/* planner.c - buffers movement commands and manages the acceleration profile plan Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */ /* Reasoning behind the mathematics in this module (in the key of 'Mathematica'): s == speed, a == acceleration, t == time, d == distance Basic definitions: Speed[s_, a_, t_] := s + (a*t) Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] Distance to reach a specific speed with a constant acceleration: Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() Speed after a given distance of travel with constant acceleration: Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] m -> Sqrt[2 a d + s^2] DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] When to start braking (di) to reach a specified destionation speed (s2) after accelerating from initial speed s1 without ever stopping at a plateau: Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) */ #include "Marlin.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #include "mesh_bed_calibration.h" #endif //=========================================================================== //=============================public variables ============================ //=========================================================================== unsigned long minsegmenttime; float max_feedrate[NUM_AXIS]; // set the max speeds float axis_steps_per_unit[NUM_AXIS]; unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software float minimumfeedrate; float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX // Jerk is a maximum immediate velocity change. float max_jerk[NUM_AXIS]; float mintravelfeedrate; unsigned long axis_steps_per_sqr_second[NUM_AXIS]; #ifdef ENABLE_AUTO_BED_LEVELING // this holds the required transform to compensate for bed level matrix_3x3 plan_bed_level_matrix = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, }; #endif // #ifdef ENABLE_AUTO_BED_LEVELING // The current position of the tool in absolute steps long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode static float previous_speed[NUM_AXIS]; // Speed of previous path line segment static float previous_nominal_speed; // Nominal speed of previous path line segment static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment. #ifdef AUTOTEMP float autotemp_max=250; float autotemp_min=210; float autotemp_factor=0.1; bool autotemp_enabled=false; #endif unsigned char g_uc_extruder_last_move[3] = {0,0,0}; //=========================================================================== //=================semi-private variables, used in inline functions ===== //=========================================================================== block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions volatile unsigned char block_buffer_head; // Index of the next block to be pushed volatile unsigned char block_buffer_tail; // Index of the block to process now #ifdef PLANNER_DIAGNOSTICS // Diagnostic function: Minimum number of planned moves since the last static uint8_t g_cntr_planner_queue_min = 0; #endif /* PLANNER_DIAGNOSTICS */ //=========================================================================== //=============================private variables ============================ //=========================================================================== #ifdef PREVENT_DANGEROUS_EXTRUDE float extrude_min_temp=EXTRUDE_MINTEMP; #endif #ifdef FILAMENT_SENSOR static char meas_sample; //temporary variable to hold filament measurement sample #endif #ifdef LIN_ADVANCE float extruder_advance_k = LIN_ADVANCE_K, advance_ed_ratio = LIN_ADVANCE_E_D_RATIO, position_float[NUM_AXIS] = { 0 }; #endif // Returns the index of the next block in the ring buffer // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. static inline int8_t next_block_index(int8_t block_index) { if (++ block_index == BLOCK_BUFFER_SIZE) block_index = 0; return block_index; } // Returns the index of the previous block in the ring buffer static inline int8_t prev_block_index(int8_t block_index) { if (block_index == 0) block_index = BLOCK_BUFFER_SIZE; -- block_index; return block_index; } //=========================================================================== //=============================functions ============================ //=========================================================================== // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration: FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { if (acceleration!=0) { return((target_rate*target_rate-initial_rate*initial_rate)/ (2.0*acceleration)); } else { return 0.0; // acceleration was 0, set acceleration distance to 0 } } // This function gives you the point at which you must start braking (at the rate of -acceleration) if // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after // a total travel of distance. This can be used to compute the intersection point between acceleration and // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { if (acceleration!