#include "Marlin.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "ConfigurationStore.h" #include "Configuration_prusa.h" #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #endif void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) { while (size--) { uint8_t * const p = (uint8_t * const)pos; uint8_t v = *value; // EEPROM has only ~100,000 write cycles, // so only write bytes that have changed! if (v != eeprom_read_byte(p)) { eeprom_write_byte(p, v); if (eeprom_read_byte(p) != v) { SERIAL_ECHOLNPGM("EEPROM Error"); return; } } pos++; value++; }; } #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; }while(--size); } #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) //====================================================================================== #define EEPROM_OFFSET 20 // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM // in the functions below, also increment the version number. This makes sure that // the default values are used whenever there is a change to the data, to prevent // wrong data being written to the variables. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order. #define EEPROM_VERSION "V1" #ifdef EEPROM_SETTINGS void Config_StoreSettings(uint16_t offset, uint8_t level) { char ver[4]= "000"; int i = offset; EEPROM_WRITE_VAR(i,ver); // invalidate data first EEPROM_WRITE_VAR(i,axis_steps_per_unit); EEPROM_WRITE_VAR(i,max_feedrate); EEPROM_WRITE_VAR(i,max_acceleration_units_per_sq_second); EEPROM_WRITE_VAR(i,acceleration); EEPROM_WRITE_VAR(i,retract_acceleration); EEPROM_WRITE_VAR(i,minimumfeedrate); EEPROM_WRITE_VAR(i,mintravelfeedrate); EEPROM_WRITE_VAR(i,minsegmenttime); EEPROM_WRITE_VAR(i,max_jerk[X_AXIS]); EEPROM_WRITE_VAR(i,max_jerk[Y_AXIS]); EEPROM_WRITE_VAR(i,max_jerk[Z_AXIS]); EEPROM_WRITE_VAR(i,max_jerk[E_AXIS]); EEPROM_WRITE_VAR(i,add_homing); #ifndef ULTIPANEL int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; int absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; #endif /* EEPROM_WRITE_VAR(i,plaPreheatHotendTemp); EEPROM_WRITE_VAR(i,plaPreheatHPBTemp); EEPROM_WRITE_VAR(i,plaPreheatFanSpeed); EEPROM_WRITE_VAR(i,absPreheatHotendTemp); EEPROM_WRITE_VAR(i,absPreheatHPBTemp); EEPROM_WRITE_VAR(i,absPreheatFanSpeed); */ EEPROM_WRITE_VAR(i,zprobe_zoffset); #ifdef PIDTEMP EEPROM_WRITE_VAR(i,Kp); EEPROM_WRITE_VAR(i,Ki); EEPROM_WRITE_VAR(i,Kd); #else float dummy = 3000.0f; EEPROM_WRITE_VAR(i,dummy); dummy = 0.0f; EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy); #endif #ifdef PIDTEMPBED EEPROM_WRITE_VAR(i, bedKp); EEPROM_WRITE_VAR(i, bedKi); EEPROM_WRITE_VAR(i, bedKd); #endif #ifndef DOGLCD int lcd_contrast = 32; #endif EEPROM_WRITE_VAR(i,lcd_contrast); #ifdef FWRETRACT EEPROM_WRITE_VAR(i,autoretract_enabled); EEPROM_WRITE_VAR(i,retract_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_length_swap); #endif EEPROM_WRITE_VAR(i,retract_feedrate); EEPROM_WRITE_VAR(i,retract_zlift); EEPROM_WRITE_VAR(i,retract_recover_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i,retract_recover_length_swap); #endif EEPROM_WRITE_VAR(i,retract_recover_feedrate); #endif // Save filament sizes EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE_VAR(i, filament_size[0]); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i, filament_size[1]); #if EXTRUDERS > 2 EEPROM_WRITE_VAR(i, filament_size[2]); #endif #endif #ifdef LIN_ADVANCE if (level >= 10) { EEPROM_WRITE_VAR(i, extruder_advance_k); EEPROM_WRITE_VAR(i, advance_ed_ratio); } #endif //LIN_ADVANCE /*MYSERIAL.print("Top address used:\n"); MYSERIAL.print(i); MYSERIAL.print("\n"); */ char ver2[4]=EEPROM_VERSION; i=offset; EEPROM_WRITE_VAR(i,ver2); // validate data SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Settings Stored"); } #endif //EEPROM_SETTINGS #ifndef DISABLE_M503 void Config_PrintSettings(uint8_t level) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Steps per unit:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M92 