////// uint8_t power = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT); uint8_t filam = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint8_t crashX = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X); uint8_t crashY = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y); lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Power failures %-3d" ESC_H(1,2) "Filam. runouts %-3d" ESC_H(1,3) "Crash X %-3d Y %-3d"), power, filam, crashX, crashY); if (lcd_clicked()) { lcd_quick_feedback(); menu_action_back(); } } /** * @brief Open fail statistics menu * * This version of function is used, when there is filament sensor, * power failure and crash detection. * There are Last print and Total menu items. */ static void lcd_menu_fails_stats() { START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); MENU_ITEM(submenu, PSTR("Last print"), lcd_menu_fails_stats_print); MENU_ITEM(submenu, PSTR("Total"), lcd_menu_fails_stats_total); END_MENU(); } #elif defined(PAT9125) /** * @brief Print last print and total filament run outs * * This version of function is used, when there is filament sensor, * but no other sensors (e.g. power failure, crash detection). * * Example screen: * @code * 01234567890123456789 * Last print failures * Filam. runouts 0 * Total failures * Filam. runouts 5 * @endcode */ static void lcd_menu_fails_stats() { uint8_t filamentLast = eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT); uint16_t filamentTotal = eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT); lcd_printf_P(PSTR(ESC_H(0,0) "Last print failures" ESC_H(1,1) "Filam. runouts %-3d" ESC_H(0,2) "Total failures" ESC_H(1,3) "Filam. runouts %-3d"), filamentLast, filamentTotal); if (lcd_clicked()) { menu_action_back(); } } #endif //TMC2130 #ifdef DEBUG_BUILD #ifdef DEBUG_STACK_MONITOR extern uint16_t SP_min; extern char* __malloc_heap_start; extern char* __malloc_heap_end; #endif //DEBUG_STACK_MONITOR static void lcd_menu_debug() { #ifdef DEBUG_STACK_MONITOR lcd_printf_P(PSTR(ESC_H(1,1) "RAM statistics" ESC_H(5,1) "SP_min: 0x%04x" ESC_H(1,2) "heap_start: 0x%04x" ESC_H(3,3) "heap_end: 0x%04x"), SP_min, __malloc_heap_start, __malloc_heap_end); #endif //DEBUG_STACK_MONITOR if (lcd_clicked()) { lcd_quick_feedback(); menu_action_back(); } } #endif /* DEBUG_BUILD */ static void lcd_menu_temperatures() { lcd_printf_P(PSTR(ESC_H(1,0) "Nozzle: %d%c" ESC_H(1,1) "Bed: %d%c"), (int)current_temperature[0], '\x01', (int)current_temperature_bed, '\x01'); #ifdef AMBIENT_THERMISTOR lcd_printf_P(PSTR(ESC_H(1,2) "Ambient: %d%c" ESC_H(1,3) "PINDA: %d%c"), (int)current_temperature_ambient, '\x01', (int)current_temperature_pinda, '\x01'); #else //AMBIENT_THERMISTOR lcd_printf_P(PSTR(ESC_H(1,2) "PINDA: %d%c"), (int)current_temperature_pinda, '\x01'); #endif //AMBIENT_THERMISTOR if (lcd_clicked()) { menu_action_back(); } } #if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) #define VOLT_DIV_R1 10000 #define VOLT_DIV_R2 2370 #define VOLT_DIV_FAC ((float)VOLT_DIV_R2 / (VOLT_DIV_R2 + VOLT_DIV_R1)) #define VOLT_DIV_REF 5 static void lcd_menu_voltages() { float volt_pwr = VOLT_DIV_REF * ((float)current_voltage_raw_pwr / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; // float volt_bed = VOLT_DIV_REF * ((float)current_voltage_raw_bed / (1023 * OVERSAMPLENR)) / VOLT_DIV_FAC; // lcd_printf_P(PSTR(ESC_H(1,1)"PWR: %d.%01dV" ESC_H(1,2)"BED: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr)), (int)volt_bed, (int)(10*fabs(volt_bed - (int)volt_bed))); lcd_printf_P(PSTR( ESC_H(1,1)"PWR: %d.%01dV"), (int)volt_pwr, (int)(10*fabs(volt_pwr - (int)volt_pwr))) ; if (lcd_clicked()) { menu_action_back(); } } #endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN #ifdef TMC2130 static void lcd_menu_belt_status() { lcd_printf_P(PSTR(ESC_H(1,0) "Belt status" ESC_H(2,1) "X %d" ESC_H(2,2) "Y %d" ), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_X)), eeprom_read_word((uint16_t*)(EEPROM_BELTSTATUS_Y))); if (lcd_clicked()) { menu_action_back(); } } #endif //TMC2130 extern void stop_and_save_print_to_ram(float z_move, float e_move); extern void restore_print_from_ram_and_continue(float e_move); static void lcd_menu_test_save() { stop_and_save_print_to_ram(10, -0.8); } static void lcd_menu_test_restore() { restore_print_from_ram_and_continue(0.8); } static void lcd_preheat_menu() { START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); if (farm_mode) { MENU_ITEM(function, PSTR("farm - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FARM_PREHEAT_HPB_TEMP)), lcd_preheat_farm); MENU_ITEM(function, PSTR("nozzle - " STRINGIFY(FARM_PREHEAT_HOTEND_TEMP) "/0"), lcd_preheat_farm_nozzle); MENU_ITEM(function, _T(MSG_COOLDOWN), lcd_cooldown); MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs); } else { MENU_ITEM(function, PSTR("PLA - " STRINGIFY(PLA_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PLA_PREHEAT_HPB_TEMP)), lcd_preheat_pla); MENU_ITEM(function, PSTR("PET - " STRINGIFY(PET_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PET_PREHEAT_HPB_TEMP)), lcd_preheat_pet); MENU_ITEM(function, PSTR("ABS - " STRINGIFY(ABS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(ABS_PREHEAT_HPB_TEMP)), lcd_preheat_abs); MENU_ITEM(function, PSTR("HIPS - " STRINGIFY(HIPS_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(HIPS_PREHEAT_HPB_TEMP)), lcd_preheat_hips); MENU_ITEM(function, PSTR("PP - " STRINGIFY(PP_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(PP_PREHEAT_HPB_TEMP)), lcd_preheat_pp); MENU_ITEM(function, PSTR("FLEX - " STRINGIFY(FLEX_PREHEAT_HOTEND_TEMP) "/" STRINGIFY(FLEX_PREHEAT_HPB_TEMP)), lcd_preheat_flex); MENU_ITEM(function, _T(MSG_COOLDOWN), lcd_cooldown); } END_MENU(); } static void lcd_support_menu() { if (menuData.supportMenu.status == 0 || lcdDrawUpdate == 2) { // Menu was entered or SD card status has changed (plugged in or removed). // Initialize its status. menuData.supportMenu.status = 1; menuData.supportMenu.is_flash_air = card.ToshibaFlashAir_isEnabled() && card.ToshibaFlashAir_GetIP(menuData.supportMenu.ip); if (menuData.supportMenu.is_flash_air) sprintf_P(menuData.supportMenu.ip_str, PSTR("%d.%d.%d.%d"), menuData.supportMenu.ip[0], menuData.supportMenu.ip[1], menuData.supportMenu.ip[2], menuData.supportMenu.ip[3]); } else if (menuData.supportMenu.is_flash_air && menuData.supportMenu.ip[0] == 0 && menuData.supportMenu.ip[1] == 0 && menuData.supportMenu.ip[2] == 0 && menuData.supportMenu.ip[3] == 0 && ++ menuData.supportMenu.status == 16) { // Waiting for the FlashAir card to get an IP address from a router. Force an update. menuData.supportMenu.status = 0; } START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); MENU_ITEM(back, PSTR("Firmware:"), 0); MENU_ITEM(back, PSTR(" " FW_VERSION_FULL), 0); #if (FW_DEV_VERSION != FW_VERSION_GOLD) && (FW_DEV_VERSION != FW_VERSION_RC) MENU_ITEM(back, PSTR(" repo " FW_REPOSITORY), 0); #endif // Ideally this block would be optimized out by the compiler. /* const uint8_t fw_string_len = strlen_P(FW_VERSION_STR_P()); if (fw_string_len < 6) { MENU_ITEM(back, PSTR(MSG_FW_VERSION " - " FW_version), 0); } else { MENU_ITEM(back, PSTR("FW - " FW_version), 0); }*/ MENU_ITEM(back, _i("prusa3d.com"), 0);////MSG_PRUSA3D c=0 r=0 MENU_ITEM(back, _i("forum.prusa3d.com"), 0);////MSG_PRUSA3D_FORUM c=0 r=0 MENU_ITEM(back, _i("howto.prusa3d.com"), 0);////MSG_PRUSA3D_HOWTO c=0 r=0 MENU_ITEM(back, PSTR("------------"), 0); MENU_ITEM(back, PSTR(FILAMENT_SIZE), 0); MENU_ITEM(back, PSTR(ELECTRONICS),0); MENU_ITEM(back, PSTR(NOZZLE_TYPE),0); MENU_ITEM(back, PSTR("------------"), 0); MENU_ITEM(back, _i("Date:"), 0);////MSG_DATE c=17 r=1 MENU_ITEM(back, PSTR(__DATE__), 0); // Show the FlashAir IP address, if the card is available. if (menuData.supportMenu.is_flash_air) { MENU_ITEM(back, PSTR("------------"), 0); MENU_ITEM(back, PSTR("FlashAir IP Addr:"), 0); MENU_ITEM(back_RAM, menuData.supportMenu.ip_str, 0); } #ifndef MK1BP MENU_ITEM(back, PSTR("------------"), 0); MENU_ITEM(submenu, _i("XYZ cal. details"), lcd_menu_xyz_y_min);////MSG_XYZ_DETAILS c=19 r=1 MENU_ITEM(submenu, _i("Extruder info"), lcd_menu_extruder_info);////MSG_INFO_EXTRUDER c=15 r=1 #ifdef TMC2130 MENU_ITEM(submenu, _i("Belt status"), lcd_menu_belt_status);////MSG_MENU_BELT_STATUS c=15 r=1 #endif //TMC2130 MENU_ITEM(submenu, _i("Temperatures"), lcd_menu_temperatures);////MSG_MENU_TEMPERATURES c=15 r=1 #if defined (VOLT_BED_PIN) || defined (VOLT_PWR_PIN) MENU_ITEM(submenu, _i("Voltages"), lcd_menu_voltages);////MSG_MENU_VOLTAGES c=15 r=1 #endif //defined VOLT_BED_PIN || defined VOLT_PWR_PIN #ifdef DEBUG_BUILD MENU_ITEM(submenu, PSTR("Debug"), lcd_menu_debug); #endif /* DEBUG_BUILD */ #endif //MK1BP END_MENU(); } void lcd_set_fan_check() { fans_check_enabled = !fans_check_enabled; eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED, fans_check_enabled); lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack } void lcd_set_filament_autoload() { filament_autoload_enabled = !filament_autoload_enabled; eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, filament_autoload_enabled); } void lcd_unLoadFilament() { if (degHotend0() > EXTRUDE_MINTEMP) { enquecommand_P(PSTR("M702")); //unload filament } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_implementation_clear(); } menu_action_back(); } void lcd_change_filament() { lcd_implementation_clear(); lcd.setCursor(0, 1); lcd_printPGM(_i("Changing filament!"));////MSG_CHANGING_FILAMENT c=20 r=0 } void lcd_wait_interact() { lcd_implementation_clear(); lcd.setCursor(0, 1); #ifdef SNMM lcd_printPGM(_i("Prepare new filament"));////MSG_PREPARE_FILAMENT c=20 r=1 #else lcd_printPGM(_i("Insert filament"));////MSG_INSERT_FILAMENT c=20 r=0 #endif lcd.setCursor(0, 2); lcd_printPGM(_i("and press the knob"));////MSG_PRESS c=20 r=0 } void lcd_change_success() { lcd_implementation_clear(); lcd.setCursor(0, 2); lcd_printPGM(_i("Change success!"));////MSG_CHANGE_SUCCESS c=0 r=0 } void lcd_loading_color() { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_i("Loading color"));////MSG_LOADING_COLOR c=0 r=0 lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PLEASE_WAIT)); for (int i = 0; i < 20; i++) { lcd.setCursor(i, 3); lcd.print("."); for (int j = 0; j < 10 ; j++) { manage_heater(); manage_inactivity(true); delay(85); } } } void lcd_loading_filament() { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_LOADING_FILAMENT)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PLEASE_WAIT)); for (int i = 0; i < 20; i++) { lcd.setCursor(i, 3); lcd.print("."); for (int j = 0; j < 10 ; j++) { manage_heater(); manage_inactivity(true); #ifdef SNMM delay(153); #else delay(137); #endif } } } void lcd_alright() { int enc_dif = 0; int cursor_pos = 1; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_i("Changed correctly?"));////MSG_CORRECTLY c=20 r=0 lcd.setCursor(1, 1); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(1, 2); lcd_printPGM(_i("Filament not loaded"));////MSG_NOT_LOADED c=19 r=0 lcd.setCursor(1, 3); lcd_printPGM(_i("Color not correct"));////MSG_NOT_COLOR c=0 r=0 lcd.setCursor(0, 1); lcd.print(">"); enc_dif = encoderDiff; while (lcd_change_fil_state == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > 3) { cursor_pos = 3; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { lcd_change_fil_state = cursor_pos; delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } #ifdef PAT9125 static void lcd_menu_AutoLoadFilament() { if (degHotend0() > EXTRUDE_MINTEMP) { uint8_t nlines; lcd_display_message_fullscreen_nonBlocking_P(_i("Autoloading filament is active, just press the knob and insert filament..."),nlines);////MSG_AUTOLOADING_ENABLED c=20 r=4 } else { ShortTimer* ptimer = (ShortTimer*)&(menuData.autoLoadFilamentMenu.dummy); if (!ptimer->running()) ptimer->start(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); if (ptimer->expired(2000ul)) menu_action_back(); } if (lcd_clicked()) menu_action_back(); } #endif //PAT9125 static void lcd_LoadFilament() { if (degHotend0() > EXTRUDE_MINTEMP) { custom_message = true; loading_flag = true; enquecommand_P(PSTR("M701")); //load filament SERIAL_ECHOLN("Loading filament"); lcd_return_to_status(); } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_implementation_clear(); } } void lcd_menu_statistics() { if (IS_SD_PRINTING) { int _met = total_filament_used / 100000; int _cm = (total_filament_used - (_met * 100000)) / 10; int _t = (millis() - starttime) / 1000; int _h = _t / 3600; int _m = (_t - (_h * 3600)) / 60; int _s = _t - ((_h * 3600) + (_m * 60)); //|01234567890123456789| //|Filament used: | //| 000m 00.000cm | //|Print time: | //| 00h 00m 00s | //---------------------- lcd_printf_P(_N( ESC_2J "%S:" ESC_H(6,1) "%8.2f m\n" "%S :" ESC_H(8,3) "%2dh %02dm %02d" ), _i("Filament used"), _met, _cm, _i("Print time"), _h, _m, _s ); if (lcd_clicked()) { lcd_quick_feedback(); menu_action_back(); } } else { unsigned long _filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); unsigned long _time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //in minutes uint8_t _hours, _minutes; uint32_t _days; float _filament_m = (float)_filament/100; // int _filament_km = (_filament >= 100000) ? _filament / 100000 : 0; // if (_filament_km > 0) _filament_m = _filament - (_filament_km * 100000); _days = _time / 1440; _hours = (_time - (_days * 1440)) / 60; _minutes = _time - ((_days * 1440) + (_hours * 60)); //|01234567890123456789| //|Total filament : | //| 000.00 m | //|Total print time : | //| 00d :00h :00 m | //---------------------- lcd_printf_P(_N( ESC_2J "%S :" ESC_H(9,1) "%8.2f m\n" "%S :\n" "%7ldd :%2hhdh :%02hhd m" ), _i("Total filament"), _filament_m, _i("Total print time"), _days, _hours, _minutes ); KEEPALIVE_STATE(PAUSED_FOR_USER); while (!lcd_clicked()) { manage_heater(); manage_inactivity(true); delay(100); } KEEPALIVE_STATE(NOT_BUSY); lcd_quick_feedback(); menu_action_back(); } } static void _lcd_move(const char *name, int axis, int min, int max) { if (!menuData._lcd_moveMenu.initialized) { menuData._lcd_moveMenu.endstopsEnabledPrevious = enable_endstops(false); menuData._lcd_moveMenu.initialized = true; } if (encoderPosition != 0) { refresh_cmd_timeout(); if (! planner_queue_full()) { current_position[axis] += float((int)encoderPosition) * move_menu_scale; if (min_software_endstops && current_position[axis] < min) current_position[axis] = min; if (max_software_endstops && current_position[axis] > max) current_position[axis] = max; encoderPosition = 0; world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis] / 60, active_extruder); lcdDrawUpdate = 1; } } if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis])); if (menuExiting || LCD_CLICKED) (void)enable_endstops(menuData._lcd_moveMenu.endstopsEnabledPrevious); if (LCD_CLICKED) menu_action_back(); } static void lcd_move_e() { if (degHotend0() > EXTRUDE_MINTEMP) { if (encoderPosition != 0) { refresh_cmd_timeout(); if (! planner_queue_full()) { current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale; encoderPosition = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS] / 60, active_extruder); lcdDrawUpdate = 1; } } if (lcdDrawUpdate) { lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS])); } if (LCD_CLICKED) menu_action_back(); } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_return_to_status(); } } /** * @brief Show measured Y distance of front calibration points from Y_MIN_POS * * If those points are detected too close to edge of reachable area, their confidence is lowered. * This functionality is applied more often for MK2 printers. */ static void lcd_menu_xyz_y_min() { //|01234567890123456789| //|Y distance from min:| //|--------------------| //|Left: N/A | //|Right: N/A | //---------------------- float distanceMin[2]; count_xyz_details(distanceMin); lcd_printf_P(_N( ESC_H(0,0) "%S:\n" "%S\n" "%S:\n" "%S:" ), _i("Y distance from min"), separator, _i("Left"), _i("Right") ); for (uint8_t i = 0; i < 2; i++) { lcd.setCursor(11,2+i); if (distanceMin[i] >= 200) lcd_puts_P(_N("N/A")); else lcd_printf_P(_N("%6.2fmm"), distanceMin[i]); } if (lcd_clicked()) { lcd_goto_menu(lcd_menu_xyz_skew); } } /** * @brief Show measured axis skewness */ float _deg(float rad) { return rad * 180 / M_PI; } static void lcd_menu_xyz_skew() { //|01234567890123456789| //|Measured skew: N/A | //|--------------------| //|Slight skew: 0.12°| //|Severe skew: 0.25°| //---------------------- float angleDiff = eeprom_read_float((float*)(EEPROM_XYZ_CAL_SKEW)); lcd_printf_P(_N( ESC_H(0,0) "%S: N/A\n" "%S\n" "%S: %5.2f\x01\n" "%S: %5.2f\x01" ), _i("Measured skew"), separator, _i("Slight skew"), _deg(bed_skew_angle_mild), _i("Severe skew"), _deg(bed_skew_angle_extreme) ); if (angleDiff < 100) lcd_printf_P(_N(ESC_H(15,0)"%4.2f\x01"), _deg(angleDiff)); if (lcd_clicked()) { lcd_goto_menu(lcd_menu_xyz_offset); } } /** * @brief Show measured bed offset from expected position */ static void lcd_menu_xyz_offset() { lcd.setCursor(0,0); lcd_printPGM(_i("[0;0] point offset"));////MSG_MEASURED_OFFSET c=0 r=0 lcd_print_at_PGM(0, 1, separator); lcd_print_at_PGM(0, 2, PSTR("X")); lcd_print_at_PGM(0, 3, PSTR("Y")); float vec_x[2]; float vec_y[2]; float cntr[2]; world2machine_read_valid(vec_x, vec_y, cntr); for (int i = 0; i < 2; i++) { lcd_print_at_PGM(11, i + 2, PSTR("")); lcd.print(cntr[i]); lcd_print_at_PGM((cntr[i] < 0) ? 