/*
planner.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#include "mesh_bed_calibration.h"
#endif
#ifdef TMC2130
#include "tmc2130.h"
#endif //TMC2130
//===========================================================================
//=============================public variables ============================
//===========================================================================
unsigned long minsegmenttime;
float max_feedrate[NUM_AXIS]; // set the max speeds
float axis_steps_per_unit[NUM_AXIS];
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
float minimumfeedrate;
float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
// Jerk is a maximum immediate velocity change.
float max_jerk[NUM_AXIS];
float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING
// this holds the required transform to compensate for bed level
matrix_3x3 plan_bed_level_matrix = {
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
};
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
// The current position of the tool in absolute steps
long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment
static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
#ifdef AUTOTEMP
float autotemp_max=250;
float autotemp_min=210;
float autotemp_factor=0.1;
bool autotemp_enabled=false;
#endif
unsigned char g_uc_extruder_last_move[3] = {0,0,0};
//===========================================================================
//=================semi-private variables, used in inline functions =====
//===========================================================================
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
volatile unsigned char block_buffer_head; // Index of the next block to be pushed
volatile unsigned char block_buffer_tail; // Index of the block to process now
#ifdef PLANNER_DIAGNOSTICS
// Diagnostic function: Minimum number of planned moves since the last
static uint8_t g_cntr_planner_queue_min = 0;
#endif /* PLANNER_DIAGNOSTICS */
//===========================================================================
//=============================private variables ============================
//===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
float extrude_min_temp=EXTRUDE_MINTEMP;
#endif
#ifdef LIN_ADVANCE
float extruder_advance_k = LIN_ADVANCE_K,
advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
position_float[NUM_AXIS] = { 0 };
#endif
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static inline int8_t next_block_index(int8_t block_index) {
if (++ block_index == BLOCK_BUFFER_SIZE)
block_index = 0;
return block_index;
}
// Returns the index of the previous block in the ring buffer
static inline int8_t prev_block_index(int8_t block_index) {
if (block_index == 0)
block_index = BLOCK_BUFFER_SIZE;
-- block_index;
return block_index;
}
//===========================================================================
//=============================functions ============================
//===========================================================================
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
if (acceleration!=0) {
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
}
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
}
}
// Minimum stepper rate 120Hz.
#define MINIMAL_STEP_RATE 120
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
{
// These two lines are the only floating point calculations performed in this routine.
// initial_rate, final_rate in Hz.
// Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
// the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.)
if (initial_rate < MINIMAL_STEP_RATE)
initial_rate = MINIMAL_STEP_RATE;
if (initial_rate > block->nominal_rate)
initial_rate = block->nominal_rate;
if (final_rate < MINIMAL_STEP_RATE)
final_rate = MINIMAL_STEP_RATE;
if (final_rate > block->nominal_rate)
final_rate = block->nominal_rate;
uint32_t acceleration = block->acceleration_st;
if (acceleration == 0)
// Don't allow zero acceleration.
acceleration = 1;
// estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
// (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
uint32_t initial_rate_sqr = initial_rate*initial_rate;
//FIXME assert that this result fits a 64bit unsigned int.
uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
uint32_t final_rate_sqr = final_rate*final_rate;
uint32_t acceleration_x2 = acceleration << 1;
// ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
// floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
// Size of Plateau of Nominal Rate.
uint32_t plateau_steps = 0;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (accel_decel_steps < block->step_event_count.wide) {
plateau_steps = block->step_event_count.wide - accel_decel_steps;
} else {
uint32_t acceleration_x4 = acceleration << 2;
// Avoid negative numbers
if (final_rate_sqr >= initial_rate_sqr) {
// accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
// intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
// (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
#if 0
accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
#else
accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
if (block->step_event_count.wide & 1)
accelerate_steps += acceleration_x2;
accelerate_steps /= acceleration_x4;
accelerate_steps += (block->step_event_count.wide >> 1);
#endif
if (accelerate_steps > block->step_event_count.wide)
accelerate_steps = block->step_event_count.wide;
} else {
#if 0
decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
#else
decelerate_steps = initial_rate_sqr - final_rate_sqr;
if (block->step_event_count.wide & 1)
decelerate_steps += acceleration_x2;
decelerate_steps /= acceleration_x4;
decelerate_steps += (block->step_event_count.wide >> 1);
#endif
if (decelerate_steps > block->step_event_count.wide)
decelerate_steps = block->step_event_count.wide;
accelerate_steps = block->step_event_count.wide - decelerate_steps;
}
}
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
// This block locks the interrupts globally for 4.38 us,
// which corresponds to a maximum repeat frequency of 228.57 kHz.
