Marlin_main.cpp 228 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. unsigned long PingTime = millis();
  198. unsigned long NcTime;
  199. union Data
  200. {
  201. byte b[2];
  202. int value;
  203. };
  204. float homing_feedrate[] = HOMING_FEEDRATE;
  205. // Currently only the extruder axis may be switched to a relative mode.
  206. // Other axes are always absolute or relative based on the common relative_mode flag.
  207. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  208. int feedmultiply=100; //100->1 200->2
  209. int saved_feedmultiply;
  210. int extrudemultiply=100; //100->1 200->2
  211. int extruder_multiply[EXTRUDERS] = {100
  212. #if EXTRUDERS > 1
  213. , 100
  214. #if EXTRUDERS > 2
  215. , 100
  216. #endif
  217. #endif
  218. };
  219. int bowden_length[4];
  220. bool is_usb_printing = false;
  221. bool homing_flag = false;
  222. bool temp_cal_active = false;
  223. unsigned long kicktime = millis()+100000;
  224. unsigned int usb_printing_counter;
  225. int lcd_change_fil_state = 0;
  226. int feedmultiplyBckp = 100;
  227. float HotendTempBckp = 0;
  228. int fanSpeedBckp = 0;
  229. float pause_lastpos[4];
  230. unsigned long pause_time = 0;
  231. unsigned long start_pause_print = millis();
  232. unsigned long load_filament_time;
  233. bool mesh_bed_leveling_flag = false;
  234. bool mesh_bed_run_from_menu = false;
  235. unsigned char lang_selected = 0;
  236. int8_t FarmMode = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. int selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef FILAMENT_SENSOR
  319. //Variables for Filament Sensor input
  320. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  321. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  322. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  323. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  324. int delay_index1=0; //index into ring buffer
  325. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  326. float delay_dist=0; //delay distance counter
  327. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  328. #endif
  329. const char errormagic[] PROGMEM = "Error:";
  330. const char echomagic[] PROGMEM = "echo:";
  331. bool no_response = false;
  332. uint8_t important_status;
  333. uint8_t saved_filament_type;
  334. //===========================================================================
  335. //=============================Private Variables=============================
  336. //===========================================================================
  337. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  338. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  339. static float delta[3] = {0.0, 0.0, 0.0};
  340. // For tracing an arc
  341. static float offset[3] = {0.0, 0.0, 0.0};
  342. static bool home_all_axis = true;
  343. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  344. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  345. // Determines Absolute or Relative Coordinates.
  346. // Also there is bool axis_relative_modes[] per axis flag.
  347. static bool relative_mode = false;
  348. // String circular buffer. Commands may be pushed to the buffer from both sides:
  349. // Chained commands will be pushed to the front, interactive (from LCD menu)
  350. // and printing commands (from serial line or from SD card) are pushed to the tail.
  351. // First character of each entry indicates the type of the entry:
  352. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  353. // Command in cmdbuffer was sent over USB.
  354. #define CMDBUFFER_CURRENT_TYPE_USB 1
  355. // Command in cmdbuffer was read from SDCARD.
  356. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  357. // Command in cmdbuffer was generated by the UI.
  358. #define CMDBUFFER_CURRENT_TYPE_UI 3
  359. // Command in cmdbuffer was generated by another G-code.
  360. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  361. // How much space to reserve for the chained commands
  362. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  363. // which are pushed to the front of the queue?
  364. // Maximum 5 commands of max length 20 + null terminator.
  365. #define CMDBUFFER_RESERVE_FRONT (5*21)
  366. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  367. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  368. // Head of the circular buffer, where to read.
  369. static int bufindr = 0;
  370. // Tail of the buffer, where to write.
  371. static int bufindw = 0;
  372. // Number of lines in cmdbuffer.
  373. static int buflen = 0;
  374. // Flag for processing the current command inside the main Arduino loop().
  375. // If a new command was pushed to the front of a command buffer while
  376. // processing another command, this replaces the command on the top.
  377. // Therefore don't remove the command from the queue in the loop() function.
  378. static bool cmdbuffer_front_already_processed = false;
  379. // Type of a command, which is to be executed right now.
  380. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  381. // String of a command, which is to be executed right now.
  382. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  383. // Enable debugging of the command buffer.
  384. // Debugging information will be sent to serial line.
  385. // #define CMDBUFFER_DEBUG
  386. static int serial_count = 0; //index of character read from serial line
  387. static boolean comment_mode = false;
  388. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  389. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  390. //static float tt = 0;
  391. //static float bt = 0;
  392. //Inactivity shutdown variables
  393. static unsigned long previous_millis_cmd = 0;
  394. unsigned long max_inactive_time = 0;
  395. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  396. unsigned long starttime=0;
  397. unsigned long stoptime=0;
  398. unsigned long _usb_timer = 0;
  399. static uint8_t tmp_extruder;
  400. bool Stopped=false;
  401. #if NUM_SERVOS > 0
  402. Servo servos[NUM_SERVOS];
  403. #endif
  404. bool CooldownNoWait = true;
  405. bool target_direction;
  406. //Insert variables if CHDK is defined
  407. #ifdef CHDK
  408. unsigned long chdkHigh = 0;
  409. boolean chdkActive = false;
  410. #endif
  411. //===========================================================================
  412. //=============================Routines======================================
  413. //===========================================================================
  414. void get_arc_coordinates();
  415. bool setTargetedHotend(int code);
  416. void serial_echopair_P(const char *s_P, float v)
  417. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char *s_P, double v)
  419. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char *s_P, unsigned long v)
  421. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. #ifdef SDSUPPORT
  423. #include "SdFatUtil.h"
  424. int freeMemory() { return SdFatUtil::FreeRam(); }
  425. #else
  426. extern "C" {
  427. extern unsigned int __bss_end;
  428. extern unsigned int __heap_start;
  429. extern void *__brkval;
  430. int freeMemory() {
  431. int free_memory;
  432. if ((int)__brkval == 0)
  433. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  434. else
  435. free_memory = ((int)&free_memory) - ((int)__brkval);
  436. return free_memory;
  437. }
  438. }
  439. #endif //!SDSUPPORT
  440. // Pop the currently processed command from the queue.
  441. // It is expected, that there is at least one command in the queue.
  442. bool cmdqueue_pop_front()
  443. {
  444. if (buflen > 0) {
  445. #ifdef CMDBUFFER_DEBUG
  446. SERIAL_ECHOPGM("Dequeing ");
  447. SERIAL_ECHO(cmdbuffer+bufindr+1);
  448. SERIAL_ECHOLNPGM("");
  449. SERIAL_ECHOPGM("Old indices: buflen ");
  450. SERIAL_ECHO(buflen);
  451. SERIAL_ECHOPGM(", bufindr ");
  452. SERIAL_ECHO(bufindr);
  453. SERIAL_ECHOPGM(", bufindw ");
  454. SERIAL_ECHO(bufindw);
  455. SERIAL_ECHOPGM(", serial_count ");
  456. SERIAL_ECHO(serial_count);
  457. SERIAL_ECHOPGM(", bufsize ");
  458. SERIAL_ECHO(sizeof(cmdbuffer));
  459. SERIAL_ECHOLNPGM("");
  460. #endif /* CMDBUFFER_DEBUG */
  461. if (-- buflen == 0) {
  462. // Empty buffer.
  463. if (serial_count == 0)
  464. // No serial communication is pending. Reset both pointers to zero.
  465. bufindw = 0;
  466. bufindr = bufindw;
  467. } else {
  468. // There is at least one ready line in the buffer.
  469. // First skip the current command ID and iterate up to the end of the string.
  470. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  471. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  472. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  473. // If the end of the buffer was empty,
  474. if (bufindr == sizeof(cmdbuffer)) {
  475. // skip to the start and find the nonzero command.
  476. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  477. }
  478. #ifdef CMDBUFFER_DEBUG
  479. SERIAL_ECHOPGM("New indices: buflen ");
  480. SERIAL_ECHO(buflen);
  481. SERIAL_ECHOPGM(", bufindr ");
  482. SERIAL_ECHO(bufindr);
  483. SERIAL_ECHOPGM(", bufindw ");
  484. SERIAL_ECHO(bufindw);
  485. SERIAL_ECHOPGM(", serial_count ");
  486. SERIAL_ECHO(serial_count);
  487. SERIAL_ECHOPGM(" new command on the top: ");
  488. SERIAL_ECHO(cmdbuffer+bufindr+1);
  489. SERIAL_ECHOLNPGM("");
  490. #endif /* CMDBUFFER_DEBUG */
  491. }
  492. return true;
  493. }
  494. return false;
  495. }
  496. void cmdqueue_reset()
  497. {
  498. while (cmdqueue_pop_front()) ;
  499. }
  500. // How long a string could be pushed to the front of the command queue?
  501. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  502. // len_asked does not contain the zero terminator size.
  503. bool cmdqueue_could_enqueue_front(int len_asked)
  504. {
  505. // MAX_CMD_SIZE has to accommodate the zero terminator.
  506. if (len_asked >= MAX_CMD_SIZE)
  507. return false;
  508. // Remove the currently processed command from the queue.
  509. if (! cmdbuffer_front_already_processed) {
  510. cmdqueue_pop_front();
  511. cmdbuffer_front_already_processed = true;
  512. }
  513. if (bufindr == bufindw && buflen > 0)
  514. // Full buffer.
  515. return false;
  516. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  517. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  518. if (bufindw < bufindr) {
  519. int bufindr_new = bufindr - len_asked - 2;
  520. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  521. if (endw <= bufindr_new) {
  522. bufindr = bufindr_new;
  523. return true;
  524. }
  525. } else {
  526. // Otherwise the free space is split between the start and end.
  527. if (len_asked + 2 <= bufindr) {
  528. // Could fit at the start.
  529. bufindr -= len_asked + 2;
  530. return true;
  531. }
  532. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  533. if (endw <= bufindr_new) {
  534. memset(cmdbuffer, 0, bufindr);
  535. bufindr = bufindr_new;
  536. return true;
  537. }
  538. }
  539. return false;
  540. }
  541. // Could one enqueue a command of lenthg len_asked into the buffer,
  542. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  543. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  544. // len_asked does not contain the zero terminator size.
  545. bool cmdqueue_could_enqueue_back(int len_asked)
  546. {
  547. // MAX_CMD_SIZE has to accommodate the zero terminator.
  548. if (len_asked >= MAX_CMD_SIZE)
  549. return false;
  550. if (bufindr == bufindw && buflen > 0)
  551. // Full buffer.
  552. return false;
  553. if (serial_count > 0) {
  554. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  555. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  556. // serial data.
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. } else {
  578. // How much memory to reserve for the commands pushed to the front?
  579. // End of the queue, when pushing to the end.
  580. int endw = bufindw + len_asked + 2;
  581. if (bufindw < bufindr)
  582. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  583. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  584. // Otherwise the free space is split between the start and end.
  585. if (// Could one fit to the end, including the reserve?
  586. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  587. // Could one fit to the end, and the reserve to the start?
  588. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  589. return true;
  590. // Could one fit both to the start?
  591. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  592. // Mark the rest of the buffer as used.
  593. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  594. // and point to the start.
  595. bufindw = 0;
  596. return true;
  597. }
  598. }
  599. return false;
  600. }
  601. #ifdef CMDBUFFER_DEBUG
  602. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  603. {
  604. SERIAL_ECHOPGM("Entry nr: ");
  605. SERIAL_ECHO(nr);
  606. SERIAL_ECHOPGM(", type: ");
  607. SERIAL_ECHO(int(*p));
  608. SERIAL_ECHOPGM(", cmd: ");
  609. SERIAL_ECHO(p+1);
  610. SERIAL_ECHOLNPGM("");
  611. }
  612. static void cmdqueue_dump_to_serial()
  613. {
  614. if (buflen == 0) {
  615. SERIAL_ECHOLNPGM("The command buffer is empty.");
  616. } else {
  617. SERIAL_ECHOPGM("Content of the buffer: entries ");
  618. SERIAL_ECHO(buflen);
  619. SERIAL_ECHOPGM(", indr ");
  620. SERIAL_ECHO(bufindr);
  621. SERIAL_ECHOPGM(", indw ");
  622. SERIAL_ECHO(bufindw);
  623. SERIAL_ECHOLNPGM("");
  624. int nr = 0;
  625. if (bufindr < bufindw) {
  626. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  627. cmdqueue_dump_to_serial_single_line(nr, p);
  628. // Skip the command.
  629. for (++p; *p != 0; ++ p);
  630. // Skip the gaps.
  631. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  632. }
  633. } else {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  640. }
  641. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  642. cmdqueue_dump_to_serial_single_line(nr, p);
  643. // Skip the command.
  644. for (++p; *p != 0; ++ p);
  645. // Skip the gaps.
  646. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  647. }
  648. }
  649. SERIAL_ECHOLNPGM("End of the buffer.");
  650. }
  651. }
  652. #endif /* CMDBUFFER_DEBUG */
  653. //adds an command to the main command buffer
  654. //thats really done in a non-safe way.
  655. //needs overworking someday
  656. // Currently the maximum length of a command piped through this function is around 20 characters
  657. void enquecommand(const char *cmd, bool from_progmem)
  658. {
  659. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  660. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  661. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  662. if (cmdqueue_could_enqueue_back(len)) {
  663. // This is dangerous if a mixing of serial and this happens
  664. // This may easily be tested: If serial_count > 0, we have a problem.