17 : 16, i + 2, PSTR("mm")); } if (lcd_clicked()) { menu_action_back(); } } // Save a single axis babystep value. void EEPROM_save_B(int pos, int* value) { union Data data; data.value = *value; eeprom_update_byte((unsigned char*)pos, data.b[0]); eeprom_update_byte((unsigned char*)pos + 1, data.b[1]); } // Read a single axis babystep value. void EEPROM_read_B(int pos, int* value) { union Data data; data.b[0] = eeprom_read_byte((unsigned char*)pos); data.b[1] = eeprom_read_byte((unsigned char*)pos + 1); *value = data.value; } static void lcd_move_x() { _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS); } static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); } static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); } /** * @brief Adjust first layer offset from bed if axis is Z_AXIS * * If menu is left (button pushed or timed out), value is stored to EEPROM and * if the axis is Z_AXIS, CALIBRATION_STATUS_CALIBRATED is also stored. * Purpose of this function for other axis then Z is unknown. * * @param axis AxisEnum X_AXIS Y_AXIS Z_AXIS * other value leads to storing Z_AXIS * @param msg text to be displayed */ static void _lcd_babystep(int axis, const char *msg) { if (menuData.babyStep.status == 0) { // Menu was entered. // Initialize its status. menuData.babyStep.status = 1; check_babystep(); EEPROM_read_B(EEPROM_BABYSTEP_X, &menuData.babyStep.babystepMem[0]); EEPROM_read_B(EEPROM_BABYSTEP_Y, &menuData.babyStep.babystepMem[1]); EEPROM_read_B(EEPROM_BABYSTEP_Z, &menuData.babyStep.babystepMem[2]); menuData.babyStep.babystepMemMM[0] = menuData.babyStep.babystepMem[0]/axis_steps_per_unit[X_AXIS]; menuData.babyStep.babystepMemMM[1] = menuData.babyStep.babystepMem[1]/axis_steps_per_unit[Y_AXIS]; menuData.babyStep.babystepMemMM[2] = menuData.babyStep.babystepMem[2]/axis_steps_per_unit[Z_AXIS]; lcdDrawUpdate = 1; //SERIAL_ECHO("Z baby step: "); //SERIAL_ECHO(menuData.babyStep.babystepMem[2]); // Wait 90 seconds before closing the live adjust dialog. lcd_timeoutToStatus = millis() + 90000; } if (encoderPosition != 0) { if (homing_flag) encoderPosition = 0; menuData.babyStep.babystepMem[axis] += (int)encoderPosition; if (axis == 2) { if (menuData.babyStep.babystepMem[axis] < Z_BABYSTEP_MIN) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MIN; //-3999 -> -9.99 mm else if (menuData.babyStep.babystepMem[axis] > Z_BABYSTEP_MAX) menuData.babyStep.babystepMem[axis] = Z_BABYSTEP_MAX; //0 else { CRITICAL_SECTION_START babystepsTodo[axis] += (int)encoderPosition; CRITICAL_SECTION_END } } menuData.babyStep.babystepMemMM[axis] = menuData.babyStep.babystepMem[axis]/axis_steps_per_unit[axis]; delay(50); encoderPosition = 0; lcdDrawUpdate = 1; } if (lcdDrawUpdate) lcd_implementation_drawedit_2(msg, ftostr13ns(menuData.babyStep.babystepMemMM[axis])); if (LCD_CLICKED || menuExiting) { // Only update the EEPROM when leaving the menu. EEPROM_save_B( (axis == X_AXIS) ? EEPROM_BABYSTEP_X : ((axis == Y_AXIS) ? EEPROM_BABYSTEP_Y : EEPROM_BABYSTEP_Z), &menuData.babyStep.babystepMem[axis]); if(Z_AXIS == axis) calibration_status_store(CALIBRATION_STATUS_CALIBRATED); } if (LCD_CLICKED) menu_action_back(); } static void lcd_babystep_x() { _lcd_babystep(X_AXIS, (_i("Babystepping X")));////MSG_BABYSTEPPING_X c=0 r=0 } static void lcd_babystep_y() { _lcd_babystep(Y_AXIS, (_i("Babystepping Y")));////MSG_BABYSTEPPING_Y c=0 r=0 } static void lcd_babystep_z() { _lcd_babystep(Z_AXIS, (_i("Adjusting Z")));////MSG_BABYSTEPPING_Z c=20 r=0 } static void lcd_adjust_bed(); /** * @brief adjust bed reset menu item function * * To be used as MENU_ITEM(function,...) inside lcd_adjust_bed submenu. In such case lcd_goto_menu usage * is correct and doesn't break menuStack. * Because we did not leave the menu, the menuData did not reset. * Force refresh of the bed leveling data. */ static void lcd_adjust_bed_reset() { eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT , 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR , 0); lcd_goto_menu(lcd_adjust_bed, 0, false); //doesn't break menuStack menuData.adjustBed.status = 0; } void adjust_bed_reset() { eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0); eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0); menuData.adjustBed.left = menuData.adjustBed.left2 = 0; menuData.adjustBed.right = menuData.adjustBed.right2 = 0; menuData.adjustBed.front = menuData.adjustBed.front2 = 0; menuData.adjustBed.rear = menuData.adjustBed.rear2 = 0; } #define BED_ADJUSTMENT_UM_MAX 50 static void lcd_adjust_bed() { if (menuData.adjustBed.status == 0) { // Menu was entered. // Initialize its status. menuData.adjustBed.status = 1; bool valid = false; menuData.adjustBed.left = menuData.adjustBed.left2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT); menuData.adjustBed.right = menuData.adjustBed.right2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT); menuData.adjustBed.front = menuData.adjustBed.front2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT); menuData.adjustBed.rear = menuData.adjustBed.rear2 = eeprom_read_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR); if (eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1 && menuData.adjustBed.left >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.left <= BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.right <= BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.front <= BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear >= -BED_ADJUSTMENT_UM_MAX && menuData.adjustBed.rear <= BED_ADJUSTMENT_UM_MAX) valid = true; if (! valid) { // Reset the values: simulate an edit. menuData.adjustBed.left2 = 0; menuData.adjustBed.right2 = 0; menuData.adjustBed.front2 = 0; menuData.adjustBed.rear2 = 0; } lcdDrawUpdate = 1; eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1); } if (menuData.adjustBed.left != menuData.adjustBed.left2) eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_LEFT, menuData.adjustBed.left = menuData.adjustBed.left2); if (menuData.adjustBed.right != menuData.adjustBed.right2) eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, menuData.adjustBed.right = menuData.adjustBed.right2); if (menuData.adjustBed.front != menuData.adjustBed.front2) eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_FRONT, menuData.adjustBed.front = menuData.adjustBed.front2); if (menuData.adjustBed.rear != menuData.adjustBed.rear2) eeprom_update_int8((unsigned char*)EEPROM_BED_CORRECTION_REAR, menuData.adjustBed.rear = menuData.adjustBed.rear2); START_MENU(); MENU_ITEM(back, _T(MSG_SETTINGS), 0); MENU_ITEM_EDIT(int3, _i("Left side [um]"), &menuData.adjustBed.left2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_LEFT c=14 r=1 MENU_ITEM_EDIT(int3, _i("Right side[um]"), &menuData.adjustBed.right2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_RIGHT c=14 r=1 MENU_ITEM_EDIT(int3, _i("Front side[um]"), &menuData.adjustBed.front2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_FRONT c=14 r=1 MENU_ITEM_EDIT(int3, _i("Rear side [um]"), &menuData.adjustBed.rear2, -BED_ADJUSTMENT_UM_MAX, BED_ADJUSTMENT_UM_MAX);////MSG_BED_CORRECTION_REAR c=14 r=1 MENU_ITEM(function, _i("Reset"), lcd_adjust_bed_reset);////MSG_BED_CORRECTION_RESET c=0 r=0 END_MENU(); } void pid_extruder() { lcd_implementation_clear(); lcd.setCursor(1, 0); lcd_printPGM(_i("Set temperature:"));////MSG_SET_TEMPERATURE c=19 r=1 pid_temp += int(encoderPosition); if (pid_temp > HEATER_0_MAXTEMP) pid_temp = HEATER_0_MAXTEMP; if (pid_temp < HEATER_0_MINTEMP) pid_temp = HEATER_0_MINTEMP; encoderPosition = 0; lcd.setCursor(1, 2); lcd.print(ftostr3(pid_temp)); if (lcd_clicked()) { lcd_commands_type = LCD_COMMAND_PID_EXTRUDER; lcd_return_to_status(); lcd_update(2); } } void lcd_adjust_z() { int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_i("Auto adjust Z?"));////MSG_ADJUSTZ c=0 r=0 lcd.setCursor(1, 1); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(1, 2); lcd_printPGM(_T(MSG_NO)); lcd.setCursor(0, 1); lcd.print(">"); enc_dif = encoderDiff; while (fsm == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > 2) { cursor_pos = 2; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { fsm = cursor_pos; if (fsm == 1) { int babystepLoadZ = 0; EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystepLoadZ); CRITICAL_SECTION_START babystepsTodo[Z_AXIS] = babystepLoadZ; CRITICAL_SECTION_END } else { int zero = 0; EEPROM_save_B(EEPROM_BABYSTEP_X, &zero); EEPROM_save_B(EEPROM_BABYSTEP_Y, &zero); EEPROM_save_B(EEPROM_BABYSTEP_Z, &zero); } delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } bool lcd_wait_for_pinda(float temp) { lcd_set_custom_characters_degree(); setTargetHotend(0, 0); setTargetBed(0); LongTimer pinda_timeout; pinda_timeout.start(); bool target_temp_reached = true; while (current_temperature_pinda > temp){ lcd_display_message_fullscreen_P(_i("Waiting for PINDA probe cooling"));////MSG_WAITING_TEMP_PINDA c=20 r=3 lcd.setCursor(0, 4); lcd.print(LCD_STR_THERMOMETER[0]); lcd.print(ftostr3(current_temperature_pinda)); lcd.print("/"); lcd.print(ftostr3(temp)); lcd.print(LCD_STR_DEGREE); delay_keep_alive(1000); serialecho_temperatures(); if (pinda_timeout.expired(8 * 60 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes target_temp_reached = false; break; } } lcd_set_custom_characters_arrows(); lcd_update_enable(true); return(target_temp_reached); } void lcd_wait_for_heater() { lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd.setCursor(0, 4); lcd.print(LCD_STR_THERMOMETER[0]); lcd.print(ftostr3(degHotend(active_extruder))); lcd.print("/"); lcd.print(ftostr3(degTargetHotend(active_extruder))); lcd.print(LCD_STR_DEGREE); } void lcd_wait_for_cool_down() { lcd_set_custom_characters_degree(); setTargetHotend(0,0); setTargetBed(0); while ((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) { lcd_display_message_fullscreen_P(_i("Waiting for nozzle and bed cooling"));////MSG_WAITING_TEMP c=20 r=3 lcd.setCursor(0, 4); lcd.print(LCD_STR_THERMOMETER[0]); lcd.print(ftostr3(degHotend(0))); lcd.print("/0"); lcd.print(LCD_STR_DEGREE); lcd.setCursor(9, 4); lcd.print(LCD_STR_BEDTEMP[0]); lcd.print(ftostr3(degBed())); lcd.print("/0"); lcd.print(LCD_STR_DEGREE); lcd_set_custom_characters(); delay_keep_alive(1000); serialecho_temperatures(); } lcd_set_custom_characters_arrows(); lcd_update_enable(true); } // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. #ifndef TMC2130 bool lcd_calibrate_z_end_stop_manual(bool only_z) { bool clean_nozzle_asked = false; // Don't know where we are. Let's claim we are Z=0, so the soft end stops will not be triggered when moving up. current_position[Z_AXIS] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); // Until confirmed by the confirmation dialog. for (;;) { unsigned long previous_millis_cmd = millis(); const char *msg = only_z ? _i("Calibrating Z. Rotate the knob to move the Z carriage up to the end stoppers. Click when done.") : _i("Calibrating XYZ. Rotate the knob to move the Z carriage up to the end stoppers. Click when done.");////MSG_MOVE_CARRIAGE_TO_THE_TOP c=20 r=8////MSG_MOVE_CARRIAGE_TO_THE_TOP_Z c=20 r=8 const char *msg_next = lcd_display_message_fullscreen_P(msg); const bool multi_screen = msg_next != NULL; unsigned long previous_millis_msg = millis(); // Until the user finishes the z up movement. encoderDiff = 0; encoderPosition = 0; for (;;) { // if (millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) // goto canceled; manage_heater(); manage_inactivity(true); if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { delay(50); previous_millis_cmd = millis(); encoderPosition += abs(encoderDiff / ENCODER_PULSES_PER_STEP); encoderDiff = 0; if (! planner_queue_full()) { // Only move up, whatever direction the user rotates the encoder. current_position[Z_AXIS] += fabs(encoderPosition); encoderPosition = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[Z_AXIS] / 60, active_extruder); } } if (lcd_clicked()) { // Abort a move if in progress. planner_abort_hard(); while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; break; } if (multi_screen && millis() - previous_millis_msg > 5000) { if (msg_next == NULL) msg_next = msg; msg_next = lcd_display_message_fullscreen_P(msg_next); previous_millis_msg = millis(); } } if (! clean_nozzle_asked) { lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN)); clean_nozzle_asked = true; } // Let the user confirm, that the Z carriage is at the top end stoppers. int8_t result = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Are left and right Z~carriages all up?"), false);////MSG_CONFIRM_CARRIAGE_AT_THE_TOP c=20 r=2 if (result == -1) goto canceled; else if (result == 1) goto calibrated; // otherwise perform another round of the Z up dialog. } calibrated: // Let the machine think the Z axis is a bit higher than it is, so it will not home into the bed // during the search for the induction points. current_position[Z_AXIS] = Z_MAX_POS-3.f; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); if(only_z){ lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1)); lcd_implementation_print_at(0, 3, 1); lcd_printPGM(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2)); }else{ //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER)); lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1)); lcd_implementation_print_at(0, 2, 1); lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2)); } return true; canceled: return false; } #endif // TMC2130 static inline bool pgm_is_whitespace(const char *c_addr) { const char c = pgm_read_byte(c_addr); return c == ' ' || c == '\t' || c == '\r' || c == '\n'; } static inline bool pgm_is_interpunction(const char *c_addr) { const char c = pgm_read_byte(c_addr); return c == '.' || c == ',' || c == ':'|| c == ';' || c == '?' || c == '!' || c == '/'; } /** * @brief show full screen message * * This function is non-blocking * @param msg message to be displayed from PROGMEM * @param nlines * @return rest of the text (to be displayed on next page) */ static const char* lcd_display_message_fullscreen_nonBlocking_P(const char *msg, uint8_t &nlines) { lcd.setCursor(0, 0); const char *msgend = msg; uint8_t row = 0; bool multi_screen = false; for (; row < 4; ++ row) { while (pgm_is_whitespace(msg)) ++ msg; if (pgm_read_byte(msg) == 0) // End of the message. break; lcd.setCursor(0, row); uint8_t linelen = min(strlen_P(msg), 20); const char *msgend2 = msg + linelen; msgend = msgend2; if (row == 3 && linelen == 20) { // Last line of the display, full line shall be displayed. // Find out, whether this message will be split into multiple screens. while (pgm_is_whitespace(msgend)) ++ msgend; multi_screen = pgm_read_byte(msgend) != 0; if (multi_screen) msgend = (msgend2 -= 2); } if (pgm_read_byte(msgend) != 0 && ! pgm_is_whitespace(msgend) && ! pgm_is_interpunction(msgend)) { // Splitting a word. Find the start of the current word. while (msgend > msg && ! pgm_is_whitespace(msgend - 1)) -- msgend; if (msgend == msg) // Found a single long word, which cannot be split. Just cut it. msgend = msgend2; } for (; msg < msgend; ++ msg) { char c = char(pgm_read_byte(msg)); if (c == '~') c = ' '; lcd.print(c); } } if (multi_screen) { // Display the "next screen" indicator character. // lcd_set_custom_characters_arrows(); lcd_set_custom_characters_nextpage(); lcd.setCursor(19, 3); // Display the down arrow. lcd.print(char(1)); } nlines = row; return multi_screen ? msgend : NULL; } const char* lcd_display_message_fullscreen_P(const char *msg, uint8_t &nlines) { // Disable update of the screen by the usual lcd_update() routine. lcd_update_enable(false); lcd_implementation_clear(); return lcd_display_message_fullscreen_nonBlocking_P(msg, nlines); } /** * @brief show full screen message and wait * * This function is blocking. * @param msg message to be displayed from PROGMEM */ void lcd_show_fullscreen_message_and_wait_P(const char *msg) { const char *msg_next = lcd_display_message_fullscreen_P(msg); bool multi_screen = msg_next != NULL; lcd_set_custom_characters_nextpage(); KEEPALIVE_STATE(PAUSED_FOR_USER); // Until confirmed by a button click. for (;;) { if (!multi_screen) { lcd.setCursor(19, 3); // Display the confirm char. lcd.print(char(2)); } // Wait for 5 seconds before displaying the next text. for (uint8_t i = 0; i < 100; ++ i) { delay_keep_alive(50); if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; if (msg_next == NULL) { KEEPALIVE_STATE(IN_HANDLER); lcd_set_custom_characters(); lcd_update_enable(true); lcd_update(2); return; } else { break; } } } if (multi_screen) { if (msg_next == NULL) msg_next = msg; msg_next = lcd_display_message_fullscreen_P(msg_next); if (msg_next == NULL) { lcd.setCursor(19, 3); // Display the confirm char. lcd.print(char(2)); } } } } void lcd_wait_for_click() { KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { manage_heater(); manage_inactivity(true); if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; KEEPALIVE_STATE(IN_HANDLER); return; } } } int8_t lcd_show_multiscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes) //currently just max. n*4 + 3 lines supported (set in language header files) { const char *msg_next = lcd_display_message_fullscreen_P(msg); bool multi_screen = msg_next != NULL; bool yes = default_yes ? true : false; // Wait for user confirmation or a timeout. unsigned long previous_millis_cmd = millis(); int8_t enc_dif = encoderDiff; //KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { for (uint8_t i = 0; i < 100; ++i) { delay_keep_alive(50); if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) return -1; manage_heater(); manage_inactivity(true); if (abs(enc_dif - encoderDiff) > 4) { if (msg_next == NULL) { lcd.setCursor(0, 3); if (enc_dif < encoderDiff && yes) { lcd_printPGM((PSTR(" "))); lcd.setCursor(7, 3); lcd_printPGM((PSTR(">"))); yes = false; } else if (enc_dif > encoderDiff && !yes) { lcd_printPGM((PSTR(">"))); lcd.setCursor(7, 3); lcd_printPGM((PSTR(" "))); yes = true; } enc_dif = encoderDiff; } else { break; //turning knob skips waiting loop } } if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); if (msg_next == NULL) { //KEEPALIVE_STATE(IN_HANDLER); lcd_set_custom_characters(); return yes; } else break; } } if (multi_screen) { if (msg_next == NULL) { msg_next = msg; } msg_next = lcd_display_message_fullscreen_P(msg_next); } if (msg_next == NULL) { lcd.setCursor(0, 3); if (yes) lcd_printPGM(PSTR(">")); lcd.setCursor(1, 3); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(7, 3); if (!yes) lcd_printPGM(PSTR(">")); lcd.setCursor(8, 3); lcd_printPGM(_T(MSG_NO)); } } } int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting, bool default_yes) { lcd_display_message_fullscreen_P(msg); if (default_yes) { lcd.setCursor(0, 2); lcd_printPGM(PSTR(">")); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(1, 3); lcd_printPGM(_T(MSG_NO)); } else { lcd.setCursor(1, 2); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(0, 3); lcd_printPGM(PSTR(">")); lcd_printPGM(_T(MSG_NO)); } bool yes = default_yes ? true : false; // Wait for user confirmation or a timeout. unsigned long previous_millis_cmd = millis(); int8_t enc_dif = encoderDiff; KEEPALIVE_STATE(PAUSED_FOR_USER); for (;;) { if (allow_timeouting && millis() - previous_millis_cmd > LCD_TIMEOUT_TO_STATUS) return -1; manage_heater(); manage_inactivity(true); if (abs(enc_dif - encoderDiff) > 4) { lcd.setCursor(0, 2); if (enc_dif < encoderDiff && yes) { lcd_printPGM((PSTR(" "))); lcd.setCursor(0, 3); lcd_printPGM((PSTR(">"))); yes = false; } else if (enc_dif > encoderDiff && !yes) { lcd_printPGM((PSTR(">"))); lcd.setCursor(0, 3); lcd_printPGM((PSTR(" "))); yes = true; } enc_dif = encoderDiff; } if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); return yes; } } } void lcd_bed_calibration_show_result(BedSkewOffsetDetectionResultType result, uint8_t point_too_far_mask) { const char *msg = NULL; if (result == BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND) { lcd_show_fullscreen_message_and_wait_P(_i("XYZ calibration failed. Bed calibration point was not found."));////MSG_BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND c=20 r=8 } else if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED) { if (point_too_far_mask == 0) msg = _T(MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED); else if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = _i("XYZ calibration failed. Front calibration points not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_BOTH_FAR c=20 r=8 else if (point_too_far_mask & 1 == 0) // The right and maybe the center point out of reach. msg = _i("XYZ calibration failed. Right front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_RIGHT_FAR c=20 r=8 else // The left and maybe the center point out of reach. msg = _i("XYZ calibration failed. Left front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_FAILED_FRONT_LEFT_FAR c=20 r=8 lcd_show_fullscreen_message_and_wait_P(msg); } else { if (point_too_far_mask != 0) { if (point_too_far_mask == 2 || point_too_far_mask == 7) // Only the center point or all the three front points. msg = _i("XYZ calibration compromised. Front calibration points not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_BOTH_FAR c=20 r=8 else if (point_too_far_mask & 1 == 0) // The right and maybe the center point out of reach. msg = _i("XYZ calibration compromised. Right front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_RIGHT_FAR c=20 r=8 else // The left and maybe the center point out of reach. msg = _i("XYZ calibration compromised. Left front calibration point not reachable.");////MSG_BED_SKEW_OFFSET_DETECTION_WARNING_FRONT_LEFT_FAR c=20 r=8 lcd_show_fullscreen_message_and_wait_P(msg); } if (point_too_far_mask == 0 || result > 0) { switch (result) { default: // should not happen msg = _T(MSG_BED_SKEW_OFFSET_DETECTION_FITTING_FAILED); break; case BED_SKEW_OFFSET_DETECTION_PERFECT: msg = _i("XYZ calibration ok. X/Y axes are perpendicular. Congratulations!");////MSG_BED_SKEW_OFFSET_DETECTION_PERFECT c=20 r=8 break; case BED_SKEW_OFFSET_DETECTION_SKEW_MILD: msg = _i("XYZ calibration all right. X/Y axes are slightly skewed. Good job!");////MSG_BED_SKEW_OFFSET_DETECTION_SKEW_MILD c=20 r=8 break; case BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME: msg = _i("XYZ calibration all right. Skew will be corrected automatically.");////MSG_BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME c=20 r=8 break; } lcd_show_fullscreen_message_and_wait_P(msg); } } } void lcd_temp_cal_show_result(bool