// This blocking is safe in the context of a 10kHz stepper driver interrupt
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
if (! block->busy) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
// decceleration within the allotted distance.
FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
{
// assert(decceleration < 0);
return sqrt(target_velocity*target_velocity-2*decceleration*distance);
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
//
//FIXME This routine is called 15x every time a new line is added to the planner,
// therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
// if the CPU is found lacking computational power.
//
// Following sources may be used to optimize the 8-bit AVR code:
// http://www.mikrocontroller.net/articles/AVR_Arithmetik
// http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
//
// https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
// https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
// https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
//
// https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
// https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
// https://github.com/rekka/avrmultiplication
//
// https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
// https://courses.cit.cornell.edu/ee476/Math/
// https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
//
void planner_recalculate(const float &safe_final_speed)
{
// Reverse pass
// Make a local copy of block_buffer_tail, because the interrupt can alter it
// by consuming the blocks, therefore shortening the queue.
unsigned char tail = block_buffer_tail;
uint8_t block_index;
block_t *prev, *current, *next;
// SERIAL_ECHOLNPGM("planner_recalculate - 1");
// At least three blocks are in the queue?
unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
if (n_blocks >= 3) {
// Initialize the last tripple of blocks.
block_index = prev_block_index(block_buffer_head);
next = block_buffer + block_index;
current = block_buffer + (block_index = prev_block_index(block_index));
// No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
// Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
// 1) it may already be running at the stepper interrupt,
// 2) there is no way to limit it when going in the forward direction.
while (block_index != tail) {
if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
// Don't modify the entry velocity of the starting block.
// Also don't modify the trapezoids before this block, they are finalized already, prepared
// for the stepper interrupt routine to use them.
tail = block_index;
// Update the number of blocks to process.
n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
// SERIAL_ECHOLNPGM("START");
break;
}
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (current->entry_speed != current->max_entry_speed) {
// assert(current->entry_speed < current->max_entry_speed);
// Entry speed could be increased up to the max_entry_speed, limited by the length of the current
// segment and the maximum acceleration allowed for this segment.
// If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
// Only compute for max allowable speed if block is decelerating and nominal length is false.
// entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
// therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
// together with an assembly 32bit->16bit sqrt function.
current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
current->max_entry_speed :
// min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
current->flag |= BLOCK_FLAG_RECALCULATE;
}
next = current;
current = block_buffer + (block_index = prev_block_index(block_index));
}
}
// SERIAL_ECHOLNPGM("planner_recalculate - 2");
// Forward pass and recalculate the trapezoids.
if (n_blocks >= 2) {
// Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
block_index = tail;
prev = block_buffer + block_index;
current = block_buffer + (block_index = next_block_index(block_index));
do {
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
current->flag |= BLOCK_FLAG_RECALCULATE;
}
}
// Recalculate if current block entry or exit junction speed has changed.
if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
// Reset current only to ensure next trapezoid is computed.
prev->flag &= ~BLOCK_FLAG_RECALCULATE;
}
prev = current;
current = block_buffer + (block_index = next_block_index(block_index));
} while (block_index != block_buffer_head);
}
// SERIAL_ECHOLNPGM("planner_recalculate - 3");
// Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
current = block_buffer + prev_block_index(block_buffer_head);
calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
current->flag &= ~BLOCK_FLAG_RECALCULATE;
// SERIAL_ECHOLNPGM("planner_recalculate - 4");
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
#ifdef LIN_ADVANCE
memset(position_float, 0, sizeof(position)); // clear position
#endif
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
previous_nominal_speed = 0.0;
}
#ifdef AUTOTEMP
void getHighESpeed()
{
static float oldt=0;
if(!autotemp_enabled){
return;
}
if(degTargetHotend0()+2high)
{
high=se;
}
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
float g=autotemp_min+high*autotemp_factor;
float t=g;
if(tautotemp_max)
t=autotemp_max;
if(oldt>t)
{
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
}
oldt=t;
setTargetHotend0(t);
}
#endif
void check_axes_activity()
{
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
unsigned char tail_fan_speed = fanSpeed;
block_t *block;
if(block_buffer_tail != block_buffer_head)
{
uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed;
while(block_index != block_buffer_head)
{
block = &block_buffer[block_index];
if(block->steps_x.wide != 0) x_active++;
if(block->steps_y.wide != 0) y_active++;
if(block->steps_z.wide != 0) z_active++;
if(block->steps_e.wide != 0) e_active++;
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0))
{
disable_e0();
disable_e1();
disable_e2();
}
#if defined(FAN_PIN) && FAN_PIN > -1
#ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > millis())
// Fan still spinning up.