X",axis_steps_per_unit[X_AXIS]); SERIAL_ECHOPAIR(" Y",axis_steps_per_unit[Y_AXIS]); SERIAL_ECHOPAIR(" Z",axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" E",axis_steps_per_unit[E_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]); SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]); SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]); SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M201 X" ,max_acceleration_units_per_sq_second[X_AXIS] ); SERIAL_ECHOPAIR(" Y" , max_acceleration_units_per_sq_second[Y_AXIS] ); SERIAL_ECHOPAIR(" Z" ,max_acceleration_units_per_sq_second[Z_AXIS] ); SERIAL_ECHOPAIR(" E" ,max_acceleration_units_per_sq_second[E_AXIS]); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M204 S",acceleration ); SERIAL_ECHOPAIR(" T" ,retract_acceleration); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M205 S",minimumfeedrate ); SERIAL_ECHOPAIR(" T" ,mintravelfeedrate ); SERIAL_ECHOPAIR(" B" ,minsegmenttime ); SERIAL_ECHOPAIR(" X" ,max_jerk[X_AXIS] ); SERIAL_ECHOPAIR(" Y" ,max_jerk[Y_AXIS] ); SERIAL_ECHOPAIR(" Z" ,max_jerk[Z_AXIS] ); SERIAL_ECHOPAIR(" E" ,max_jerk[E_AXIS] ); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Home offset (mm):"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M206 X",add_homing[X_AXIS] ); SERIAL_ECHOPAIR(" Y" ,add_homing[Y_AXIS] ); SERIAL_ECHOPAIR(" Z" ,add_homing[Z_AXIS] ); SERIAL_ECHOLN(""); #ifdef PIDTEMP SERIAL_ECHO_START; SERIAL_ECHOLNPGM("PID settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M301 P",Kp); SERIAL_ECHOPAIR(" I" ,unscalePID_i(Ki)); SERIAL_ECHOPAIR(" D" ,unscalePID_d(Kd)); SERIAL_ECHOLN(""); #endif #ifdef PIDTEMPBED SERIAL_ECHO_START; SERIAL_ECHOLNPGM("PID heatbed settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M304 P", bedKp); SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi)); SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd)); SERIAL_ECHOLN(""); #endif #ifdef FWRETRACT SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M207 S",retract_length); SERIAL_ECHOPAIR(" F" ,retract_feedrate*60); SERIAL_ECHOPAIR(" Z" ,retract_zlift); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M208 S",retract_recover_length); SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0)); SERIAL_ECHOLN(""); #if EXTRUDERS > 1 SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Multi-extruder settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap); SERIAL_ECHOLN(""); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap); SERIAL_ECHOLN(""); #endif SERIAL_ECHO_START; if (volumetric_enabled) { SERIAL_ECHOLNPGM("Filament settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 D", filament_size[0]); SERIAL_ECHOLN(""); #if EXTRUDERS > 1 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]); SERIAL_ECHOLN(""); #if EXTRUDERS > 2 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_ECHOLN(""); #endif #endif } else { SERIAL_ECHOLNPGM("Filament settings: Disabled"); } #endif if (level >= 10) { #ifdef LIN_ADVANCE SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Linear advance settings:"); SERIAL_ECHOPAIR(" M900 K", extruder_advance_k); SERIAL_ECHOPAIR(" E/D = ", advance_ed_ratio); #endif //LIN_ADVANCE } } #endif #ifdef EEPROM_SETTINGS void Config_RetrieveSettings(uint16_t offset, uint8_t level) { int i=offset; char stored_ver[4]; char ver[4]=EEPROM_VERSION; EEPROM_READ_VAR(i,stored_ver); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); if (strncmp(ver,stored_ver,3) == 0) { // version number match EEPROM_READ_VAR(i,axis_steps_per_unit); EEPROM_READ_VAR(i,max_feedrate); EEPROM_READ_VAR(i,max_acceleration_units_per_sq_second); // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) reset_acceleration_rates(); EEPROM_READ_VAR(i,acceleration); EEPROM_READ_VAR(i,retract_acceleration); EEPROM_READ_VAR(i,minimumfeedrate); EEPROM_READ_VAR(i,mintravelfeedrate); EEPROM_READ_VAR(i,minsegmenttime); EEPROM_READ_VAR(i,max_jerk[X_AXIS]); EEPROM_READ_VAR(i,max_jerk[Y_AXIS]); EEPROM_READ_VAR(i,max_jerk[Z_AXIS]); EEPROM_READ_VAR(i,max_jerk[E_AXIS]); if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK; if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK; EEPROM_READ_VAR(i,add_homing); #ifndef