result) { custom_message_type = 0; custom_message = false; disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); setTargetBed(0); //set bed target temperature back to 0 if (result == true) { eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1); SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob."); lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE)); temp_cal_active = true; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1); } else { eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); SERIAL_ECHOLNPGM("Temperature calibration failed. Continue with pressing the knob."); lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration failed"));////MSG_TEMP_CAL_FAILED c=20 r=8 temp_cal_active = false; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 0); } lcd_update_enable(true); lcd_update(2); } static void lcd_show_end_stops() { lcd.setCursor(0, 0); lcd_printPGM((PSTR("End stops diag"))); lcd.setCursor(0, 1); lcd_printPGM((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("X1")) : (PSTR("X0"))); lcd.setCursor(0, 2); lcd_printPGM((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Y1")) : (PSTR("Y0"))); lcd.setCursor(0, 3); lcd_printPGM((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1) ? (PSTR("Z1")) : (PSTR("Z0"))); } static void menu_show_end_stops() { lcd_show_end_stops(); if (LCD_CLICKED) menu_action_back(); } // Lets the user move the Z carriage up to the end stoppers. // When done, it sets the current Z to Z_MAX_POS and returns true. // Otherwise the Z calibration is not changed and false is returned. void lcd_diag_show_end_stops() { int enc_dif = encoderDiff; lcd_implementation_clear(); for (;;) { manage_heater(); manage_inactivity(true); lcd_show_end_stops(); if (lcd_clicked()) { while (lcd_clicked()) ; delay(10); while (lcd_clicked()) ; break; } } lcd_implementation_clear(); lcd_return_to_status(); } void prusa_statistics(int _message, uint8_t _fil_nr) { #ifdef DEBUG_DISABLE_PRUSA_STATISTICS return; #endif //DEBUG_DISABLE_PRUSA_STATISTICS switch (_message) { case 0: // default message if (IS_SD_PRINTING) { SERIAL_ECHO("{"); prusa_stat_printerstatus(4); prusa_stat_farm_number(); prusa_stat_printinfo(); SERIAL_ECHOLN("}"); status_number = 4; } else { SERIAL_ECHO("{"); prusa_stat_printerstatus(1); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 1; } break; case 1: // 1 heating farm_status = 2; SERIAL_ECHO("{"); prusa_stat_printerstatus(2); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 2; farm_timer = 1; break; case 2: // heating done farm_status = 3; SERIAL_ECHO("{"); prusa_stat_printerstatus(3); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 3; farm_timer = 1; if (IS_SD_PRINTING) { farm_status = 4; SERIAL_ECHO("{"); prusa_stat_printerstatus(4); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 4; } else { SERIAL_ECHO("{"); prusa_stat_printerstatus(3); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 3; } farm_timer = 1; break; case 3: // filament change break; case 4: // print succesfull SERIAL_ECHO("{[RES:1][FIL:"); MYSERIAL.print(int(_fil_nr)); SERIAL_ECHO("]"); prusa_stat_printerstatus(status_number); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); farm_timer = 2; break; case 5: // print not succesfull SERIAL_ECHO("{[RES:0][FIL:"); MYSERIAL.print(int(_fil_nr)); SERIAL_ECHO("]"); prusa_stat_printerstatus(status_number); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); farm_timer = 2; break; case 6: // print done SERIAL_ECHO("{[PRN:8]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 8; farm_timer = 2; break; case 7: // print done - stopped SERIAL_ECHO("{[PRN:9]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 9; farm_timer = 2; break; case 8: // printer started SERIAL_ECHO("{[PRN:0][PFN:"); status_number = 0; SERIAL_ECHO(farm_no); SERIAL_ECHOLN("]}"); farm_timer = 2; break; case 20: // echo farm no SERIAL_ECHO("{"); prusa_stat_printerstatus(status_number); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); farm_timer = 4; break; case 21: // temperatures SERIAL_ECHO("{"); prusa_stat_temperatures(); prusa_stat_farm_number(); prusa_stat_printerstatus(status_number); SERIAL_ECHOLN("}"); break; case 22: // waiting for filament change SERIAL_ECHO("{[PRN:5]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); status_number = 5; break; case 90: // Error - Thermal Runaway SERIAL_ECHO("{[ERR:1]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 91: // Error - Thermal Runaway Preheat SERIAL_ECHO("{[ERR:2]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 92: // Error - Min temp SERIAL_ECHO("{[ERR:3]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 93: // Error - Max temp SERIAL_ECHO("{[ERR:4]"); prusa_stat_farm_number(); SERIAL_ECHOLN("}"); break; case 99: // heartbeat SERIAL_ECHO("{[PRN:99]"); prusa_stat_temperatures(); SERIAL_ECHO("[PFN:"); SERIAL_ECHO(farm_no); SERIAL_ECHO("]"); SERIAL_ECHOLN("}"); break; } } static void prusa_stat_printerstatus(int _status) { SERIAL_ECHO("[PRN:"); SERIAL_ECHO(_status); SERIAL_ECHO("]"); } static void prusa_stat_farm_number() { SERIAL_ECHO("[PFN:"); SERIAL_ECHO(farm_no); SERIAL_ECHO("]"); } static void prusa_stat_temperatures() { SERIAL_ECHO("[ST0:"); SERIAL_ECHO(target_temperature[0]); SERIAL_ECHO("][STB:"); SERIAL_ECHO(target_temperature_bed); SERIAL_ECHO("][AT0:"); SERIAL_ECHO(current_temperature[0]); SERIAL_ECHO("][ATB:"); SERIAL_ECHO(current_temperature_bed); SERIAL_ECHO("]"); } static void prusa_stat_printinfo() { SERIAL_ECHO("[TFU:"); SERIAL_ECHO(total_filament_used); SERIAL_ECHO("][PCD:"); SERIAL_ECHO(itostr3(card.percentDone())); SERIAL_ECHO("][FEM:"); SERIAL_ECHO(itostr3(feedmultiply)); SERIAL_ECHO("][FNM:"); SERIAL_ECHO(longFilenameOLD); SERIAL_ECHO("][TIM:"); if (starttime != 0) { SERIAL_ECHO(millis() / 1000 - starttime / 1000); } else { SERIAL_ECHO(0); } SERIAL_ECHO("][FWR:"); SERIAL_ECHO(FW_VERSION); SERIAL_ECHO("]"); } /* void lcd_pick_babystep(){ int enc_dif = 0; int cursor_pos = 1; int fsm = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_i("Pick print"));////MSG_PICK_Z c=0 r=0 lcd.setCursor(3, 2); lcd.print("1"); lcd.setCursor(3, 3); lcd.print("2"); lcd.setCursor(12, 2); lcd.print("3"); lcd.setCursor(12, 3); lcd.print("4"); lcd.setCursor(1, 2); lcd.print(">"); enc_dif = encoderDiff; while (fsm == 0) { manage_heater(); manage_inactivity(true); if ( abs((enc_dif - encoderDiff)) > 4 ) { if ( (abs(enc_dif - encoderDiff)) > 1 ) { if (enc_dif > encoderDiff ) { cursor_pos --; } if (enc_dif < encoderDiff ) { cursor_pos ++; } if (cursor_pos > 4) { cursor_pos = 4; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(1, 2); lcd.print(" "); lcd.setCursor(1, 3); lcd.print(" "); lcd.setCursor(10, 2); lcd.print(" "); lcd.setCursor(10, 3); lcd.print(" "); if (cursor_pos < 3) { lcd.setCursor(1, cursor_pos+1); lcd.print(">"); }else{ lcd.setCursor(10, cursor_pos-1); lcd.print(">"); } enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { fsm = cursor_pos; int babyStepZ; EEPROM_read_B(EEPROM_BABYSTEP_Z0+((fsm-1)*2),&babyStepZ); EEPROM_save_B(EEPROM_BABYSTEP_Z,&babyStepZ); calibration_status_store(CALIBRATION_STATUS_CALIBRATED); delay(500); } }; lcd_implementation_clear(); lcd_return_to_status(); } */ void lcd_move_menu_axis() { START_MENU(); MENU_ITEM(back, _T(MSG_SETTINGS), 0); MENU_ITEM(submenu, _i("Move X"), lcd_move_x);////MSG_MOVE_X c=0 r=0 MENU_ITEM(submenu, _i("Move Y"), lcd_move_y);////MSG_MOVE_Y c=0 r=0 MENU_ITEM(submenu, _i("Move Z"), lcd_move_z);////MSG_MOVE_Z c=0 r=0 MENU_ITEM(submenu, _i("Extruder"), lcd_move_e);////MSG_MOVE_E c=0 r=0 END_MENU(); } static void lcd_move_menu_1mm() { move_menu_scale = 1.0; lcd_move_menu_axis(); } void EEPROM_save(int pos, uint8_t* value, uint8_t size) { do { eeprom_write_byte((unsigned char*)pos, *value); pos++; value++; } while (--size); } void EEPROM_read(int pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; } while (--size); } #ifdef SDCARD_SORT_ALPHA static void lcd_sort_type_set() { uint8_t sdSort; EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort)); switch (sdSort) { case SD_SORT_TIME: sdSort = SD_SORT_ALPHA; break; case SD_SORT_ALPHA: sdSort = SD_SORT_NONE; break; default: sdSort = SD_SORT_TIME; } eeprom_update_byte((unsigned char *)EEPROM_SD_SORT, sdSort); presort_flag = true; lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack } #endif //SDCARD_SORT_ALPHA #ifdef TMC2130 static void lcd_crash_mode_info() { lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < millis()) { fputs_P(_i("\x1b[2JCrash detection can\x1b[1;0Hbe turned on only in\x1b[2;0HNormal mode"), lcdout);////MSG_CRASH_DET_ONLY_IN_NORMAL c=20 r=4 tim = millis(); } if (lcd_clicked()) menu_action_back(); } static void lcd_crash_mode_info2() { lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < millis()) { fputs_P(_i("\x1b[2JWARNING:\x1b[1;0HCrash detection\x1b[2;0Hdisabled in\x1b[3;0HStealth mode"), lcdout);////MSG_CRASH_DET_STEALTH_FORCE_OFF c=20 r=4 tim = millis(); } if (lcd_clicked()) menu_action_back(); } #endif //TMC2130 #ifdef PAT9125 static void lcd_filament_autoload_info() { uint8_t nlines; lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < millis()) { lcd_display_message_fullscreen_nonBlocking_P(_i("Autoloading filament available only when filament sensor is turned on..."), nlines); ////MSG_AUTOLOADING_ONLY_IF_FSENS_ON c=20 r=4 tim = millis(); } if (lcd_clicked()) menu_action_back(); } static void lcd_fsensor_fail() { uint8_t nlines; lcd_update_enable(true); static uint32_t tim = 0; if ((tim + 1000) < millis()) { lcd_display_message_fullscreen_nonBlocking_P(_i("ERROR: Filament sensor is not responding, please check connection."), nlines);////MSG_FSENS_NOT_RESPONDING c=20 r=4 tim = millis(); } if (lcd_clicked()) menu_action_back(); } #endif //PAT9125 static void lcd_silent_mode_set() { switch (SilentModeMenu) { #ifdef TMC2130 case SILENT_MODE_NORMAL: SilentModeMenu = SILENT_MODE_STEALTH; break; case SILENT_MODE_STEALTH: SilentModeMenu = SILENT_MODE_NORMAL; break; default: SilentModeMenu = SILENT_MODE_NORMAL; break; // (probably) not needed #else case SILENT_MODE_POWER: SilentModeMenu = SILENT_MODE_SILENT; break; case SILENT_MODE_SILENT: SilentModeMenu = SILENT_MODE_AUTO; break; case SILENT_MODE_AUTO: SilentModeMenu = SILENT_MODE_POWER; break; default: SilentModeMenu = SILENT_MODE_POWER; break; // (probably) not needed #endif //TMC2130 } eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu); #ifdef TMC2130 // Wait until the planner queue is drained and the stepper routine achieves // an idle state. st_synchronize(); if (tmc2130_wait_standstill_xy(1000)) {} // MYSERIAL.print("standstill OK"); // else // MYSERIAL.print("standstill NG!"); cli(); tmc2130_mode = (SilentModeMenu != SILENT_MODE_NORMAL)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL; tmc2130_init(); // We may have missed a stepper timer interrupt due to the time spent in tmc2130_init. // Be safe than sorry, reset the stepper timer before re-enabling interrupts. st_reset_timer(); sei(); #endif //TMC2130 st_current_init(); #ifdef TMC2130 if (CrashDetectMenu && (SilentModeMenu != SILENT_MODE_NORMAL)) menu_action_submenu(lcd_crash_mode_info2); #endif //TMC2130 } #ifdef TMC2130 static void lcd_crash_mode_set() { CrashDetectMenu = !CrashDetectMenu; //set also from crashdet_enable() and crashdet_disable() if (CrashDetectMenu==0) { crashdet_disable(); }else{ crashdet_enable(); } if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) lcd_goto_menu(lcd_tune_menu, 9); else lcd_goto_menu(lcd_settings_menu, 9); } #endif //TMC2130 #ifdef PAT9125 static void lcd_fsensor_state_set() { FSensorStateMenu = !FSensorStateMenu; //set also from fsensor_enable() and fsensor_disable() if (!FSensorStateMenu) { fsensor_disable(); if (filament_autoload_enabled) menu_action_submenu(lcd_filament_autoload_info); }else{ fsensor_enable(); if (fsensor_not_responding) menu_action_submenu(lcd_fsensor_fail); } } #endif //PAT9125 #if !SDSORT_USES_RAM void lcd_set_degree() { lcd_set_custom_characters_degree(); } void lcd_set_progress() { lcd_set_custom_characters_progress(); } #endif #if (LANG_MODE != 0) static void lcd_language_menu() { START_MENU(); if (lang_is_selected()) MENU_ITEM(back, _T(MSG_SETTINGS), 0); MENU_ITEM(setlang, lang_get_name_by_code(lang_get_code(0)), 0); // MENU_ITEM(setlang, lang_get_name_by_code(lang_get_code(1)), 1); for (int i = 2; i < lang_get_count(); i++) //skip seconday language - solved in lang_select MENU_ITEM(setlang, lang_get_name_by_code(lang_get_code(i)), i); END_MENU(); } #endif //(LANG_MODE != 0) void lcd_mesh_bedleveling() { mesh_bed_run_from_menu = true; enquecommand_P(PSTR("G80")); lcd_return_to_status(); } void lcd_mesh_calibration() { enquecommand_P(PSTR("M45")); lcd_return_to_status(); } void lcd_mesh_calibration_z() { enquecommand_P(PSTR("M45 Z")); lcd_return_to_status(); } void lcd_pinda_calibration_menu() { START_MENU(); MENU_ITEM(back, _T(MSG_MENU_CALIBRATION), 0); MENU_ITEM(submenu, _i("Calibrate"), lcd_calibrate_pinda);////MSG_CALIBRATE_PINDA c=17 r=1 END_MENU(); } void lcd_temp_calibration_set() { temp_cal_active = !temp_cal_active; eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, temp_cal_active); st_current_init(); lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack } #ifdef HAS_SECOND_SERIAL_PORT void lcd_second_serial_set() { if(selectedSerialPort == 1) selectedSerialPort = 0; else selectedSerialPort = 1; eeprom_update_byte((unsigned char *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort); MYSERIAL.begin(BAUDRATE); lcd_goto_menu(lcd_settings_menu);//doesn't break menuStack } #endif //HAS_SECOND_SERIAL_PORT void lcd_calibrate_pinda() { enquecommand_P(PSTR("G76")); lcd_return_to_status(); } #ifndef SNMM /*void lcd_calibrate_extruder() { if (degHotend0() > EXTRUDE_MINTEMP) { current_position[E_AXIS] = 0; //set initial position to zero plan_set_e_position(current_position[E_AXIS]); //long steps_start = st_get_position(E_AXIS); long steps_final; float e_steps_per_unit; float feedrate = (180 / axis_steps_per_unit[E_AXIS]) * 1; //3 //initial automatic extrusion feedrate (depends on current value of axis_steps_per_unit to avoid too fast extrusion) float e_shift_calibration = (axis_steps_per_unit[E_AXIS] > 180 ) ? ((180 / axis_steps_per_unit[E_AXIS]) * 70): 70; //length of initial automatic extrusion sequence const char *msg_e_cal_knob = _i("Rotate knob until mark reaches extruder body. Click when done.");////MSG_E_CAL_KNOB c=20 r=8 const char *msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_e_cal_knob); const bool multi_screen = msg_next_e_cal_knob != NULL; unsigned long msg_millis; lcd_show_fullscreen_message_and_wait_P(_i("Mark filament 100mm from extruder body. Click when done."));////MSG_MARK_FIL c=20 r=8 lcd_implementation_clear(); lcd.setCursor(0, 1); lcd_printPGM(_T(MSG_PLEASE_WAIT)); current_position[E_AXIS] += e_shift_calibration; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder); st_synchronize(); lcd_display_message_fullscreen_P(msg_e_cal_knob); msg_millis = millis(); while (!LCD_CLICKED) { if (multi_screen && millis() - msg_millis > 5000) { if (msg_next_e_cal_knob == NULL) msg_next_e_cal_knob = msg_e_cal_knob; msg_next_e_cal_knob = lcd_display_message_fullscreen_P(msg_next_e_cal_knob); msg_millis = millis(); } //manage_inactivity(true); manage_heater(); if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { //adjusting mark by knob rotation delay_keep_alive(50); //previous_millis_cmd = millis(); encoderPosition += (encoderDiff / ENCODER_PULSES_PER_STEP); encoderDiff = 0; if (!planner_queue_full()) { current_position[E_AXIS] += float(abs((int)encoderPosition)) * 0.01; //0.05 encoderPosition = 0; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder); } } } steps_final = current_position[E_AXIS] * axis_steps_per_unit[E_AXIS]; //steps_final = st_get_position(E_AXIS); lcdDrawUpdate = 1; e_steps_per_unit = ((float)(steps_final)) / 100.0f; if (e_steps_per_unit < MIN_E_STEPS_PER_UNIT) e_steps_per_unit = MIN_E_STEPS_PER_UNIT; if (e_steps_per_unit > MAX_E_STEPS_PER_UNIT) e_steps_per_unit = MAX_E_STEPS_PER_UNIT; lcd_implementation_clear(); axis_steps_per_unit[E_AXIS] = e_steps_per_unit; enquecommand_P(PSTR("M500")); //store settings to eeprom //lcd_implementation_drawedit(PSTR("Result"), ftostr31(axis_steps_per_unit[E_AXIS])); //delay_keep_alive(2000); delay_keep_alive(500); lcd_show_fullscreen_message_and_wait_P(_i("E calibration finished. Please clean the nozzle. Click when done."));////MSG_CLEAN_NOZZLE_E c=20 r=8 lcd_update_enable(true); lcdDrawUpdate = 2; } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_implementation_clear(); } lcd_return_to_status(); } void lcd_extr_cal_reset() { float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; axis_steps_per_unit[E_AXIS] = tmp1[3]; //extrudemultiply = 100; enquecommand_P(PSTR("M500")); }*/ #endif void lcd_toshiba_flash_air_compatibility_toggle() { card.ToshibaFlashAir_enable(! card.ToshibaFlashAir_isEnabled()); eeprom_update_byte((uint8_t*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY, card.ToshibaFlashAir_isEnabled()); } void lcd_v2_calibration() { bool loaded = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is PLA filament loaded?"), false, true);////MSG_PLA_FILAMENT_LOADED c=20 r=2 if (loaded) { lcd_commands_type = LCD_COMMAND_V2_CAL; } else { lcd_display_message_fullscreen_P(_i("Please load PLA filament first."));////MSG_PLEASE_LOAD_PLA c=20 r=4 for (int i = 0; i < 20; i++) { //wait max. 2s delay_keep_alive(100); if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); break; } } } lcd_return_to_status(); lcd_update_enable(true); } void lcd_wizard() { bool result = true; if (calibration_status() != CALIBRATION_STATUS_ASSEMBLED) { result = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Running Wizard will delete current calibration results and start from the beginning. Continue?"), false, false);////MSG_WIZARD_RERUN c=20 r=7 } if (result) { calibration_status_store(CALIBRATION_STATUS_ASSEMBLED); lcd_wizard(0); } else { lcd_return_to_status(); lcd_update_enable(true); lcd_update(2); } } void lcd_language() { lcd_update_enable(true); lcd_implementation_clear(); lcd_goto_menu(lcd_language_menu); lcd_timeoutToStatus = -1; //infinite timeout lcdDrawUpdate = 2; while ((currentMenu != lcd_status_screen) && (!lang_is_selected())) { delay(50); lcd_update(); manage_heater(); manage_inactivity(true); } if (lang_is_selected()) lcd_return_to_status(); else lang_select(LANG_ID_PRI); } void lcd_wizard(int state) { bool end = false; int wizard_event; const char *msg = NULL; while (!end) { switch (state) { case 0: // run wizard? wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Hi, I am your Original Prusa i3 printer. Would you like me to guide you through the setup process?"), false, true);////MSG_WIZARD_WELCOME c=20 r=7 if (wizard_event) { state = 1; eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); } else { eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); end = true; } break; case 1: // restore calibration status switch (calibration_status()) { case CALIBRATION_STATUS_ASSEMBLED: state = 2; break; //run selftest case CALIBRATION_STATUS_XYZ_CALIBRATION: state = 3; break; //run xyz cal. case CALIBRATION_STATUS_Z_CALIBRATION: state = 4; break; //run z cal. case CALIBRATION_STATUS_LIVE_ADJUST: state = 5; break; //run live adjust case CALIBRATION_STATUS_CALIBRATED: end = true; eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); break; default: state = 2; break; //if calibration status is unknown, run wizard from the beginning } break; case 2: //selftest lcd_show_fullscreen_message_and_wait_P(_i("First, I will run the selftest to check most common assembly problems."));////MSG_WIZARD_SELFTEST c=20 r=8 wizard_event = lcd_selftest(); if (wizard_event) { calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION); state = 3; } else end = true; break; case 3: //xyz cal. lcd_show_fullscreen_message_and_wait_P(_i("I will run xyz calibration now. It will take approx. 