  665. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  666. if (from_progmem)
  667. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  668. else
  669. strcpy(cmdbuffer + bufindw + 1, cmd);
  670. SERIAL_ECHO_START;
  671. SERIAL_ECHORPGM(MSG_Enqueing);
  672. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  673. SERIAL_ECHOLNPGM("\"");
  674. bufindw += len + 2;
  675. if (bufindw == sizeof(cmdbuffer))
  676. bufindw = 0;
  677. ++ buflen;
  678. #ifdef CMDBUFFER_DEBUG
  679. cmdqueue_dump_to_serial();
  680. #endif /* CMDBUFFER_DEBUG */
  681. } else {
  682. SERIAL_ERROR_START;
  683. SERIAL_ECHORPGM(MSG_Enqueing);
  684. if (from_progmem)
  685. SERIAL_PROTOCOLRPGM(cmd);
  686. else
  687. SERIAL_ECHO(cmd);
  688. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. }
  693. }
  694. void enquecommand_front(const char *cmd, bool from_progmem)
  695. {
  696. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  697. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  698. if (cmdqueue_could_enqueue_front(len)) {
  699. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  700. if (from_progmem)
  701. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  702. else
  703. strcpy(cmdbuffer + bufindr + 1, cmd);
  704. ++ buflen;
  705. SERIAL_ECHO_START;
  706. SERIAL_ECHOPGM("Enqueing to the front: \"");
  707. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  708. SERIAL_ECHOLNPGM("\"");
  709. #ifdef CMDBUFFER_DEBUG
  710. cmdqueue_dump_to_serial();
  711. #endif /* CMDBUFFER_DEBUG */
  712. } else {
  713. SERIAL_ERROR_START;
  714. SERIAL_ECHOPGM("Enqueing to the front: \"");
  715. if (from_progmem)
  716. SERIAL_PROTOCOLRPGM(cmd);
  717. else
  718. SERIAL_ECHO(cmd);
  719. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  720. #ifdef CMDBUFFER_DEBUG
  721. cmdqueue_dump_to_serial();
  722. #endif /* CMDBUFFER_DEBUG */
  723. }
  724. }
  725. // Mark the command at the top of the command queue as new.
  726. // Therefore it will not be removed from the queue.
  727. void repeatcommand_front()
  728. {
  729. cmdbuffer_front_already_processed = true;
  730. }
  731. bool is_buffer_empty()
  732. {
  733. if (buflen == 0) return true;
  734. else return false;
  735. }
  736. void setup_killpin()
  737. {
  738. #if defined(KILL_PIN) && KILL_PIN > -1
  739. SET_INPUT(KILL_PIN);
  740. WRITE(KILL_PIN,HIGH);
  741. #endif
  742. }
  743. // Set home pin
  744. void setup_homepin(void)
  745. {
  746. #if defined(HOME_PIN) && HOME_PIN > -1
  747. SET_INPUT(HOME_PIN);
  748. WRITE(HOME_PIN,HIGH);
  749. #endif
  750. }
  751. void setup_photpin()
  752. {
  753. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  754. SET_OUTPUT(PHOTOGRAPH_PIN);
  755. WRITE(PHOTOGRAPH_PIN, LOW);
  756. #endif
  757. }
  758. void setup_powerhold()
  759. {
  760. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  761. SET_OUTPUT(SUICIDE_PIN);
  762. WRITE(SUICIDE_PIN, HIGH);
  763. #endif
  764. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  765. SET_OUTPUT(PS_ON_PIN);
  766. #if defined(PS_DEFAULT_OFF)
  767. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  768. #else
  769. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  770. #endif
  771. #endif
  772. }
  773. void suicide()
  774. {
  775. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  776. SET_OUTPUT(SUICIDE_PIN);
  777. WRITE(SUICIDE_PIN, LOW);
  778. #endif
  779. }
  780. void servo_init()
  781. {
  782. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  783. servos[0].attach(SERVO0_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  786. servos[1].attach(SERVO1_PIN);
  787. #endif
  788. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  789. servos[2].attach(SERVO2_PIN);
  790. #endif
  791. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  792. servos[3].attach(SERVO3_PIN);
  793. #endif
  794. #if (NUM_SERVOS >= 5)
  795. #error "TODO: enter initalisation code for more servos"
  796. #endif
  797. }
  798. static void lcd_language_menu();
  799. #ifdef MESH_BED_LEVELING
  800. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  801. #endif
  802. // Factory reset function
  803. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  804. // Level input parameter sets depth of reset
  805. // Quiet parameter masks all waitings for user interact.
  806. int er_progress = 0;
  807. void factory_reset(char level, bool quiet)
  808. {
  809. lcd_implementation_clear();
  810. int cursor_pos = 0;
  811. switch (level) {
  812. // Level 0: Language reset
  813. case 0:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. lcd_force_language_selection();
  818. break;
  819. //Level 1: Reset statistics
  820. case 1:
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  825. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  826. lcd_menu_statistics();
  827. break;
  828. // Level 2: Prepare for shipping
  829. case 2:
  830. //lcd_printPGM(PSTR("Factory RESET"));
  831. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  832. // Force language selection at the next boot up.
  833. lcd_force_language_selection();
  834. // Force the "Follow calibration flow" message at the next boot up.
  835. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  836. farm_no = 0;
  837. farm_mode == false;
  838. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  839. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  840. WRITE(BEEPER, HIGH);
  841. _delay_ms(100);
  842. WRITE(BEEPER, LOW);
  843. //_delay_ms(2000);
  844. break;
  845. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  846. case 3:
  847. lcd_printPGM(PSTR("Factory RESET"));
  848. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  849. WRITE(BEEPER, HIGH);
  850. _delay_ms(100);
  851. WRITE(BEEPER, LOW);
  852. er_progress = 0;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. // Erase EEPROM
  856. for (int i = 0; i < 4096; i++) {
  857. eeprom_write_byte((uint8_t*)i, 0xFF);
  858. if (i % 41 == 0) {
  859. er_progress++;
  860. lcd_print_at_PGM(3, 3, PSTR(" "));
  861. lcd_implementation_print_at(3, 3, er_progress);
  862. lcd_printPGM(PSTR("%"));
  863. }
  864. }
  865. break;
  866. case 4:
  867. bowden_menu();
  868. break;
  869. default:
  870. break;
  871. }
  872. }
  873. // "Setup" function is called by the Arduino framework on startup.
  874. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  875. // are initialized by the main() routine provided by the Arduino framework.
  876. void setup()
  877. {
  878. lcd_init();
  879. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  880. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  881. setup_killpin();
  882. setup_powerhold();
  883. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  884. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  885. //if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  886. if (farm_no == 0xFFFF) farm_no = 0;
  887. if (farm_mode)
  888. {
  889. prusa_statistics(8);
  890. no_response = true; //we need confirmation by recieving PRUSA thx
  891. important_status = 8;
  892. selectedSerialPort = 1;
  893. } else {
  894. selectedSerialPort = 0;
  895. }
  896. MYSERIAL.begin(BAUDRATE);
  897. SERIAL_PROTOCOLLNPGM("start");
  898. SERIAL_ECHO_START;
  899. #if 0
  900. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  901. for (int i = 0; i < 4096; ++i) {
  902. int b = eeprom_read_byte((unsigned char*)i);
  903. if (b != 255) {
  904. SERIAL_ECHO(i);
  905. SERIAL_ECHO(":");
  906. SERIAL_ECHO(b);
  907. SERIAL_ECHOLN("");
  908. }
  909. }
  910. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  911. #endif
  912. // Check startup - does nothing if bootloader sets MCUSR to 0
  913. byte mcu = MCUSR;
  914. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  915. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  916. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  917. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  918. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  919. MCUSR = 0;
  920. //SERIAL_ECHORPGM(MSG_MARLIN);
  921. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  922. #ifdef STRING_VERSION_CONFIG_H
  923. #ifdef STRING_CONFIG_H_AUTHOR
  924. SERIAL_ECHO_START;
  925. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  926. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  927. SERIAL_ECHORPGM(MSG_AUTHOR);
  928. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  929. SERIAL_ECHOPGM("Compiled: ");
  930. SERIAL_ECHOLNPGM(__DATE__);
  931. #endif
  932. #endif
  933. SERIAL_ECHO_START;
  934. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  935. SERIAL_ECHO(freeMemory());
  936. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  937. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  938. lcd_update_enable(false);
  939. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  940. bool previous_settings_retrieved = Config_RetrieveSettings();
  941. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  942. tp_init(); // Initialize temperature loop
  943. plan_init(); // Initialize planner;
  944. watchdog_init();
  945. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  946. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  947. st_init(); // Initialize stepper, this enables interrupts!
  948. setup_photpin();
  949. servo_init();
  950. // Reset the machine correction matrix.
  951. // It does not make sense to load the correction matrix until the machine is homed.
  952. world2machine_reset();
  953. lcd_init();
  954. if (!READ(BTN_ENC))
  955. {
  956. _delay_ms(1000);
  957. if (!READ(BTN_ENC))
  958. {
  959. lcd_implementation_clear();
  960. lcd_printPGM(PSTR("Factory RESET"));
  961. SET_OUTPUT(BEEPER);
  962. WRITE(BEEPER, HIGH);
  963. while (!READ(BTN_ENC));
  964. WRITE(BEEPER, LOW);
  965. _delay_ms(2000);
  966. char level = reset_menu();
  967. factory_reset(level, false);
  968. switch (level) {
  969. case 0: _delay_ms(0); break;
  970. case 1: _delay_ms(0); break;
  971. case 2: _delay_ms(0); break;
  972. case 3: _delay_ms(0); break;
  973. }
  974. // _delay_ms(100);
  975. /*
  976. #ifdef MESH_BED_LEVELING
  977. _delay_ms(2000);
  978. if (!READ(BTN_ENC))
  979. {
  980. WRITE(BEEPER, HIGH);
  981. _delay_ms(100);
  982. WRITE(BEEPER, LOW);
  983. _delay_ms(200);
  984. WRITE(BEEPER, HIGH);
  985. _delay_ms(100);
  986. WRITE(BEEPER, LOW);
  987. int _z = 0;
  988. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  989. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  990. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  991. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  992. }
  993. else
  994. {
  995. WRITE(BEEPER, HIGH);
  996. _delay_ms(100);
  997. WRITE(BEEPER, LOW);
  998. }
  999. #endif // mesh */
  1000. }
  1001. }
  1002. else
  1003. {
  1004. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1005. }
  1006. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1007. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1008. #endif
  1009. #ifdef DIGIPOT_I2C
  1010. digipot_i2c_init();
  1011. #endif
  1012. setup_homepin();
  1013. #if defined(Z_AXIS_ALWAYS_ON)
  1014. enable_z();
  1015. #endif
  1016. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1017. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1018. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1019. if (farm_no == 0xFFFF) farm_no = 0;
  1020. if (farm_mode)
  1021. {
  1022. prusa_statistics(8);
  1023. no_response = true; //we need confirmation by recieving PRUSA thx
  1024. important_status = 8;
  1025. }
  1026. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1027. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. card.initsd();
  1031. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1032. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1033. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1034. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1035. // where all the EEPROM entries are set to 0x0ff.
  1036. // Once a firmware boots up, it forces at least a language selection, which changes
  1037. // EEPROM_LANG to number lower than 0x0ff.
  1038. // 1) Set a high power mode.
  1039. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1040. }
  1041. #ifdef SNMM
  1042. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1043. int _z = BOWDEN_LENGTH;
  1044. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1045. }
  1046. #endif
  1047. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1048. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1049. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1050. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1051. if (lang_selected >= LANG_NUM){
  1052. lcd_mylang();
  1053. }
  1054. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1055. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1056. temp_cal_active = false;
  1057. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1060. }
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1063. }
  1064. #ifndef DEBUG_DISABLE_STARTMSGS
  1065. check_babystep(); //checking if Z babystep is in allowed range
  1066. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1067. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1068. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1069. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1070. // Show the message.
  1071. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1072. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1073. // Show the message.
  1074. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1075. lcd_update_enable(true);
  1076. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1077. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1078. lcd_update_enable(true);
  1079. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1080. // Show the message.
  1081. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1082. }
  1083. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1084. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1085. if (!previous_settings_retrieved) {
  1086. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1087. }
  1088. #endif //DEBUG_DISABLE_STARTMSGS
  1089. lcd_update_enable(true);
  1090. // Store the currently running firmware into an eeprom,
  1091. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1092. update_current_firmware_version_to_eeprom();
  1093. }
  1094. void trace();
  1095. #define CHUNK_SIZE 64 // bytes
  1096. #define SAFETY_MARGIN 1
  1097. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1098. int chunkHead = 0;
  1099. int serial_read_stream() {
  1100. setTargetHotend(0, 0);
  1101. setTargetBed(0);
  1102. lcd_implementation_clear();
  1103. lcd_printPGM(PSTR(" Upload in progress"));
  1104. // first wait for how many bytes we will receive
  1105. uint32_t bytesToReceive;
  1106. // receive the four bytes
  1107. char bytesToReceiveBuffer[4];
  1108. for (int i=0; i<4; i++) {
  1109. int data;
  1110. while ((data = MYSERIAL.read()) == -1) {};
  1111. bytesToReceiveBuffer[i] = data;
  1112. }
  1113. // make it a uint32
  1114. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1115. // we're ready, notify the sender
  1116. MYSERIAL.write('+');
  1117. // lock in the routine
  1118. uint32_t receivedBytes = 0;
  1119. while (prusa_sd_card_upload) {
  1120. int i;
  1121. for (i=0; i<CHUNK_SIZE; i++) {
  1122. int data;
  1123. // check if we're not done
  1124. if (receivedBytes == bytesToReceive) {
  1125. break;
  1126. }
  1127. // read the next byte
  1128. while ((data = MYSERIAL.read()) == -1) {};
  1129. receivedBytes++;
  1130. // save it to the chunk
  1131. chunk[i] = data;
  1132. }
  1133. // write the chunk to SD
  1134. card.write_command_no_newline(&chunk[0]);
  1135. // notify the sender we're ready for more data
  1136. MYSERIAL.write('+');
  1137. // for safety
  1138. manage_heater();
  1139. // check if we're done
  1140. if(receivedBytes == bytesToReceive) {
  1141. trace(); // beep
  1142. card.closefile();
  1143. prusa_sd_card_upload = false;
  1144. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1145. return 0;
  1146. }
  1147. }
  1148. }
  1149. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1150. // Before loop(), the setup() function is called by the main() routine.
