#include "LiquidCrystal_Prusa.h" #include #include #include #include "Arduino.h" // When the display powers up, it is configured as follows: // // 1. Display clear // 2. Function set: // DL = 1; 8-bit interface data // N = 0; 1-line display // F = 0; 5x8 dot character font // 3. Display on/off control: // D = 0; Display off // C = 0; Cursor off // B = 0; Blinking off // 4. Entry mode set: // I/D = 1; Increment by 1 // S = 0; No shift // // Note, however, that resetting the Arduino doesn't reset the LCD, so we // can't assume that it's in that state when a sketch starts (and the // LiquidCrystal_Prusa constructor is called). LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); } LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7); } LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); } LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); } void LiquidCrystal_Prusa::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { _rs_pin = rs; _rw_pin = rw; _enable_pin = enable; _data_pins[0] = d0; _data_pins[1] = d1; _data_pins[2] = d2; _data_pins[3] = d3; _data_pins[4] = d4; _data_pins[5] = d5; _data_pins[6] = d6; _data_pins[7] = d7; pinMode(_rs_pin, OUTPUT); // we can save 1 pin by not using RW. Indicate by passing 255 instead of pin# if (_rw_pin != 255) { pinMode(_rw_pin, OUTPUT); } pinMode(_enable_pin, OUTPUT); if (fourbitmode) _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS; else _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS; begin(16, 1); } void LiquidCrystal_Prusa::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) { if (lines > 1) { _displayfunction |= LCD_2LINE; } _numlines = lines; _currline = 0; // for some 1 line displays you can select a 10 pixel high font if ((dotsize != 0) && (lines == 1)) { _displayfunction |= LCD_5x10DOTS; } // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50 delayMicroseconds(50000); // Now we pull both RS and R/W low to begin commands digitalWrite(_rs_pin, LOW); digitalWrite(_enable_pin, LOW); if (_rw_pin != 255) { digitalWrite(_rw_pin, LOW); } //put the LCD into 4 bit or 8 bit mode if (! (_displayfunction & LCD_8BITMODE)) { // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // second try write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // third go! write4bits(0x03); delayMicroseconds(150); // finally, set to 4-bit interface write4bits(0x02); } else { // this is according to the hitachi HD44780 datasheet // page 45 figure 23 // Send function set command sequence command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(4500); // wait more than 4.1ms // second try command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(150); // third go command(LCD_FUNCTIONSET | _displayfunction); } // finally, set # lines, font size, etc. command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(60); // turn the display on with no cursor or blinking default _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF; display(); delayMicroseconds(60); // clear it off clear(); delayMicroseconds(3000); // Initialize to default text direction (for romance languages) _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT; // set the entry mode command(LCD_ENTRYMODESET | _displaymode); delayMicroseconds(60); _escape[0] = 0; } void LiquidCrystal_Prusa::begin_noclear(uint8_t cols, uint8_t lines, uint8_t dotsize) { if (lines > 1) { _displayfunction |= LCD_2LINE; } _numlines = lines; _currline = 0; // for some 1 line displays you can select a 10 pixel high font if ((dotsize != 0) && (lines == 1)) { _displayfunction |= LCD_5x10DOTS; } // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50 delayMicroseconds(50000); // Now we pull both RS and R/W low to begin commands digitalWrite(_rs_pin, LOW); digitalWrite(_enable_pin, LOW); if (_rw_pin != 255) { digitalWrite(_rw_pin, LOW); } //put the LCD into 4 bit or 8 bit mode if (! (_displayfunction & LCD_8BITMODE)) { // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // second try write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // third go! write4bits(0x03); delayMicroseconds(150); // finally, set to 4-bit interface write4bits(0x02); } else { // this is according to the hitachi HD44780 datasheet // page 45 