ULTIPANEL int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed; int absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed; #endif /* EEPROM_READ_VAR(i,plaPreheatHotendTemp); EEPROM_READ_VAR(i,plaPreheatHPBTemp); EEPROM_READ_VAR(i,plaPreheatFanSpeed); EEPROM_READ_VAR(i,absPreheatHotendTemp); EEPROM_READ_VAR(i,absPreheatHPBTemp); EEPROM_READ_VAR(i,absPreheatFanSpeed); */ EEPROM_READ_VAR(i,zprobe_zoffset); #ifndef PIDTEMP float Kp,Ki,Kd; #endif // do not need to scale PID values as the values in EEPROM are already scaled EEPROM_READ_VAR(i,Kp); EEPROM_READ_VAR(i,Ki); EEPROM_READ_VAR(i,Kd); #ifdef PIDTEMPBED EEPROM_READ_VAR(i, bedKp); EEPROM_READ_VAR(i, bedKi); EEPROM_READ_VAR(i, bedKd); #endif #ifndef DOGLCD int lcd_contrast; #endif EEPROM_READ_VAR(i,lcd_contrast); #ifdef FWRETRACT EEPROM_READ_VAR(i,autoretract_enabled); EEPROM_READ_VAR(i,retract_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_length_swap); #endif EEPROM_READ_VAR(i,retract_feedrate); EEPROM_READ_VAR(i,retract_zlift); EEPROM_READ_VAR(i,retract_recover_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i,retract_recover_length_swap); #endif EEPROM_READ_VAR(i,retract_recover_feedrate); #endif EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ_VAR(i, filament_size[0]); #if EXTRUDERS > 1 EEPROM_READ_VAR(i, filament_size[1]); #if EXTRUDERS > 2 EEPROM_READ_VAR(i, filament_size[2]); #endif #endif #ifdef LIN_ADVANCE if (level >= 10) { EEPROM_READ_VAR(i, extruder_advance_k); EEPROM_READ_VAR(i, advance_ed_ratio); } calculate_volumetric_multipliers(); #endif //LIN_ADVANCE // Call updatePID (similar to when we have processed M301) updatePID(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Stored settings retrieved"); } else { Config_ResetDefault(); } #ifdef EEPROM_CHITCHAT Config_PrintSettings(); #endif } #endif void Config_ResetDefault() { float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT; float tmp2[]=DEFAULT_MAX_FEEDRATE; long tmp3[]=DEFAULT_MAX_ACCELERATION; for (short i=0;i<4;i++) { axis_steps_per_unit[i]=tmp1[i]; max_feedrate[i]=tmp2[i]; max_acceleration_units_per_sq_second[i]=tmp3[i]; } // steps per sq second need to be updated to agree with the units per sq second reset_acceleration_rates(); acceleration=DEFAULT_ACCELERATION; retract_acceleration=DEFAULT_RETRACT_ACCELERATION; minimumfeedrate=DEFAULT_MINIMUMFEEDRATE; minsegmenttime=DEFAULT_MINSEGMENTTIME; mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE; max_jerk[X_AXIS] = DEFAULT_XJERK; max_jerk[Y_AXIS] = DEFAULT_YJERK; max_jerk[Z_AXIS] = DEFAULT_ZJERK; max_jerk[E_AXIS] = DEFAULT_EJERK; add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0; #ifdef ENABLE_AUTO_BED_LEVELING zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #ifdef DOGLCD lcd_contrast = DEFAULT_LCD_CONTRAST; #endif #ifdef PIDTEMP Kp = DEFAULT_Kp; Ki = scalePID_i(DEFAULT_Ki); Kd = scalePID_d(DEFAULT_Kd); // call updatePID (similar to when we have processed M301) updatePID(); #ifdef PID_ADD_EXTRUSION_RATE Kc = DEFAULT_Kc; #endif//PID_ADD_EXTRUSION_RATE #endif//PIDTEMP #ifdef FWRETRACT autoretract_enabled = false; retract_length = RETRACT_LENGTH; #if EXTRUDERS > 1 retract_length_swap = RETRACT_LENGTH_SWAP; #endif retract_feedrate = RETRACT_FEEDRATE; retract_zlift = RETRACT_ZLIFT; retract_recover_length = RETRACT_RECOVER_LENGTH; #if EXTRUDERS > 1 retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; #endif retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif volumetric_enabled = false; filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 1 filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 2 filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif #endif calculate_volumetric_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); }