  1151. void loop()
  1152. {
  1153. bool stack_integrity = true;
  1154. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1155. {
  1156. is_usb_printing = true;
  1157. usb_printing_counter--;
  1158. _usb_timer = millis();
  1159. }
  1160. if (usb_printing_counter == 0)
  1161. {
  1162. is_usb_printing = false;
  1163. }
  1164. if (prusa_sd_card_upload)
  1165. {
  1166. //we read byte-by byte
  1167. serial_read_stream();
  1168. } else
  1169. {
  1170. get_command();
  1171. #ifdef SDSUPPORT
  1172. card.checkautostart(false);
  1173. #endif
  1174. if(buflen)
  1175. {
  1176. #ifdef SDSUPPORT
  1177. if(card.saving)
  1178. {
  1179. // Saving a G-code file onto an SD-card is in progress.
  1180. // Saving starts with M28, saving until M29 is seen.
  1181. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1182. card.write_command(CMDBUFFER_CURRENT_STRING);
  1183. if(card.logging)
  1184. process_commands();
  1185. else
  1186. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1187. } else {
  1188. card.closefile();
  1189. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1190. }
  1191. } else {
  1192. process_commands();
  1193. }
  1194. #else
  1195. process_commands();
  1196. #endif //SDSUPPORT
  1197. if (! cmdbuffer_front_already_processed)
  1198. cmdqueue_pop_front();
  1199. cmdbuffer_front_already_processed = false;
  1200. }
  1201. }
  1202. //check heater every n milliseconds
  1203. manage_heater();
  1204. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1205. checkHitEndstops();
  1206. lcd_update();
  1207. }
  1208. void proc_commands() {
  1209. if (buflen)
  1210. {
  1211. process_commands();
  1212. if (!cmdbuffer_front_already_processed)
  1213. cmdqueue_pop_front();
  1214. cmdbuffer_front_already_processed = false;
  1215. }
  1216. }
  1217. void get_command()
  1218. {
  1219. // Test and reserve space for the new command string.
  1220. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1221. return;
  1222. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1223. while (MYSERIAL.available() > 0) {
  1224. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1225. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1226. rx_buffer_full = true; //sets flag that buffer was full
  1227. }
  1228. char serial_char = MYSERIAL.read();
  1229. if (selectedSerialPort == 1) {
  1230. selectedSerialPort = 0;
  1231. MYSERIAL.write(serial_char);
  1232. selectedSerialPort = 1;
  1233. }
  1234. TimeSent = millis();
  1235. TimeNow = millis();
  1236. if (serial_char < 0)
  1237. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1238. // and Marlin does not support such file names anyway.
  1239. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1240. // to a hang-up of the print process from an SD card.
  1241. continue;
  1242. if(serial_char == '\n' ||
  1243. serial_char == '\r' ||
  1244. (serial_char == ':' && comment_mode == false) ||
  1245. serial_count >= (MAX_CMD_SIZE - 1) )
  1246. {
  1247. if(!serial_count) { //if empty line
  1248. comment_mode = false; //for new command
  1249. return;
  1250. }
  1251. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1252. if(!comment_mode){
  1253. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1254. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1255. {
  1256. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1257. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1258. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1259. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1260. // M110 - set current line number.
  1261. // Line numbers not sent in succession.
  1262. SERIAL_ERROR_START;
  1263. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1264. SERIAL_ERRORLN(gcode_LastN);
  1265. //Serial.println(gcode_N);
  1266. FlushSerialRequestResend();
  1267. serial_count = 0;
  1268. return;
  1269. }
  1270. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1271. {
  1272. byte checksum = 0;
  1273. char *p = cmdbuffer+bufindw+1;
  1274. while (p != strchr_pointer)
  1275. checksum = checksum^(*p++);
  1276. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1277. SERIAL_ERROR_START;
  1278. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1279. SERIAL_ERRORLN(gcode_LastN);
  1280. FlushSerialRequestResend();
  1281. serial_count = 0;
  1282. return;
  1283. }
  1284. // If no errors, remove the checksum and continue parsing.
  1285. *strchr_pointer = 0;
  1286. }
  1287. else
  1288. {
  1289. SERIAL_ERROR_START;
  1290. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1291. SERIAL_ERRORLN(gcode_LastN);
  1292. FlushSerialRequestResend();
  1293. serial_count = 0;
  1294. return;
  1295. }
  1296. gcode_LastN = gcode_N;
  1297. //if no errors, continue parsing
  1298. } // end of 'N' command
  1299. }
  1300. else // if we don't receive 'N' but still see '*'
  1301. {
  1302. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1303. {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1306. SERIAL_ERRORLN(gcode_LastN);
  1307. serial_count = 0;
  1308. return;
  1309. }
  1310. } // end of '*' command
  1311. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1312. if (! IS_SD_PRINTING) {
  1313. usb_printing_counter = 10;
  1314. is_usb_printing = true;
  1315. }
  1316. if (Stopped == true) {
  1317. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1318. if (gcode >= 0 && gcode <= 3) {
  1319. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1320. LCD_MESSAGERPGM(MSG_STOPPED);
  1321. }
  1322. }
  1323. } // end of 'G' command
  1324. //If command was e-stop process now
  1325. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1326. kill();
  1327. // Store the current line into buffer, move to the next line.
  1328. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1329. #ifdef CMDBUFFER_DEBUG
  1330. SERIAL_ECHO_START;
  1331. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1332. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1333. SERIAL_ECHOLNPGM("");
  1334. #endif /* CMDBUFFER_DEBUG */
  1335. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1336. if (bufindw == sizeof(cmdbuffer))
  1337. bufindw = 0;
  1338. ++ buflen;
  1339. #ifdef CMDBUFFER_DEBUG
  1340. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1341. SERIAL_ECHO(buflen);
  1342. SERIAL_ECHOLNPGM("");
  1343. #endif /* CMDBUFFER_DEBUG */
  1344. } // end of 'not comment mode'
  1345. serial_count = 0; //clear buffer
  1346. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1347. // in the queue, as this function will reserve the memory.
  1348. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1349. return;
  1350. } // end of "end of line" processing
  1351. else {
  1352. // Not an "end of line" symbol. Store the new character into a buffer.
  1353. if(serial_char == ';') comment_mode = true;
  1354. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1355. }
  1356. } // end of serial line processing loop
  1357. if(farm_mode){
  1358. TimeNow = millis();
  1359. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1360. cmdbuffer[bufindw+serial_count+1] = 0;
  1361. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1362. if (bufindw == sizeof(cmdbuffer))
  1363. bufindw = 0;
  1364. ++ buflen;
  1365. serial_count = 0;
  1366. SERIAL_ECHOPGM("TIMEOUT:");
  1367. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1368. return;
  1369. }
  1370. }
  1371. //add comment
  1372. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1373. rx_buffer_full = false;
  1374. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1375. serial_count = 0;
  1376. }
  1377. #ifdef SDSUPPORT
  1378. if(!card.sdprinting || serial_count!=0){
  1379. // If there is a half filled buffer from serial line, wait until return before
  1380. // continuing with the serial line.
  1381. return;
  1382. }
  1383. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1384. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1385. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1386. static bool stop_buffering=false;
  1387. if(buflen==0) stop_buffering=false;
  1388. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1389. while( !card.eof() && !stop_buffering) {
  1390. int16_t n=card.get();
  1391. char serial_char = (char)n;
  1392. if(serial_char == '\n' ||
  1393. serial_char == '\r' ||
  1394. (serial_char == '#' && comment_mode == false) ||
  1395. (serial_char == ':' && comment_mode == false) ||
  1396. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1397. {
  1398. if(card.eof()){
  1399. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1400. stoptime=millis();
  1401. char time[30];
  1402. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1403. pause_time = 0;
  1404. int hours, minutes;
  1405. minutes=(t/60)%60;
  1406. hours=t/60/60;
  1407. save_statistics(total_filament_used, t);
  1408. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1409. SERIAL_ECHO_START;
  1410. SERIAL_ECHOLN(time);
  1411. lcd_setstatus(time);
  1412. card.printingHasFinished();
  1413. card.checkautostart(true);
  1414. if (farm_mode)
  1415. {
  1416. prusa_statistics(6);
  1417. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1418. }
  1419. }
  1420. if(serial_char=='#')
  1421. stop_buffering=true;
  1422. if(!serial_count)
  1423. {
  1424. comment_mode = false; //for new command
  1425. return; //if empty line
  1426. }
  1427. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1428. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1429. ++ buflen;
  1430. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1431. if (bufindw == sizeof(cmdbuffer))
  1432. bufindw = 0;
  1433. comment_mode = false; //for new command
  1434. serial_count = 0; //clear buffer
  1435. // The following line will reserve buffer space if available.
  1436. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1437. return;
  1438. }
  1439. else
  1440. {
  1441. if(serial_char == ';') comment_mode = true;
  1442. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1443. }
  1444. }
  1445. #endif //SDSUPPORT
  1446. }
  1447. // Return True if a character was found
  1448. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1449. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1450. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1451. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1452. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1453. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1454. static inline float code_value_float() {
  1455. char* e = strchr(strchr_pointer, 'E');
  1456. if (!e) return strtod(strchr_pointer + 1, NULL);
  1457. *e = 0;
  1458. float ret = strtod(strchr_pointer + 1, NULL);
  1459. *e = 'E';
  1460. return ret;
  1461. }
  1462. #define DEFINE_PGM_READ_ANY(type, reader) \
  1463. static inline type pgm_read_any(const type *p) \
  1464. { return pgm_read_##reader##_near(p); }
  1465. DEFINE_PGM_READ_ANY(float, float);
  1466. DEFINE_PGM_READ_ANY(signed char, byte);
  1467. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1468. static const PROGMEM type array##_P[3] = \
  1469. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1470. static inline type array(int axis) \
  1471. { return pgm_read_any(&array##_P[axis]); } \
  1472. type array##_ext(int axis) \
  1473. { return pgm_read_any(&array##_P[axis]); }
  1474. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1475. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1476. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1477. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1478. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1479. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1480. static void axis_is_at_home(int axis) {
  1481. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1482. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1483. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1484. }
  1485. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1486. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1487. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1488. saved_feedrate = feedrate;
  1489. saved_feedmultiply = feedmultiply;
  1490. feedmultiply = 100;
  1491. previous_millis_cmd = millis();
  1492. enable_endstops(enable_endstops_now);
  1493. }
  1494. static void clean_up_after_endstop_move() {
  1495. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1496. enable_endstops(false);
  1497. #endif
  1498. feedrate = saved_feedrate;
  1499. feedmultiply = saved_feedmultiply;
  1500. previous_millis_cmd = millis();
  1501. }
  1502. #ifdef ENABLE_AUTO_BED_LEVELING
  1503. #ifdef AUTO_BED_LEVELING_GRID
  1504. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1505. {
  1506. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1507. planeNormal.debug("planeNormal");
  1508. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1509. //bedLevel.debug("bedLevel");
  1510. //plan_bed_level_matrix.debug("bed level before");
  1511. //vector_3 uncorrected_position = plan_get_position_mm();
  1512. //uncorrected_position.debug("position before");
  1513. vector_3 corrected_position = plan_get_position();
  1514. // corrected_position.debug("position after");
  1515. current_position[X_AXIS] = corrected_position.x;
  1516. current_position[Y_AXIS] = corrected_position.y;
  1517. current_position[Z_AXIS] = corrected_position.z;
  1518. // put the bed at 0 so we don't go below it.
  1519. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1520. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1521. }
  1522. #else // not AUTO_BED_LEVELING_GRID
  1523. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1524. plan_bed_level_matrix.set_to_identity();
  1525. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1526. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1527. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1528. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1529. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1530. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1531. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1532. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1533. vector_3 corrected_position = plan_get_position();
  1534. current_position[X_AXIS] = corrected_position.x;
  1535. current_position[Y_AXIS] = corrected_position.y;
  1536. current_position[Z_AXIS] = corrected_position.z;
  1537. // put the bed at 0 so we don't go below it.
  1538. current_position[Z_AXIS] = zprobe_zoffset;
  1539. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1540. }
  1541. #endif // AUTO_BED_LEVELING_GRID
  1542. static void run_z_probe() {
  1543. plan_bed_level_matrix.set_to_identity();
  1544. feedrate = homing_feedrate[Z_AXIS];
  1545. // move down until you find the bed
  1546. float zPosition = -10;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1548. st_synchronize();
  1549. // we have to let the planner know where we are right now as it is not where we said to go.