12 mins."));////MSG_WIZARD_XYZ_CAL c=20 r=8 wizard_event = gcode_M45(false, 0); if (wizard_event) state = 5; else end = true; break; case 4: //z cal. lcd_show_fullscreen_message_and_wait_P(_i("I will run z calibration now."));////MSG_WIZARD_Z_CAL c=20 r=8 wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false); if (!wizard_event) lcd_show_fullscreen_message_and_wait_P(_T(MSG_PLACE_STEEL_SHEET)); wizard_event = gcode_M45(true, 0); if (wizard_event) state = 11; //shipped, no need to set first layer, go to final message directly else end = true; break; case 5: //is filament loaded? //start to preheat nozzle and bed to save some time later setTargetHotend(PLA_PREHEAT_HOTEND_TEMP, 0); setTargetBed(PLA_PREHEAT_HPB_TEMP); wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is filament loaded?"), false);////MSG_WIZARD_FILAMENT_LOADED c=20 r=2 if (wizard_event) state = 8; else state = 6; break; case 6: //waiting for preheat nozzle for PLA; #ifndef SNMM lcd_display_message_fullscreen_P(_i("Now I will preheat nozzle for PLA."));////MSG_WIZARD_WILL_PREHEAT c=20 r=4 current_position[Z_AXIS] = 100; //move in z axis to make space for loading filament plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder); delay_keep_alive(2000); lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); while (abs(degHotend(0) - PLA_PREHEAT_HOTEND_TEMP) > 3) { lcd_display_message_fullscreen_P(_T(MSG_WIZARD_HEATING)); lcd.setCursor(0, 4); lcd.print(LCD_STR_THERMOMETER[0]); lcd.print(ftostr3(degHotend(0))); lcd.print("/"); lcd.print(PLA_PREHEAT_HOTEND_TEMP); lcd.print(LCD_STR_DEGREE); lcd_set_custom_characters(); delay_keep_alive(1000); } #endif //not SNMM state = 7; break; case 7: //load filament #ifdef PAT9125 fsensor_block(); #endif //PAT9125 lcd_show_fullscreen_message_and_wait_P(_i("Please insert PLA filament to the extruder, then press knob to load it."));////MSG_WIZARD_LOAD_FILAMENT c=20 r=8 lcd_update_enable(false); lcd_implementation_clear(); lcd_print_at_PGM(0, 2, _T(MSG_LOADING_FILAMENT)); #ifdef SNMM change_extr(0); #endif gcode_M701(); #ifdef PAT9125 fsensor_unblock(); #endif //PAT9125 state = 9; break; case 8: wizard_event = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Is it PLA filament?"), false, true);////MSG_WIZARD_PLA_FILAMENT c=20 r=2 if (wizard_event) state = 9; else end = true; break; case 9: lcd_show_fullscreen_message_and_wait_P(_i("Now I will calibrate distance between tip of the nozzle and heatbed surface."));////MSG_WIZARD_V2_CAL c=20 r=8 lcd_show_fullscreen_message_and_wait_P(_i("I will start to print line and you will gradually lower the nozzle by rotating the knob, until you reach optimal height. Check the pictures in our handbook in chapter Calibration."));////MSG_WIZARD_V2_CAL_2 c=20 r=12 lcd_commands_type = LCD_COMMAND_V2_CAL; end = true; break; case 10: //repeat first layer cal.? wizard_event = lcd_show_multiscreen_message_yes_no_and_wait_P(_i("Do you want to repeat last step to readjust distance between nozzle and heatbed?"), false);////MSG_WIZARD_REPEAT_V2_CAL c=20 r=7 if (wizard_event) { lcd_show_fullscreen_message_and_wait_P(_i("Please clean heatbed and then press the knob."));////MSG_WIZARD_CLEAN_HEATBED c=20 r=8 state = 9; } else { state = 11; } break; case 11: //we are finished eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 0); end = true; break; default: break; } } printf_P(_N("State: %d\n"), state); switch (state) { //final message case 0: //user dont want to use wizard msg = _T(MSG_WIZARD_QUIT); break; case 1: //printer was already calibrated msg = _T(MSG_WIZARD_DONE); break; case 2: //selftest msg = _T(MSG_WIZARD_CALIBRATION_FAILED); break; case 3: //xyz cal. msg = _T(MSG_WIZARD_CALIBRATION_FAILED); break; case 4: //z cal. msg = _T(MSG_WIZARD_CALIBRATION_FAILED); break; case 8: msg = _i("Please load PLA filament and then resume Wizard by rebooting the printer.");////MSG_WIZARD_INSERT_CORRECT_FILAMENT c=20 r=8 break; case 9: break; //exit wizard for v2 calibration, which is implemted in lcd_commands (we need lcd_update running) case 11: //we are finished msg = _T(MSG_WIZARD_DONE); lcd_reset_alert_level(); lcd_setstatuspgm(_T(WELCOME_MSG)); break; default: msg = _T(MSG_WIZARD_QUIT); break; } if (state != 9) lcd_show_fullscreen_message_and_wait_P(msg); lcd_update_enable(true); lcd_return_to_status(); lcd_update(2); } static void lcd_settings_menu() { EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), lcd_settings_menu_back); MENU_ITEM(submenu, _i("Temperature"), lcd_control_temperature_menu);////MSG_TEMPERATURE c=0 r=0 if (!homing_flag) { MENU_ITEM(submenu, _i("Move axis"), lcd_move_menu_1mm);////MSG_MOVE_AXIS c=0 r=0 } if (!isPrintPaused) { MENU_ITEM(gcode, _i("Disable steppers"), PSTR("M84"));////MSG_DISABLE_STEPPERS c=0 r=0 } #ifndef TMC2130 if (!farm_mode) { //dont show in menu if we are in farm mode switch (SilentModeMenu) { case SILENT_MODE_POWER: MENU_ITEM(function, _T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set); break; case SILENT_MODE_SILENT: MENU_ITEM(function, _T(MSG_SILENT_MODE_ON), lcd_silent_mode_set); break; case SILENT_MODE_AUTO: MENU_ITEM(function, _T(MSG_AUTO_MODE_ON), lcd_silent_mode_set); break; default: MENU_ITEM(function, _T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set); break; // (probably) not needed } } #endif //TMC2130 #ifdef PAT9125 #ifndef DEBUG_DISABLE_FSENSORCHECK if (FSensorStateMenu == 0) { if (fsensor_not_responding){ // Filament sensor not working MENU_ITEM(function, _i("Fil. sensor [N/A]"), lcd_fsensor_state_set);////MSG_FSENSOR_NA c=0 r=0 MENU_ITEM(submenu, _T(MSG_FSENS_AUTOLOAD_NA), lcd_fsensor_fail); } else{ // Filament sensor turned off, working, no problems MENU_ITEM(function, _T(MSG_FSENSOR_OFF), lcd_fsensor_state_set); MENU_ITEM(submenu,_T(MSG_FSENS_AUTOLOAD_NA), lcd_filament_autoload_info); } } else { // Filament sensor turned on, working, no problems MENU_ITEM(function, _T(MSG_FSENSOR_ON), lcd_fsensor_state_set); if (filament_autoload_enabled) { MENU_ITEM(function, _i("F. autoload [on]"), lcd_set_filament_autoload);////MSG_FSENS_AUTOLOAD_ON c=17 r=1 } else { MENU_ITEM(function, _i("F. autoload [off]"), lcd_set_filament_autoload);////MSG_FSENS_AUTOLOAD_OFF c=17 r=1 } } #endif //DEBUG_DISABLE_FSENSORCHECK #endif //PAT9125 if (fans_check_enabled == true) { MENU_ITEM(function, _i("Fans check [on]"), lcd_set_fan_check);////MSG_FANS_CHECK_ON c=17 r=1 } else { MENU_ITEM(function, _i("Fans check [off]"), lcd_set_fan_check);////MSG_FANS_CHECK_OFF c=17 r=1 } #ifdef TMC2130 if(!farm_mode) { if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, _T(MSG_STEALTH_MODE_OFF), lcd_silent_mode_set); else MENU_ITEM(function, _T(MSG_STEALTH_MODE_ON), lcd_silent_mode_set); if (SilentModeMenu == SILENT_MODE_NORMAL) { if (CrashDetectMenu == 0) MENU_ITEM(function, _T(MSG_CRASHDETECT_OFF), lcd_crash_mode_set); else MENU_ITEM(function, _T(MSG_CRASHDETECT_ON), lcd_crash_mode_set); } else MENU_ITEM(submenu, _T(MSG_CRASHDETECT_NA), lcd_crash_mode_info); } #ifdef TMC2130_LINEARITY_CORRECTION_XYZ MENU_ITEM_EDIT(wfac, _i("X-correct"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 MENU_ITEM_EDIT(wfac, _i("Y-correct"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 MENU_ITEM_EDIT(wfac, _i("Z-correct"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 #endif //TMC2130_LINEARITY_CORRECTION_XYZ MENU_ITEM_EDIT(wfac, _i("E-correct"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX);////MSG_EXTRUDER_CORRECTION c=9 r=0 #endif //TMC2130 if (temp_cal_active == false) { MENU_ITEM(function, _i("Temp. cal. [off]"), lcd_temp_calibration_set);////MSG_TEMP_CALIBRATION_OFF c=20 r=1 } else { MENU_ITEM(function, _i("Temp. cal. [on]"), lcd_temp_calibration_set);////MSG_TEMP_CALIBRATION_ON c=20 r=1 } #ifdef HAS_SECOND_SERIAL_PORT if (selectedSerialPort == 0) { MENU_ITEM(function, _i("RPi port [off]"), lcd_second_serial_set);////MSG_SECOND_SERIAL_OFF c=17 r=1 } else { MENU_ITEM(function, _i("RPi port [on]"), lcd_second_serial_set);////MSG_SECOND_SERIAL_ON c=17 r=1 } #endif //HAS_SECOND_SERIAL if (!isPrintPaused && !homing_flag) { MENU_ITEM(submenu, _T(MSG_BABYSTEP_Z), lcd_babystep_z); } #if (LANG_MODE != 0) MENU_ITEM(submenu, _i("Select language"), lcd_language_menu);////MSG_LANGUAGE_SELECT c=0 r=0 #endif //(LANG_MODE != 0) if (card.ToshibaFlashAir_isEnabled()) { MENU_ITEM(function, _i("SD card [FlshAir]"), lcd_toshiba_flash_air_compatibility_toggle);////MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_ON c=19 r=1 } else { MENU_ITEM(function, _i("SD card [normal]"), lcd_toshiba_flash_air_compatibility_toggle);////MSG_TOSHIBA_FLASH_AIR_COMPATIBILITY_OFF c=19 r=1 } #ifdef SDCARD_SORT_ALPHA if (!farm_mode) { uint8_t sdSort; EEPROM_read(EEPROM_SD_SORT, (uint8_t*)&sdSort, sizeof(sdSort)); switch (sdSort) { case SD_SORT_TIME: MENU_ITEM(function, _i("Sort: [Time]"), lcd_sort_type_set); break;////MSG_SORT_TIME c=17 r=1 case SD_SORT_ALPHA: MENU_ITEM(function, _i("Sort: [Alphabet]"), lcd_sort_type_set); break;////MSG_SORT_ALPHA c=17 r=1 default: MENU_ITEM(function, _i("Sort: [None]"), lcd_sort_type_set);////MSG_SORT_NONE c=17 r=1 } } #endif // SDCARD_SORT_ALPHA if (farm_mode) { MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no); MENU_ITEM(function, PSTR("Disable farm mode"), lcd_disable_farm_mode); } END_MENU(); } static void lcd_selftest_() { lcd_selftest(); } #ifdef TMC2130 static void lcd_ustep_linearity_menu_save() { eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC, tmc2130_wave_fac[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC, tmc2130_wave_fac[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC, tmc2130_wave_fac[Z_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC, tmc2130_wave_fac[E_AXIS]); } #endif //TMC2130 static void lcd_settings_menu_back() { #ifdef TMC2130 bool changed = false; if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[X_AXIS] = 0; if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Y_AXIS] = 0; if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Z_AXIS] = 0; if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[E_AXIS] = 0; changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]); lcd_ustep_linearity_menu_save(); if (changed) tmc2130_init(); #endif //TMC2130 currentMenu = lcd_main_menu; lcd_main_menu(); } #ifdef EXPERIMENTAL_FEATURES static void lcd_experimantal_menu(); static void lcd_homing_accuracy_menu(); static void lcd_accurate_home_set() { tmc2130_home_enabled = tmc2130_home_enabled?0:1; eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled); } static void lcd_homing_accuracy_menu_advanced_reset() { tmc2130_home_bsteps[X_AXIS] = 48; tmc2130_home_fsteps[X_AXIS] = 48; tmc2130_home_bsteps[Y_AXIS] = 48; tmc2130_home_fsteps[Y_AXIS] = 48; } static void lcd_homing_accuracy_menu_advanced_save() { eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS, tmc2130_home_bsteps[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS, tmc2130_home_fsteps[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS, tmc2130_home_bsteps[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS, tmc2130_home_fsteps[Y_AXIS]); } static void lcd_homing_accuracy_menu_advanced_back() { lcd_homing_accuracy_menu_advanced_save(); currentMenu = lcd_homing_accuracy_menu; lcd_homing_accuracy_menu(); } static void lcd_homing_accuracy_menu_advanced() { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; START_MENU(); MENU_ITEM(back, PSTR("Homing accuracy"), lcd_homing_accuracy_menu_advanced_back); MENU_ITEM(function, PSTR("Reset def. steps"), lcd_homing_accuracy_menu_advanced_reset); MENU_ITEM_EDIT(byte3, PSTR("X-origin"), &tmc2130_home_origin[X_AXIS], 0, 63); MENU_ITEM_EDIT(byte3, PSTR("Y-origin"), &tmc2130_home_origin[Y_AXIS], 0, 63); MENU_ITEM_EDIT(byte3, PSTR("X-bsteps"), &tmc2130_home_bsteps[X_AXIS], 0, 128); MENU_ITEM_EDIT(byte3, PSTR("Y-bsteps"), &tmc2130_home_bsteps[Y_AXIS], 0, 128); MENU_ITEM_EDIT(byte3, PSTR("X-fsteps"), &tmc2130_home_fsteps[X_AXIS], 0, 128); MENU_ITEM_EDIT(byte3, PSTR("Y-fsteps"), &tmc2130_home_fsteps[Y_AXIS], 0, 128); END_MENU(); } static void lcd_homing_accuracy_menu() { START_MENU(); MENU_ITEM(back, PSTR("Experimental"), 0); MENU_ITEM(function, tmc2130_home_enabled?PSTR("Accur. homing On"):PSTR("Accur. homing Off"), lcd_accurate_home_set); MENU_ITEM(gcode, PSTR("Calibrate X"), PSTR("G28XC")); MENU_ITEM(gcode, PSTR("Calibrate Y"), PSTR("G28YC")); MENU_ITEM(submenu, PSTR("Advanced"), lcd_homing_accuracy_menu_advanced); END_MENU(); } static void lcd_ustep_resolution_menu_save() { eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]); eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]); } static void lcd_ustep_resolution_menu_back() { float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT; bool changed = false; if (tmc2130_mres[X_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES)) { axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS] * tmc2130_mres2usteps(tmc2130_mres[X_AXIS]) / TMC2130_USTEPS_XY; changed = true; } if (tmc2130_mres[Y_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES)) { axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Y_AXIS]) / TMC2130_USTEPS_XY; changed = true; } if (tmc2130_mres[Z_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES)) { axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS] * tmc2130_mres2usteps(tmc2130_mres[Z_AXIS]) / TMC2130_USTEPS_Z; changed = true; } if (tmc2130_mres[E_AXIS] != eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES)) { axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS] * tmc2130_mres2usteps(tmc2130_mres[E_AXIS]) / TMC2130_USTEPS_E; changed = true; } if (changed) { lcd_ustep_resolution_menu_save(); Config_StoreSettings(EEPROM_OFFSET); tmc2130_init(); } currentMenu = lcd_experimantal_menu; lcd_experimantal_menu(); } static void lcd_ustep_resolution_reset_def_xyze() { tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY); tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z); tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E); float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT; axis_steps_per_unit[X_AXIS] = tmp1[X_AXIS]; axis_steps_per_unit[Y_AXIS] = tmp1[Y_AXIS]; axis_steps_per_unit[Z_AXIS] = tmp1[Z_AXIS]; axis_steps_per_unit[E_AXIS] = tmp1[E_AXIS]; } static void lcd_ustep_resolution_menu() { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; START_MENU(); MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_resolution_menu_back); MENU_ITEM(function, PSTR("Reset defaults"), lcd_ustep_resolution_reset_def_xyze); MENU_ITEM_EDIT(mres, PSTR("X-resolution"), &tmc2130_mres[X_AXIS], 4, 4); MENU_ITEM_EDIT(mres, PSTR("Y-resolution"), &tmc2130_mres[Y_AXIS], 4, 4); MENU_ITEM_EDIT(mres, PSTR("Z-resolution"), &tmc2130_mres[Z_AXIS], 4, 4); MENU_ITEM_EDIT(mres, PSTR("E-resolution"), &tmc2130_mres[E_AXIS], 2, 5); END_MENU(); } static void lcd_ustep_linearity_menu_back() { bool changed = false; if (tmc2130_wave_fac[X_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[X_AXIS] = 0; if (tmc2130_wave_fac[Y_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Y_AXIS] = 0; if (tmc2130_wave_fac[Z_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[Z_AXIS] = 0; if (tmc2130_wave_fac[E_AXIS] < TMC2130_WAVE_FAC1000_MIN) tmc2130_wave_fac[E_AXIS] = 0; changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC) != tmc2130_wave_fac[X_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC) != tmc2130_wave_fac[Y_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC) != tmc2130_wave_fac[Z_AXIS]); changed |= (eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC) != tmc2130_wave_fac[E_AXIS]); lcd_ustep_linearity_menu_save(); if (changed) tmc2130_init(); currentMenu = lcd_experimantal_menu; lcd_experimantal_menu(); } static void lcd_ustep_linearity_menu_recomended() { tmc2130_wave_fac[X_AXIS] = 220; tmc2130_wave_fac[Y_AXIS] = 220; tmc2130_wave_fac[Z_AXIS] = 220; tmc2130_wave_fac[E_AXIS] = 220; } static void lcd_ustep_linearity_menu_reset() { tmc2130_wave_fac[X_AXIS] = 0; tmc2130_wave_fac[Y_AXIS] = 0; tmc2130_wave_fac[Z_AXIS] = 0; tmc2130_wave_fac[E_AXIS] = 0; } static void lcd_ustep_linearity_menu() { lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; START_MENU(); MENU_ITEM(back, PSTR("Experimental"), lcd_ustep_linearity_menu_back); MENU_ITEM(function, PSTR("Reset correction"), lcd_ustep_linearity_menu_reset); MENU_ITEM(function, PSTR("Recomended config"), lcd_ustep_linearity_menu_recomended); MENU_ITEM_EDIT(wfac, PSTR("X-correction"), &tmc2130_wave_fac[X_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX); MENU_ITEM_EDIT(wfac, PSTR("Y-correction"), &tmc2130_wave_fac[Y_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX); MENU_ITEM_EDIT(wfac, PSTR("Z-correction"), &tmc2130_wave_fac[Z_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX); MENU_ITEM_EDIT(wfac, PSTR("E-correction"), &tmc2130_wave_fac[E_AXIS], TMC2130_WAVE_FAC1000_MIN-TMC2130_WAVE_FAC1000_STP, TMC2130_WAVE_FAC1000_MAX); END_MENU(); } static void lcd_experimantal_menu_save_all() { eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, tmc2130_home_enabled); lcd_ustep_resolution_menu_save(); lcd_ustep_linearity_menu_save(); Config_StoreSettings(EEPROM_OFFSET); } static void lcd_experimantal_menu_disable_all() { tmc2130_home_enabled = 0; lcd_ustep_resolution_reset_def_xyze(); lcd_ustep_linearity_menu_reset(); lcd_experimantal_menu_save_all(); tmc2130_init(); } static void lcd_experimantal_menu() { START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); MENU_ITEM(function, PSTR("All Xfeatures off"), lcd_experimantal_menu_disable_all); MENU_ITEM(submenu, PSTR("Homing accuracy"), lcd_homing_accuracy_menu); MENU_ITEM(submenu, PSTR("uStep resolution"), lcd_ustep_resolution_menu); MENU_ITEM(submenu, PSTR("uStep linearity"), lcd_ustep_linearity_menu); END_MENU(); } #endif //EXPERIMENTAL_FEATURES static void lcd_calibration_menu() { START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); if (!isPrintPaused) { MENU_ITEM(function, _i("Wizard"), lcd_wizard);////MSG_WIZARD c=17 r=1 MENU_ITEM(submenu, _i("First layer cal."), lcd_v2_calibration);////MSG_V2_CALIBRATION c=17 r=1 MENU_ITEM(gcode, _T(MSG_AUTO_HOME), PSTR("G28 W")); MENU_ITEM(function, _i("Selftest "), lcd_selftest_v);////MSG_SELFTEST c=0 r=0 #ifdef MK1BP // MK1 // "Calibrate Z" MENU_ITEM(gcode, _T(MSG_HOMEYZ), PSTR("G28 Z")); #else //MK1BP // MK2 MENU_ITEM(function, _i("Calibrate XYZ"), lcd_mesh_calibration);////MSG_CALIBRATE_BED c=0 r=0 // "Calibrate Z" with storing the reference values to EEPROM. MENU_ITEM(submenu, _T(MSG_HOMEYZ), lcd_mesh_calibration_z); #ifndef SNMM //MENU_ITEM(function, _i("Calibrate E"), lcd_calibrate_extruder);////MSG_CALIBRATE_E c=20 r=1 #endif // "Mesh Bed Leveling" MENU_ITEM(submenu, _i("Mesh Bed Leveling"), lcd_mesh_bedleveling);////MSG_MESH_BED_LEVELING c=0 r=0 #endif //MK1BP MENU_ITEM(submenu, _i("Bed level correct"), lcd_adjust_bed);////MSG_BED_CORRECTION_MENU c=0 r=0 MENU_ITEM(submenu, _i("PID calibration"), pid_extruder);////MSG_PID_EXTRUDER c=17 r=1 #ifndef TMC2130 MENU_ITEM(submenu, _i("Show end stops"), menu_show_end_stops);////MSG_SHOW_END_STOPS c=17 r=1 #endif #ifndef MK1BP MENU_ITEM(gcode, _i("Reset XYZ calibr."), PSTR("M44"));////MSG_CALIBRATE_BED_RESET c=0 r=0 #endif //MK1BP #ifndef SNMM //MENU_ITEM(function, MSG_RESET_CALIBRATE_E, lcd_extr_cal_reset); #endif #ifndef MK1BP MENU_ITEM(submenu, _i("Temp. calibration"), lcd_pinda_calibration_menu);////MSG_CALIBRATION_PINDA_MENU c=17 r=1 #endif //MK1BP } END_MENU(); } void bowden_menu() { int enc_dif = encoderDiff; int cursor_pos = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(">"); for (int i = 0; i < 4; i++) { lcd.setCursor(1, i); lcd.print("Extruder "); lcd.print(i); lcd.print(": "); EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); lcd.print(bowden_length[i] - 48); } enc_dif = encoderDiff; while (1) { manage_heater(); manage_inactivity(true); if (abs((enc_dif - encoderDiff)) > 2) { if (enc_dif > encoderDiff) { cursor_pos--; } if (enc_dif < encoderDiff) { cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; } if (cursor_pos < 0) { cursor_pos = 0; } lcd.setCursor(0, 0); lcd.print(" "); lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); lcd_implementation_clear(); while (1) { manage_heater(); manage_inactivity(true); lcd.setCursor(1, 1); lcd.print("Extruder "); lcd.print(cursor_pos); lcd.print(": "); lcd.setCursor(13, 1); lcd.print(bowden_length[cursor_pos] - 48); if (abs((enc_dif - encoderDiff)) > 2) { if (enc_dif > encoderDiff) { bowden_length[cursor_pos]--; lcd.setCursor(13, 1); lcd.print(bowden_length[cursor_pos] - 48); enc_dif = encoderDiff; } if (enc_dif < encoderDiff) { bowden_length[cursor_pos]++; lcd.setCursor(13, 1); lcd.print(bowden_length[cursor_pos] - 48); enc_dif = encoderDiff; } } delay(100); if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); EEPROM_save_B(EEPROM_BOWDEN_LENGTH + cursor_pos * 2, &bowden_length[cursor_pos]); if (lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Continue with another bowden?"))) { lcd_update_enable(true); lcd_implementation_clear(); enc_dif = encoderDiff; lcd.setCursor(0, cursor_pos); lcd.print(">"); for (int i = 0; i < 4; i++) { lcd.setCursor(1, i); lcd.print("Extruder "); lcd.print(i); lcd.print(": "); EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); lcd.print(bowden_length[i] - 48); } break; } else return; } } } } } static char snmm_stop_print_menu() { //menu for choosing which filaments will be unloaded in stop print lcd_implementation_clear(); lcd_print_at_PGM(0,0,_T(MSG_UNLOAD_FILAMENT)); lcd.print(":"); lcd.setCursor(0, 1); lcd.print(">"); lcd_print_at_PGM(1,2,_i("Used during print"));////MSG_USED c=19 r=1 lcd_print_at_PGM(1,3,_i("Current"));////MSG_CURRENT c=19 r=1 char cursor_pos = 1; int enc_dif = 0; KEEPALIVE_STATE(PAUSED_FOR_USER); while (1) { manage_heater(); manage_inactivity(true); if (abs((enc_dif - encoderDiff)) > 4) { if ((abs(enc_dif - encoderDiff)) > 1) { if (enc_dif > encoderDiff) cursor_pos--; if (enc_dif < encoderDiff) cursor_pos++; if (cursor_pos > 3) cursor_pos = 3; if (cursor_pos < 1) cursor_pos = 1; lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); return(cursor_pos - 1); } } } char choose_extruder_menu() { int items_no = 4; int first = 0; int enc_dif = 0; char cursor_pos = 1; enc_dif = encoderDiff; lcd_implementation_clear(); lcd_printPGM(_T(MSG_CHOOSE_EXTRUDER)); lcd.setCursor(0, 1); lcd.print(">"); for (int i = 0; i < 3; i++) { lcd_print_at_PGM(1, i + 1, _T(MSG_EXTRUDER)); } KEEPALIVE_STATE(PAUSED_FOR_USER); while (1) { for (int i = 0; i < 3; i++) { lcd.setCursor(2 + strlen_P(_T(MSG_EXTRUDER)), i+1); lcd.print(first + i + 1); } manage_heater(); manage_inactivity(true); if (abs((enc_dif - encoderDiff)) > 4) { if ((abs(enc_dif - encoderDiff)) > 1) { if (enc_dif > encoderDiff) { cursor_pos--; } if (enc_dif < encoderDiff) { cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; if (first < items_no - 3) { first++; lcd_implementation_clear(); lcd_printPGM(_T(MSG_CHOOSE_EXTRUDER)); for (int i = 0; i < 3; i++) { lcd_print_at_PGM(1, i + 1, _T(MSG_EXTRUDER)); } } } if (cursor_pos < 1) { cursor_pos = 1; if (first > 0) { first--; lcd_implementation_clear(); lcd_printPGM(_T(MSG_CHOOSE_EXTRUDER)); for (int i = 0; i < 3; i++) { lcd_print_at_PGM(1, i + 1, _T(MSG_EXTRUDER)); } } } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { lcd_update(2); while (lcd_clicked()); delay(10); while (lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); return(cursor_pos + first - 1); } } } char reset_menu() { #ifdef SNMM int items_no = 5; #else int items_no = 4; #endif static int first = 0; int enc_dif = 0; char cursor_pos = 0; const char *item [items_no]; item[0] = "Language"; item[1] = "Statistics"; item[2] = "Shipping prep"; item[3] = "All Data"; #ifdef SNMM item[4] = "Bowden length"; #endif // SNMM enc_dif = encoderDiff; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print(">"); while (1) { for (int i = 0; i < 4; i++) { lcd.setCursor(1, i); lcd.print(item[first + i]); } manage_heater(); manage_inactivity(true); if (abs((enc_dif - encoderDiff)) > 4) { if ((abs(enc_dif - encoderDiff)) > 1) { if (enc_dif > encoderDiff) { cursor_pos--; } if (enc_dif < encoderDiff) { cursor_pos++; } if (cursor_pos > 3) { cursor_pos = 3; if (first < items_no - 4) { first++; lcd_implementation_clear(); } } if (cursor_pos < 0) { cursor_pos = 0; if (first > 0) { first--; lcd_implementation_clear(); } } lcd.setCursor(0, 0); lcd.print(" "); lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } } if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); return(cursor_pos + first); } } } static void lcd_disable_farm_mode() { int8_t disable = lcd_show_fullscreen_message_yes_no_and_wait_P(PSTR("Disable farm mode?"), true, false); //allow timeouting, default no if (disable) { enquecommand_P(PSTR("G99")); lcd_return_to_status(); } else { lcd_goto_menu(lcd_settings_menu); //doesn't break menuStack } lcd_update_enable(true); lcdDrawUpdate = 2; } #ifdef SNMM static void extr_mov(float shift, float feed_rate) { //move extruder no matter what the current heater temperature is set_extrude_min_temp(.0); current_position[E_AXIS] += shift; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder); set_extrude_min_temp(EXTRUDE_MINTEMP); } void change_extr(int extr) { //switches multiplexer for extruders st_synchronize(); delay(100); disable_e0(); disable_e1(); disable_e2(); snmm_extruder = extr; pinMode(E_MUX0_PIN, OUTPUT); pinMode(E_MUX1_PIN, OUTPUT); switch (extr) { case 1: WRITE(E_MUX0_PIN, HIGH); WRITE(E_MUX1_PIN, LOW); break; case 2: WRITE(E_MUX0_PIN, LOW); WRITE(E_MUX1_PIN, HIGH); break; case 3: WRITE(E_MUX0_PIN, HIGH); WRITE(E_MUX1_PIN, HIGH); break; default: WRITE(E_MUX0_PIN, LOW); WRITE(E_MUX1_PIN, LOW); break; } delay(100); } static int get_ext_nr() { //reads multiplexer input pins and return current extruder number (counted from 0) return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN)); } void display_loading() { switch (snmm_extruder) { case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break; case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break; case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break; default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break; } } void extr_adj(int extruder) //loading filament for SNMM { bool correct; max_feedrate[E_AXIS] =80; //max_feedrate[E_AXIS] = 50; START: lcd_implementation_clear(); lcd.setCursor(0, 0); switch (extruder) { case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break; case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break; case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break; default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break; } KEEPALIVE_STATE(PAUSED_FOR_USER); do{ extr_mov(0.001,1000); delay_keep_alive(2); } while (!lcd_clicked()); //delay_keep_alive(500); KEEPALIVE_STATE(IN_HANDLER); st_synchronize(); //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false); //if (!correct) goto START; //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max) //extr_mov(BOWDEN_LENGTH/2.f, 500); extr_mov(bowden_length[extruder], 500); lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_LOADING_FILAMENT)); if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1); else lcd.print(" "); lcd.print(snmm_extruder + 1); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PLEASE_WAIT)); st_synchronize(); max_feedrate[E_AXIS] = 50; lcd_update_enable(true); lcd_return_to_status(); lcdDrawUpdate = 2; } void extr_unload() { //unloads filament float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); if (degHotend0() > EXTRUDE_MINTEMP) { lcd_implementation_clear(); lcd_display_message_fullscreen_P(PSTR("")); max_feedrate[E_AXIS] = 50; lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_UNLOADING_FILAMENT)); lcd.print(" "); lcd.print(snmm_extruder + 1); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PLEASE_WAIT)); if (current_position[Z_AXIS] < 15) { current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder); } current_position[E_AXIS] += 10; //extrusion plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder); st_current_set(2, E_MOTOR_HIGH_CURRENT); if (current_temperature[0] < 230) { //PLA & all other filaments current_position[E_AXIS] += 5.4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder); current_position[E_AXIS] += 3.2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); current_position[E_AXIS] += 3; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder); } else { //ABS current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder); current_position[E_AXIS] += 3.1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); current_position[E_AXIS] += 4; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder); /*current_position[X_AXIS] += 23; //delay plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay current_position[X_AXIS] -= 23; //delay plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/ delay_keep_alive(4700); } max_feedrate[E_AXIS] = 80; current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder); st_synchronize(); //st_current_init(); if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents else st_current_set(2, tmp_motor_loud[2]); lcd_update_enable(true); lcd_return_to_status(); max_feedrate[E_AXIS] = 50; } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_implementation_clear(); } lcd_return_to_status(); } //wrapper functions for loading filament static void extr_adj_0(){ change_extr(0); extr_adj(0); } static void extr_adj_1() { change_extr(1); extr_adj(1); } static void extr_adj_2() { change_extr(2); extr_adj(2); } static void extr_adj_3() { change_extr(3); extr_adj(3); } static void load_all() { for (int i = 0; i < 4; i++) { change_extr(i); extr_adj(i); } } //wrapper functions for changing extruders static void extr_change_0() { change_extr(0); lcd_return_to_status(); } static void extr_change_1() { change_extr(1); lcd_return_to_status(); } static void extr_change_2() { change_extr(2); lcd_return_to_status(); } static void extr_change_3() { change_extr(3); lcd_return_to_status(); } //wrapper functions for unloading filament void extr_unload_all() { if (degHotend0() > EXTRUDE_MINTEMP) { for (int i = 0; i < 4; i++) { change_extr(i); extr_unload(); } } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_implementation_clear(); lcd_return_to_status(); } } //unloading just used filament (for snmm) void extr_unload_used() { if (degHotend0() > EXTRUDE_MINTEMP) { for (int i = 0; i < 4; i++) { if (snmm_filaments_used & (1 << i)) { change_extr(i); extr_unload(); } } snmm_filaments_used = 0; } else { lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_ERROR)); lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_PREHEAT_NOZZLE)); delay(2000); lcd_implementation_clear(); lcd_return_to_status(); } } static void extr_unload_0() { change_extr(0); extr_unload(); } static void extr_unload_1() { change_extr(1); extr_unload(); } static void extr_unload_2() { change_extr(2); extr_unload(); } static void extr_unload_3() { change_extr(3); extr_unload(); } static void fil_load_menu() { START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); MENU_ITEM(function, _i("Load all"), load_all);////MSG_LOAD_ALL c=0 r=0 MENU_ITEM(function, _i("Load filament 1"), extr_adj_0);////MSG_LOAD_FILAMENT_1 c=17 r=0 MENU_ITEM(function, _i("Load filament 2"), extr_adj_1);////MSG_LOAD_FILAMENT_2 c=17 r=0 MENU_ITEM(function, _i("Load filament 3"), extr_adj_2);////MSG_LOAD_FILAMENT_3 c=17 r=0 MENU_ITEM(function, _i("Load filament 4"), extr_adj_3);////MSG_LOAD_FILAMENT_4 c=17 r=0 END_MENU(); } static void fil_unload_menu() { START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); MENU_ITEM(function, _i("Unload all"), extr_unload_all);////MSG_UNLOAD_ALL c=0 r=0 MENU_ITEM(function, _i("Unload filament 1"), extr_unload_0);////MSG_UNLOAD_FILAMENT_1 c=17 r=0 MENU_ITEM(function, _i("Unload filament 2"), extr_unload_1);////MSG_UNLOAD_FILAMENT_2 c=17 r=0 MENU_ITEM(function, _i("Unload filament 3"), extr_unload_2);////MSG_UNLOAD_FILAMENT_3 c=17 r=0 MENU_ITEM(function, _i("Unload filament 4"), extr_unload_3);////MSG_UNLOAD_FILAMENT_4 c=17 r=0 END_MENU(); } static void change_extr_menu(){ START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); MENU_ITEM(function, _i("Extruder 1"), extr_change_0);////MSG_EXTRUDER_1 c=17 r=1 MENU_ITEM(function, _i("Extruder 2"), extr_change_1);////MSG_EXTRUDER_2 c=17 r=1 MENU_ITEM(function, _i("Extruder 3"), extr_change_2);////MSG_EXTRUDER_3 c=17 r=1 MENU_ITEM(function, _i("Extruder 4"), extr_change_3);////MSG_EXTRUDER_4 c=17 r=1 END_MENU(); } #endif static void lcd_farm_no() { char step = 0; int enc_dif = 0; int _farmno = farm_no; int _ret = 0; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print("Farm no"); do { if (abs((enc_dif - encoderDiff)) > 2) { if (enc_dif > encoderDiff) { switch (step) { case(0): if (_farmno >= 100) _farmno -= 100; break; case(1): if (_farmno % 100 >= 10) _farmno -= 10; break; case(2): if (_farmno % 10 >= 1) _farmno--; break; default: break; } } if (enc_dif < encoderDiff) { switch (step) { case(0): if (_farmno < 900) _farmno += 100; break; case(1): if (_farmno % 100 < 90) _farmno += 10; break; case(2): if (_farmno % 10 <= 8)_farmno++; break; default: break; } } enc_dif = 0; encoderDiff = 0; } lcd.setCursor(0, 2); if (_farmno < 100) lcd.print("0"); if (_farmno < 10) lcd.print("0"); lcd.print(_farmno); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(step, 3); lcd.print("^"); delay(100); if (lcd_clicked()) { delay(200); step++; if(step == 3) { _ret = 1; farm_no = _farmno; EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no); prusa_statistics(20); lcd_return_to_status(); } } manage_heater(); } while (_ret == 0); } unsigned char lcd_choose_color() { //function returns index of currently chosen item //following part can be modified from 2 to 255 items: //----------------------------------------------------- unsigned char items_no = 2; const char *item[items_no]; item[0] = "Orange"; item[1] = "Black"; //----------------------------------------------------- unsigned char active_rows; static int first = 0; int enc_dif = 0; unsigned char cursor_pos = 1; enc_dif = encoderDiff; lcd_implementation_clear(); lcd.setCursor(0, 1); lcd.print(">"); active_rows = items_no < 3 ? items_no : 3; while (1) { lcd_print_at_PGM(0, 0, PSTR("Choose color:")); for (int i = 0; i < active_rows; i++) { lcd.setCursor(1, i+1); lcd.print(item[first + i]); } manage_heater(); manage_inactivity(true); proc_commands(); if (abs((enc_dif - encoderDiff)) > 12) { if (enc_dif > encoderDiff) { cursor_pos--; } if (enc_dif < encoderDiff) { cursor_pos++; } if (cursor_pos > active_rows) { cursor_pos = active_rows; if (first < items_no - active_rows) { first++; lcd_implementation_clear(); } } if (cursor_pos < 1) { cursor_pos = 1; if (first > 0) { first--; lcd_implementation_clear(); } } lcd.setCursor(0, 1); lcd.print(" "); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(0, cursor_pos); lcd.print(">"); enc_dif = encoderDiff; delay(100); } if (lcd_clicked()) { while (lcd_clicked()); delay(10); while (lcd_clicked()); switch(cursor_pos + first - 1) { case 0: return 1; break; case 1: return 0; break; default: return 99; break; } } } } void lcd_confirm_print() { uint8_t filament_type; int enc_dif = 0; int cursor_pos = 1; int _ret = 0; int _t = 0; enc_dif = encoderDiff; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd.print("Print ok ?"); do { if (abs(enc_dif - encoderDiff) > 12) { if (enc_dif > encoderDiff) { cursor_pos--; } if (enc_dif < encoderDiff) { cursor_pos++; } enc_dif = encoderDiff; } if (cursor_pos > 2) { cursor_pos = 2; } if (cursor_pos < 1) { cursor_pos = 1; } lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(2, 2); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(2, 3); lcd_printPGM(_T(MSG_NO)); lcd.setCursor(0, 1 + cursor_pos); lcd.print(">"); delay(100); _t = _t + 1; if (_t>100) { prusa_statistics(99); _t = 0; } if (lcd_clicked()) { if (cursor_pos == 1) { _ret = 1; filament_type = lcd_choose_color(); prusa_statistics(4, filament_type); no_response = true; //we need confirmation by recieving PRUSA thx important_status = 4; saved_filament_type = filament_type; NcTime = millis(); } if (cursor_pos == 2) { _ret = 2; filament_type = lcd_choose_color(); prusa_statistics(5, filament_type); no_response = true; //we need confirmation by recieving PRUSA thx important_status = 5; saved_filament_type = filament_type; NcTime = millis(); } } manage_heater(); manage_inactivity(); proc_commands(); } while (_ret == 0); } /*static void lcd_test_menu() { }*/ static void lcd_main_menu() { SDscrool = 0; START_MENU(); // Majkl superawesome menu MENU_ITEM(back, _T(MSG_WATCH), 0); #ifdef RESUME_DEBUG if (!saved_printing) MENU_ITEM(function, PSTR("tst - Save"), lcd_menu_test_save); else MENU_ITEM(function, PSTR("tst - Restore"), lcd_menu_test_restore); #endif //RESUME_DEBUG #ifdef TMC2130_DEBUG MENU_ITEM(function, PSTR("recover print"), recover_print); MENU_ITEM(function, PSTR("power panic"), uvlo_); #endif //TMC2130_DEBUG /* if (farm_mode && !IS_SD_PRINTING ) { int tempScrool = 0; if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) //delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM(function, _T(MSG_REFRESH), lcd_sd_refresh); #endif } else { MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (_menuItemNr == _lineNr) { #ifndef SDCARD_RATHERRECENTFIRST card.getfilename(i); #else card.getfilename(fileCnt - 1 - i); #endif if (card.filenameIsDir) { MENU_ITEM(sddirectory, _T(MSG_CARD_MENU), card.filename, card.longFilename); } else { MENU_ITEM(sdfile, _T(MSG_CARD_MENU), card.filename, card.longFilename); } } else { MENU_ITEM_DUMMY(); } } MENU_ITEM(back, PSTR("- - - - - - - - -"), 0); }*/ if ( ( IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) && (current_position[Z_AXIS] < Z_HEIGHT_HIDE_LIVE_ADJUST_MENU) && !homing_flag && !mesh_bed_leveling_flag) { MENU_ITEM(submenu, _T(MSG_BABYSTEP_Z), lcd_babystep_z);//8 } if ( moves_planned() || IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) { MENU_ITEM(submenu, _i("Tune"), lcd_tune_menu);////MSG_TUNE c=0 r=0 } else { MENU_ITEM(submenu, _i("Preheat"), lcd_preheat_menu);////MSG_PREHEAT c=0 r=0 } #ifdef SDSUPPORT if (card.cardOK || lcd_commands_type == LCD_COMMAND_V2_CAL) { if (card.isFileOpen()) { if (mesh_bed_leveling_flag == false && homing_flag == false) { if (card.sdprinting) { MENU_ITEM(function, _i("Pause print"), lcd_sdcard_pause);////MSG_PAUSE_PRINT c=0 r=0 } else { MENU_ITEM(function, _i("Resume print"), lcd_sdcard_resume);////MSG_RESUME_PRINT c=0 r=0 } MENU_ITEM(submenu, _T(MSG_STOP_PRINT), lcd_sdcard_stop); } } else if (lcd_commands_type == LCD_COMMAND_V2_CAL && mesh_bed_leveling_flag == false && homing_flag == false) { //MENU_ITEM(submenu, _T(MSG_STOP_PRINT), lcd_sdcard_stop); } else { if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) { //if (farm_mode) MENU_ITEM(submenu, MSG_FARM_CARD_MENU, lcd_farm_sdcard_menu); /*else*/ MENU_ITEM(submenu, _T(MSG_CARD_MENU), lcd_sdcard_menu); } #if SDCARDDETECT < 1 MENU_ITEM(gcode, _i("Change SD card"), PSTR("M21")); // SD-card changed by user////MSG_CNG_SDCARD c=0 r=0 #endif } } else { MENU_ITEM(submenu, _i("No SD card"), lcd_sdcard_menu);////MSG_NO_CARD c=0 r=0 #if SDCARDDETECT < 1 MENU_ITEM(gcode, _i("Init. SD card"), PSTR("M21")); // Manually initialize the SD-card via user interface////MSG_INIT_SDCARD c=0 r=0 #endif } #endif if (IS_SD_PRINTING || is_usb_printing || (lcd_commands_type == LCD_COMMAND_V2_CAL)) { if (farm_mode) { MENU_ITEM(submenu, PSTR("Farm number"), lcd_farm_no); } } else { #ifndef SNMM #ifdef PAT9125 if ( ((filament_autoload_enabled == true) && (fsensor_enabled == true))) MENU_ITEM(submenu, _i("AutoLoad