=0) { return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ (4.0*acceleration) ); } else { return 0.0; // acceleration was 0, set intersection distance to 0 } } #define MINIMAL_STEP_RATE 120 // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) { // These two lines are the only floating point calculations performed in this routine. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min) uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min) // Limit minimal step rate (Otherwise the timer will overflow.) if (initial_rate < MINIMAL_STEP_RATE) initial_rate = MINIMAL_STEP_RATE; if (initial_rate > block->nominal_rate) initial_rate = block->nominal_rate; if (final_rate < MINIMAL_STEP_RATE) final_rate = MINIMAL_STEP_RATE; if (final_rate > block->nominal_rate) final_rate = block->nominal_rate; uint32_t acceleration = block->acceleration_st; if (acceleration == 0) // Don't allow zero acceleration. acceleration = 1; // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration)); uint32_t initial_rate_sqr = initial_rate*initial_rate; //FIXME assert that this result fits a 64bit unsigned int. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate; uint32_t final_rate_sqr = final_rate*final_rate; uint32_t acceleration_x2 = acceleration << 1; // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2; // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration)); uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2; uint32_t accel_decel_steps = accelerate_steps + decelerate_steps; // Size of Plateau of Nominal Rate. uint32_t plateau_steps = 0; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort acceleration and start braking // in order to reach the final_rate exactly at the end of this block. if (accel_decel_steps < block->step_event_count) { plateau_steps = block->step_event_count - accel_decel_steps; } else { uint32_t acceleration_x4 = acceleration << 2; // Avoid negative numbers if (final_rate_sqr >= initial_rate_sqr) { // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count)); // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration); #if 0 accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4; #else accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1; if (block->step_event_count & 1) accelerate_steps += acceleration_x2; accelerate_steps /= acceleration_x4; accelerate_steps += (block->step_event_count >> 1); #endif if (accelerate_steps > block->step_event_count) accelerate_steps = block->step_event_count; } else { #if 0 decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4; #else decelerate_steps = initial_rate_sqr - final_rate_sqr; if (block->step_event_count & 1) decelerate_steps += acceleration_x2; decelerate_steps /= acceleration_x4; decelerate_steps += (block->step_event_count >> 1); #endif if (decelerate_steps > block->step_event_count) decelerate_steps = block->step_event_count; accelerate_steps = block->step_event_count - decelerate_steps; } } CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if (! block->busy) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps+plateau_steps; block->initial_rate = initial_rate; block->final_rate = final_rate; } CRITICAL_SECTION_END; } // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the // decceleration within the allotted distance. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance) { // assert(decceleration < 0); return sqrt(target_velocity*target_velocity-2*decceleration*distance); } // Recalculates the motion plan according to the following algorithm: // // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) // so that: // a. The junction jerk is within the set limit // b. No speed reduction within one block requires faster deceleration than the one, true constant // acceleration. // 2. Go over every block in chronological order and dial down junction speed reduction values if // a. The speed increase within one block would require faster accelleration than the one, true // constant acceleration. // // When these stages are complete all blocks have an entry_factor that will allow all speed changes to // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // the set limit. Finally it will: // // 3. Recalculate trapezoids for all blocks. // //FIXME This routine is called 15x every time a new line is added to the planner, // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics, // if the CPU is found lacking computational power. // // Following sources may be used to optimize the 8-bit AVR code: // http://www.mikrocontroller.net/articles/AVR_Arithmetik // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf // // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html // // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/ // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/ // https://github.com/rekka/avrmultiplication // // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/ // https://courses.cit.cornell.edu/ee476/Math/ // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S // void planner_recalculate(const float &safe_final_speed) { // Reverse pass // Make a local copy of block_buffer_tail, because the interrupt can alter it // by consuming the blocks, therefore shortening the queue. unsigned char tail = block_buffer_tail; uint8_t block_index; block_t *prev, *current, *next; // SERIAL_ECHOLNPGM("planner_recalculate - 1"); // At least three blocks are in the queue? unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1); if (n_blocks >= 3) { // Initialize the last tripple of blocks. block_index = prev_block_index(block_buffer_head); next = block_buffer + block_index; current = block_buffer + (block_index = prev_block_index(block_index)); // No need to recalculate the last block, it has already been set by the plan_buffer_line() function. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because // 1) it may already be running at the stepper interrupt, // 2) there is no way to limit it when going in the forward direction. while (block_index != tail) { if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) { // Don't modify the entry velocity of the starting block. // Also don't modify the trapezoids before this block, they are finalized already, prepared // for the stepper interrupt routine to use them. tail = block_index; // Update the number of blocks to process. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1); // SERIAL_ECHOLNPGM("START"); break; } // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. if (current->entry_speed != current->max_entry_speed) { // assert(current->entry_speed < current->max_entry_speed); // Entry speed could be increased up to the max_entry_speed, limited by the length of the current // segment and the maximum acceleration allowed for this segment. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity. // Only compute for max allowable speed if block is decelerating and nominal length is false. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient // together with an assembly 32bit->16bit sqrt function. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ? current->max_entry_speed : // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters)); min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters)); current->flag |= BLOCK_FLAG_RECALCULATE; } next = current; current = block_buffer + (block_index = prev_block_index(block_index)); } } // SERIAL_ECHOLNPGM("planner_recalculate - 2"); // Forward pass and recalculate the trapezoids. if (n_blocks >= 2) { // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail. block_index = tail; prev = block_buffer + block_index; current = block_buffer + (block_index = next_block_index(block_index)); do { // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) { float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters)); // Check for junction speed change if (current->entry_speed != entry_speed) { current->entry_speed = entry_speed; current->flag |= BLOCK_FLAG_RECALCULATE; } } // Recalculate if current block entry or exit junction speed has changed. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed); // Reset current only to ensure next trapezoid is computed. prev->flag &= ~BLOCK_FLAG_RECALCULATE; } prev = current; current = block_buffer + (block_index = next_block_index(block_index)); } while (block_index != block_buffer_head); } // SERIAL_ECHOLNPGM("planner_recalculate - 3"); // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated. current = block_buffer + prev_block_index(block_buffer_head); calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed); current->flag &= ~BLOCK_FLAG_RECALCULATE; // SERIAL_ECHOLNPGM("planner_recalculate - 4"); } void plan_init() { block_buffer_head = 0; block_buffer_tail = 0; memset(position, 0, sizeof(position)); // clear position #ifdef LIN_ADVANCE memset(position_float, 0, sizeof(position)); // clear position #endif previous_speed[0] = 0.0; previous_speed[1] = 0.0; previous_speed[2] = 0.0; previous_speed[3] = 0.0; previous_nominal_speed = 0.0; } #ifdef AUTOTEMP void getHighESpeed() { static float oldt=0; if(!autotemp_enabled){ return; } if(degTargetHotend0()+2high) { high=se; } } block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } float g=autotemp_min+high*autotemp_factor; float t=g; if(tautotemp_max) t=autotemp_max; if(oldt>t) { t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t; } oldt=t; setTargetHotend0(t); } #endif void check_axes_activity() { unsigned char x_active = 0; unsigned char y_active = 0; unsigned char z_active = 0; unsigned char e_active = 0; unsigned char tail_fan_speed = fanSpeed; block_t *block; if(block_buffer_tail != block_buffer_head) { uint8_t block_index = block_buffer_tail; tail_fan_speed = block_buffer[block_index].fan_speed; while(block_index != block_buffer_head) { block = &block_buffer[block_index]; if(block->steps_x != 0) x_active++; if(block->steps_y != 0) y_active++; if(block->steps_z != 0) z_active++; if(block->steps_e != 0) e_active++; block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } } if((DISABLE_X) && (x_active == 0)) disable_x(); if((DISABLE_Y) && (y_active == 0)) disable_y(); if((DISABLE_Z) && (z_active == 0)) disable_z(); if((DISABLE_E) && (e_active == 