  1550. zPosition = st_get_position_mm(Z_AXIS);
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1552. // move up the retract distance
  1553. zPosition += home_retract_mm(Z_AXIS);
  1554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. // move back down slowly to find bed
  1557. feedrate = homing_feedrate[Z_AXIS]/4;
  1558. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1562. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. }
  1565. static void do_blocking_move_to(float x, float y, float z) {
  1566. float oldFeedRate = feedrate;
  1567. feedrate = homing_feedrate[Z_AXIS];
  1568. current_position[Z_AXIS] = z;
  1569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1570. st_synchronize();
  1571. feedrate = XY_TRAVEL_SPEED;
  1572. current_position[X_AXIS] = x;
  1573. current_position[Y_AXIS] = y;
  1574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. feedrate = oldFeedRate;
  1577. }
  1578. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1579. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1580. }
  1581. /// Probe bed height at position (x,y), returns the measured z value
  1582. static float probe_pt(float x, float y, float z_before) {
  1583. // move to right place
  1584. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1585. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1586. run_z_probe();
  1587. float measured_z = current_position[Z_AXIS];
  1588. SERIAL_PROTOCOLRPGM(MSG_BED);
  1589. SERIAL_PROTOCOLPGM(" x: ");
  1590. SERIAL_PROTOCOL(x);
  1591. SERIAL_PROTOCOLPGM(" y: ");
  1592. SERIAL_PROTOCOL(y);
  1593. SERIAL_PROTOCOLPGM(" z: ");
  1594. SERIAL_PROTOCOL(measured_z);
  1595. SERIAL_PROTOCOLPGM("\n");
  1596. return measured_z;
  1597. }
  1598. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1599. #ifdef LIN_ADVANCE
  1600. /**
  1601. * M900: Set and/or Get advance K factor and WH/D ratio
  1602. *
  1603. * K<factor> Set advance K factor
  1604. * R<ratio> Set ratio directly (overrides WH/D)
  1605. * W<width> H<height> D<diam> Set ratio from WH/D
  1606. */
  1607. inline void gcode_M900() {
  1608. st_synchronize();
  1609. const float newK = code_seen('K') ? code_value_float() : -1;
  1610. if (newK >= 0) extruder_advance_k = newK;
  1611. float newR = code_seen('R') ? code_value_float() : -1;
  1612. if (newR < 0) {
  1613. const float newD = code_seen('D') ? code_value_float() : -1,
  1614. newW = code_seen('W') ? code_value_float() : -1,
  1615. newH = code_seen('H') ? code_value_float() : -1;
  1616. if (newD >= 0 && newW >= 0 && newH >= 0)
  1617. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1618. }
  1619. if (newR >= 0) advance_ed_ratio = newR;
  1620. SERIAL_ECHO_START;
  1621. SERIAL_ECHOPGM("Advance K=");
  1622. SERIAL_ECHOLN(extruder_advance_k);
  1623. SERIAL_ECHOPGM(" E/D=");
  1624. const float ratio = advance_ed_ratio;
  1625. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1626. }
  1627. #endif // LIN_ADVANCE
  1628. void homeaxis(int axis) {
  1629. #define HOMEAXIS_DO(LETTER) \
  1630. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1631. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1632. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1633. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1634. 0) {
  1635. int axis_home_dir = home_dir(axis);
  1636. current_position[axis] = 0;
  1637. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1638. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1639. feedrate = homing_feedrate[axis];
  1640. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1641. st_synchronize();
  1642. current_position[axis] = 0;
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1644. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1645. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1646. st_synchronize();
  1647. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1648. feedrate = homing_feedrate[axis]/2 ;
  1649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1650. st_synchronize();
  1651. axis_is_at_home(axis);
  1652. destination[axis] = current_position[axis];
  1653. feedrate = 0.0;
  1654. endstops_hit_on_purpose();
  1655. axis_known_position[axis] = true;
  1656. }
  1657. }
  1658. void home_xy()
  1659. {
  1660. set_destination_to_current();
  1661. homeaxis(X_AXIS);
  1662. homeaxis(Y_AXIS);
  1663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1664. endstops_hit_on_purpose();
  1665. }
  1666. void refresh_cmd_timeout(void)
  1667. {
  1668. previous_millis_cmd = millis();
  1669. }
  1670. #ifdef FWRETRACT
  1671. void retract(bool retracting, bool swapretract = false) {
  1672. if(retracting && !retracted[active_extruder]) {
  1673. destination[X_AXIS]=current_position[X_AXIS];
  1674. destination[Y_AXIS]=current_position[Y_AXIS];
  1675. destination[Z_AXIS]=current_position[Z_AXIS];
  1676. destination[E_AXIS]=current_position[E_AXIS];
  1677. if (swapretract) {
  1678. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1679. } else {
  1680. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1681. }
  1682. plan_set_e_position(current_position[E_AXIS]);
  1683. float oldFeedrate = feedrate;
  1684. feedrate=retract_feedrate*60;
  1685. retracted[active_extruder]=true;
  1686. prepare_move();
  1687. current_position[Z_AXIS]-=retract_zlift;
  1688. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1689. prepare_move();
  1690. feedrate = oldFeedrate;
  1691. } else if(!retracting && retracted[active_extruder]) {
  1692. destination[X_AXIS]=current_position[X_AXIS];
  1693. destination[Y_AXIS]=current_position[Y_AXIS];
  1694. destination[Z_AXIS]=current_position[Z_AXIS];
  1695. destination[E_AXIS]=current_position[E_AXIS];
  1696. current_position[Z_AXIS]+=retract_zlift;
  1697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1698. //prepare_move();
  1699. if (swapretract) {
  1700. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1701. } else {
  1702. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1703. }
  1704. plan_set_e_position(current_position[E_AXIS]);
  1705. float oldFeedrate = feedrate;
  1706. feedrate=retract_recover_feedrate*60;
  1707. retracted[active_extruder]=false;
  1708. prepare_move();
  1709. feedrate = oldFeedrate;
  1710. }
  1711. } //retract
  1712. #endif //FWRETRACT
  1713. void trace() {
  1714. tone(BEEPER, 440);
  1715. delay(25);
  1716. noTone(BEEPER);
  1717. delay(20);
  1718. }
  1719. /*
  1720. void ramming() {
  1721. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1722. if (current_temperature[0] < 230) {
  1723. //PLA
  1724. max_feedrate[E_AXIS] = 50;
  1725. //current_position[E_AXIS] -= 8;
  1726. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1727. //current_position[E_AXIS] += 8;
  1728. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1729. current_position[E_AXIS] += 5.4;
  1730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1731. current_position[E_AXIS] += 3.2;
  1732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1733. current_position[E_AXIS] += 3;
  1734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1735. st_synchronize();
  1736. max_feedrate[E_AXIS] = 80;
  1737. current_position[E_AXIS] -= 82;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1739. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1740. current_position[E_AXIS] -= 20;
  1741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1742. current_position[E_AXIS] += 5;
  1743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1744. current_position[E_AXIS] += 5;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1746. current_position[E_AXIS] -= 10;
  1747. st_synchronize();
  1748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1749. current_position[E_AXIS] += 10;
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1751. current_position[E_AXIS] -= 10;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1753. current_position[E_AXIS] += 10;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1755. current_position[E_AXIS] -= 10;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1757. st_synchronize();
  1758. }
  1759. else {
  1760. //ABS
  1761. max_feedrate[E_AXIS] = 50;
  1762. //current_position[E_AXIS] -= 8;
  1763. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1764. //current_position[E_AXIS] += 8;
  1765. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1766. current_position[E_AXIS] += 3.1;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1768. current_position[E_AXIS] += 3.1;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1770. current_position[E_AXIS] += 4;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1772. st_synchronize();
  1773. //current_position[X_AXIS] += 23; //delay
  1774. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1775. //current_position[X_AXIS] -= 23; //delay
  1776. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1777. delay(4700);
  1778. max_feedrate[E_AXIS] = 80;
  1779. current_position[E_AXIS] -= 92;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1781. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1782. current_position[E_AXIS] -= 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1784. current_position[E_AXIS] += 5;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1786. current_position[E_AXIS] -= 5;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1788. st_synchronize();
  1789. current_position[E_AXIS] += 5;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1791. current_position[E_AXIS] -= 5;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1793. current_position[E_AXIS] += 5;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1795. current_position[E_AXIS] -= 5;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1797. st_synchronize();
  1798. }
  1799. }
  1800. */
  1801. void process_commands()
  1802. {
  1803. #ifdef FILAMENT_RUNOUT_SUPPORT
  1804. SET_INPUT(FR_SENS);
  1805. #endif
  1806. #ifdef CMDBUFFER_DEBUG
  1807. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1808. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1809. SERIAL_ECHOLNPGM("");
  1810. SERIAL_ECHOPGM("In cmdqueue: ");
  1811. SERIAL_ECHO(buflen);
  1812. SERIAL_ECHOLNPGM("");
  1813. #endif /* CMDBUFFER_DEBUG */
  1814. unsigned long codenum; //throw away variable
  1815. char *starpos = NULL;
  1816. #ifdef ENABLE_AUTO_BED_LEVELING
  1817. float x_tmp, y_tmp, z_tmp, real_z;
  1818. #endif
  1819. // PRUSA GCODES
  1820. #ifdef SNMM
  1821. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1822. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1823. int8_t SilentMode;
  1824. #endif
  1825. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1826. starpos = (strchr(strchr_pointer + 5, '*'));
  1827. if (starpos != NULL)
  1828. *(starpos) = '\0';
  1829. lcd_setstatus(strchr_pointer + 5);
  1830. }
  1831. else if(code_seen("PRUSA")){
  1832. if (code_seen("Ping")) { //PRUSA Ping
  1833. if (farm_mode) {
  1834. PingTime = millis();
  1835. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1836. }
  1837. }
  1838. else if (code_seen("PRN")) {
  1839. MYSERIAL.println(status_number);
  1840. }else if (code_seen("fn")) {
  1841. if (farm_mode) {
  1842. MYSERIAL.println(farm_no);
  1843. }
  1844. else {
  1845. MYSERIAL.println("Not in farm mode.");
  1846. }
  1847. }
  1848. else if (code_seen("thx")) {
  1849. no_response = false;
  1850. }else if (code_seen("fv")) {
  1851. // get file version
  1852. #ifdef SDSUPPORT
  1853. card.openFile(strchr_pointer + 3,true);
  1854. while (true) {
  1855. uint16_t readByte = card.get();
  1856. MYSERIAL.write(readByte);
  1857. if (readByte=='\n') {
  1858. break;
  1859. }
  1860. }
  1861. card.closefile();
  1862. #endif // SDSUPPORT
  1863. } else if (code_seen("M28")) {
  1864. trace();
  1865. prusa_sd_card_upload = true;
  1866. card.openFile(strchr_pointer+4,false);
  1867. } else if (code_seen("SN")) {
  1868. if (farm_mode) {
  1869. selectedSerialPort = 0;
  1870. MSerial.write(";S");
  1871. // S/N is:CZPX0917X003XC13518
  1872. int numbersRead = 0;
  1873. while (numbersRead < 19) {
  1874. while (MSerial.available() > 0) {
  1875. uint8_t serial_char = MSerial.read();
  1876. selectedSerialPort = 1;
  1877. MSerial.write(serial_char);
  1878. numbersRead++;
  1879. selectedSerialPort = 0;
  1880. }
  1881. }
  1882. selectedSerialPort = 1;
  1883. MSerial.write('\n');
  1884. /*for (int b = 0; b < 3; b++) {
  1885. tone(BEEPER, 110);
  1886. delay(50);
  1887. noTone(BEEPER);
  1888. delay(50);
  1889. }*/
  1890. } else {
  1891. MYSERIAL.println("Not in farm mode.");
  1892. }
  1893. } else if(code_seen("Fir")){
  1894. SERIAL_PROTOCOLLN(FW_version);
  1895. } else if(code_seen("Rev")){
  1896. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1897. } else if(code_seen("Lang")) {
  1898. lcd_force_language_selection();
  1899. } else if(code_seen("Lz")) {
  1900. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1901. } else if (code_seen("SERIAL LOW")) {
  1902. MYSERIAL.println("SERIAL LOW");
  1903. MYSERIAL.begin(BAUDRATE);
  1904. return;
  1905. } else if (code_seen("SERIAL HIGH")) {
  1906. MYSERIAL.println("SERIAL HIGH");
  1907. MYSERIAL.begin(1152000);
  1908. return;
  1909. } else if(code_seen("Beat")) {
  1910. // Kick farm link timer
  1911. kicktime = millis();
  1912. } else if(code_seen("FR")) {
  1913. // Factory full reset
  1914. factory_reset(0,true);
  1915. }
  1916. //else if (code_seen('Cal')) {
  1917. // lcd_calibration();
  1918. // }
  1919. }
  1920. else if (code_seen('^')) {
  1921. // nothing, this is a version line
  1922. } else if(code_seen('G'))
  1923. {
  1924. switch((int)code_value())
  1925. {
  1926. case 0: // G0 -> G1
  1927. case 1: // G1
  1928. if(Stopped == false) {
  1929. #ifdef FILAMENT_RUNOUT_SUPPORT
  1930. if(READ(FR_SENS)){
  1931. feedmultiplyBckp=feedmultiply;
  1932. float target[4];
  1933. float lastpos[4];
  1934. target[X_AXIS]=current_position[X_AXIS];
  1935. target[Y_AXIS]=current_position[Y_AXIS];
  1936. target[Z_AXIS]=current_position[Z_AXIS];
  1937. target[E_AXIS]=current_position[E_AXIS];
  1938. lastpos[X_AXIS]=current_position[X_AXIS];
  1939. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1940. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1941. lastpos[E_AXIS]=current_position[E_AXIS];
  1942. //retract by E
  1943. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1945. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1947. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1948. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1949. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1950. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1951. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1952. //finish moves
  1953. st_synchronize();
  1954. //disable extruder steppers so filament can be removed
  1955. disable_e0();
  1956. disable_e1();
  1957. disable_e2();
  1958. delay(100);
  1959. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1960. uint8_t cnt=0;
  1961. int counterBeep = 0;
  1962. lcd_wait_interact();
  1963. while(!lcd_clicked()){
  1964. cnt++;
  1965. manage_heater();
  1966. manage_inactivity(true);
  1967. //lcd_update();
  1968. if(cnt==0)
  1969. {
  1970. #if BEEPER > 0
  1971. if (counterBeep== 500){
  1972. counterBeep = 0;
  1973. }
  1974. SET_OUTPUT(BEEPER);
  1975. if (counterBeep== 0){
  1976. WRITE(BEEPER,HIGH);
  1977. }
  1978. if (counterBeep== 20){
  1979. WRITE(BEEPER,LOW);
  1980. }
  1981. counterBeep++;
  1982. #else
  1983. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1984. lcd_buzz(1000/6,100);
  1985. #else
  1986. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1987. #endif
  1988. #endif
  1989. }
  1990. }
  1991. WRITE(BEEPER,LOW);
  1992. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1993. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1994. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1996. lcd_change_fil_state = 0;
  1997. lcd_loading_filament();
  1998. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1999. lcd_change_fil_state = 0;
  2000. lcd_alright();
  2001. switch(lcd_change_fil_state){
  2002. case 2:
  2003. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2005. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2007. lcd_loading_filament();
  2008. break;
  2009. case 3:
  2010. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2012. lcd_loading_color();
  2013. break;
  2014. default:
  2015. lcd_change_success();
  2016. break;
  2017. }
  2018. }
  2019. target[E_AXIS]+= 5;
  2020. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2021. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2022. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2023. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2024. //plan_set_e_position(current_position[E_AXIS]);
  2025. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2026. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2027. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2028. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2029. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2030. plan_set_e_position(lastpos[E_AXIS]);
  2031. feedmultiply=feedmultiplyBckp;
  2032. char cmd[9];
  2033. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2034. enquecommand(cmd);
  2035. }
  2036. #endif
  2037. get_coordinates(); // For X Y Z E F
  2038. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2039. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2040. }
  2041. #ifdef FWRETRACT
  2042. if(autoretract_enabled)
  2043. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2044. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2045. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2046. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2047. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2048. retract(!retracted);
  2049. return;
  2050. }
  2051. }
  2052. #endif //FWRETRACT
  2053. prepare_move();
  2054. //ClearToSend();
  2055. }
  2056. break;
  2057. case 2: // G2 - CW ARC
  2058. if(Stopped == false) {
  2059. get_arc_coordinates();
  2060. prepare_arc_move(true);
  2061. }
  2062. break;
  2063. case 3: // G3 - CCW ARC
  2064. if(Stopped == false) {
  2065. get_arc_coordinates();
  2066. prepare_arc_move(false);
  2067. }
  2068. break;
  2069. case 4: // G4 dwell
  2070. codenum = 0;
  2071. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2072. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2073. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2074. st_synchronize();
  2075. codenum += millis(); // keep track of when we started waiting
  2076. previous_millis_cmd = millis();
  2077. while(millis() < codenum) {
  2078. manage_heater();
  2079. manage_inactivity();
  2080. lcd_update();
  2081. }
  2082. break;
  2083. #ifdef FWRETRACT
  2084. case 10: // G10 retract
  2085. #if EXTRUDERS > 1
  2086. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2087. retract(true,retracted_swap[active_extruder]);
  2088. #else
  2089. retract(true);
  2090. #endif
  2091. break;
  2092. case 11: // G11 retract_recover
  2093. #if EXTRUDERS > 1
  2094. retract(false,retracted_swap[active_extruder]);
  2095. #else
  2096. retract(false);
  2097. #endif
  2098. break;
  2099. #endif //FWRETRACT
  2100. case 28: //G28 Home all Axis one at a time
  2101. homing_flag = true;
  2102. #ifdef ENABLE_AUTO_BED_LEVELING
  2103. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2104. #endif //ENABLE_AUTO_BED_LEVELING
  2105. // For mesh bed leveling deactivate the matrix temporarily
  2106. #ifdef MESH_BED_LEVELING
  2107. mbl.active = 0;
  2108. #endif
  2109. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2110. // the planner will not perform any adjustments in the XY plane.