figure 23 // Send function set command sequence command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(4500); // wait more than 4.1ms // second try command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(150); // third go command(LCD_FUNCTIONSET | _displayfunction); } // finally, set # lines, font size, etc. command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(60); // turn the display on with no cursor or blinking default _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF; display(); delayMicroseconds(60); // clear it off //clear(); home(); delayMicroseconds(1600); // Initialize to default text direction (for romance languages) _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT; // set the entry mode command(LCD_ENTRYMODESET | _displaymode); delayMicroseconds(60); /* setCursor(8,0); print(" "); setCursor(8,1); print(" "); setCursor(6,2); print(" "); */ } /********** high level commands, for the user! */ void LiquidCrystal_Prusa::clear() { command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero delayMicroseconds(1600); // this command takes a long time } void LiquidCrystal_Prusa::home() { command(LCD_RETURNHOME); // set cursor position to zero delayMicroseconds(1600); // this command takes a long time! } void LiquidCrystal_Prusa::setCursor(uint8_t col, uint8_t row) { int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 }; if ( row >= _numlines ) { row = _numlines-1; // we count rows starting w/0 } _currline = row; command(LCD_SETDDRAMADDR | (col + row_offsets[row])); } // Turn the display on/off (quickly) void LiquidCrystal_Prusa::noDisplay() { _displaycontrol &= ~LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal_Prusa::display() { _displaycontrol |= LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turns the underline cursor on/off void LiquidCrystal_Prusa::noCursor() { _displaycontrol &= ~LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal_Prusa::cursor() { _displaycontrol |= LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turn on and off the blinking cursor void LiquidCrystal_Prusa::noBlink() { _displaycontrol &= ~LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal_Prusa::blink() { _displaycontrol |= LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // These commands scroll the display without changing the RAM void LiquidCrystal_Prusa::scrollDisplayLeft(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT); } void LiquidCrystal_Prusa::scrollDisplayRight(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT); } // This is for text that flows Left to Right void LiquidCrystal_Prusa::leftToRight(void) { _displaymode |= LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This is for text that flows Right to Left void LiquidCrystal_Prusa::rightToLeft(void) { _displaymode &= ~LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'right justify' text from the cursor void LiquidCrystal_Prusa::autoscroll(void) { _displaymode |= LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'left justify' text from the cursor void LiquidCrystal_Prusa::noAutoscroll(void) { _displaymode &= ~LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } /*********** mid level commands, for sending data/cmds */ void LiquidCrystal_Prusa::command(uint8_t value) { send(value, LOW); } size_t LiquidCrystal_Prusa::write(uint8_t value) { if (value == '\n') { if (_currline > 3) _currline = -1; setCursor(0, _currline + 1); // LF return 1; } if (_escape[0] || (value == 0x1b)) return escape_write(value); send(value, HIGH); return 1; // assume sucess } //Supported VT100 escape codes: //EraseScreen "\x1b[2J" //CursorHome "\x1b[%d;%dH" //CursorShow "\x1b[?25h" //CursorHide "\x1b[?25l" size_t LiquidCrystal_Prusa::escape_write(uint8_t chr) { #define escape_cnt (_escape[0]) //escape character counter #define is_num_msk (_escape[1]) //numeric character bit mask #define chr_is_num (is_num_msk & 0x01) //current character is numeric #define e_2_is_num (is_num_msk & 0x04) //escape char 2 is numeric #define e_3_is_num (is_num_msk & 0x08) //... #define e_4_is_num (is_num_msk & 0x10) #define e_5_is_num (is_num_msk & 0x20) #define e_6_is_num (is_num_msk & 0x40) #define e_7_is_num (is_num_msk & 0x80) #define