0)) { disable_e0(); disable_e1(); disable_e2(); } #if defined(FAN_PIN) && FAN_PIN > -1 #ifdef FAN_KICK_START_TIME static bool fan_kick = false; static unsigned long fan_kick_timer = 0; static unsigned char prev_fan_speed = 0; if (tail_fan_speed) { if (prev_fan_speed != tail_fan_speed) { //speed changed if (prev_fan_speed == 0) //prev speed == 0 (starting - long kick) fan_kick_timer = millis() + FAN_KICK_START_TIME; else if (tail_fan_speed <= FAN_KICK_RUN_MINPWM) //speed <= max kick speed (short kick) fan_kick_timer = millis() + FAN_KICK_RUN_TIME; else //speed > max kick speed (no kick) fan_kick_timer = 0; prev_fan_speed = tail_fan_speed; //store previous value if (fan_kick_timer) fan_kick = true; } else { if (fan_kick) { if (fan_kick_timer < millis()) { fan_kick = false; if (tail_fan_speed <= FAN_KICK_RUN_MINPWM) fan_kick_timer = millis() + FAN_KICK_IDLE_TIME; } } else if (tail_fan_speed <= FAN_KICK_RUN_MINPWM) { if (fan_kick_timer < millis()) { fan_kick_timer = millis() + FAN_KICK_RUN_TIME; fan_kick = true; } } } if (fan_kick) tail_fan_speed = 255; } #endif//FAN_KICKSTART_TIME #ifdef FAN_SOFT_PWM fanSpeedSoftPwm = tail_fan_speed; #else analogWrite(FAN_PIN,tail_fan_speed); #endif//!FAN_SOFT_PWM #endif//FAN_PIN > -1 #ifdef AUTOTEMP getHighESpeed(); #endif } bool waiting_inside_plan_buffer_line_print_aborted = false; /* void planner_abort_soft() { // Empty the queue. while (blocks_queued()) plan_discard_current_block(); // Relay to planner wait routine, that the current line shall be canceled. waiting_inside_plan_buffer_line_print_aborted = true; //current_position[i] } */ #ifdef PLANNER_DIAGNOSTICS static inline void planner_update_queue_min_counter() { uint8_t new_counter = moves_planned(); if (new_counter < g_cntr_planner_queue_min) g_cntr_planner_queue_min = new_counter; } #endif /* PLANNER_DIAGNOSTICS */ void planner_abort_hard() { // Abort the stepper routine and flush the planner queue. quickStop(); // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync. // First update the planner's current position in the physical motor steps. position[X_AXIS] = st_get_position(X_AXIS); position[Y_AXIS] = st_get_position(Y_AXIS); position[Z_AXIS] = st_get_position(Z_AXIS); position[E_AXIS] = st_get_position(E_AXIS); // Second update the current position of the front end. current_position[X_AXIS] = st_get_position_mm(X_AXIS); current_position[Y_AXIS] = st_get_position_mm(Y_AXIS); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); current_position[E_AXIS] = st_get_position_mm(E_AXIS); // Apply the mesh bed leveling correction to the Z axis. #ifdef MESH_BED_LEVELING if (mbl.active) current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]); #endif // Apply inverse world correction matrix. machine2world(current_position[X_AXIS], current_position[Y_AXIS]); memcpy(destination, current_position, sizeof(destination)); // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; previous_speed[0] = 0.0; previous_speed[1] = 0.0; previous_speed[2] = 0.0; previous_speed[3] = 0.0; // Relay to planner wait routine, that the current line shall be canceled. waiting_inside_plan_buffer_line_print_aborted = true; } float junction_deviation = 0.1; // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // calculation the caller must also provide the physical length of the line in millimeters. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder) { // Calculate the buffer head after we push this byte int next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. if (block_buffer_tail == next_buffer_head) { waiting_inside_plan_buffer_line_print_aborted = false; do { manage_heater(); // Vojtech: Don't disable motors inside the planner! manage_inactivity(false); lcd_update(); } while (block_buffer_tail == next_buffer_head); if (waiting_inside_plan_buffer_line_print_aborted) { // Inside the lcd_update() routine the print has been aborted. // Cancel the print, do not plan the current line this routine is waiting on. #ifdef PLANNER_DIAGNOSTICS planner_update_queue_min_counter(); #endif /* PLANNER_DIAGNOSTICS */ return; } } #ifdef PLANNER_DIAGNOSTICS planner_update_queue_min_counter(); #endif /* PLANNER_DIAGNOSTICS */ #ifdef ENABLE_AUTO_BED_LEVELING apply_rotation_xyz(plan_bed_level_matrix, x, y, z); #endif // ENABLE_AUTO_BED_LEVELING // Apply the machine correction matrix. { #if 0 SERIAL_ECHOPGM("Planner, current position - servos: "); MYSERIAL.print(st_get_position_mm(X_AXIS), 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(st_get_position_mm(Y_AXIS), 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(st_get_position_mm(Z_AXIS), 5); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Planner, target position, initial: "); MYSERIAL.print(x, 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(y, 5); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Planner, world2machine: "); MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5); SERIAL_ECHOLNPGM(""); SERIAL_ECHOPGM("Planner, offset: "); MYSERIAL.print(world2machine_shift[0], 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(world2machine_shift[1], 