  2111. // Wait for the motors to stop and update the current position with the absolute values.
  2112. world2machine_revert_to_uncorrected();
  2113. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2114. // consumed during the first movements following this statement.
  2115. babystep_undo();
  2116. saved_feedrate = feedrate;
  2117. saved_feedmultiply = feedmultiply;
  2118. feedmultiply = 100;
  2119. previous_millis_cmd = millis();
  2120. enable_endstops(true);
  2121. for(int8_t i=0; i < NUM_AXIS; i++)
  2122. destination[i] = current_position[i];
  2123. feedrate = 0.0;
  2124. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2125. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2126. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2127. homeaxis(Z_AXIS);
  2128. }
  2129. #endif
  2130. #ifdef QUICK_HOME
  2131. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2132. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2133. {
  2134. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2135. int x_axis_home_dir = home_dir(X_AXIS);
  2136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2137. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2138. feedrate = homing_feedrate[X_AXIS];
  2139. if(homing_feedrate[Y_AXIS]<feedrate)
  2140. feedrate = homing_feedrate[Y_AXIS];
  2141. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2142. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2143. } else {
  2144. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2145. }
  2146. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2147. st_synchronize();
  2148. axis_is_at_home(X_AXIS);
  2149. axis_is_at_home(Y_AXIS);
  2150. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2151. destination[X_AXIS] = current_position[X_AXIS];
  2152. destination[Y_AXIS] = current_position[Y_AXIS];
  2153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2154. feedrate = 0.0;
  2155. st_synchronize();
  2156. endstops_hit_on_purpose();
  2157. current_position[X_AXIS] = destination[X_AXIS];
  2158. current_position[Y_AXIS] = destination[Y_AXIS];
  2159. current_position[Z_AXIS] = destination[Z_AXIS];
  2160. }
  2161. #endif /* QUICK_HOME */
  2162. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2163. homeaxis(X_AXIS);
  2164. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2165. homeaxis(Y_AXIS);
  2166. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2167. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2168. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2169. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2170. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2171. #ifndef Z_SAFE_HOMING
  2172. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2173. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2174. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2175. feedrate = max_feedrate[Z_AXIS];
  2176. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2177. st_synchronize();
  2178. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2179. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2180. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2181. {
  2182. homeaxis(X_AXIS);
  2183. homeaxis(Y_AXIS);
  2184. }
  2185. // 1st mesh bed leveling measurement point, corrected.
  2186. world2machine_initialize();
  2187. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2188. world2machine_reset();
  2189. if (destination[Y_AXIS] < Y_MIN_POS)
  2190. destination[Y_AXIS] = Y_MIN_POS;
  2191. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2192. feedrate = homing_feedrate[Z_AXIS]/10;
  2193. current_position[Z_AXIS] = 0;
  2194. enable_endstops(false);
  2195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2196. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2197. st_synchronize();
  2198. current_position[X_AXIS] = destination[X_AXIS];
  2199. current_position[Y_AXIS] = destination[Y_AXIS];
  2200. enable_endstops(true);
  2201. endstops_hit_on_purpose();
  2202. homeaxis(Z_AXIS);
  2203. #else // MESH_BED_LEVELING
  2204. homeaxis(Z_AXIS);
  2205. #endif // MESH_BED_LEVELING
  2206. }
  2207. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2208. if(home_all_axis) {
  2209. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2210. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2211. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2212. feedrate = XY_TRAVEL_SPEED/60;
  2213. current_position[Z_AXIS] = 0;
  2214. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2215. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2216. st_synchronize();
  2217. current_position[X_AXIS] = destination[X_AXIS];
  2218. current_position[Y_AXIS] = destination[Y_AXIS];
  2219. homeaxis(Z_AXIS);
  2220. }
  2221. // Let's see if X and Y are homed and probe is inside bed area.
  2222. if(code_seen(axis_codes[Z_AXIS])) {
  2223. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2224. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2225. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2226. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2227. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2228. current_position[Z_AXIS] = 0;
  2229. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2230. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2231. feedrate = max_feedrate[Z_AXIS];
  2232. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2233. st_synchronize();
  2234. homeaxis(Z_AXIS);
  2235. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2236. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2237. SERIAL_ECHO_START;
  2238. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2239. } else {
  2240. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2241. SERIAL_ECHO_START;
  2242. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2243. }
  2244. }
  2245. #endif // Z_SAFE_HOMING
  2246. #endif // Z_HOME_DIR < 0
  2247. if(code_seen(axis_codes[Z_AXIS])) {
  2248. if(code_value_long() != 0) {
  2249. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2250. }
  2251. }
  2252. #ifdef ENABLE_AUTO_BED_LEVELING
  2253. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2254. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2255. }
  2256. #endif
  2257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2258. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2259. enable_endstops(false);
  2260. #endif
  2261. feedrate = saved_feedrate;
  2262. feedmultiply = saved_feedmultiply;
  2263. previous_millis_cmd = millis();
  2264. endstops_hit_on_purpose();
  2265. #ifndef MESH_BED_LEVELING
  2266. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2267. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2268. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2269. lcd_adjust_z();
  2270. #endif
  2271. // Load the machine correction matrix
  2272. world2machine_initialize();
  2273. // and correct the current_position to match the transformed coordinate system.
  2274. world2machine_update_current();
  2275. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2276. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2277. {
  2278. }
  2279. else
  2280. {
  2281. st_synchronize();
  2282. homing_flag = false;
  2283. // Push the commands to the front of the message queue in the reverse order!
  2284. // There shall be always enough space reserved for these commands.
  2285. // enquecommand_front_P((PSTR("G80")));
  2286. goto case_G80;
  2287. }
  2288. #endif
  2289. if (farm_mode) { prusa_statistics(20); };
  2290. homing_flag = false;
  2291. break;
  2292. #ifdef ENABLE_AUTO_BED_LEVELING
  2293. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2294. {
  2295. #if Z_MIN_PIN == -1
  2296. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2297. #endif
  2298. // Prevent user from running a G29 without first homing in X and Y
  2299. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2300. {
  2301. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2302. SERIAL_ECHO_START;
  2303. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2304. break; // abort G29, since we don't know where we are
  2305. }
  2306. st_synchronize();
  2307. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2308. //vector_3 corrected_position = plan_get_position_mm();
  2309. //corrected_position.debug("position before G29");
  2310. plan_bed_level_matrix.set_to_identity();
  2311. vector_3 uncorrected_position = plan_get_position();
  2312. //uncorrected_position.debug("position durring G29");
  2313. current_position[X_AXIS] = uncorrected_position.x;
  2314. current_position[Y_AXIS] = uncorrected_position.y;
  2315. current_position[Z_AXIS] = uncorrected_position.z;
  2316. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2317. setup_for_endstop_move();
  2318. feedrate = homing_feedrate[Z_AXIS];
  2319. #ifdef AUTO_BED_LEVELING_GRID
  2320. // probe at the points of a lattice grid
  2321. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2322. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2323. // solve the plane equation ax + by + d = z
  2324. // A is the matrix with rows [x y 1] for all the probed points
  2325. // B is the vector of the Z positions
  2326. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2327. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2328. // "A" matrix of the linear system of equations
  2329. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2330. // "B" vector of Z points
  2331. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2332. int probePointCounter = 0;
  2333. bool zig = true;
  2334. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2335. {
  2336. int xProbe, xInc;
  2337. if (zig)
  2338. {
  2339. xProbe = LEFT_PROBE_BED_POSITION;
  2340. //xEnd = RIGHT_PROBE_BED_POSITION;
  2341. xInc = xGridSpacing;
  2342. zig = false;
  2343. } else // zag
  2344. {
  2345. xProbe = RIGHT_PROBE_BED_POSITION;
  2346. //xEnd = LEFT_PROBE_BED_POSITION;
  2347. xInc = -xGridSpacing;
  2348. zig = true;
  2349. }
  2350. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2351. {
  2352. float z_before;
  2353. if (probePointCounter == 0)
  2354. {
  2355. // raise before probing
  2356. z_before = Z_RAISE_BEFORE_PROBING;
  2357. } else
  2358. {
  2359. // raise extruder
  2360. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2361. }
  2362. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2363. eqnBVector[probePointCounter] = measured_z;
  2364. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2365. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2366. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2367. probePointCounter++;
  2368. xProbe += xInc;
  2369. }
  2370. }
  2371. clean_up_after_endstop_move();
  2372. // solve lsq problem
  2373. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2374. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2375. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2376. SERIAL_PROTOCOLPGM(" b: ");
  2377. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2378. SERIAL_PROTOCOLPGM(" d: ");
  2379. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2380. set_bed_level_equation_lsq(plane_equation_coefficients);
  2381. free(plane_equation_coefficients);
  2382. #else // AUTO_BED_LEVELING_GRID not defined
  2383. // Probe at 3 arbitrary points
  2384. // probe 1
  2385. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2386. // probe 2
  2387. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2388. // probe 3
  2389. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2390. clean_up_after_endstop_move();
  2391. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2392. #endif // AUTO_BED_LEVELING_GRID
  2393. st_synchronize();
  2394. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2395. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2396. // When the bed is uneven, this height must be corrected.
  2397. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2398. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2399. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2400. z_tmp = current_position[Z_AXIS];
  2401. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2402. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2403. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2404. }
  2405. break;
  2406. #ifndef Z_PROBE_SLED
  2407. case 30: // G30 Single Z Probe
  2408. {
  2409. st_synchronize();
  2410. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2411. setup_for_endstop_move();
  2412. feedrate = homing_feedrate[Z_AXIS];
  2413. run_z_probe();
  2414. SERIAL_PROTOCOLPGM(MSG_BED);
  2415. SERIAL_PROTOCOLPGM(" X: ");
  2416. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2417. SERIAL_PROTOCOLPGM(" Y: ");
  2418. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2419. SERIAL_PROTOCOLPGM(" Z: ");
  2420. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2421. SERIAL_PROTOCOLPGM("\n");
  2422. clean_up_after_endstop_move();
  2423. }
  2424. break;
  2425. #else
  2426. case 31: // dock the sled
  2427. dock_sled(true);
  2428. break;
  2429. case 32: // undock the sled
  2430. dock_sled(false);
  2431. break;
  2432. #endif // Z_PROBE_SLED
  2433. #endif // ENABLE_AUTO_BED_LEVELING
  2434. #ifdef MESH_BED_LEVELING
  2435. case 30: // G30 Single Z Probe
  2436. {
  2437. st_synchronize();
  2438. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2439. setup_for_endstop_move();
  2440. feedrate = homing_feedrate[Z_AXIS];
  2441. find_bed_induction_sensor_point_z(-10.f, 3);
  2442. SERIAL_PROTOCOLRPGM(MSG_BED);
  2443. SERIAL_PROTOCOLPGM(" X: ");
  2444. MYSERIAL.print(current_position[X_AXIS], 5);
  2445. SERIAL_PROTOCOLPGM(" Y: ");
  2446. MYSERIAL.print(current_position[Y_AXIS], 5);
  2447. SERIAL_PROTOCOLPGM(" Z: ");
  2448. MYSERIAL.print(current_position[Z_AXIS], 5);
  2449. SERIAL_PROTOCOLPGM("\n");
  2450. clean_up_after_endstop_move();
  2451. }
  2452. break;
  2453. case 75:
  2454. {
  2455. for (int i = 40; i <= 110; i++) {
  2456. MYSERIAL.print(i);
  2457. MYSERIAL.print(" ");
  2458. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2459. }
  2460. }
  2461. break;
  2462. case 76: //PINDA probe temperature calibration
  2463. {
  2464. setTargetBed(PINDA_MIN_T);
  2465. float zero_z;
  2466. int z_shift = 0; //unit: steps
  2467. int t_c; // temperature
  2468. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2469. // We don't know where we are! HOME!