filament"), lcd_menu_AutoLoadFilament);////MSG_AUTOLOAD_FILAMENT c=17 r=0 else #endif //PAT9125 MENU_ITEM(function, _T(MSG_LOAD_FILAMENT), lcd_LoadFilament); MENU_ITEM(submenu, _T(MSG_UNLOAD_FILAMENT), lcd_unLoadFilament); #endif #ifdef SNMM MENU_ITEM(submenu, _T(MSG_LOAD_FILAMENT), fil_load_menu); MENU_ITEM(submenu, _T(MSG_UNLOAD_FILAMENT), fil_unload_menu); MENU_ITEM(submenu, _i("Change extruder"), change_extr_menu);////MSG_CHANGE_EXTR c=20 r=1 #endif MENU_ITEM(submenu, _T(MSG_SETTINGS), lcd_settings_menu); if(!isPrintPaused) MENU_ITEM(submenu, _T(MSG_MENU_CALIBRATION), lcd_calibration_menu); #ifdef EXPERIMENTAL_FEATURES MENU_ITEM(submenu, PSTR("Experimantal"), lcd_experimantal_menu); #endif //EXPERIMENTAL_FEATURES } if (!is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL)) { MENU_ITEM(submenu, _i("Statistics "), lcd_menu_statistics);////MSG_STATISTICS c=0 r=0 } #if defined(TMC2130) || defined(PAT9125) MENU_ITEM(submenu, PSTR("Fail stats"), lcd_menu_fails_stats); #endif MENU_ITEM(submenu, _i("Support"), lcd_support_menu);////MSG_SUPPORT c=0 r=0 // MENU_ITEM(submenu, _i("Test"), lcd_test_menu);////MSG_SUPPORT c=0 r=0 END_MENU(); } void stack_error() { SET_OUTPUT(BEEPER); WRITE(BEEPER, HIGH); delay(1000); WRITE(BEEPER, LOW); lcd_display_message_fullscreen_P(_i("Error - static memory has been overwritten"));////MSG_STACK_ERROR c=20 r=4 //err_triggered = 1; while (1) delay_keep_alive(1000); } #ifdef DEBUG_STEPPER_TIMER_MISSED bool stepper_timer_overflow_state = false; uint16_t stepper_timer_overflow_max = 0; uint16_t stepper_timer_overflow_last = 0; uint16_t stepper_timer_overflow_cnt = 0; void stepper_timer_overflow() { char msg[28]; sprintf_P(msg, PSTR("#%d %d max %d"), ++ stepper_timer_overflow_cnt, stepper_timer_overflow_last >> 1, stepper_timer_overflow_max >> 1); lcd_setstatus(msg); stepper_timer_overflow_state = false; if (stepper_timer_overflow_last > stepper_timer_overflow_max) stepper_timer_overflow_max = stepper_timer_overflow_last; SERIAL_ECHOPGM("Stepper timer overflow: "); MYSERIAL.print(msg); SERIAL_ECHOLNPGM(""); WRITE(BEEPER, LOW); } #endif /* DEBUG_STEPPER_TIMER_MISSED */ #ifdef SDSUPPORT static void lcd_autostart_sd() { card.lastnr = 0; card.setroot(); card.checkautostart(true); } #endif static void lcd_silent_mode_set_tune() { switch (SilentModeMenu) { #ifdef TMC2130 case SILENT_MODE_NORMAL: SilentModeMenu = SILENT_MODE_STEALTH; break; case SILENT_MODE_STEALTH: SilentModeMenu = SILENT_MODE_NORMAL; break; default: SilentModeMenu = SILENT_MODE_NORMAL; break; // (probably) not needed #else case SILENT_MODE_POWER: SilentModeMenu = SILENT_MODE_SILENT; break; case SILENT_MODE_SILENT: SilentModeMenu = SILENT_MODE_AUTO; break; case SILENT_MODE_AUTO: SilentModeMenu = SILENT_MODE_POWER; break; default: SilentModeMenu = SILENT_MODE_POWER; break; // (probably) not needed #endif //TMC2130 } eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu); st_current_init(); menu_action_back(); } static void lcd_colorprint_change() { enquecommand_P(PSTR("M600")); custom_message = true; custom_message_type = 2; //just print status message lcd_setstatuspgm(_T(MSG_FINISHING_MOVEMENTS)); lcd_return_to_status(); lcdDrawUpdate = 3; } static void lcd_tune_menu() { if (menuData.tuneMenu.status == 0) { // Menu was entered. Mark the menu as entered and save the current extrudemultiply value. menuData.tuneMenu.status = 1; menuData.tuneMenu.extrudemultiply = extrudemultiply; } else if (menuData.tuneMenu.extrudemultiply != extrudemultiply) { // extrudemultiply has been changed from the child menu. Apply the new value. menuData.tuneMenu.extrudemultiply = extrudemultiply; calculate_extruder_multipliers(); } EEPROM_read(EEPROM_SILENT, (uint8_t*)&SilentModeMenu, sizeof(SilentModeMenu)); START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); //1 MENU_ITEM_EDIT(int3, _i("Speed"), &feedmultiply, 10, 999);//2////MSG_SPEED c=0 r=0 MENU_ITEM_EDIT(int3, _T(MSG_NOZZLE), &target_temperature[0], 0, HEATER_0_MAXTEMP - 10);//3 MENU_ITEM_EDIT(int3, _T(MSG_BED), &target_temperature_bed, 0, BED_MAXTEMP - 10);//4 MENU_ITEM_EDIT(int3, _T(MSG_FAN_SPEED), &fanSpeed, 0, 255);//5 MENU_ITEM_EDIT(int3, _i("Flow"), &extrudemultiply, 10, 999);//6////MSG_FLOW c=0 r=0 #ifdef FILAMENTCHANGEENABLE MENU_ITEM(function, _T(MSG_FILAMENTCHANGE), lcd_colorprint_change);//7 #endif #ifndef DEBUG_DISABLE_FSENSORCHECK #ifdef PAT9125 if (FSensorStateMenu == 0) { MENU_ITEM(function, _T(MSG_FSENSOR_OFF), lcd_fsensor_state_set); } else { MENU_ITEM(function, _T(MSG_FSENSOR_ON), lcd_fsensor_state_set); } #endif //PAT9125 #endif //DEBUG_DISABLE_FSENSORCHECK #ifdef TMC2130 if(!farm_mode) { if (SilentModeMenu == SILENT_MODE_NORMAL) MENU_ITEM(function, _T(MSG_STEALTH_MODE_OFF), lcd_silent_mode_set); else MENU_ITEM(function, _T(MSG_STEALTH_MODE_ON), lcd_silent_mode_set); if (SilentModeMenu == SILENT_MODE_NORMAL) { if (CrashDetectMenu == 0) MENU_ITEM(function, _T(MSG_CRASHDETECT_OFF), lcd_crash_mode_set); else MENU_ITEM(function, _T(MSG_CRASHDETECT_ON), lcd_crash_mode_set); } else MENU_ITEM(submenu, _T(MSG_CRASHDETECT_NA), lcd_crash_mode_info); } #else //TMC2130 if (!farm_mode) { //dont show in menu if we are in farm mode switch (SilentModeMenu) { case SILENT_MODE_POWER: MENU_ITEM(function, _T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set); break; case SILENT_MODE_SILENT: MENU_ITEM(function, _T(MSG_SILENT_MODE_ON), lcd_silent_mode_set); break; case SILENT_MODE_AUTO: MENU_ITEM(function, _T(MSG_AUTO_MODE_ON), lcd_silent_mode_set); break; default: MENU_ITEM(function, _T(MSG_SILENT_MODE_OFF), lcd_silent_mode_set); break; // (probably) not needed } } #endif //TMC2130 END_MENU(); } static void lcd_move_menu_01mm() { move_menu_scale = 0.1; lcd_move_menu_axis(); } static void lcd_control_temperature_menu() { #ifdef PIDTEMP // set up temp variables - undo the default scaling // raw_Ki = unscalePID_i(Ki); // raw_Kd = unscalePID_d(Kd); #endif START_MENU(); MENU_ITEM(back, _T(MSG_SETTINGS), 0); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT(int3, _T(MSG_NOZZLE), &target_temperature[0], 0, HEATER_0_MAXTEMP - 10); #endif #if TEMP_SENSOR_1 != 0 MENU_ITEM_EDIT(int3, _i("Nozzle2"), &target_temperature[1], 0, HEATER_1_MAXTEMP - 10);////MSG_NOZZLE1 c=0 r=0 #endif #if TEMP_SENSOR_2 != 0 MENU_ITEM_EDIT(int3, _i("Nozzle3"), &target_temperature[2], 0, HEATER_2_MAXTEMP - 10);////MSG_NOZZLE2 c=0 r=0 #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT(int3, _T(MSG_BED), &target_temperature_bed, 0, BED_MAXTEMP - 3); #endif MENU_ITEM_EDIT(int3, _T(MSG_FAN_SPEED), &fanSpeed, 0, 255); #if defined AUTOTEMP && (TEMP_SENSOR_0 != 0) MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); MENU_ITEM_EDIT(float3, _i(" \002 Min"), &autotemp_min, 0, HEATER_0_MAXTEMP - 10);////MSG_MIN c=0 r=0 MENU_ITEM_EDIT(float3, _i(" \002 Max"), &autotemp_max, 0, HEATER_0_MAXTEMP - 10);////MSG_MAX c=0 r=0 MENU_ITEM_EDIT(float32, _i(" \002 Fact"), &autotemp_factor, 0.0, 1.0);////MSG_FACTOR c=0 r=0 #endif END_MENU(); } #if SDCARDDETECT == -1 static void lcd_sd_refresh() { card.initsd(); currentMenuViewOffset = 0; } #endif static void lcd_sd_updir() { SDscrool = 0; card.updir(); currentMenuViewOffset = 0; } void lcd_print_stop() { cancel_heatup = true; #ifdef MESH_BED_LEVELING mbl.active = false; #endif // Stop the stoppers, update the position from the stoppers. if (mesh_bed_leveling_flag == false && homing_flag == false) { planner_abort_hard(); // Because the planner_abort_hard() initialized current_position[Z] from the stepper, // Z baystep is no more applied. Reset it. babystep_reset(); } // Clean the input command queue. cmdqueue_reset(); lcd_setstatuspgm(_T(MSG_PRINT_ABORTED)); lcd_update(2); card.sdprinting = false; card.closefile(); stoptime = millis(); unsigned long t = (stoptime - starttime - pause_time) / 1000; //time in s pause_time = 0; save_statistics(total_filament_used, t); lcd_return_to_status(); lcd_ignore_click(true); lcd_commands_step = 0; lcd_commands_type = LCD_COMMAND_STOP_PRINT; // Turn off the print fan SET_OUTPUT(FAN_PIN); WRITE(FAN_PIN, 0); fanSpeed = 0; } void lcd_sdcard_stop() { lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_STOP_PRINT)); lcd.setCursor(2, 2); lcd_printPGM(_T(MSG_NO)); lcd.setCursor(2, 3); lcd_printPGM(_T(MSG_YES)); lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(0, 3); lcd.print(" "); if ((int32_t)encoderPosition > 2) { encoderPosition = 2; } if ((int32_t)encoderPosition < 1) { encoderPosition = 1; } lcd.setCursor(0, 1 + encoderPosition); lcd.print(">"); if (lcd_clicked()) { if ((int32_t)encoderPosition == 1) { lcd_return_to_status(); } if ((int32_t)encoderPosition == 2) { lcd_print_stop(); } } } /* void getFileDescription(char *name, char *description) { // get file description, ie the REAL filenam, ie the second line card.openFile(name, true); int i = 0; // skip the first line (which is the version line) while (true) { uint16_t readByte = card.get(); if (readByte == '\n') { break; } } // read the second line (which is the description line) while (true) { uint16_t readByte = card.get(); if (i == 0) { // skip the first '^' readByte = card.get(); } description[i] = readByte; i++; if (readByte == '\n') { break; } } card.closefile(); description[i-1] = 0; } */ void lcd_sdcard_menu() { uint8_t sdSort = eeprom_read_byte((uint8_t*)EEPROM_SD_SORT); int tempScrool = 0; if (presort_flag == true) { presort_flag = false; card.presort(); } if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) //delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM(function, _T(MSG_REFRESH), lcd_sd_refresh); #endif } else { MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (_menuItemNr == _lineNr) { const uint16_t nr = ((sdSort == SD_SORT_NONE) || farm_mode || (sdSort == SD_SORT_TIME)) ? (fileCnt - 1 - i) : i; /*#ifdef SDCARD_RATHERRECENTFIRST #ifndef SDCARD_SORT_ALPHA fileCnt - 1 - #endif #endif i;*/ #ifdef SDCARD_SORT_ALPHA if (sdSort == SD_SORT_NONE) card.getfilename(nr); else card.getfilename_sorted(nr); #else card.getfilename(nr); #endif if (card.filenameIsDir) MENU_ITEM(sddirectory, _T(MSG_CARD_MENU), card.filename, card.longFilename); else MENU_ITEM(sdfile, _T(MSG_CARD_MENU), card.filename, card.longFilename); } else { MENU_ITEM_DUMMY(); } } END_MENU(); } //char description [10] [31]; /*void get_description() { uint16_t fileCnt = card.getnrfilenames(); for (uint16_t i = 0; i < fileCnt; i++) { card.getfilename(fileCnt - 1 - i); getFileDescription(card.filename, description[i]); } }*/ /*void lcd_farm_sdcard_menu() { static int i = 0; if (i == 0) { get_description(); i++; } //int j; //char description[31]; int tempScrool = 0; if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) //delay(100); return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); START_MENU(); MENU_ITEM(back, _T(MSG_MAIN), 0); card.getWorkDirName(); if (card.filename[0] == '/') { #if SDCARDDETECT == -1 MENU_ITEM(function, _T(MSG_REFRESH), lcd_sd_refresh); #endif } else { MENU_ITEM(function, PSTR(LCD_STR_FOLDER ".."), lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (_menuItemNr == _lineNr) { #ifndef SDCARD_RATHERRECENTFIRST card.getfilename(i); #else card.getfilename(fileCnt - 1 - i); #endif if (card.filenameIsDir) { MENU_ITEM(sddirectory, _T(MSG_CARD_MENU), card.filename, card.longFilename); } else { MENU_ITEM(sdfile, _T(MSG_CARD_MENU), card.filename, description[i]); } } else { MENU_ITEM_DUMMY(); } } END_MENU(); }*/ #define menu_edit_type(_type, _name, _strFunc, scale) \ void menu_edit_ ## _name () \ { \ if ((int32_t)encoderPosition < 0) encoderPosition = 0; \ if ((int32_t)encoderPosition > menuData.editMenuParentState.maxEditValue) encoderPosition = menuData.editMenuParentState.maxEditValue; \ if (lcdDrawUpdate) \ lcd_implementation_drawedit(menuData.editMenuParentState.editLabel, _strFunc(((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale)); \ if (LCD_CLICKED) \ { \ *((_type*)menuData.editMenuParentState.editValue) = ((_type)((int32_t)encoderPosition + menuData.editMenuParentState.minEditValue)) / scale; \ lcd_goto_menu(menuData.editMenuParentState.prevMenu, menuData.editMenuParentState.prevEncoderPosition, true, false); \ } \ } \ static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \ { \ asm("cli"); \ menuData.editMenuParentState.prevMenu = currentMenu; \ menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \ asm("sei"); \ \ lcdDrawUpdate = 2; \ menuData.editMenuParentState.editLabel = pstr; \ menuData.editMenuParentState.editValue = ptr; \ menuData.editMenuParentState.minEditValue = minValue * scale; \ menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \ lcd_goto_menu(menu_edit_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \ \ }\ /* void menu_edit_callback_ ## _name () { \ menu_edit_ ## _name (); \ if (LCD_CLICKED) (*callbackFunc)(); \ } \ static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \ { \ menuData.editMenuParentState.prevMenu = currentMenu; \ menuData.editMenuParentState.prevEncoderPosition = encoderPosition; \ \ lcdDrawUpdate = 2; \ lcd_goto_menu(menu_edit_callback_ ## _name, (*ptr) * scale - menuData.editMenuParentState.minEditValue, true, false); \ \ menuData.editMenuParentState.editLabel = pstr; \ menuData.editMenuParentState.editValue = ptr; \ menuData.editMenuParentState.minEditValue = minValue * scale; \ menuData.editMenuParentState.maxEditValue = maxValue * scale - menuData.editMenuParentState.minEditValue; \ callbackFunc = callback;\ } */ #ifdef TMC2130 extern char conv[8]; // Convert tmc2130 mres to string char *mres_to_str3(const uint8_t &x) { return itostr3(256 >> x); } menu_edit_type(uint8_t, mres, mres_to_str3, 1) // Convert tmc2130 wfac to string char *wfac_to_str5(const uint8_t &x) { if (x >= TMC2130_WAVE_FAC1000_MIN) { conv[0] = '['; ftostr43(((float)((uint16_t)x + 1000) / 1000), 1); } else strcpy_P(conv, _i(" [off"));////MSG_EXTRUDER_CORRECTION_OFF c=6 r=0 conv[6] = ']'; conv[7] = ' '; conv[8] = 0; return conv; } menu_edit_type(uint8_t, wfac, wfac_to_str5, 1) #endif //TMC2130 menu_edit_type(uint8_t, byte3, itostr3, 1) menu_edit_type(int, int3, itostr3, 1) menu_edit_type(float, float3, ftostr3, 1) menu_edit_type(float, float32, ftostr32, 100) menu_edit_type(float, float43, ftostr43, 1000) menu_edit_type(float, float5, ftostr5, 0.01) menu_edit_type(float, float51, ftostr51, 10) menu_edit_type(float, float52, ftostr52, 100) menu_edit_type(unsigned long, long5, ftostr5, 0.01) static void lcd_selftest_v() { (void)lcd_selftest(); } bool lcd_selftest() { int _progress = 0; bool _result = true; lcd_wait_for_cool_down(); lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_i("Self test start "));////MSG_SELFTEST_START c=20 r=0 #ifdef TMC2130 FORCE_HIGH_POWER_START; #endif // TMC2130 delay(2000); KEEPALIVE_STATE(IN_HANDLER); _progress = lcd_selftest_screen(-1, _progress, 3, true, 2000); #if (defined(FANCHECK) && defined(TACH_0)) _result = lcd_selftest_fan_dialog(0); #else //defined(TACH_0) _result = lcd_selftest_manual_fan_check(0, false); if (!_result) { const char *_err; lcd_selftest_error(7, _err, _err); //extruder fan not spinning } #endif //defined(TACH_0) if (_result) { _progress = lcd_selftest_screen(0, _progress, 3, true, 2000); #if (defined(FANCHECK) && defined(TACH_1)) _result = lcd_selftest_fan_dialog(1); #else //defined(TACH_1) _result = lcd_selftest_manual_fan_check(1, false); if (!_result) { const char *_err; lcd_selftest_error(6, _err, _err); //print fan not spinning } #endif //defined(TACH_1) } if (_result) { _progress = lcd_selftest_screen(1, _progress, 3, true, 2000); #ifndef TMC2130 _result = lcd_selfcheck_endstops(); #else _result = true; #endif } if (_result) { _progress = lcd_selftest_screen(3, _progress, 3, true, 1000); _result = lcd_selfcheck_check_heater(false); } if (_result) { //current_position[Z_AXIS] += 15; //move Z axis higher to avoid false triggering of Z end stop in case that we are very low - just above heatbed _progress = lcd_selftest_screen(4, _progress, 3, true, 2000); #ifdef TMC2130 _result = lcd_selfcheck_axis_sg(X_AXIS); #else _result = lcd_selfcheck_axis(X_AXIS, X_MAX_POS); #endif //TMC2130 } if (_result) { _progress = lcd_selftest_screen(4, _progress, 3, true, 0); #ifndef TMC2130 _result = lcd_selfcheck_pulleys(X_AXIS); #endif } if (_result) { _progress = lcd_selftest_screen(5, _progress, 3, true, 1500); #ifdef TMC2130 _result = lcd_selfcheck_axis_sg(Y_AXIS); #else _result = lcd_selfcheck_axis(Y_AXIS, Y_MAX_POS); #endif // TMC2130 } if (_result) { _progress = lcd_selftest_screen(5, _progress, 3, true, 0); #ifndef TMC2130 _result = lcd_selfcheck_pulleys(Y_AXIS); #endif // TMC2130 } if (_result) { #ifdef TMC2130 tmc2130_home_exit(); enable_endstops(false); current_position[X_AXIS] = current_position[X_AXIS] + 14; current_position[Y_AXIS] = current_position[Y_AXIS] + 12; #endif //homeaxis(X_AXIS); //homeaxis(Y_AXIS); current_position[Z_AXIS] = current_position[Z_AXIS] + 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); _progress = lcd_selftest_screen(6, _progress, 3, true, 1500); _result = lcd_selfcheck_axis(2, Z_MAX_POS); if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) { enquecommand_P(PSTR("G28 W")); enquecommand_P(PSTR("G1 Z15 F1000")); } } #ifdef TMC2130 if (_result) { current_position[Z_AXIS] = current_position[Z_AXIS] + 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); _progress = lcd_selftest_screen(13, 0, 2, true, 0); bool bres = tmc2130_home_calibrate(X_AXIS); _progress = lcd_selftest_screen(13, 1, 2, true, 0); bres &= tmc2130_home_calibrate(Y_AXIS); _progress = lcd_selftest_screen(13, 2, 2, true, 0); if (bres) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED, 1); _result = bres; } #endif //TMC2130 if (_result) { _progress = lcd_selftest_screen(7, _progress, 3, true, 2000); //check bed _result = lcd_selfcheck_check_heater(true); } if (_result) { _progress = lcd_selftest_screen(8, _progress, 3, true, 2000); //bed ok #ifdef PAT9125 _progress = lcd_selftest_screen(9, _progress, 3, true, 2000); //check filaments sensor _result = lcd_selftest_fsensor(); #endif // PAT9125 } if (_result) { #ifdef PAT9125 _progress = lcd_selftest_screen(10, _progress, 3, true, 2000); //fil sensor OK #endif // PAT9125 _progress = lcd_selftest_screen(11, _progress, 3, true, 5000); //all correct } else { _progress = lcd_selftest_screen(12, _progress, 3, true, 5000); } lcd_reset_alert_level(); enquecommand_P(PSTR("M84")); lcd_implementation_clear(); lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; if (_result) { LCD_ALERTMESSAGERPGM(_i("Self test OK"));////MSG_SELFTEST_OK c=0 r=0 } else { LCD_ALERTMESSAGERPGM(_T(MSG_SELFTEST_FAILED)); } #ifdef TMC2130 FORCE_HIGH_POWER_END; #endif // TMC2130 KEEPALIVE_STATE(NOT_BUSY); return(_result); } #ifdef TMC2130 static void reset_crash_det(char axis) { current_position[axis] += 10; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET)) tmc2130_sg_stop_on_crash = true; } static bool lcd_selfcheck_axis_sg(char axis) { // each axis length is measured twice float axis_length, current_position_init, current_position_final; float measured_axis_length[2]; float margin = 60; float max_error_mm = 5; switch (axis) { case 0: axis_length = X_MAX_POS; break; case 1: axis_length = Y_MAX_POS + 8; break; default: axis_length = 210; break; } tmc2130_sg_stop_on_crash = false; tmc2130_home_exit(); enable_endstops(true); if (axis == X_AXIS) { //there is collision between cables and PSU cover in X axis if Z coordinate is too low current_position[Z_AXIS] += 17; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); tmc2130_home_enter(Z_AXIS_MASK); st_synchronize(); tmc2130_home_exit(); } // first axis length measurement begin current_position[axis] -= (axis_length + margin); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); tmc2130_sg_meassure_start(axis); current_position_init = st_get_position_mm(axis); current_position[axis] += 2 * margin; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); current_position[axis] += axis_length; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); uint16_t sg1 = tmc2130_sg_meassure_stop(); printf_P(PSTR("%c AXIS SG1=%d\n"), 'X'+axis, sg1); eeprom_write_word(((uint16_t*)((axis == X_AXIS)?EEPROM_BELTSTATUS_X:EEPROM_BELTSTATUS_Y)), sg1); current_position_final = st_get_position_mm(axis); measured_axis_length[0] = abs(current_position_final - current_position_init); // first measurement end and second measurement begin current_position[axis] -= margin; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); current_position[axis] -= (axis_length + margin); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); current_position_init = st_get_position_mm(axis); measured_axis_length[1] = abs(current_position_final - current_position_init); //end of second measurement, now check for possible errors: for(int i = 0; i < 2; i++){ //check if measured axis length corresponds to expected length printf_P(_N("Measured axis length:%.3f\n"), measured_axis_length[i]); if (abs(measured_axis_length[i] - axis_length) > max_error_mm) { enable_endstops(false); const char *_error_1; const char *_error_2; if (axis == X_AXIS) _error_1 = "X"; if (axis == Y_AXIS) _error_1 = "Y"; if (axis == Z_AXIS) _error_1 = "Z"; lcd_selftest_error(9, _error_1, _error_2); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); reset_crash_det(axis); return false; } } printf_P(_N("Axis length difference:%.3f\n"), abs(measured_axis_length[0] - measured_axis_length[1])); if (abs(measured_axis_length[0] - measured_axis_length[1]) > 1) { //check if difference between first and second measurement is low //loose pulleys const char *_error_1; const char *_error_2; if (axis == X_AXIS) _error_1 = "X"; if (axis == Y_AXIS) _error_1 = "Y"; if (axis == Z_AXIS) _error_1 = "Z"; lcd_selftest_error(8, _error_1, _error_2); current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); reset_crash_det(axis); return false; } current_position[axis] = 0; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); reset_crash_det(axis); return true; } #endif //TMC2130 //#ifndef TMC2130 static bool lcd_selfcheck_axis(int _axis, int _travel) { // printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _axis, _travel); bool _stepdone = false; bool _stepresult = false; int _progress = 0; int _travel_done = 0; int _err_endstop = 0; int _lcd_refresh = 0; _travel = _travel + (_travel / 10); if (_axis == X_AXIS) { current_position[Z_AXIS] += 17; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); } do { current_position[_axis] = current_position[_axis] - 1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); #ifdef TMC2130 if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING == 1)) #else //TMC2130 if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) #endif //TMC2130 { if (_axis == 0) { _stepresult = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? 