#include "Marlin.h" #include "fsensor.h" #include #include "pat9125.h" #include "stepper.h" #include "planner.h" #include "fastio.h" #include "cmdqueue.h" //Basic params #define FSENSOR_CHUNK_LEN 180 //filament sensor chunk length in steps - 0.64mm #define FSENSOR_ERR_MAX 10 //filament sensor maximum error count for runout detection //Optical quality meassurement params #define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks) #define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value) #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value) #define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg) #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min) #define FSENSOR_OQ_MAX_SH 13 //maximum shutter value const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n"; #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1 #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1) extern void stop_and_save_print_to_ram(float z_move, float e_move); extern void restore_print_from_ram_and_continue(float e_move); extern int8_t FSensorStateMenu; void fsensor_stop_and_save_print(void) { printf_P(PSTR("fsensor_stop_and_save_print\n")); stop_and_save_print_to_ram(0, 0); //XYZE - no change } void fsensor_restore_print_and_continue(void) { printf_P(PSTR("fsensor_restore_print_and_continue\n")); restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change } //uint8_t fsensor_int_pin = FSENSOR_INT_PIN; uint8_t fsensor_int_pin_old = 0; int16_t fsensor_chunk_len = FSENSOR_CHUNK_LEN; //enabled = initialized and sampled every chunk event bool fsensor_enabled = true; //runout watching is done in fsensor_update (called from main loop) bool fsensor_watch_runout = true; //not responding - is set if any communication error occured durring initialization or readout bool fsensor_not_responding = false; //printing saved bool fsensor_printing_saved = false; //number of errors, updated in ISR uint8_t fsensor_err_cnt = 0; //variable for accumolating step count (updated callbacks from stepper and ISR) int16_t fsensor_st_cnt = 0; //last dy value from pat9125 sensor (used in ISR) uint8_t fsensor_dy_old = 0; //log flag: 0=log disabled, 1=log enabled uint8_t fsensor_log = 0; //////////////////////////////////////////////////////////////////////////////// //filament autoload variables //autoload feature enabled bool fsensor_autoload_enabled = true; //autoload watching enable/disable flag bool fsensor_watch_autoload = false; // uint16_t fsensor_autoload_y; // uint8_t fsensor_autoload_c; // uint32_t fsensor_autoload_last_millis; // uint8_t fsensor_autoload_sum; //////////////////////////////////////////////////////////////////////////////// //filament optical quality meassurement variables //meassurement enable/disable flag bool fsensor_oq_meassure = false; //skip-chunk counter, for accurate meassurement is necesary to skip first chunk... uint8_t fsensor_oq_skipchunk; //number of samples from start of meassurement uint8_t fsensor_oq_samples; //sum of steps in positive direction movements uint16_t fsensor_oq_st_sum; //sum of deltas in positive direction movements uint16_t fsensor_oq_yd_sum; //sum of errors durring meassurement uint16_t fsensor_oq_er_sum; //max error counter value durring meassurement uint8_t fsensor_oq_er_max; //minimum delta value uint16_t fsensor_oq_yd_min; //maximum delta value uint16_t fsensor_oq_yd_max; //sum of shutter value uint16_t fsensor_oq_sh_sum; void fsensor_init(void) { int pat9125 = pat9125_init(); printf_P(_N("PAT9125_init:%d\n"), pat9125); uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR); fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED); if (!pat9125) { fsensor = 0; //disable sensor fsensor_not_responding = true; } else fsensor_not_responding = false; if (fsensor) fsensor_enable(); else fsensor_disable(); printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n"))); } bool fsensor_enable(void) { uint8_t pat9125 = pat9125_init(); printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125); if (pat9125) fsensor_not_responding = false; else fsensor_not_responding = true; fsensor_enabled = pat9125?true:false; fsensor_watch_runout = true; fsensor_oq_meassure = false; fsensor_err_cnt = 0; fsensor_dy_old = 0; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00); FSensorStateMenu = fsensor_enabled?1:0; return fsensor_enabled; } void fsensor_disable(void) { fsensor_enabled = false; eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00); FSensorStateMenu = 0; } void fsensor_autoload_set(bool State) { fsensor_autoload_enabled = State; eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled); } void pciSetup(byte pin) { *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group } void fsensor_autoload_check_start(void) { // puts_P(_N("fsensor_autoload_check_start\n")); if (!fsensor_enabled) return; if (!fsensor_autoload_enabled) return; if (fsensor_watch_autoload) return; if (!pat9125_update_y()) //update sensor { fsensor_disable(); fsensor_not_responding = true; fsensor_watch_autoload = false; printf_P(ERRMSG_PAT9125_NOT_RESP, 3); return; } puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n")); fsensor_autoload_y = pat9125_y; //save current y value fsensor_autoload_c = 0; //reset number of changes counter fsensor_autoload_sum = 0; fsensor_autoload_last_millis = millis(); fsensor_watch_runout = false; fsensor_watch_autoload = true; fsensor_err_cnt = 0; } void fsensor_autoload_check_stop(void) { // puts_P(_N("fsensor_autoload_check_stop\n")); if (!fsensor_enabled) return; // puts_P(_N("fsensor_autoload_check_stop 1\n")); if (!fsensor_autoload_enabled) return; // puts_P(_N("fsensor_autoload_check_stop 2\n")); if (!fsensor_watch_autoload) return; puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n")); fsensor_autoload_sum = 0; fsensor_watch_autoload = false; fsensor_watch_runout = true; fsensor_err_cnt = 0; } bool fsensor_check_autoload(void) { if (!fsensor_enabled) return false; if (!fsensor_autoload_enabled) return false; if (!fsensor_watch_autoload) { fsensor_autoload_check_start(); return false; } uint8_t fsensor_autoload_c_old = fsensor_autoload_c; if ((millis() - fsensor_autoload_last_millis) < 25) return false; fsensor_autoload_last_millis = millis(); if (!pat9125_update_y()) //update sensor { fsensor_disable(); fsensor_not_responding = true; printf_P(ERRMSG_PAT9125_NOT_RESP, 2); return false; } int16_t dy = pat9125_y - fsensor_autoload_y; if (dy) //? dy value is nonzero { if (dy > 0) //? delta-y value is positive (inserting) { fsensor_autoload_sum += dy; fsensor_autoload_c += 3; //increment change counter by 3 } else if (fsensor_autoload_c > 1) fsensor_autoload_c -= 2; //decrement change counter by 2 fsensor_autoload_y = pat9125_y; //save current value } else if (fsensor_autoload_c > 0) fsensor_autoload_c--; if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0; // puts_P(_N("fsensor_check_autoload\n")); // if (fsensor_autoload_c != fsensor_autoload_c_old) // printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum); // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30)) if ((fsensor_autoload_c >= 10) && (fsensor_autoload_sum > 15)) { // puts_P(_N("fsensor_check_autoload = true !!!\n")); return true; } return false; } void fsensor_oq_meassure_start(uint8_t skip) { if (!fsensor_enabled) return; printf_P(PSTR("fsensor_oq_meassure_start\n")); fsensor_oq_skipchunk = skip; fsensor_oq_samples = 0; fsensor_oq_st_sum = 0; fsensor_oq_yd_sum = 0; fsensor_oq_er_sum = 0; fsensor_oq_er_max = 0; fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD; fsensor_oq_yd_max = 0; fsensor_oq_sh_sum = 0; pat9125_update(); pat9125_y = 0; fsensor_watch_runout = false; fsensor_oq_meassure = true; } void fsensor_oq_meassure_stop(void) { if (!fsensor_enabled) return; printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples); printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max); printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples)); fsensor_oq_meassure = false; fsensor_watch_runout = true; fsensor_err_cnt = 0; } const char _OK[] PROGMEM = "OK"; const char _NG[] PROGMEM = "NG!"; bool fsensor_oq_result(void) { if (!fsensor_enabled) return