  2470. // Push the commands to the front of the message queue in the reverse order!
  2471. // There shall be always enough space reserved for these commands.
  2472. repeatcommand_front(); // repeat G76 with all its parameters
  2473. enquecommand_front_P((PSTR("G28 W0")));
  2474. break;
  2475. }
  2476. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2477. custom_message = true;
  2478. custom_message_type = 4;
  2479. custom_message_state = 1;
  2480. custom_message = MSG_TEMP_CALIBRATION;
  2481. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2482. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2483. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2485. st_synchronize();
  2486. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2487. delay_keep_alive(1000);
  2488. serialecho_temperatures();
  2489. }
  2490. //enquecommand_P(PSTR("M190 S50"));
  2491. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2492. delay_keep_alive(1000);
  2493. serialecho_temperatures();
  2494. }
  2495. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2496. current_position[Z_AXIS] = 5;
  2497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2498. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2499. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2501. st_synchronize();
  2502. find_bed_induction_sensor_point_z(-1.f);
  2503. zero_z = current_position[Z_AXIS];
  2504. //current_position[Z_AXIS]
  2505. SERIAL_ECHOLNPGM("");
  2506. SERIAL_ECHOPGM("ZERO: ");
  2507. MYSERIAL.print(current_position[Z_AXIS]);
  2508. SERIAL_ECHOLNPGM("");
  2509. for (int i = 0; i<5; i++) {
  2510. SERIAL_ECHOPGM("Step: ");
  2511. MYSERIAL.print(i+2);
  2512. SERIAL_ECHOLNPGM("/6");
  2513. custom_message_state = i + 2;
  2514. t_c = 60 + i * 10;
  2515. setTargetBed(t_c);
  2516. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2517. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2518. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2520. st_synchronize();
  2521. while (degBed() < t_c) {
  2522. delay_keep_alive(1000);
  2523. serialecho_temperatures();
  2524. }
  2525. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2526. delay_keep_alive(1000);
  2527. serialecho_temperatures();
  2528. }
  2529. current_position[Z_AXIS] = 5;
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2531. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2532. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2534. st_synchronize();
  2535. find_bed_induction_sensor_point_z(-1.f);
  2536. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2537. SERIAL_ECHOLNPGM("");
  2538. SERIAL_ECHOPGM("Temperature: ");
  2539. MYSERIAL.print(t_c);
  2540. SERIAL_ECHOPGM(" Z shift (mm):");
  2541. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2542. SERIAL_ECHOLNPGM("");
  2543. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2544. }
  2545. custom_message_type = 0;
  2546. custom_message = false;
  2547. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2548. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2549. disable_x();
  2550. disable_y();
  2551. disable_z();
  2552. disable_e0();
  2553. disable_e1();
  2554. disable_e2();
  2555. setTargetBed(0); //set bed target temperature back to 0
  2556. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2557. lcd_update_enable(true);
  2558. lcd_update(2);
  2559. }
  2560. break;
  2561. #ifdef DIS
  2562. case 77:
  2563. {
  2564. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2565. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2566. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2567. float dimension_x = 40;
  2568. float dimension_y = 40;
  2569. int points_x = 40;
  2570. int points_y = 40;
  2571. float offset_x = 74;
  2572. float offset_y = 33;
  2573. if (code_seen('X')) dimension_x = code_value();
  2574. if (code_seen('Y')) dimension_y = code_value();
  2575. if (code_seen('XP')) points_x = code_value();
  2576. if (code_seen('YP')) points_y = code_value();
  2577. if (code_seen('XO')) offset_x = code_value();
  2578. if (code_seen('YO')) offset_y = code_value();
  2579. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2580. } break;
  2581. #endif
  2582. /**
  2583. * G80: Mesh-based Z probe, probes a grid and produces a
  2584. * mesh to compensate for variable bed height
  2585. *
  2586. * The S0 report the points as below
  2587. *
  2588. * +----> X-axis
  2589. * |
  2590. * |
  2591. * v Y-axis
  2592. *
  2593. */
  2594. case 80:
  2595. #ifdef MK1BP
  2596. break;
  2597. #endif //MK1BP
  2598. case_G80:
  2599. {
  2600. mesh_bed_leveling_flag = true;
  2601. int8_t verbosity_level = 0;
  2602. static bool run = false;
  2603. if (code_seen('V')) {
  2604. // Just 'V' without a number counts as V1.
  2605. char c = strchr_pointer[1];
  2606. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2607. }
  2608. // Firstly check if we know where we are
  2609. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2610. // We don't know where we are! HOME!
  2611. // Push the commands to the front of the message queue in the reverse order!
  2612. // There shall be always enough space reserved for these commands.
  2613. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2614. repeatcommand_front(); // repeat G80 with all its parameters
  2615. enquecommand_front_P((PSTR("G28 W0")));
  2616. }
  2617. else {
  2618. mesh_bed_leveling_flag = false;
  2619. }
  2620. break;
  2621. }
  2622. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2623. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2624. temp_compensation_start();
  2625. run = true;
  2626. repeatcommand_front(); // repeat G80 with all its parameters
  2627. enquecommand_front_P((PSTR("G28 W0")));
  2628. }
  2629. else {
  2630. mesh_bed_leveling_flag = false;
  2631. }
  2632. break;
  2633. }
  2634. run = false;
  2635. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2636. mesh_bed_leveling_flag = false;
  2637. break;
  2638. }
  2639. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2640. bool custom_message_old = custom_message;
  2641. unsigned int custom_message_type_old = custom_message_type;
  2642. unsigned int custom_message_state_old = custom_message_state;
  2643. custom_message = true;
  2644. custom_message_type = 1;
  2645. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2646. lcd_update(1);
  2647. mbl.reset(); //reset mesh bed leveling
  2648. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2649. // consumed during the first movements following this statement.
  2650. babystep_undo();
  2651. // Cycle through all points and probe them
  2652. // First move up. During this first movement, the babystepping will be reverted.
  2653. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2655. // The move to the first calibration point.
  2656. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2657. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2658. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2659. if (verbosity_level >= 1) {
  2660. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2661. }
  2662. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2664. // Wait until the move is finished.
  2665. st_synchronize();
  2666. int mesh_point = 0; //index number of calibration point
  2667. int ix = 0;
  2668. int iy = 0;
  2669. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2670. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2671. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2672. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2673. if (verbosity_level >= 1) {
  2674. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2675. }
  2676. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2677. const char *kill_message = NULL;
  2678. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2679. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2680. // Get coords of a measuring point.
  2681. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2682. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2683. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2684. float z0 = 0.f;
  2685. if (has_z && mesh_point > 0) {
  2686. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2687. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2688. //#if 0
  2689. if (verbosity_level >= 1) {
  2690. SERIAL_ECHOPGM("Bed leveling, point: ");
  2691. MYSERIAL.print(mesh_point);
  2692. SERIAL_ECHOPGM(", calibration z: ");
  2693. MYSERIAL.print(z0, 5);
  2694. SERIAL_ECHOLNPGM("");
  2695. }
  2696. //#endif
  2697. }
  2698. // Move Z up to MESH_HOME_Z_SEARCH.
  2699. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2701. st_synchronize();
  2702. // Move to XY position of the sensor point.
  2703. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2704. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2705. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2706. if (verbosity_level >= 1) {
  2707. SERIAL_PROTOCOL(mesh_point);
  2708. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2709. }
  2710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2711. st_synchronize();
  2712. // Go down until endstop is hit
  2713. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2714. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2715. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2716. break;
  2717. }
  2718. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2719. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2720. break;
  2721. }
  2722. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2723. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2724. break;
  2725. }
  2726. if (verbosity_level >= 10) {
  2727. SERIAL_ECHOPGM("X: ");
  2728. MYSERIAL.print(current_position[X_AXIS], 5);
  2729. SERIAL_ECHOLNPGM("");
  2730. SERIAL_ECHOPGM("Y: ");
  2731. MYSERIAL.print(current_position[Y_AXIS], 5);
  2732. SERIAL_PROTOCOLPGM("\n");
  2733. }
  2734. if (verbosity_level >= 1) {
  2735. SERIAL_ECHOPGM("mesh bed leveling: ");
  2736. MYSERIAL.print(current_position[Z_AXIS], 5);
  2737. SERIAL_ECHOLNPGM("");
  2738. }
  2739. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2740. custom_message_state--;
  2741. mesh_point++;
  2742. lcd_update(1);
  2743. }
  2744. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2745. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2746. if (verbosity_level >= 20) {
  2747. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2748. MYSERIAL.print(current_position[Z_AXIS], 5);
  2749. }
  2750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2751. st_synchronize();
  2752. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2753. kill(kill_message);
  2754. SERIAL_ECHOLNPGM("killed");
  2755. }
  2756. clean_up_after_endstop_move();
  2757. SERIAL_ECHOLNPGM("clean up finished ");
  2758. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2759. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2760. SERIAL_ECHOLNPGM("babystep applied");
  2761. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2762. if (verbosity_level >= 1) {
  2763. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2764. }
  2765. for (uint8_t i = 0; i < 4; ++i) {
  2766. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2767. long correction = 0;
  2768. if (code_seen(codes[i]))
  2769. correction = code_value_long();
  2770. else if (eeprom_bed_correction_valid) {
  2771. unsigned char *addr = (i < 2) ?
  2772. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2773. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2774. correction = eeprom_read_int8(addr);
  2775. }
  2776. if (correction == 0)
  2777. continue;
  2778. float offset = float(correction) * 0.001f;
  2779. if (fabs(offset) > 0.101f) {
  2780. SERIAL_ERROR_START;
  2781. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2782. SERIAL_ECHO(offset);
  2783. SERIAL_ECHOLNPGM(" microns");
  2784. }
  2785. else {
  2786. switch (i) {
  2787. case 0:
  2788. for (uint8_t row = 0; row < 3; ++row) {
  2789. mbl.z_values[row][1] += 0.5f * offset;
  2790. mbl.z_values[row][0] += offset;
  2791. }
  2792. break;
  2793. case 1:
  2794. for (uint8_t row = 0; row < 3; ++row) {
  2795. mbl.z_values[row][1] += 0.5f * offset;
  2796. mbl.z_values[row][2] += offset;
  2797. }
  2798. break;
  2799. case 2:
  2800. for (uint8_t col = 0; col < 3; ++col) {
  2801. mbl.z_values[1][col] += 0.5f * offset;
  2802. mbl.z_values[0][col] += offset;
  2803. }
  2804. break;
  2805. case 3:
  2806. for (uint8_t col = 0; col < 3; ++col) {
  2807. mbl.z_values[1][col] += 0.5f * offset;
  2808. mbl.z_values[2][col] += offset;
  2809. }
  2810. break;
  2811. }
  2812. }
  2813. }
  2814. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2815. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2816. SERIAL_ECHOLNPGM("Upsample finished");
  2817. mbl.active = 1; //activate mesh bed leveling
  2818. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2819. go_home_with_z_lift();
  2820. SERIAL_ECHOLNPGM("Go home finished");
  2821. //unretract (after PINDA preheat retraction)
  2822. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2823. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2825. }
  2826. // Restore custom message state
  2827. custom_message = custom_message_old;
  2828. custom_message_type = custom_message_type_old;
  2829. custom_message_state = custom_message_state_old;
  2830. mesh_bed_leveling_flag = false;
  2831. mesh_bed_run_from_menu = false;
  2832. lcd_update(2);
  2833. }
  2834. break;
  2835. /**
  2836. * G81: Print mesh bed leveling status and bed profile if activated
  2837. */
  2838. case 81:
  2839. if (mbl.active) {
  2840. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2841. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2842. SERIAL_PROTOCOLPGM(",");
  2843. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2844. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2845. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2846. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2847. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2848. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2849. SERIAL_PROTOCOLPGM(" ");
  2850. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2851. }
  2852. SERIAL_PROTOCOLPGM("\n");
  2853. }
  2854. }
  2855. else
  2856. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2857. break;
  2858. #if 0
  2859. /**
  2860. * G82: Single Z probe at current location
  2861. *
  2862. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2863. *
  2864. */
  2865. case 82:
  2866. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2867. setup_for_endstop_move();
  2868. find_bed_induction_sensor_point_z();
  2869. clean_up_after_endstop_move();
  2870. SERIAL_PROTOCOLPGM("Bed found at: ");
  2871. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2872. SERIAL_PROTOCOLPGM("\n");
  2873. break;
  2874. /**
  2875. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2876. */
  2877. case 83:
  2878. {
  2879. int babystepz = code_seen('S') ? code_value() : 0;
  2880. int BabyPosition = code_seen('P') ? code_value() : 0;
  2881. if (babystepz != 0) {
  2882. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2883. // Is the axis indexed starting with zero or one?