tail_fan_speed = 255;
} else {
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = tail_fan_speed;
#else
analogWrite(FAN_PIN,tail_fan_speed);
#endif//!FAN_SOFT_PWM
#endif//FAN_PIN > -1
#ifdef AUTOTEMP
getHighESpeed();
#endif
}
bool waiting_inside_plan_buffer_line_print_aborted = false;
/*
void planner_abort_soft()
{
// Empty the queue.
while (blocks_queued()) plan_discard_current_block();
// Relay to planner wait routine, that the current line shall be canceled.
waiting_inside_plan_buffer_line_print_aborted = true;
//current_position[i]
}
*/
#ifdef PLANNER_DIAGNOSTICS
static inline void planner_update_queue_min_counter()
{
uint8_t new_counter = moves_planned();
if (new_counter < g_cntr_planner_queue_min)
g_cntr_planner_queue_min = new_counter;
}
#endif /* PLANNER_DIAGNOSTICS */
extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
void planner_abort_hard()
{
// Abort the stepper routine and flush the planner queue.
DISABLE_STEPPER_DRIVER_INTERRUPT();
// Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
// First update the planner's current position in the physical motor steps.
position[X_AXIS] = st_get_position(X_AXIS);
position[Y_AXIS] = st_get_position(Y_AXIS);
position[Z_AXIS] = st_get_position(Z_AXIS);
position[E_AXIS] = st_get_position(E_AXIS);
// Second update the current position of the front end.
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = st_get_position_mm(E_AXIS);
// Apply the mesh bed leveling correction to the Z axis.
#ifdef MESH_BED_LEVELING
if (mbl.active) {
#if 1
// Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
// This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
#else
// Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
else {
float t = float(step_events_completed) / float(current_block->step_event_count);
float vec[3] = {
current_block->steps_x / axis_steps_per_unit[X_AXIS],
current_block->steps_y / axis_steps_per_unit[Y_AXIS],
current_block->steps_z / axis_steps_per_unit[Z_AXIS]
};
float pos1[3], pos2[3];
for (int8_t i = 0; i < 3; ++ i) {
if (current_block->direction_bits & (1<axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
#ifdef LIN_ADVANCE
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
}
#endif
}
#endif
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Set sdlen for calculating sd position
block->sdlen = 0;
// Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
block->busy = false;
// Number of steps for each axis
#ifndef COREXY
// default non-h-bot planning
block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
#else
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
#endif
block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
// Bail if this is a zero-length block
if (block->step_event_count.wide <= dropsegments)
{
#ifdef PLANNER_DIAGNOSTICS
planner_update_queue_min_counter();
#endif /* PLANNER_DIAGNOSTICS */
return;
}
block->fan_speed = fanSpeed;
// Compute direction bits for this block
block->direction_bits = 0;
#ifndef COREXY
if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<active_extruder = extruder;
//enable active axes
#ifdef COREXY
if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
{
enable_x();
enable_y();
}
#else
if(block->steps_x.wide != 0) enable_x();
if(block->steps_y.wide != 0) enable_y();
#endif
if(block->steps_z.wide != 0) enable_z();
// Enable extruder(s)
if(block->steps_e.wide != 0)
{
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
{
if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
switch(extruder)
{
case 0:
enable_e0();
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[1] == 0) disable_e1();
if(g_uc_extruder_last_move[2] == 0) disable_e2();
break;
case 1:
enable_e1();
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[0] == 0) disable_e0();
if(g_uc_extruder_last_move[2] == 0) disable_e2();
break;
case 2:
enable_e2();
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[0] == 0) disable_e0();
if(g_uc_extruder_last_move[1] == 0) disable_e1();
break;
}
}
else //enable all
{
enable_e0();
enable_e1();
enable_e2();
}
}
if (block->steps_e.wide == 0)
{
if(feed_ratesteps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
{
block->millimeters = fabs(delta_mm[E_AXIS]);
}
else
{
#ifndef COREXY
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
#else
block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
#endif
}
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
int moves_queued = moves_planned();
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef SLOWDOWN
//FIXME Vojtech: Why moves_queued > 1? Why not >=1?
// Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
// segment time in micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second);
if (segment_time < minsegmenttime)
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
#endif // SLOWDOWN
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
// Calculate and limit speed in mm/sec for each axis
float current_speed[4];
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++)
{
current_speed[i] = delta_mm[i] * inverse_second;
#ifdef TMC2130
float max_fr = max_feedrate[i];
if (i < 2) // X, Y
{
if (tmc2130_mode == TMC2130_MODE_SILENT)
{
if (max_fr > SILENT_MAX_FEEDRATE)
max_fr = SILENT_MAX_FEEDRATE;
}
else
{
if (max_fr > NORMAL_MAX_FEEDRATE)
max_fr = NORMAL_MAX_FEEDRATE;
}
}
if(fabs(current_speed[i]) > max_fr)
speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
#else //TMC2130
if(fabs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
#endif //TMC2130
}
// Correct the speed
if( speed_factor < 1.0)
{
for(unsigned char i=0; i < 4; i++)
{
current_speed[i] *= speed_factor;
}
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
// block->step_event_count ... event count of the fastest axis
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
float steps_per_mm = block->step_event_count.wide/block->millimeters;
if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
{
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else
{
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
#ifdef TMC2130
#ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
if (tmc2130_mode == TMC2130_MODE_SILENT)
{
if (block->steps_x.wide || block->steps_y.wide)
if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
}
else
{
if (block->steps_x.wide || block->steps_y.wide)
if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
}
if (block->steps_x.wide && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if (block->steps_y.wide && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if (block->steps_z.wide && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
if (block->steps_e.wide && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
#else // SIMPLE_ACCEL_LIMIT
if (tmc2130_mode == TMC2130_MODE_SILENT)
{
if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
}
else
{
if ((block->steps_x.wide > block->step_event_count.wide / 2) || (block->steps_y.wide > block->step_event_count.wide / 2))
if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
}
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
#endif // SIMPLE_ACCEL_LIMIT
#else //TMC2130
// Limit acceleration per axis
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
#endif //TMC2130
}
// Acceleration of the segment, in mm/sec^2
block->acceleration = block->acceleration_st / steps_per_mm;
#if 0
// Oversample diagonal movements by a power of 2 up to 8x
// to achieve more accurate diagonal movements.
uint8_t bresenham_oversample = 1;
for (uint8_t i = 0; i < 3; ++ i) {
if (block->nominal_rate >= 5000) // 5kHz
break;
block->nominal_rate << 1;
bresenham_oversample << 1;
block->step_event_count << 1;
}
if (bresenham_oversample > 1)
// Lower the acceleration steps/sec^2 to account for the oversampling.
block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
#endif
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
// Start with a safe speed.
// Safe speed is the speed, from which the machine may halt to stop immediately.
float safe_speed = block->nominal_speed;
bool limited = false;
for (uint8_t axis = 0; axis < 4; ++ axis) {
float jerk = fabs(current_speed[axis]);
if (jerk > max_jerk[axis]) {
// The actual jerk is lower, if it has been limited by the XY jerk.
if (limited) {
// Spare one division by a following gymnastics:
// Instead of jerk *= safe_speed / block->nominal_speed,
// multiply max_jerk[axis] by the divisor.
jerk *= safe_speed;
float mjerk = max_jerk[axis] * block->nominal_speed;
if (jerk > mjerk) {
safe_speed *= mjerk / jerk;
limited = true;
}
} else {
safe_speed = max_jerk[axis];
limited = true;
}
}
}
// Reset the block flag.
block->flag = 0;
// Initial limit on the segment entry velocity.
float vmax_junction;
//FIXME Vojtech: Why only if at least two lines are planned in the queue?
// Is it because we don't want to tinker with the first buffer line, which
// is likely to be executed by the stepper interrupt routine soon?
if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
// Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1.f;
limited = false;
// Now limit the jerk in all axes.
for (uint8_t axis = 0; axis < 4; ++ axis) {
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
float v_exit = previous_speed[axis];
float v_entry = current_speed [axis];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited) {
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
((v_entry > 0.f || v_exit < 0.f) ?
// coasting
(v_exit - v_entry) :
// axis reversal
max(v_exit, - v_entry)) :
// v_exit <= v_entry
((v_entry < 0.f || v_exit > 0.f) ?
// coasting
(v_entry - v_exit) :
// axis reversal
max(- v_exit, v_entry));
if (jerk > max_jerk[axis]) {
v_factor *= max_jerk[axis] / jerk;
limited = true;
}
}
if (limited)
vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
// Not coasting. The machine will stop and start the movements anyway,
// better to start the segment from start.
block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
vmax_junction = safe_speed;
}
} else {
block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
vmax_junction = safe_speed;
}
// Max entry speed of this block equals the max exit speed of the previous block.
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to safe_speed.
double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
// Always calculate trapezoid for new block
block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
// Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
previous_nominal_speed = block->nominal_speed;
previous_safe_speed = safe_speed;
#ifdef LIN_ADVANCE
//
// Use LIN_ADVANCE for blocks if all these are true:
//
// esteps : We have E steps todo (a printing move)
//
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
//
// extruder_advance_k : There is an advance factor set.