1 : 2; } if (_axis == 1) { _stepresult = ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 2; } if (_axis == 2) { _stepresult = ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) ? true : false; _err_endstop = ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) ? 0 : 1; printf_P(PSTR("lcd_selfcheck_axis %d, %d\n"), _stepresult, _err_endstop); /*disable_x(); disable_y(); disable_z();*/ } _stepdone = true; } if (_lcd_refresh < 6) { _lcd_refresh++; } else { _progress = lcd_selftest_screen(4 + _axis, _progress, 3, false, 0); _lcd_refresh = 0; } manage_heater(); manage_inactivity(true); //delay(100); (_travel_done <= _travel) ? _travel_done++ : _stepdone = true; } while (!_stepdone); //current_position[_axis] = current_position[_axis] + 15; //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); if (!_stepresult) { const char *_error_1; const char *_error_2; if (_axis == X_AXIS) _error_1 = "X"; if (_axis == Y_AXIS) _error_1 = "Y"; if (_axis == Z_AXIS) _error_1 = "Z"; if (_err_endstop == 0) _error_2 = "X"; if (_err_endstop == 1) _error_2 = "Y"; if (_err_endstop == 2) _error_2 = "Z"; if (_travel_done >= _travel) { lcd_selftest_error(5, _error_1, _error_2); } else { lcd_selftest_error(4, _error_1, _error_2); } } return _stepresult; } #ifndef TMC2130 static bool lcd_selfcheck_pulleys(int axis) { float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD; float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT; float current_position_init; float move; bool endstop_triggered = false; int i; unsigned long timeout_counter; refresh_cmd_timeout(); manage_inactivity(true); if (axis == 0) move = 50; //X_AXIS else move = 50; //Y_AXIS current_position_init = current_position[axis]; current_position[axis] += 2; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); for (i = 0; i < 5; i++) { refresh_cmd_timeout(); current_position[axis] = current_position[axis] + move; st_current_set(0, 850); //set motor current higher plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 200, active_extruder); st_synchronize(); if (SilentModeMenu != SILENT_MODE_OFF) st_current_set(0, tmp_motor[0]); //set back to normal operation currents else st_current_set(0, tmp_motor_loud[0]); //set motor current back current_position[axis] = current_position[axis] - move; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], 50, active_extruder); st_synchronize(); if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) { lcd_selftest_error(8, (axis == 0) ? "X" : "Y", ""); return(false); } } timeout_counter = millis() + 2500; endstop_triggered = false; manage_inactivity(true); while (!endstop_triggered) { if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1)) { endstop_triggered = true; if (current_position_init - 1 <= current_position[axis] && current_position_init + 1 >= current_position[axis]) { current_position[axis] += (axis == X_AXIS) ? 13 : 9; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); return(true); } else { lcd_selftest_error(8, (axis == 0) ? "X" : "Y", ""); return(false); } } else { current_position[axis] -= 1; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], manual_feedrate[0] / 60, active_extruder); st_synchronize(); if (millis() > timeout_counter) { lcd_selftest_error(8, (axis == 0) ? "X" : "Y", ""); return(false); } } } return(true); } #endif //TMC2130 static bool lcd_selfcheck_endstops() { bool _result = true; if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) { if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) current_position[0] += 10; if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) current_position[1] += 10; if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) current_position[2] += 10; } plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[0] / 60, active_extruder); delay(500); if (((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) || ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1)) { _result = false; char _error[4] = ""; if ((READ(X_MIN_PIN) ^ X_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "X"); if ((READ(Y_MIN_PIN) ^ Y_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Y"); if ((READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) strcat(_error, "Z"); lcd_selftest_error(3, _error, ""); } manage_heater(); manage_inactivity(true); return _result; } //#endif //not defined TMC2130 static bool lcd_selfcheck_check_heater(bool _isbed) { int _counter = 0; int _progress = 0; bool _stepresult = false; bool _docycle = true; int _checked_snapshot = (_isbed) ? degBed() : degHotend(0); int _opposite_snapshot = (_isbed) ? degHotend(0) : degBed(); int _cycles = (_isbed) ? 180 : 60; //~ 90s / 30s target_temperature[0] = (_isbed) ? 0 : 200; target_temperature_bed = (_isbed) ? 100 : 0; manage_heater(); manage_inactivity(true); KEEPALIVE_STATE(NOT_BUSY); //we are sending temperatures on serial line, so no need to send host keepalive messages do { _counter++; _docycle = (_counter < _cycles) ? true : false; manage_heater(); manage_inactivity(true); _progress = (_isbed) ? lcd_selftest_screen(7, _progress, 2, false, 400) : lcd_selftest_screen(3, _progress, 2, false, 400); /*if (_isbed) { MYSERIAL.print("Bed temp:"); MYSERIAL.println(degBed()); } else { MYSERIAL.print("Hotend temp:"); MYSERIAL.println(degHotend(0)); }*/ if(_counter%5 == 0) serialecho_temperatures(); //show temperatures once in two seconds } while (_docycle); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); int _checked_result = (_isbed) ? degBed() - _checked_snapshot : degHotend(0) - _checked_snapshot; int _opposite_result = (_isbed) ? degHotend(0) - _opposite_snapshot : degBed() - _opposite_snapshot; /* MYSERIAL.println(""); MYSERIAL.print("Checked result:"); MYSERIAL.println(_checked_result); MYSERIAL.print("Opposite result:"); MYSERIAL.println(_opposite_result); */ if (_opposite_result < ((_isbed) ? 10 : 3)) { if (_checked_result >= ((_isbed) ? 3 : 10)) { _stepresult = true; } else { lcd_selftest_error(1, "", ""); } } else { lcd_selftest_error(2, "", ""); } manage_heater(); manage_inactivity(true); KEEPALIVE_STATE(IN_HANDLER); return _stepresult; } static void lcd_selftest_error(int _error_no, const char *_error_1, const char *_error_2) { lcd_implementation_quick_feedback(); target_temperature[0] = 0; target_temperature_bed = 0; manage_heater(); manage_inactivity(); lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_i("Selftest error !"));////MSG_SELFTEST_ERROR c=0 r=0 lcd.setCursor(0, 1); lcd_printPGM(_i("Please check :"));////MSG_SELFTEST_PLEASECHECK c=0 r=0 switch (_error_no) { case 1: lcd.setCursor(0, 2); lcd_printPGM(_i("Heater/Thermistor"));////MSG_SELFTEST_HEATERTHERMISTOR c=0 r=0 lcd.setCursor(0, 3); lcd_printPGM(_i("Not connected"));////MSG_SELFTEST_NOTCONNECTED c=0 r=0 break; case 2: lcd.setCursor(0, 2); lcd_printPGM(_i("Bed / Heater"));////MSG_SELFTEST_BEDHEATER c=0 r=0 lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_WIRINGERROR)); break; case 3: lcd.setCursor(0, 2); lcd_printPGM(_i("Endstops"));////MSG_SELFTEST_ENDSTOPS c=0 r=0 lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_WIRINGERROR)); lcd.setCursor(17, 3); lcd.print(_error_1); break; case 4: lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_SELFTEST_MOTOR)); lcd.setCursor(18, 2); lcd.print(_error_1); lcd.setCursor(0, 3); lcd_printPGM(_i("Endstop"));////MSG_SELFTEST_ENDSTOP c=0 r=0 lcd.setCursor(18, 3); lcd.print(_error_2); break; case 5: lcd.setCursor(0, 2); lcd_printPGM(_i("Endstop not hit"));////MSG_SELFTEST_ENDSTOP_NOTHIT c=20 r=1 lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_MOTOR)); lcd.setCursor(18, 3); lcd.print(_error_1); break; case 6: lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_SELFTEST_COOLING_FAN)); lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_WIRINGERROR)); lcd.setCursor(18, 3); lcd.print(_error_1); break; case 7: lcd.setCursor(0, 2); lcd_printPGM(_T(MSG_SELFTEST_EXTRUDER_FAN)); lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_WIRINGERROR)); lcd.setCursor(18, 3); lcd.print(_error_1); break; case 8: lcd.setCursor(0, 2); lcd_printPGM(_i("Loose pulley"));////MSG_LOOSE_PULLEY c=20 r=1 lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_MOTOR)); lcd.setCursor(18, 3); lcd.print(_error_1); break; case 9: lcd.setCursor(0, 2); lcd_printPGM(_i("Axis length"));////MSG_SELFTEST_AXIS_LENGTH c=0 r=0 lcd.setCursor(0, 3); lcd_printPGM(_i("Axis"));////MSG_SELFTEST_AXIS c=0 r=0 lcd.setCursor(18, 3); lcd.print(_error_1); break; case 10: lcd.setCursor(0, 2); lcd_printPGM(_i("Front/left fans"));////MSG_SELFTEST_FANS c=0 r=0 lcd.setCursor(0, 3); lcd_printPGM(_i("Swapped"));////MSG_SELFTEST_SWAPPED c=0 r=0 lcd.setCursor(18, 3); lcd.print(_error_1); break; case 11: lcd.setCursor(0, 2); lcd_printPGM(_i("Filament sensor"));////MSG_FILAMENT_SENSOR c=20 r=0 lcd.setCursor(0, 3); lcd_printPGM(_T(MSG_SELFTEST_WIRINGERROR)); break; } delay(1000); lcd_implementation_quick_feedback(); do { delay(100); manage_heater(); manage_inactivity(); } while (!lcd_clicked()); LCD_ALERTMESSAGERPGM(_T(MSG_SELFTEST_FAILED)); lcd_return_to_status(); } #ifdef PAT9125 static bool lcd_selftest_fsensor() { fsensor_init(); if (fsensor_not_responding) { const char *_err; lcd_selftest_error(11, _err, _err); } return(!fsensor_not_responding); } #endif //PAT9125 static bool lcd_selftest_manual_fan_check(int _fan, bool check_opposite) { bool _result = check_opposite; lcd_implementation_clear(); lcd.setCursor(0, 0); lcd_printPGM(_T(MSG_SELFTEST_FAN)); switch (_fan) { case 0: // extruder cooling fan lcd.setCursor(0, 1); if(check_opposite == true) lcd_printPGM(_T(MSG_SELFTEST_COOLING_FAN)); else lcd_printPGM(_T(MSG_SELFTEST_EXTRUDER_FAN)); SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN); WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1); break; case 1: // object cooling fan lcd.setCursor(0, 1); if (check_opposite == true) lcd_printPGM(_T(MSG_SELFTEST_EXTRUDER_FAN)); else lcd_printPGM(_T(MSG_SELFTEST_COOLING_FAN)); SET_OUTPUT(FAN_PIN); analogWrite(FAN_PIN, 255); break; } delay(500); lcd.setCursor(1, 2); lcd_printPGM(_T(MSG_SELFTEST_FAN_YES)); lcd.setCursor(0, 3); lcd.print(">"); lcd.setCursor(1, 3); lcd_printPGM(_T(MSG_SELFTEST_FAN_NO)); int8_t enc_dif = 0; KEEPALIVE_STATE(PAUSED_FOR_USER); button_pressed = false; do { switch (_fan) { case 0: // extruder cooling fan SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN); WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1); break; case 1: // object cooling fan SET_OUTPUT(FAN_PIN); analogWrite(FAN_PIN, 255); break; } if (abs((enc_dif - encoderDiff)) > 2) { if (enc_dif > encoderDiff) { _result = !check_opposite; lcd.setCursor(0, 2); lcd.print(">"); lcd.setCursor(1, 2); lcd_printPGM(_T(MSG_SELFTEST_FAN_YES)); lcd.setCursor(0, 3); lcd.print(" "); lcd.setCursor(1, 3); lcd_printPGM(_T(MSG_SELFTEST_FAN_NO)); } if (enc_dif < encoderDiff) { _result = check_opposite; lcd.setCursor(0, 2); lcd.print(" "); lcd.setCursor(1, 2); lcd_printPGM(_T(MSG_SELFTEST_FAN_YES)); lcd.setCursor(0, 3); lcd.print(">"); lcd.setCursor(1, 3); lcd_printPGM(_T(MSG_SELFTEST_FAN_NO)); } enc_dif = 0; encoderDiff = 0; } manage_heater(); delay(100); } while (!lcd_clicked()); KEEPALIVE_STATE(IN_HANDLER); SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN); WRITE(EXTRUDER_0_AUTO_FAN_PIN, 0); SET_OUTPUT(FAN_PIN); analogWrite(FAN_PIN, 0); fanSpeed = 0; manage_heater(); return _result; } static bool lcd_selftest_fan_dialog(int _fan) { bool _result = true; int _errno = 7; switch (_fan) { case 0: fanSpeed = 0; manage_heater(); //turn off fan setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, 1); //extruder fan delay(2000); //delay_keep_alive would turn off extruder fan, because temerature is too low manage_heater(); //count average fan speed from 2s delay and turn off fans if (!fan_speed[0]) _result = false; //SERIAL_ECHOPGM("Extruder fan speed: "); //MYSERIAL.println(fan_speed[0]); //SERIAL_ECHOPGM("Print fan speed: "); //MYSERIAL.print(fan_speed[1]); break; case 1: //will it work with Thotend > 50 C ? fanSpeed = 150; //print fan for (uint8_t i = 0; i < 5; i++) { delay_keep_alive(1000); lcd.setCursor(18, 3); lcd.print("-"); delay_keep_alive(1000); lcd.setCursor(18, 3); lcd.print("|"); } fanSpeed = 0; manage_heater(); //turn off fan manage_inactivity(true); //to turn off print fan if (!fan_speed[1]) { _result = false; _errno = 6; //print fan not spinning } else if (fan_speed[1] < 34) { //fan is spinning, but measured RPM are too low for print fan, it must be left extruder fan //check fans manually _result = lcd_selftest_manual_fan_check(1, true); //turn on print fan and check that left extruder fan is not spinning if (_result) { _result = lcd_selftest_manual_fan_check(1, false); //print fan is stil turned on; check that it is spinning if (!_result) _errno = 6; //print fan not spinning } else { _errno = 10; //swapped fans } } //SERIAL_ECHOPGM("Extruder fan speed: "); //MYSERIAL.println(fan_speed[0]); //SERIAL_ECHOPGM("Print fan speed: "); //MYSERIAL.println(fan_speed[1]); break; } if (!_result) { const char *_err; lcd_selftest_error(_errno, _err, _err); } return _result; } static int lcd_selftest_screen(int _step, int _progress, int _progress_scale, bool _clear, int _delay) { lcd_next_update_millis = millis() + (LCD_UPDATE_INTERVAL * 10000); int _step_block = 0; const char *_indicator = (_progress > _progress_scale) ? "-" : "|"; if (_clear) lcd_implementation_clear(); lcd.setCursor(0, 0); if (_step == -1) lcd_printPGM(_T(MSG_SELFTEST_FAN)); if (_step == 0) lcd_printPGM(_T(MSG_SELFTEST_FAN)); if (_step == 1) lcd_printPGM(_T(MSG_SELFTEST_FAN)); if (_step == 2) lcd_printPGM(_i("Checking endstops"));////MSG_SELFTEST_CHECK_ENDSTOPS c=20 r=0 if (_step == 3) lcd_printPGM(_i("Checking hotend "));////MSG_SELFTEST_CHECK_HOTEND c=20 r=0 if (_step == 4) lcd_printPGM(_i("Checking X axis "));////MSG_SELFTEST_CHECK_X c=20 r=0 if (_step == 5) lcd_printPGM(_i("Checking Y axis "));////MSG_SELFTEST_CHECK_Y c=20 r=0 if (_step == 6) lcd_printPGM(_i("Checking Z axis "));////MSG_SELFTEST_CHECK_Z c=20 r=0 if (_step == 7) lcd_printPGM(_T(MSG_SELFTEST_CHECK_BED)); if (_step == 8) lcd_printPGM(_T(MSG_SELFTEST_CHECK_BED)); if (_step == 9) lcd_printPGM(_T(MSG_SELFTEST_CHECK_FSENSOR)); if (_step == 10) lcd_printPGM(_T(MSG_SELFTEST_CHECK_FSENSOR)); if (_step == 11) lcd_printPGM(_i("All correct "));////MSG_SELFTEST_CHECK_ALLCORRECT c=20 r=0 if (_step == 12) lcd_printPGM(_T(MSG_SELFTEST_FAILED)); if (_step == 13) lcd_printPGM(PSTR("Calibrating home")); lcd.setCursor(0, 1); lcd_printPGM(separator); if ((_step >= -1) && (_step <= 1)) { //SERIAL_ECHOLNPGM("Fan test"); lcd_print_at_PGM(0, 2, _i("Extruder fan:"));////MSG_SELFTEST_EXTRUDER_FAN_SPEED c=18 r=0 lcd.setCursor(18, 2); (_step < 0) ? lcd.print(_indicator) : lcd.print("OK"); lcd_print_at_PGM(0, 3, _i("Print fan:"));////MSG_SELFTEST_PRINT_FAN_SPEED c=18 r=0 lcd.setCursor(18, 3); (_step < 1) ? lcd.print(_indicator) : lcd.print("OK"); } else if (_step >= 9 && _step <= 10) { lcd_print_at_PGM(0, 2, _i("Filament sensor:"));////MSG_SELFTEST_FILAMENT_SENSOR c=18 r=0 lcd.setCursor(18, 2); (_step == 9) ? lcd.print(_indicator) : lcd.print("OK"); } else if (_step < 9) { //SERIAL_ECHOLNPGM("Other tests"); _step_block = 3; lcd_selftest_screen_step(3, 9, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Hotend", _indicator); _step_block = 4; lcd_selftest_screen_step(2, 2, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "X", _indicator); _step_block = 5; lcd_selftest_screen_step(2, 8, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Y", _indicator); _step_block = 6; lcd_selftest_screen_step(2, 14, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Z", _indicator); _step_block = 7; lcd_selftest_screen_step(3, 0, ((_step == _step_block) ? 1 : (_step < _step_block) ? 0 : 2), "Bed", _indicator); } if (_delay > 0) delay_keep_alive(_delay); _progress++; return (_progress > _progress_scale * 2) ? 