  2884. if (BabyPosition > 4) {
  2885. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2886. }else{
  2887. // Save it to the eeprom
  2888. babystepLoadZ = babystepz;
  2889. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2890. // adjust the Z
  2891. babystepsTodoZadd(babystepLoadZ);
  2892. }
  2893. }
  2894. }
  2895. break;
  2896. /**
  2897. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2898. */
  2899. case 84:
  2900. babystepsTodoZsubtract(babystepLoadZ);
  2901. // babystepLoadZ = 0;
  2902. break;
  2903. /**
  2904. * G85: Prusa3D specific: Pick best babystep
  2905. */
  2906. case 85:
  2907. lcd_pick_babystep();
  2908. break;
  2909. #endif
  2910. /**
  2911. * G86: Prusa3D specific: Disable babystep correction after home.
  2912. * This G-code will be performed at the start of a calibration script.
  2913. */
  2914. case 86:
  2915. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2916. break;
  2917. /**
  2918. * G87: Prusa3D specific: Enable babystep correction after home
  2919. * This G-code will be performed at the end of a calibration script.
  2920. */
  2921. case 87:
  2922. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2923. break;
  2924. /**
  2925. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2926. */
  2927. case 88:
  2928. break;
  2929. #endif // ENABLE_MESH_BED_LEVELING
  2930. case 90: // G90
  2931. relative_mode = false;
  2932. break;
  2933. case 91: // G91
  2934. relative_mode = true;
  2935. break;
  2936. case 92: // G92
  2937. if(!code_seen(axis_codes[E_AXIS]))
  2938. st_synchronize();
  2939. for(int8_t i=0; i < NUM_AXIS; i++) {
  2940. if(code_seen(axis_codes[i])) {
  2941. if(i == E_AXIS) {
  2942. current_position[i] = code_value();
  2943. plan_set_e_position(current_position[E_AXIS]);
  2944. }
  2945. else {
  2946. current_position[i] = code_value()+add_homing[i];
  2947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2948. }
  2949. }
  2950. }
  2951. break;
  2952. case 98: //activate farm mode
  2953. farm_mode = 1;
  2954. PingTime = millis();
  2955. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2956. break;
  2957. case 99: //deactivate farm mode
  2958. farm_mode = 0;
  2959. lcd_printer_connected();
  2960. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2961. lcd_update(2);
  2962. break;
  2963. }
  2964. } // end if(code_seen('G'))
  2965. else if(code_seen('M'))
  2966. {
  2967. int index;
  2968. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2969. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2970. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2971. SERIAL_ECHOLNPGM("Invalid M code");
  2972. } else
  2973. switch((int)code_value())
  2974. {
  2975. #ifdef ULTIPANEL
  2976. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2977. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2978. {
  2979. char *src = strchr_pointer + 2;
  2980. codenum = 0;
  2981. bool hasP = false, hasS = false;
  2982. if (code_seen('P')) {
  2983. codenum = code_value(); // milliseconds to wait
  2984. hasP = codenum > 0;
  2985. }
  2986. if (code_seen('S')) {
  2987. codenum = code_value() * 1000; // seconds to wait
  2988. hasS = codenum > 0;
  2989. }
  2990. starpos = strchr(src, '*');
  2991. if (starpos != NULL) *(starpos) = '\0';
  2992. while (*src == ' ') ++src;
  2993. if (!hasP && !hasS && *src != '\0') {
  2994. lcd_setstatus(src);
  2995. } else {
  2996. LCD_MESSAGERPGM(MSG_USERWAIT);
  2997. }
  2998. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2999. st_synchronize();
  3000. previous_millis_cmd = millis();
  3001. if (codenum > 0){
  3002. codenum += millis(); // keep track of when we started waiting
  3003. while(millis() < codenum && !lcd_clicked()){
  3004. manage_heater();
  3005. manage_inactivity(true);
  3006. lcd_update();
  3007. }
  3008. lcd_ignore_click(false);
  3009. }else{
  3010. if (!lcd_detected())
  3011. break;
  3012. while(!lcd_clicked()){
  3013. manage_heater();
  3014. manage_inactivity(true);
  3015. lcd_update();
  3016. }
  3017. }
  3018. if (IS_SD_PRINTING)
  3019. LCD_MESSAGERPGM(MSG_RESUMING);
  3020. else
  3021. LCD_MESSAGERPGM(WELCOME_MSG);
  3022. }
  3023. break;
  3024. #endif
  3025. case 17:
  3026. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3027. enable_x();
  3028. enable_y();
  3029. enable_z();
  3030. enable_e0();
  3031. enable_e1();
  3032. enable_e2();
  3033. break;
  3034. #ifdef SDSUPPORT
  3035. case 20: // M20 - list SD card
  3036. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3037. card.ls();
  3038. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3039. break;
  3040. case 21: // M21 - init SD card
  3041. card.initsd();
  3042. break;
  3043. case 22: //M22 - release SD card
  3044. card.release();
  3045. break;
  3046. case 23: //M23 - Select file
  3047. starpos = (strchr(strchr_pointer + 4,'*'));
  3048. if(starpos!=NULL)
  3049. *(starpos)='\0';
  3050. card.openFile(strchr_pointer + 4,true);
  3051. break;
  3052. case 24: //M24 - Start SD print
  3053. card.startFileprint();
  3054. starttime=millis();
  3055. break;
  3056. case 25: //M25 - Pause SD print
  3057. card.pauseSDPrint();
  3058. break;
  3059. case 26: //M26 - Set SD index
  3060. if(card.cardOK && code_seen('S')) {
  3061. card.setIndex(code_value_long());
  3062. }
  3063. break;
  3064. case 27: //M27 - Get SD status
  3065. card.getStatus();
  3066. break;
  3067. case 28: //M28 - Start SD write
  3068. starpos = (strchr(strchr_pointer + 4,'*'));
  3069. if(starpos != NULL){
  3070. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3071. strchr_pointer = strchr(npos,' ') + 1;
  3072. *(starpos) = '\0';
  3073. }
  3074. card.openFile(strchr_pointer+4,false);
  3075. break;
  3076. case 29: //M29 - Stop SD write
  3077. //processed in write to file routine above
  3078. //card,saving = false;
  3079. break;
  3080. case 30: //M30 <filename> Delete File
  3081. if (card.cardOK){
  3082. card.closefile();
  3083. starpos = (strchr(strchr_pointer + 4,'*'));
  3084. if(starpos != NULL){
  3085. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3086. strchr_pointer = strchr(npos,' ') + 1;
  3087. *(starpos) = '\0';
  3088. }
  3089. card.removeFile(strchr_pointer + 4);
  3090. }
  3091. break;
  3092. case 32: //M32 - Select file and start SD print
  3093. {
  3094. if(card.sdprinting) {
  3095. st_synchronize();
  3096. }
  3097. starpos = (strchr(strchr_pointer + 4,'*'));
  3098. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3099. if(namestartpos==NULL)
  3100. {
  3101. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3102. }
  3103. else
  3104. namestartpos++; //to skip the '!'
  3105. if(starpos!=NULL)
  3106. *(starpos)='\0';
  3107. bool call_procedure=(code_seen('P'));
  3108. if(strchr_pointer>namestartpos)
  3109. call_procedure=false; //false alert, 'P' found within filename
  3110. if( card.cardOK )
  3111. {
  3112. card.openFile(namestartpos,true,!call_procedure);
  3113. if(code_seen('S'))
  3114. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3115. card.setIndex(code_value_long());
  3116. card.startFileprint();
  3117. if(!call_procedure)
  3118. starttime=millis(); //procedure calls count as normal print time.
  3119. }
  3120. } break;
  3121. case 928: //M928 - Start SD write
  3122. starpos = (strchr(strchr_pointer + 5,'*'));
  3123. if(starpos != NULL){
  3124. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3125. strchr_pointer = strchr(npos,' ') + 1;
  3126. *(starpos) = '\0';
  3127. }
  3128. card.openLogFile(strchr_pointer+5);
  3129. break;
  3130. #endif //SDSUPPORT
  3131. case 31: //M31 take time since the start of the SD print or an M109 command
  3132. {
  3133. stoptime=millis();
  3134. char time[30];
  3135. unsigned long t=(stoptime-starttime)/1000;
  3136. int sec,min;
  3137. min=t/60;
  3138. sec=t%60;
  3139. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3140. SERIAL_ECHO_START;
  3141. SERIAL_ECHOLN(time);
  3142. lcd_setstatus(time);
  3143. autotempShutdown();
  3144. }
  3145. break;
  3146. case 42: //M42 -Change pin status via gcode
  3147. if (code_seen('S'))
  3148. {
  3149. int pin_status = code_value();
  3150. int pin_number = LED_PIN;
  3151. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3152. pin_number = code_value();
  3153. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3154. {
  3155. if (sensitive_pins[i] == pin_number)
  3156. {
  3157. pin_number = -1;
  3158. break;
  3159. }
  3160. }
  3161. #if defined(FAN_PIN) && FAN_PIN > -1
  3162. if (pin_number == FAN_PIN)
  3163. fanSpeed = pin_status;
  3164. #endif
  3165. if (pin_number > -1)
  3166. {
  3167. pinMode(pin_number, OUTPUT);
  3168. digitalWrite(pin_number, pin_status);
  3169. analogWrite(pin_number, pin_status);
  3170. }
  3171. }
  3172. break;
  3173. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3174. // Reset the baby step value and the baby step applied flag.
  3175. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3176. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3177. // Reset the skew and offset in both RAM and EEPROM.
  3178. reset_bed_offset_and_skew();
  3179. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3180. // the planner will not perform any adjustments in the XY plane.
  3181. // Wait for the motors to stop and update the current position with the absolute values.
  3182. world2machine_revert_to_uncorrected();
  3183. break;
  3184. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3185. {
  3186. // Only Z calibration?
  3187. bool onlyZ = code_seen('Z');
  3188. if (!onlyZ) {
  3189. setTargetBed(0);
  3190. setTargetHotend(0, 0);
  3191. setTargetHotend(0, 1);
  3192. setTargetHotend(0, 2);
  3193. adjust_bed_reset(); //reset bed level correction
  3194. }
  3195. // Disable the default update procedure of the display. We will do a modal dialog.
  3196. lcd_update_enable(false);
  3197. // Let the planner use the uncorrected coordinates.
  3198. mbl.reset();
  3199. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3200. // the planner will not perform any adjustments in the XY plane.
  3201. // Wait for the motors to stop and update the current position with the absolute values.
  3202. world2machine_revert_to_uncorrected();
  3203. // Reset the baby step value applied without moving the axes.
  3204. babystep_reset();
  3205. // Mark all axes as in a need for homing.
  3206. memset(axis_known_position, 0, sizeof(axis_known_position));
  3207. // Let the user move the Z axes up to the end stoppers.
  3208. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3209. refresh_cmd_timeout();
  3210. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3211. lcd_wait_for_cool_down();
  3212. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3213. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3214. lcd_implementation_print_at(0, 2, 1);
  3215. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3216. }
  3217. // Move the print head close to the bed.
  3218. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3220. st_synchronize();
  3221. // Home in the XY plane.
  3222. set_destination_to_current();
  3223. setup_for_endstop_move();
  3224. home_xy();
  3225. int8_t verbosity_level = 0;
  3226. if (code_seen('V')) {
  3227. // Just 'V' without a number counts as V1.
  3228. char c = strchr_pointer[1];
  3229. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3230. }
  3231. if (onlyZ) {
  3232. clean_up_after_endstop_move();
  3233. // Z only calibration.
  3234. // Load the machine correction matrix
  3235. world2machine_initialize();
  3236. // and correct the current_position to match the transformed coordinate system.
  3237. world2machine_update_current();
  3238. //FIXME
  3239. bool result = sample_mesh_and_store_reference();
  3240. if (result) {
  3241. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3242. // Shipped, the nozzle height has been set already. The user can start printing now.
  3243. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3244. // babystep_apply();
  3245. }
  3246. } else {
  3247. // Reset the baby step value and the baby step applied flag.
  3248. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3249. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3250. // Complete XYZ calibration.
  3251. uint8_t point_too_far_mask = 0;
  3252. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3253. clean_up_after_endstop_move();
  3254. // Print head up.
  3255. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3257. st_synchronize();
  3258. if (result >= 0) {
  3259. point_too_far_mask = 0;
  3260. // Second half: The fine adjustment.
  3261. // Let the planner use the uncorrected coordinates.
  3262. mbl.reset();
  3263. world2machine_reset();
  3264. // Home in the XY plane.
  3265. setup_for_endstop_move();
  3266. home_xy();
  3267. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3268. clean_up_after_endstop_move();
  3269. // Print head up.
  3270. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3272. st_synchronize();
  3273. // if (result >= 0) babystep_apply();
  3274. }
  3275. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3276. if (result >= 0) {
  3277. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3278. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3279. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3280. }
  3281. }
  3282. } else {
  3283. // Timeouted.
  3284. }
  3285. lcd_update_enable(true);
  3286. break;
  3287. }
  3288. /*
  3289. case 46:
  3290. {
  3291. // M46: Prusa3D: Show the assigned IP address.
  3292. uint8_t ip[4];
  3293. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3294. if (hasIP) {
  3295. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3296. SERIAL_ECHO(int(ip[0]));
  3297. SERIAL_ECHOPGM(".");
  3298. SERIAL_ECHO(int(ip[1]));
  3299. SERIAL_ECHOPGM(".");
  3300. SERIAL_ECHO(int(ip[2]));
  3301. SERIAL_ECHOPGM(".");
  3302. SERIAL_ECHO(int(ip[3]));
  3303. SERIAL_ECHOLNPGM("");
  3304. } else {
  3305. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3306. }
  3307. break;
  3308. }
  3309. */
  3310. case 47:
  3311. // M47: Prusa3D: Show end stops dialog on the display.