e2_num (_escape[2] - '0') //number from character 2 #define e3_num (_escape[3] - '0') //number from character 3 #define e23_num (10*e2_num+e3_num) //number from characters 2 and 3 #define e4_num (_escape[4] - '0') //number from character 4 #define e5_num (_escape[5] - '0') //number from character 5 #define e45_num (10*e4_num+e5_num) //number from characters 4 and 5 #define e6_num (_escape[6] - '0') //number from character 6 #define e56_num (10*e5_num+e6_num) //number from characters 5 and 6 if (escape_cnt > 1) // escape length > 1 = "\x1b[" { _escape[escape_cnt] = chr; // store current char if ((chr >= '0') && (chr <= '9')) // char is numeric is_num_msk |= (1 | (1 << escape_cnt)); //set mask else is_num_msk &= ~1; //clear mask } switch (escape_cnt++) { case 0: if (chr == 0x1b) return 1; // escape = "\x1b" break; case 1: is_num_msk = 0x00; // reset 'is number' bit mask if (chr == '[') return 1; // escape = "\x1b[" break; case 2: switch (chr) { case '2': return 1; // escape = "\x1b[2" case '?': return 1; // escape = "\x1b[?" default: if (chr_is_num) return 1; // escape = "\x1b[%1d" } break; case 3: switch (_escape[2]) { case '?': // escape = "\x1b[?" if (chr == '2') return 1; // escape = "\x1b[?2" break; case '2': if (chr == 'J') // escape = "\x1b[2J" { clear(); _currline = 0; break; } // EraseScreen default: if (e_2_is_num && // escape = "\x1b[%1d" ((chr == ';') || // escape = "\x1b[%1d;" chr_is_num)) // escape = "\x1b[%2d" return 1; } break; case 4: switch (_escape[2]) { case '?': // "\x1b[?" if ((_escape[3] == '2') && (chr == '5')) return 1; // escape = "\x1b[?25" break; default: if (e_2_is_num) // escape = "\x1b[%1d" { if ((_escape[3] == ';') && chr_is_num) return 1; // escape = "\x1b[%1d;%1d" else if (e_3_is_num && (chr == ';')) return 1; // escape = "\x1b[%2d;" } } break; case 5: switch (_escape[2]) { case '?': if ((_escape[3] == '2') && (_escape[4] == '5')) // escape = "\x1b[?25" switch (chr) { case 'h': // escape = "\x1b[?25h" void cursor(); // CursorShow break; case 'l': // escape = "\x1b[?25l" noCursor(); // CursorHide break; } break; default: if (e_2_is_num) // escape = "\x1b[%1d" { if ((_escape[3] == ';') && e_4_is_num) // escape = "\x1b%1d;%1dH" { if (chr == 'H') // escape = "\x1b%1d;%1dH" setCursor(e4_num, e2_num); // CursorHome else if (chr_is_num) return 1; // escape = "\x1b%1d;%2d" } else if (e_3_is_num && (_escape[4] == ';') && chr_is_num) return 1; // escape = "\x1b%2d;%1d" } } break; case 6: if (e_2_is_num) // escape = "\x1b[%1d" { if ((_escape[3] == ';') && e_4_is_num && e_5_is_num && (chr == 'H')) // escape = "\x1b%1d;%2dH" setCursor(e45_num, e2_num); // CursorHome else if (e_3_is_num && (_escape[4] == ';') && e_5_is_num) // escape = "\x1b%2d;%1d" { if (chr == 'H') // escape = "\x1b%2d;%1dH" setCursor(e5_num, e23_num); // CursorHome else if (chr_is_num) // "\x1b%2d;%2d" return 1; } } break; case 7: if (e_2_is_num && e_3_is_num && (_escape[4] == ';')) // "\x1b[%2d;" if (e_5_is_num && e_6_is_num && (chr == 'H')) // "\x1b[%2d;%2dH" setCursor(e56_num, e23_num); // CursorHome break; } escape_cnt = 0; // reset escape end: return 1; // assume sucess } /************ low level data pushing commands **********/ // write either command or data, with automatic 4/8-bit selection void LiquidCrystal_Prusa::send(uint8_t value, uint8_t mode) { digitalWrite(_rs_pin, mode); // if there is a RW pin indicated, set it low to Write if (_rw_pin != 255) { digitalWrite(_rw_pin, LOW); } if (_displayfunction & LCD_8BITMODE) { write8bits(value); } else { write4bits(value>>4); write4bits(value); } } void LiquidCrystal_Prusa::pulseEnable(void) { digitalWrite(_enable_pin, LOW); delayMicroseconds(1); digitalWrite(_enable_pin, HIGH); delayMicroseconds(1); // enable pulse must be >450ns digitalWrite(_enable_pin, LOW); delayMicroseconds(100); // commands need > 37us to settle } void LiquidCrystal_Prusa::write4bits(uint8_t value) { for (int i = 0; i < 4; i++) { pinMode(_data_pins[i], OUTPUT); digitalWrite(_data_pins[i], (value >> i) & 0x01); } pulseEnable(); } void LiquidCrystal_Prusa::write8bits(uint8_t value) { for (int i = 0; i < 8; i++) { pinMode(_data_pins[i], OUTPUT); digitalWrite(_data_pins[i], (value >> i) & 0x01); } pulseEnable(); }