true; printf_P(_N("fsensor_oq_result\n")); bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES); printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG)); bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM); printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG)); uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum); bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD); printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG)); bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD)); printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG)); bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND)); printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG)); uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples); bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH); printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG)); bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg; printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG)); return res; } ISR(PCINT2_vect) { if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return; fsensor_int_pin_old = PINK; static bool _lock = false; if (_lock) return; _lock = true; int st_cnt = fsensor_st_cnt; fsensor_st_cnt = 0; sei(); uint8_t old_err_cnt = fsensor_err_cnt; uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y(); if (!pat9125_res) { fsensor_disable(); fsensor_not_responding = true; printf_P(ERRMSG_PAT9125_NOT_RESP, 1); } if (st_cnt != 0) { //movement if (st_cnt > 0) //positive movement { if (pat9125_y < 0) fsensor_err_cnt++; else if (pat9125_y > 0) { if (fsensor_err_cnt) fsensor_err_cnt--; } else //(pat9125_y == 0) if (fsensor_dy_old <= 0) fsensor_err_cnt++; if (fsensor_oq_meassure) { if (fsensor_oq_skipchunk) { fsensor_oq_skipchunk--; fsensor_err_cnt = 0; } else { if (st_cnt == FSENSOR_CHUNK_LEN) { if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2; if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2; } fsensor_oq_samples++; fsensor_oq_st_sum += st_cnt; fsensor_oq_yd_sum += pat9125_y; if (fsensor_err_cnt > old_err_cnt) fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt); if (fsensor_oq_er_max < fsensor_err_cnt) fsensor_oq_er_max = fsensor_err_cnt; fsensor_oq_sh_sum += pat9125_s; } } } else //negative movement { } } else { //no movement } #ifdef DEBUG_FSENSOR_LOG if (fsensor_log) { printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK")); if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max); } #endif //DEBUG_FSENSOR_LOG fsensor_dy_old = pat9125_y; pat9125_y = 0; _lock = false; return; } void fsensor_st_block_begin(block_t* bl) { if (!fsensor_enabled) return; if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) || ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8))) { if (_READ(63)) _WRITE(63, LOW); else _WRITE(63, HIGH); } } void fsensor_st_block_chunk(block_t* bl, int cnt) { if (!fsensor_enabled) return; fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt; if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len)) { if (_READ(63)) _WRITE(63, LOW); else _WRITE(63, HIGH); } } void fsensor_update(void) { if (fsensor_enabled) { if (fsensor_printing_saved) { fsensor_restore_print_and_continue(); fsensor_printing_saved = false; fsensor_watch_runout = true; fsensor_err_cnt = 0; } else if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX)) { fsensor_stop_and_save_print(); fsensor_printing_saved = true; fsensor_err_cnt = 0; /* st_synchronize(); for (int axis = X_AXIS; axis <= E_AXIS; axis++) current_position[axis] = st_get_position_mm(axis); current_position[E_AXIS] -= 3; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder); st_synchronize(); current_position[E_AXIS] += 3; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder); st_synchronize(); */ enquecommand_front_P((PSTR("G1 E-3 F200"))); process_commands(); cmdqueue_pop_front(); st_synchronize(); enquecommand_front_P((PSTR("G1 E3 F200"))); process_commands(); cmdqueue_pop_front(); st_synchronize(); if (fsensor_err_cnt == 0) { fsensor_restore_print_and_continue(); fsensor_printing_saved = false; } else { // printf_P(PSTR("fsensor_update - M600\n")); eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1); eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1); enquecommand_front_P((PSTR("M600"))); fsensor_watch_runout = false; } } } } void fsensor_setup_interrupt(void) { pinMode(FSENSOR_INT_PIN, OUTPUT); digitalWrite(FSENSOR_INT_PIN, LOW); fsensor_int_pin_old = 0; pciSetup(FSENSOR_INT_PIN); }