//
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
// In that case, the retract and move will be executed together.
// This leads to too many advance steps due to a huge e_acceleration.
// The math is good, but we must avoid retract moves with advance!
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
//
block->use_advance_lead = block->steps_e.wide
&& (block->steps_x.wide || block->steps_y.wide)
&& extruder_advance_k
&& (uint32_t)block->steps_e.wide != block->step_event_count.wide
&& de_float > 0.0;
if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = lround(
extruder_advance_k
* ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
* (block->nominal_speed / (float)block->nominal_rate)
* axis_steps_per_unit[E_AXIS] * 256.0
);
#endif
// Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
block->speed_factor = block->nominal_rate / block->nominal_speed;
calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
if (block->step_event_count.wide <= 32767)
block->flag |= BLOCK_FLAG_DDA_LOWRES;
// Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
#ifdef LIN_ADVANCE
position_float[X_AXIS] = x;
position_float[Y_AXIS] = y;
position_float[Z_AXIS] = z;
position_float[E_AXIS] = e;
#endif
// Recalculate the trapezoids to maximize speed at the segment transitions while respecting
// the machine limits (maximum acceleration and maximum jerk).
// This runs asynchronously with the stepper interrupt controller, which may
// interfere with the process.
planner_recalculate(safe_speed);
// SERIAL_ECHOPGM("Q");
// SERIAL_ECHO(int(moves_planned()));
// SERIAL_ECHOLNPGM("");
#ifdef PLANNER_DIAGNOSTICS
planner_update_queue_min_counter();
#endif /* PLANNER_DIAGNOSTIC */
// The stepper timer interrupt will run continuously from now on.
// If there are no planner blocks to be executed by the stepper routine,
// the stepper interrupt ticks at 1kHz to wake up and pick a block
// from the planner queue if available.
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#ifdef ENABLE_AUTO_BED_LEVELING
vector_3 plan_get_position() {
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
//position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get bed_level");
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
//inverse.debug("in plan_get inverse");
position.apply_rotation(inverse);
//position.debug("after rotation");
return position;
}
#endif // ENABLE_AUTO_BED_LEVELING
void plan_set_position(float x, float y, float z, const float &e)
{
#ifdef ENABLE_AUTO_BED_LEVELING
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif // ENABLE_AUTO_BED_LEVELING
// Apply the machine correction matrix.
if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
{
float tmpx = x;
float tmpy = y;
x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
}
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
#ifdef MESH_BED_LEVELING
position[Z_AXIS] = mbl.active ?
lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
lround(z*axis_steps_per_unit[Z_AXIS]);
#else
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
#endif // ENABLE_MESH_BED_LEVELING
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
#ifdef LIN_ADVANCE
position_float[X_AXIS] = x;
position_float[Y_AXIS] = y;
position_float[Z_AXIS] = z;
position_float[E_AXIS] = e;
#endif
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
}
// Only useful in the bed leveling routine, when the mesh bed leveling is off.
void plan_set_z_position(const float &z)
{
#ifdef LIN_ADVANCE
position_float[Z_AXIS] = z;
#endif
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
}
void plan_set_e_position(const float &e)
{
#ifdef LIN_ADVANCE
position_float[E_AXIS] = e;
#endif
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
st_set_e_position(position[E_AXIS]);
}
#ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp)
{
extrude_min_temp=temp;
}
#endif
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates()
{
for(int8_t i=0; i < NUM_AXIS; i++)
{
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
}
unsigned char number_of_blocks() {
return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
}
#ifdef PLANNER_DIAGNOSTICS
uint8_t planner_queue_min()
{
return g_cntr_planner_queue_min;
}
void planner_queue_min_reset()
{
g_cntr_planner_queue_min = moves_planned();
}
#endif /* PLANNER_DIAGNOSTICS */
void planner_add_sd_length(uint16_t sdlen)
{
if (block_buffer_head != block_buffer_tail) {
// The planner buffer is not empty. Get the index of the last buffer line entered,
// which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
} else {
// There is no line stored in the planner buffer, which means the last command does not need to be revertible,
// at a power panic, so the length of this command may be forgotten.
}
}
uint16_t planner_calc_sd_length()
{
unsigned char _block_buffer_head = block_buffer_head;
unsigned char _block_buffer_tail = block_buffer_tail;
uint16_t sdlen = 0;
while (_block_buffer_head != _block_buffer_tail)
{
sdlen += block_buffer[_block_buffer_tail].sdlen;
_block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
}
return sdlen;
}