5); SERIAL_ECHOLNPGM(""); #endif world2machine(x, y); #if 0 SERIAL_ECHOPGM("Planner, target position, corrected: "); MYSERIAL.print(x, 5); SERIAL_ECHOPGM(", "); MYSERIAL.print(y, 5); SERIAL_ECHOLNPGM(""); #endif } // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow long target[4]; target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); #ifdef MESH_BED_LEVELING if (mbl.active){ target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]); }else{ target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); } #else target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); #endif // ENABLE_MESH_BED_LEVELING target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); #ifdef LIN_ADVANCE const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS])); float de_float = e - position_float[E_AXIS]; #endif #ifdef PREVENT_DANGEROUS_EXTRUDE if(target[E_AXIS]!=position[E_AXIS]) { if(degHotend(active_extruder)axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) { position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part #ifdef LIN_ADVANCE position_float[E_AXIS] = e; de_float = 0; #endif SERIAL_ECHO_START; SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } #endif // Prepare to set up new block block_t *block = &block_buffer[block_buffer_head]; // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.) block->busy = false; // Number of steps for each axis #ifndef COREXY // default non-h-bot planning block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); #else // corexy planning // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS])); block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS])); #endif block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); if (volumetric_multiplier[active_extruder] != 1.f) block->steps_e *= volumetric_multiplier[active_extruder]; if (extrudemultiply != 100) { block->steps_e *= extrudemultiply; block->steps_e /= 100; } block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); // Bail if this is a zero-length block if (block->step_event_count <= dropsegments) { #ifdef PLANNER_DIAGNOSTICS planner_update_queue_min_counter(); #endif /* PLANNER_DIAGNOSTICS */ return; } block->fan_speed = fanSpeed; // Compute direction bits for this block block->direction_bits = 0; #ifndef COREXY if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<active_extruder = extruder; //enable active axes #ifdef COREXY if((block->steps_x != 0) || (block->steps_y != 0)) { enable_x(); enable_y(); } #else if(block->steps_x != 0) enable_x(); if(block->steps_y != 0) enable_y(); #endif #ifndef Z_LATE_ENABLE if(block->steps_z != 0) enable_z(); #endif // Enable extruder(s) if(block->steps_e != 0) { if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder { if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--; if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--; if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--; switch(extruder) { case 0: enable_e0(); g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2; if(g_uc_extruder_last_move[1] == 0) disable_e1(); if(g_uc_extruder_last_move[2] == 0) disable_e2(); break; case 1: enable_e1(); g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2; if(g_uc_extruder_last_move[0] == 0) disable_e0(); if(g_uc_extruder_last_move[2] == 0) disable_e2(); break; case 2: enable_e2(); g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2; if(g_uc_extruder_last_move[0] == 0) disable_e0(); if(g_uc_extruder_last_move[1] == 0) disable_e1(); break; } } else //enable all { enable_e0(); enable_e1(); enable_e2(); } } if (block->steps_e == 0) { if(feed_ratesteps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { block->millimeters = fabs(delta_mm[E_AXIS]); } else { #ifndef COREXY block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); #else block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])); #endif } float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. float inverse_second = feed_rate * inverse_millimeters; int moves_queued = moves_planned(); // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill #ifdef SLOWDOWN //FIXME Vojtech: Why moves_queued > 1? Why not >=1? // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation? if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) { // segment time in micro seconds unsigned long segment_time = lround(1000000.0/inverse_second); if (segment_time < minsegmenttime) // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); } #endif // SLOWDOWN block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 #ifdef FILAMENT_SENSOR //FMM update ring buffer used for delay with filament measurements if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized { delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer while (delay_dist<0) delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer delay_index1=delay_dist/10.0; //calculate index //ensure the number is within range of the array after converting from floating point if(delay_index1<0) delay_index1=0; else if (delay_index1>MAX_MEASUREMENT_DELAY) delay_index1=MAX_MEASUREMENT_DELAY; if(delay_index1 != delay_index2) //moved index { meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char } while( delay_index1 != delay_index2) { delay_index2 = delay_index2 + 1; if(delay_index2>MAX_MEASUREMENT_DELAY) delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing if(delay_index2<0) delay_index2=0; else if (delay_index2>MAX_MEASUREMENT_DELAY) delay_index2=MAX_MEASUREMENT_DELAY; measurement_delay[delay_index2]=meas_sample; } } #endif // Calculate and limit speed in mm/sec for each axis float current_speed[4]; float speed_factor = 1.0; //factor <=1 do decrease speed for(int i=0; i < 4; i++) { current_speed[i] = delta_mm[i] * inverse_second; if(fabs(current_speed[i]) > max_feedrate[i]) speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); } // Correct the speed if( speed_factor < 1.0) { for(unsigned char i=0; i < 4; i++) { current_speed[i] *= speed_factor; } block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. // block->step_event_count ... event count of the fastest axis // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement. float steps_per_mm = block->step_event_count/block->millimeters; if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } else { block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 // Limit acceleration per axis //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; } // Acceleration of the segment, in mm/sec^2 block->acceleration = block->acceleration_st / steps_per_mm; #if 0 // Oversample diagonal movements by a power of 2 up to 8x // to achieve more accurate diagonal movements. uint8_t bresenham_oversample = 1; for (uint8_t i = 0; i < 3; ++ i) { if (block->nominal_rate >= 5000) // 5kHz break; // The following statements in their original form did nothing (missing =). // In effect, this entire block under the conditional was doing nothing. // Adding the syntax correction did not produce good movement results therefore // it has been disabled (above) block->nominal_rate <<= 1; bresenham_oversample <<= 1; block->step_event_count <<= 1; } if (bresenham_oversample > 1) // Lower the acceleration steps/sec^2 to account for the oversampling. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample; #endif block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0))); // Start with a safe speed. // Safe speed is the speed, from which the machine may halt to stop immediately. float safe_speed = block->nominal_speed; bool limited = false; for (uint8_t axis = 0; axis < 4; ++ axis) { float jerk = fabs(current_speed[axis]); if (jerk > max_jerk[axis]) { // The actual jerk is lower, if it has been limited by the XY jerk. if (limited) { // Spare one division by a following gymnastics: // Instead of jerk *= safe_speed / block->nominal_speed, // multiply max_jerk[axis] by the divisor. jerk *= safe_speed; float mjerk = max_jerk[axis] * block->nominal_speed; if (jerk > mjerk) { safe_speed *= mjerk / jerk; limited = true; } } else { safe_speed = max_jerk[axis]; limited = true; } } } // Reset the block flag. block->flag = 0; // Initial limit on the segment entry velocity. float vmax_junction; //FIXME Vojtech: Why only if at least two lines are planned in the queue? // Is it because we don't want to tinker with the first buffer line, which // is likely to be executed by the stepper interrupt routine soon? if (moves_queued > 1 && previous_nominal_speed > 0.0001f) { // Estimate a maximum velocity allowed at a joint of two successive segments. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed; float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed); // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed; // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. float v_factor = 1.f; limited = false; // Now limit the jerk in all axes. for (uint8_t axis = 0; axis < 4; ++ axis) { // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop. float v_exit = previous_speed[axis]; float v_entry = current_speed [axis]; if (prev_speed_larger) v_exit *= smaller_speed_factor; if (limited) { v_exit *= v_factor; v_entry *= v_factor; } // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction. float jerk = (v_exit > v_entry) ? ((v_entry > 0.f || v_exit < 0.f) ? // coasting (v_exit - v_entry) : // axis reversal max(v_exit, - v_entry)) : // v_exit <= v_entry ((v_entry < 0.f || v_exit > 0.f) ? // coasting (v_entry - v_exit) : // axis reversal max(- v_exit, v_entry)); if (jerk > max_jerk[axis]) { v_factor *= max_jerk[axis] / jerk; limited = true; } } if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. float vmax_junction_threshold = vmax_junction * 0.99f; if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) { // Not coasting. The machine will stop and start the movements anyway, // better to start the segment from start. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT; vmax_junction = safe_speed; } } else { block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT; vmax_junction = safe_speed; } // Max entry speed of this block equals the max exit speed of the previous block. block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to safe_speed. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. // Always calculate trapezoid for new block block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE; // Update previous path unit_vector and nominal speed memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] previous_nominal_speed = block->nominal_speed; previous_safe_speed = safe_speed; #ifdef LIN_ADVANCE // // Use LIN_ADVANCE for blocks if all these are true: // // esteps : We have E steps todo (a printing move) // // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime). // // extruder_advance_k : There is an advance factor set. // // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small. // In that case, the retract and move will be executed together. // This leads to too many advance steps due to a huge e_acceleration. // The math is good, but we must avoid retract moves with advance! // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) // block->use_advance_lead = block->steps_e && (block->steps_x || block->steps_y) && extruder_advance_k && (uint32_t)block->steps_e != block->step_event_count && de_float > 0.0; if (block->use_advance_lead) block->abs_adv_steps_multiplier8 = lround( extruder_advance_k * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set * (block->nominal_speed / (float)block->nominal_rate) * axis_steps_per_unit[E_AXIS] * 256.0 ); #endif // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated. block->speed_factor = block->nominal_rate / block->nominal_speed; calculate_trapezoid_for_block(block, block->entry_speed, safe_speed); // Move the buffer head. From now the block may be picked up by the stepper interrupt controller. block_buffer_head = next_buffer_head; // Update position memcpy(position, target, sizeof(target)); // position[] = target[] #ifdef LIN_ADVANCE position_float[X_AXIS] = x; position_float[Y_AXIS] = y; position_float[Z_AXIS] = z; position_float[E_AXIS] = e; #endif // Recalculate the trapezoids to maximize speed at the segment transitions while respecting // the machine limits (maximum acceleration and maximum jerk). // This runs asynchronously with the stepper interrupt controller, which may // interfere with the process. planner_recalculate(safe_speed); // SERIAL_ECHOPGM("Q"); // SERIAL_ECHO(int(moves_planned())); // SERIAL_ECHOLNPGM(""); #ifdef PLANNER_DIAGNOSTICS planner_update_queue_min_counter(); #endif /* PLANNER_DIAGNOSTIC */ st_wake_up(); } #ifdef ENABLE_AUTO_BED_LEVELING vector_3 plan_get_position() { vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS)); //position.debug("in plan_get position"); //plan_bed_level_matrix.debug("in plan_get bed_level"); matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); //inverse.debug("in plan_get inverse"); position.apply_rotation(inverse); //position.debug("after rotation"); return position; } #endif // ENABLE_AUTO_BED_LEVELING void plan_set_position(float x, float y, float z, const float &e) { #ifdef ENABLE_AUTO_BED_LEVELING apply_rotation_xyz(plan_bed_level_matrix, x, y, z); #endif // ENABLE_AUTO_BED_LEVELING // Apply the machine correction matrix. { float tmpx = x; float tmpy = y; x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0]; y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1]; } position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); #ifdef MESH_BED_LEVELING if (mbl.active){ position[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]); }else{ position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); } #else position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); #endif // ENABLE_MESH_BED_LEVELING position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); #ifdef LIN_ADVANCE position_float[X_AXIS] = x; position_float[Y_AXIS] = y; position_float[Z_AXIS] = z; position_float[E_AXIS] = e; #endif st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]); previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_speed[0] = 0.0; previous_speed[1] = 0.0; previous_speed[2] = 0.0; previous_speed[3] = 0.0; } // Only useful in the bed leveling routine, when the mesh bed leveling is off. void plan_set_z_position(const float &z) { #ifdef LIN_ADVANCE position_float[Z_AXIS] = z; #endif position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]); } void plan_set_e_position(const float &e) { #ifdef LIN_ADVANCE position_float[E_AXIS] = e; #endif position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); st_set_e_position(position[E_AXIS]); } #ifdef PREVENT_DANGEROUS_EXTRUDE void set_extrude_min_temp(float temp) { extrude_min_temp=temp; } #endif // Calculate the steps/s^2 acceleration rates, based on the mm/s^s void reset_acceleration_rates() { for(int8_t i=0; i < NUM_AXIS; i++) { axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; } } #ifdef PLANNER_DIAGNOSTICS uint8_t planner_queue_min() { return g_cntr_planner_queue_min; } void planner_queue_min_reset() { g_cntr_planner_queue_min = moves_planned(); } #endif /* PLANNER_DIAGNOSTICS */