0 : _progress; } static void lcd_selftest_screen_step(int _row, int _col, int _state, const char *_name, const char *_indicator) { lcd.setCursor(_col, _row); switch (_state) { case 1: lcd.print(_name); lcd.setCursor(_col + strlen(_name), _row); lcd.print(":"); lcd.setCursor(_col + strlen(_name) + 1, _row); lcd.print(_indicator); break; case 2: lcd.print(_name); lcd.setCursor(_col + strlen(_name), _row); lcd.print(":"); lcd.setCursor(_col + strlen(_name) + 1, _row); lcd.print("OK"); break; default: lcd.print(_name); } } /** End of menus **/ static void lcd_quick_feedback() { lcdDrawUpdate = 2; button_pressed = false; lcd_implementation_quick_feedback(); } /** Menu action functions **/ /** * @brief Go up in menu structure * @param data one time action to be done before leaving menu e.g. saving data or 0 */ static void menu_action_back(menuFunc_t data) { if (data) data(); MenuStack::Record record = menuStack.pop(); lcd_goto_menu(record.menu); encoderPosition = record.position; } /** * @brief Go deeper into menu structure * @param data nested menu */ static void menu_action_submenu(menuFunc_t data) { menuStack.push(currentMenu, encoderPosition); lcd_goto_menu(data); } static void menu_action_gcode(const char* pgcode) { enquecommand_P(pgcode); } static void menu_action_setlang(unsigned char lang) { if (!lang_select(lang)) { if (lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Copy selected language from XFLASH?"), false, true)) lang_boot_update_start(lang); lcd_update_enable(true); lcd_implementation_clear(); lcd_goto_menu(lcd_language_menu); lcd_timeoutToStatus = -1; //infinite timeout lcdDrawUpdate = 2; } } static void menu_action_function(menuFunc_t data) { (*data)(); } static bool check_file(const char* filename) { if (farm_mode) return true; bool result = false; uint32_t filesize; card.openFile((char*)filename, true); filesize = card.getFileSize(); if (filesize > END_FILE_SECTION) { card.setIndex(filesize - END_FILE_SECTION); } while (!card.eof() && !result) { card.sdprinting = true; get_command(); result = check_commands(); } card.printingHasFinished(); strncpy_P(lcd_status_message, _T(WELCOME_MSG), LCD_WIDTH); lcd_finishstatus(); return result; } static void menu_action_sdfile(const char* filename, char* longFilename) { loading_flag = false; char cmd[30]; char* c; bool result = true; sprintf_P(cmd, PSTR("M23 %s"), filename); for (c = &cmd[4]; *c; c++) *c = tolower(*c); for (int i = 0; i < 8; i++) { eeprom_write_byte((uint8_t*)EEPROM_FILENAME + i, filename[i]); } uint8_t depth = (uint8_t)card.getWorkDirDepth(); eeprom_write_byte((uint8_t*)EEPROM_DIR_DEPTH, depth); for (uint8_t i = 0; i < depth; i++) { for (int j = 0; j < 8; j++) { eeprom_write_byte((uint8_t*)EEPROM_DIRS + j + 8 * i, dir_names[i][j]); } } if (!check_file(filename)) { result = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("File incomplete. Continue anyway?"), false, false);////MSG_FILE_INCOMPLETE c=20 r=2 lcd_update_enable(true); } if (result) { enquecommand(cmd); enquecommand_P(PSTR("M24")); } lcd_return_to_status(); } static void menu_action_sddirectory(const char* filename, char* longFilename) { uint8_t depth = (uint8_t)card.getWorkDirDepth(); strcpy(dir_names[depth], filename); MYSERIAL.println(dir_names[depth]); card.chdir(filename); encoderPosition = 0; } static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) { *ptr = !(*ptr); } /* static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback) { menu_action_setting_edit_bool(pstr, ptr); (*callback)(); } */ #endif//ULTIPANEL /** LCD API **/ void lcd_init() { lcd_implementation_init(); #ifdef NEWPANEL SET_INPUT(BTN_EN1); SET_INPUT(BTN_EN2); WRITE(BTN_EN1, HIGH); WRITE(BTN_EN2, HIGH); #if BTN_ENC > 0 SET_INPUT(BTN_ENC); WRITE(BTN_ENC, HIGH); #endif #ifdef REPRAPWORLD_KEYPAD pinMode(SHIFT_CLK, OUTPUT); pinMode(SHIFT_LD, OUTPUT); pinMode(SHIFT_OUT, INPUT); WRITE(SHIFT_OUT, HIGH); WRITE(SHIFT_LD, HIGH); #endif #else // Not NEWPANEL #ifdef SR_LCD_2W_NL // Non latching 2 wire shift register pinMode (SR_DATA_PIN, OUTPUT); pinMode (SR_CLK_PIN, OUTPUT); #elif defined(SHIFT_CLK) pinMode(SHIFT_CLK, OUTPUT); pinMode(SHIFT_LD, OUTPUT); pinMode(SHIFT_EN, OUTPUT); pinMode(SHIFT_OUT, INPUT); WRITE(SHIFT_OUT, HIGH); WRITE(SHIFT_LD, HIGH); WRITE(SHIFT_EN, LOW); #else #ifdef ULTIPANEL #error ULTIPANEL requires an encoder #endif #endif // SR_LCD_2W_NL #endif//!NEWPANEL #if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0) pinMode(SDCARDDETECT, INPUT); WRITE(SDCARDDETECT, HIGH); lcd_oldcardstatus = IS_SD_INSERTED; #endif//(SDCARDDETECT > 0) #ifdef LCD_HAS_SLOW_BUTTONS slow_buttons = 0; #endif lcd_buttons_update(); #ifdef ULTIPANEL encoderDiff = 0; #endif } //#include static volatile bool lcd_update_enabled = true; unsigned long lcd_timeoutToStatus = 0; void lcd_update_enable(bool enabled) { if (lcd_update_enabled != enabled) { lcd_update_enabled = enabled; if (enabled) { // Reset encoder position. This is equivalent to re-entering a menu. encoderPosition = 0; encoderDiff = 0; // Enabling the normal LCD update procedure. // Reset the timeout interval. lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; // Force the keypad update now. lcd_next_update_millis = millis() - 1; // Full update. lcd_implementation_clear(); #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) lcd_set_custom_characters(currentMenu == lcd_status_screen); #else if (currentMenu == lcd_status_screen) lcd_set_custom_characters_degree(); else lcd_set_custom_characters_arrows(); #endif lcd_update(2); } else { // Clear the LCD always, or let it to the caller? } } } void lcd_update(uint8_t lcdDrawUpdateOverride) { if (lcdDrawUpdate < lcdDrawUpdateOverride) lcdDrawUpdate = lcdDrawUpdateOverride; if (!lcd_update_enabled) return; #ifdef LCD_HAS_SLOW_BUTTONS slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context #endif lcd_buttons_update(); #if (SDCARDDETECT > 0) if ((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected())) { lcdDrawUpdate = 2; lcd_oldcardstatus = IS_SD_INSERTED; lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) currentMenu == lcd_status_screen #endif ); if (lcd_oldcardstatus) { card.initsd(); LCD_MESSAGERPGM(_i("Card inserted"));////MSG_SD_INSERTED c=0 r=0 //get_description(); } else { card.release(); LCD_MESSAGERPGM(_i("Card removed"));////MSG_SD_REMOVED c=0 r=0 } } #endif//CARDINSERTED if (lcd_next_update_millis < millis()) { #ifdef DEBUG_BLINK_ACTIVE static bool active_led = false; active_led = !active_led; pinMode(LED_PIN, OUTPUT); digitalWrite(LED_PIN, active_led?HIGH:LOW); #endif //DEBUG_BLINK_ACTIVE #ifdef ULTIPANEL #ifdef REPRAPWORLD_KEYPAD if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) { reprapworld_keypad_move_z_up(); } if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) { reprapworld_keypad_move_z_down(); } if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) { reprapworld_keypad_move_x_left(); } if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) { reprapworld_keypad_move_x_right(); } if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) { reprapworld_keypad_move_y_down(); } if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) { reprapworld_keypad_move_y_up(); } if (REPRAPWORLD_KEYPAD_MOVE_HOME) { reprapworld_keypad_move_home(); } #endif if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP) { if (lcdDrawUpdate == 0) lcdDrawUpdate = 1; encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP; encoderDiff = 0; lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; } if (LCD_CLICKED) lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; #endif//ULTIPANEL (*currentMenu)(); #ifdef LCD_HAS_STATUS_INDICATORS lcd_implementation_update_indicators(); #endif #ifdef ULTIPANEL if (lcd_timeoutToStatus < millis() && currentMenu != lcd_status_screen) { // Exiting a menu. Let's call the menu function the last time with menuExiting flag set to true // to give it a chance to save its state. // This is useful for example, when the babystep value has to be written into EEPROM. if (currentMenu != NULL) { menuExiting = true; (*currentMenu)(); menuExiting = false; } lcd_implementation_clear(); lcd_return_to_status(); lcdDrawUpdate = 2; } #endif//ULTIPANEL if (lcdDrawUpdate == 2) lcd_implementation_clear(); if (lcdDrawUpdate) lcdDrawUpdate--; lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; } if (!SdFatUtil::test_stack_integrity()) stack_error(); #ifdef DEBUG_STEPPER_TIMER_MISSED if (stepper_timer_overflow_state) stepper_timer_overflow(); #endif /* DEBUG_STEPPER_TIMER_MISSED */ lcd_ping(); //check that we have received ping command if we are in farm mode lcd_send_status(); if (lcd_commands_type == LCD_COMMAND_V2_CAL) lcd_commands(); } void lcd_printer_connected() { printer_connected = true; } static void lcd_send_status() { if (farm_mode && no_response && ((millis() - NcTime) > (NC_TIME * 1000))) { //send important status messages periodicaly prusa_statistics(important_status, saved_filament_type); NcTime = millis(); lcd_connect_printer(); } } static void lcd_connect_printer() { lcd_update_enable(false); lcd_implementation_clear(); bool pressed = false; int i = 0; int t = 0; lcd_set_custom_characters_progress(); lcd_implementation_print_at(0, 0, "Connect printer to"); lcd_implementation_print_at(0, 1, "monitoring or hold"); lcd_implementation_print_at(0, 2, "the knob to continue"); while (no_response) { i++; t++; delay_keep_alive(100); proc_commands(); if (t == 10) { prusa_statistics(important_status, saved_filament_type); t = 0; } if (READ(BTN_ENC)) { //if button is not pressed i = 0; lcd_implementation_print_at(0, 3, " "); } if (i!=0) lcd_implementation_print_at((i * 20) / (NC_BUTTON_LONG_PRESS * 10), 3, "\x01"); if (i == NC_BUTTON_LONG_PRESS * 10) { no_response = false; } } lcd_set_custom_characters_degree(); lcd_update_enable(true); lcd_update(2); } void lcd_ping() { //chceck if printer is connected to monitoring when in farm mode if (farm_mode) { bool empty = is_buffer_empty(); if ((millis() - PingTime) * 0.001 > (empty ? PING_TIME : PING_TIME_LONG)) { //if commands buffer is empty use shorter time period //if there are comamnds in buffer, some long gcodes can delay execution of ping command //therefore longer period is used printer_connected = false; } else { lcd_printer_connected(); } } } void lcd_ignore_click(bool b) { ignore_click = b; wait_for_unclick = false; } void lcd_finishstatus() { int len = strlen(lcd_status_message); if (len > 0) { while (len < LCD_WIDTH) { lcd_status_message[len++] = ' '; } } lcd_status_message[LCD_WIDTH] = '\0'; #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) #if PROGRESS_MSG_EXPIRE > 0 messageTick = #endif progressBarTick = millis(); #endif lcdDrawUpdate = 2; #ifdef FILAMENT_LCD_DISPLAY message_millis = millis(); //get status message to show up for a while #endif } void lcd_setstatus(const char* message) { if (lcd_status_message_level > 0) return; strncpy(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus(); } void lcd_setstatuspgm(const char* message) { if (lcd_status_message_level > 0) return; strncpy_P(lcd_status_message, message, LCD_WIDTH); lcd_status_message[LCD_WIDTH] = 0; lcd_finishstatus(); } void lcd_setalertstatuspgm(const char* message) { lcd_setstatuspgm(message); lcd_status_message_level = 1; #ifdef ULTIPANEL lcd_return_to_status(); #endif//ULTIPANEL } void lcd_reset_alert_level() { lcd_status_message_level = 0; } uint8_t get_message_level() { return lcd_status_message_level; } #ifdef DOGLCD void lcd_setcontrast(uint8_t value) { lcd_contrast = value & 63; u8g.setContrast(lcd_contrast); } #endif #ifdef ULTIPANEL /* Warning: This function is called from interrupt context */ void lcd_buttons_update() { static bool _lock = false; if (_lock) return; _lock = true; #ifdef NEWPANEL uint8_t newbutton = 0; if (READ(BTN_EN1) == 0) newbutton |= EN_A; if (READ(BTN_EN2) == 0) newbutton |= EN_B; #if BTN_ENC > 0 if (lcd_update_enabled == true) { //if we are in non-modal mode, long press can be used and short press triggers with button release if (READ(BTN_ENC) == 0) { //button is pressed lcd_timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; if (millis() > button_blanking_time) { button_blanking_time = millis() + BUTTON_BLANKING_TIME; if (button_pressed == false && long_press_active == false) { longPressTimer.start(); button_pressed = true; } else { if (longPressTimer.expired(LONG_PRESS_TIME)) { long_press_active = true; move_menu_scale = 1.0; menu_action_submenu(lcd_move_z); } } } } else { //button not pressed if (button_pressed) { //button was released button_blanking_time = millis() + BUTTON_BLANKING_TIME; if (long_press_active == false) { //button released before long press gets activated newbutton |= EN_C; } else if (currentMenu == lcd_move_z) lcd_quick_feedback(); //button_pressed is set back to false via lcd_quick_feedback function } else { long_press_active = false; } } } else { //we are in modal mode if (READ(BTN_ENC) == 0) newbutton |= EN_C; } #endif buttons = newbutton; #ifdef LCD_HAS_SLOW_BUTTONS buttons |= slow_buttons; #endif #ifdef REPRAPWORLD_KEYPAD // for the reprapworld_keypad uint8_t newbutton_reprapworld_keypad = 0; WRITE(SHIFT_LD, LOW); WRITE(SHIFT_LD, HIGH); for (int8_t i = 0; i < 8; i++) { newbutton_reprapworld_keypad = newbutton_reprapworld_keypad >> 1; if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7); WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, LOW); } buttons_reprapworld_keypad = ~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0 #endif #else //read it from the shift register uint8_t newbutton = 0; WRITE(SHIFT_LD, LOW); WRITE(SHIFT_LD, HIGH); unsigned char tmp_buttons = 0; for (int8_t i = 0; i < 8; i++) { newbutton = newbutton >> 1; if (READ(SHIFT_OUT)) newbutton |= (1 << 7); WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, LOW); } buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0 #endif//!NEWPANEL //manage encoder rotation uint8_t enc = 0; if (buttons & EN_A) enc |= B01; if (buttons & EN_B) enc |= B10; if (enc != lastEncoderBits) { switch (enc) { case encrot0: if (lastEncoderBits == encrot3) encoderDiff++; else if (lastEncoderBits == encrot1) encoderDiff--; break; case encrot1: if (lastEncoderBits == encrot0) encoderDiff++; else if (lastEncoderBits == encrot2) encoderDiff--; break; case encrot2: if (lastEncoderBits == encrot1) encoderDiff++; else if (lastEncoderBits == encrot3) encoderDiff--; break; case encrot3: if (lastEncoderBits == encrot2) encoderDiff++; else if (lastEncoderBits == encrot0) encoderDiff--; break; } } lastEncoderBits = enc; _lock = false; } bool lcd_detected(void) { #if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE) return lcd.LcdDetected() == 1; #else return true; #endif } void lcd_buzz(long duration, uint16_t freq) { #ifdef LCD_USE_I2C_BUZZER lcd.buzz(duration, freq); #endif } bool lcd_clicked() { bool clicked = LCD_CLICKED; if(clicked) button_pressed = false; return clicked; } #endif//ULTIPANEL /********************************/ /** Float conversion utilities **/ /********************************/ // convert float to string with +123.4 format char conv[8]; char *ftostr3(const float &x) { return itostr3((int)x); } char *itostr2(const uint8_t &x) { //sprintf(conv,"%5.1f",x); int xx = x; conv[0] = (xx / 10) % 10 + '0'; conv[1] = (xx) % 10 + '0'; conv[2] = 0; return conv; } // Convert float to string with 123.4 format, dropping sign char *ftostr31(const float &x) { int xx = x * 10; conv[0] = (xx >= 0) ? '+' : '-'; xx = abs(xx); conv[1] = (xx / 1000) % 10 + '0'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = (xx / 10) % 10 + '0'; conv[4] = '.'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } // Convert float to string with 123.4 format char *ftostr31ns(const float &x) { int xx = x * 10; //conv[0]=(xx>=0)?'+':'-'; xx = abs(xx); conv[0] = (xx / 1000) % 10 + '0'; conv[1] = (xx / 100) % 10 + '0'; conv[2] = (xx / 10) % 10 + '0'; conv[3] = '.'; conv[4] = (xx) % 10 + '0'; conv[5] = 0; return conv; } char *ftostr32(const float &x) { long xx = x * 100; if (xx >= 0) conv[0] = (xx / 10000) % 10 + '0'; else conv[0] = '-'; xx = abs(xx); conv[1] = (xx / 1000) % 10 + '0'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = '.'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } //// Convert float to rj string with 123.45 format char *ftostr32ns(const float &x) { long xx = abs(x); conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' '; conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : '0'; conv[3] = '.'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = xx % 10 + '0'; return conv; } // Convert float to string with 1.234 format char *ftostr43(const float &x, uint8_t offset) { const size_t maxOffset = sizeof(conv)/sizeof(conv[0]) - 6; if (offset>maxOffset) offset = maxOffset; long xx = x * 1000; if (xx >= 0) conv[offset] = (xx / 1000) % 10 + '0'; else conv[offset] = '-'; xx = abs(xx); conv[offset + 1] = '.'; conv[offset + 2] = (xx / 100) % 10 + '0'; conv[offset + 3] = (xx / 10) % 10 + '0'; conv[offset + 4] = (xx) % 10 + '0'; conv[offset + 5] = 0; return conv; } //Float to string with 1.23 format char *ftostr12ns(const float &x) { long xx = x * 100; xx = abs(xx); conv[0] = (xx / 100) % 10 + '0'; conv[1] = '.'; conv[2] = (xx / 10) % 10 + '0'; conv[3] = (xx) % 10 + '0'; conv[4] = 0; return conv; } //Float to string with 1.234 format char *ftostr13ns(const float &x) { long xx = x * 1000; if (xx >= 0) conv[0] = ' '; else conv[0] = '-'; xx = abs(xx); conv[1] = (xx / 1000) % 10 + '0'; conv[2] = '.'; conv[3] = (xx / 100) % 10 + '0'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } // convert float to space-padded string with -_23.4_ format char *ftostr32sp(const float &x) { long xx = abs(x * 100); uint8_t dig; if (x < 0) { // negative val = -_0 conv[0] = '-'; dig = (xx / 1000) % 10; conv[1] = dig ? '0' + dig : ' '; } else { // positive val = __0 dig = (xx / 10000) % 10; if (dig) { conv[0] = '0' + dig; conv[1] = '0' + (xx / 1000) % 10; } else { conv[0] = ' '; dig = (xx / 1000) % 10; conv[1] = dig ? '0' + dig : ' '; } } conv[2] = '0' + (xx / 100) % 10; // lsd always dig = xx % 10; if (dig) { // 2 decimal places conv[5] = '0' + dig; conv[4] = '0' + (xx / 10) % 10; conv[3] = '.'; } else { // 1 or 0 decimal place dig = (xx / 10) % 10; if (dig) { conv[4] = '0' + dig; conv[3] = '.'; } else { conv[3] = conv[4] = ' '; } conv[5] = ' '; } conv[6] = '\0'; return conv; } char *itostr31(const int &xx) { conv[0] = (xx >= 0) ? '+' : '-'; conv[1] = (xx / 1000) % 10 + '0'; conv[2] = (xx / 100) % 10 + '0'; conv[3] = (xx / 10) % 10 + '0'; conv[4] = '.'; conv[5] = (xx) % 10 + '0'; conv[6] = 0; return conv; } // Convert int to rj string with 123 or -12 format char *itostr3(const int &x) { int xx = x; if (xx < 0) { conv[0] = '-'; xx = -xx; } else if (xx >= 100) conv[0] = (xx / 100) % 10 + '0'; else conv[0] = ' '; if (xx >= 10) conv[1] = (xx / 10) % 10 + '0'; else conv[1] = ' '; conv[2] = (xx) % 10 + '0'; conv[3] = 0; return conv; } // Convert int to lj string with 123 format char *itostr3left(const int &xx) { if (xx >= 100) { conv[0] = (xx / 100) % 10 + '0'; conv[1] = (xx / 10) % 10 + '0'; conv[2] = (xx) % 10 + '0'; conv[3] = 0; } else if (xx >= 10) { conv[0] = (xx / 10) % 10 + '0'; conv[1] = (xx) % 10 + '0'; conv[2] = 0; } else { conv[0] = (xx) % 10 + '0'; conv[1] = 0; } return conv; } // Convert int to rj string with 1234 format char *itostr4(const int &xx) { conv[0] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[1] = xx >= 100 ? (xx / 100) % 10 + '0' : ' '; conv[2] = xx >= 10 ? (xx / 10) % 10 + '0' : ' '; conv[3] = xx % 10 + '0'; conv[4] = 0; return conv; } // Convert float to rj string with 12345 format char *ftostr5(const float &x) { long xx = abs(x); conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' '; conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' '; conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' '; conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' '; conv[4] = xx % 10 + '0'; conv[5] = 0; return conv; } // Convert float to string with +1234.5 format char *ftostr51(const float &x) { long xx = x * 10; conv[0] = (xx >= 0) ? '+' : '-'; xx = abs(xx); conv[1] = (xx / 10000) % 10 + '0'; conv[2] = (xx / 1000) % 10 + '0'; conv[3] = (xx / 100) % 10 + '0'; conv[4] = (xx / 10) % 10 + '0'; conv[5] = '.'; conv[6] = (xx) % 10 + '0'; conv[7] = 0; return conv; } // Convert float to string with +123.45 format char *ftostr52(const float &x) { long xx = x * 100; conv[0] = (xx >= 0) ? '+' : '-'; xx = abs(xx); conv[1] = (xx / 10000) % 10 + '0'; conv[2] = (xx / 1000) % 10 + '0'; conv[3] = (xx / 100) % 10 + '0'; conv[4] = '.'; conv[5] = (xx / 10) % 10 + '0'; conv[6] = (xx) % 10 + '0'; conv[7] = 0; return conv; } /* // Callback for after editing PID i value // grab the PID i value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_i() { #ifdef PIDTEMP Ki = scalePID_i(raw_Ki); updatePID(); #endif } // Callback for after editing PID d value // grab the PID d value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_d() { #ifdef PIDTEMP Kd = scalePID_d(raw_Kd); updatePID(); #endif } */ #endif //ULTRA_LCD