  3312. lcd_diag_show_end_stops();
  3313. break;
  3314. #if 0
  3315. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3316. {
  3317. // Disable the default update procedure of the display. We will do a modal dialog.
  3318. lcd_update_enable(false);
  3319. // Let the planner use the uncorrected coordinates.
  3320. mbl.reset();
  3321. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3322. // the planner will not perform any adjustments in the XY plane.
  3323. // Wait for the motors to stop and update the current position with the absolute values.
  3324. world2machine_revert_to_uncorrected();
  3325. // Move the print head close to the bed.
  3326. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3328. st_synchronize();
  3329. // Home in the XY plane.
  3330. set_destination_to_current();
  3331. setup_for_endstop_move();
  3332. home_xy();
  3333. int8_t verbosity_level = 0;
  3334. if (code_seen('V')) {
  3335. // Just 'V' without a number counts as V1.
  3336. char c = strchr_pointer[1];
  3337. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3338. }
  3339. bool success = scan_bed_induction_points(verbosity_level);
  3340. clean_up_after_endstop_move();
  3341. // Print head up.
  3342. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3344. st_synchronize();
  3345. lcd_update_enable(true);
  3346. break;
  3347. }
  3348. #endif
  3349. // M48 Z-Probe repeatability measurement function.
  3350. //
  3351. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3352. //
  3353. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3354. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3355. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3356. // regenerated.
  3357. //
  3358. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3359. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3360. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3361. //
  3362. #ifdef ENABLE_AUTO_BED_LEVELING
  3363. #ifdef Z_PROBE_REPEATABILITY_TEST
  3364. case 48: // M48 Z-Probe repeatability
  3365. {
  3366. #if Z_MIN_PIN == -1
  3367. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3368. #endif
  3369. double sum=0.0;
  3370. double mean=0.0;
  3371. double sigma=0.0;
  3372. double sample_set[50];
  3373. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3374. double X_current, Y_current, Z_current;
  3375. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3376. if (code_seen('V') || code_seen('v')) {
  3377. verbose_level = code_value();
  3378. if (verbose_level<0 || verbose_level>4 ) {
  3379. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3380. goto Sigma_Exit;
  3381. }
  3382. }
  3383. if (verbose_level > 0) {
  3384. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3385. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3386. }
  3387. if (code_seen('n')) {
  3388. n_samples = code_value();
  3389. if (n_samples<4 || n_samples>50 ) {
  3390. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3391. goto Sigma_Exit;
  3392. }
  3393. }
  3394. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3395. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3396. Z_current = st_get_position_mm(Z_AXIS);
  3397. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3398. ext_position = st_get_position_mm(E_AXIS);
  3399. if (code_seen('X') || code_seen('x') ) {
  3400. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3401. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3402. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3403. goto Sigma_Exit;
  3404. }
  3405. }
  3406. if (code_seen('Y') || code_seen('y') ) {
  3407. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3408. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3409. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3410. goto Sigma_Exit;
  3411. }
  3412. }
  3413. if (code_seen('L') || code_seen('l') ) {
  3414. n_legs = code_value();
  3415. if ( n_legs==1 )
  3416. n_legs = 2;
  3417. if ( n_legs<0 || n_legs>15 ) {
  3418. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3419. goto Sigma_Exit;
  3420. }
  3421. }
  3422. //
  3423. // Do all the preliminary setup work. First raise the probe.
  3424. //
  3425. st_synchronize();
  3426. plan_bed_level_matrix.set_to_identity();
  3427. plan_buffer_line( X_current, Y_current, Z_start_location,
  3428. ext_position,
  3429. homing_feedrate[Z_AXIS]/60,
  3430. active_extruder);
  3431. st_synchronize();
  3432. //
  3433. // Now get everything to the specified probe point So we can safely do a probe to
  3434. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3435. // use that as a starting point for each probe.
  3436. //
  3437. if (verbose_level > 2)
  3438. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3439. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3440. ext_position,
  3441. homing_feedrate[X_AXIS]/60,
  3442. active_extruder);
  3443. st_synchronize();
  3444. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3445. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3446. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3447. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3448. //
  3449. // OK, do the inital probe to get us close to the bed.
  3450. // Then retrace the right amount and use that in subsequent probes
  3451. //
  3452. setup_for_endstop_move();
  3453. run_z_probe();
  3454. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3455. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3456. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3457. ext_position,
  3458. homing_feedrate[X_AXIS]/60,
  3459. active_extruder);
  3460. st_synchronize();
  3461. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3462. for( n=0; n<n_samples; n++) {
  3463. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3464. if ( n_legs) {
  3465. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3466. int rotational_direction, l;
  3467. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3468. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3469. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3470. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3471. //SERIAL_ECHOPAIR(" theta: ",theta);
  3472. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3473. //SERIAL_PROTOCOLLNPGM("");
  3474. for( l=0; l<n_legs-1; l++) {
  3475. if (rotational_direction==1)
  3476. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3477. else
  3478. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3479. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3480. if ( radius<0.0 )
  3481. radius = -radius;
  3482. X_current = X_probe_location + cos(theta) * radius;
  3483. Y_current = Y_probe_location + sin(theta) * radius;
  3484. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3485. X_current = X_MIN_POS;
  3486. if ( X_current>X_MAX_POS)
  3487. X_current = X_MAX_POS;
  3488. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3489. Y_current = Y_MIN_POS;
  3490. if ( Y_current>Y_MAX_POS)
  3491. Y_current = Y_MAX_POS;
  3492. if (verbose_level>3 ) {
  3493. SERIAL_ECHOPAIR("x: ", X_current);
  3494. SERIAL_ECHOPAIR("y: ", Y_current);
  3495. SERIAL_PROTOCOLLNPGM("");
  3496. }
  3497. do_blocking_move_to( X_current, Y_current, Z_current );
  3498. }
  3499. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3500. }
  3501. setup_for_endstop_move();
  3502. run_z_probe();
  3503. sample_set[n] = current_position[Z_AXIS];
  3504. //
  3505. // Get the current mean for the data points we have so far
  3506. //
  3507. sum=0.0;
  3508. for( j=0; j<=n; j++) {
  3509. sum = sum + sample_set[j];
  3510. }
  3511. mean = sum / (double (n+1));
  3512. //
  3513. // Now, use that mean to calculate the standard deviation for the
  3514. // data points we have so far
  3515. //
  3516. sum=0.0;
  3517. for( j=0; j<=n; j++) {
  3518. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3519. }
  3520. sigma = sqrt( sum / (double (n+1)) );
  3521. if (verbose_level > 1) {
  3522. SERIAL_PROTOCOL(n+1);
  3523. SERIAL_PROTOCOL(" of ");
  3524. SERIAL_PROTOCOL(n_samples);
  3525. SERIAL_PROTOCOLPGM(" z: ");
  3526. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3527. }
  3528. if (verbose_level > 2) {
  3529. SERIAL_PROTOCOL(" mean: ");
  3530. SERIAL_PROTOCOL_F(mean,6);
  3531. SERIAL_PROTOCOL(" sigma: ");
  3532. SERIAL_PROTOCOL_F(sigma,6);
  3533. }
  3534. if (verbose_level > 0)
  3535. SERIAL_PROTOCOLPGM("\n");
  3536. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3537. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3538. st_synchronize();
  3539. }
  3540. delay(1000);
  3541. clean_up_after_endstop_move();
  3542. // enable_endstops(true);
  3543. if (verbose_level > 0) {
  3544. SERIAL_PROTOCOLPGM("Mean: ");
  3545. SERIAL_PROTOCOL_F(mean, 6);
  3546. SERIAL_PROTOCOLPGM("\n");
  3547. }
  3548. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3549. SERIAL_PROTOCOL_F(sigma, 6);
  3550. SERIAL_PROTOCOLPGM("\n\n");
  3551. Sigma_Exit:
  3552. break;
  3553. }
  3554. #endif // Z_PROBE_REPEATABILITY_TEST
  3555. #endif // ENABLE_AUTO_BED_LEVELING
  3556. case 104: // M104
  3557. if(setTargetedHotend(104)){
  3558. break;
  3559. }
  3560. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3561. setWatch();
  3562. break;
  3563. case 112: // M112 -Emergency Stop
  3564. kill();
  3565. break;
  3566. case 140: // M140 set bed temp
  3567. if (code_seen('S')) setTargetBed(code_value());
  3568. break;
  3569. case 105 : // M105
  3570. if(setTargetedHotend(105)){
  3571. break;
  3572. }
  3573. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3574. SERIAL_PROTOCOLPGM("ok T:");
  3575. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3576. SERIAL_PROTOCOLPGM(" /");
  3577. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3578. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3579. SERIAL_PROTOCOLPGM(" B:");
  3580. SERIAL_PROTOCOL_F(degBed(),1);
  3581. SERIAL_PROTOCOLPGM(" /");
  3582. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3583. #endif //TEMP_BED_PIN
  3584. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3585. SERIAL_PROTOCOLPGM(" T");
  3586. SERIAL_PROTOCOL(cur_extruder);
  3587. SERIAL_PROTOCOLPGM(":");
  3588. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3589. SERIAL_PROTOCOLPGM(" /");
  3590. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3591. }
  3592. #else
  3593. SERIAL_ERROR_START;
  3594. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3595. #endif
  3596. SERIAL_PROTOCOLPGM(" @:");
  3597. #ifdef EXTRUDER_WATTS
  3598. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3599. SERIAL_PROTOCOLPGM("W");
  3600. #else
  3601. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3602. #endif
  3603. SERIAL_PROTOCOLPGM(" B@:");
  3604. #ifdef BED_WATTS
  3605. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3606. SERIAL_PROTOCOLPGM("W");
  3607. #else
  3608. SERIAL_PROTOCOL(getHeaterPower(-1));
  3609. #endif
  3610. #ifdef SHOW_TEMP_ADC_VALUES
  3611. {float raw = 0.0;
  3612. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3613. SERIAL_PROTOCOLPGM(" ADC B:");
  3614. SERIAL_PROTOCOL_F(degBed(),1);
  3615. SERIAL_PROTOCOLPGM("C->");
  3616. raw = rawBedTemp();
  3617. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3618. SERIAL_PROTOCOLPGM(" Rb->");
  3619. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3620. SERIAL_PROTOCOLPGM(" Rxb->");
  3621. SERIAL_PROTOCOL_F(raw, 5);
  3622. #endif
  3623. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3624. SERIAL_PROTOCOLPGM(" T");
  3625. SERIAL_PROTOCOL(cur_extruder);
  3626. SERIAL_PROTOCOLPGM(":");
  3627. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3628. SERIAL_PROTOCOLPGM("C->");
  3629. raw = rawHotendTemp(cur_extruder);
  3630. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3631. SERIAL_PROTOCOLPGM(" Rt");
  3632. SERIAL_PROTOCOL(cur_extruder);
  3633. SERIAL_PROTOCOLPGM("->");
  3634. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3635. SERIAL_PROTOCOLPGM(" Rx");
  3636. SERIAL_PROTOCOL(cur_extruder);
  3637. SERIAL_PROTOCOLPGM("->");
  3638. SERIAL_PROTOCOL_F(raw, 5);
  3639. }}
  3640. #endif
  3641. SERIAL_PROTOCOLLN("");
  3642. return;
  3643. break;
  3644. case 109:
  3645. {// M109 - Wait for extruder heater to reach target.
  3646. if(setTargetedHotend(109)){
  3647. break;
  3648. }
  3649. LCD_MESSAGERPGM(MSG_HEATING);
  3650. heating_status = 1;
  3651. if (farm_mode) { prusa_statistics(1); };
  3652. #ifdef AUTOTEMP
  3653. autotemp_enabled=false;
  3654. #endif
  3655. if (code_seen('S')) {
  3656. setTargetHotend(code_value(), tmp_extruder);
  3657. CooldownNoWait = true;
  3658. } else if (code_seen('R')) {
  3659. setTargetHotend(code_value(), tmp_extruder);
  3660. CooldownNoWait = false;
  3661. }
  3662. #ifdef AUTOTEMP
  3663. if (code_seen('S')) autotemp_min=code_value();
  3664. if (code_seen('B')) autotemp_max=code_value();
  3665. if (code_seen('F'))
  3666. {
  3667. autotemp_factor=code_value();
  3668. autotemp_enabled=true;
  3669. }
  3670. #endif
  3671. setWatch();
  3672. codenum = millis();
  3673. /* See if we are heating up or cooling down */
  3674. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3675. cancel_heatup = false;
  3676. wait_for_heater(codenum); //loops until target temperature is reached
  3677. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3678. heating_status = 2;
  3679. if (farm_mode) { prusa_statistics(2); };
  3680. //starttime=millis();
  3681. previous_millis_cmd = millis();
  3682. }
  3683. break;
  3684. case 190: // M190 - Wait for bed heater to reach target.
  3685. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3686. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3687. heating_status = 3;
  3688. if (farm_mode) { prusa_statistics(1); };
  3689. if (code_seen('S'))
  3690. {
  3691. setTargetBed(code_value());
  3692. CooldownNoWait = true;
  3693. }
  3694. else if (code_seen('R'))
  3695. {
  3696. setTargetBed(code_value());
  3697. CooldownNoWait = false;
  3698. }
  3699. codenum = millis();
  3700. cancel_heatup = false;
  3701. target_direction = isHeatingBed(); // true if heating, false if cooling
  3702. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3703. {
  3704. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3705. {
  3706. if (!farm_mode) {
  3707. float tt = degHotend(active_extruder);
  3708. SERIAL_PROTOCOLPGM("T:");
  3709. SERIAL_PROTOCOL(tt);
  3710. SERIAL_PROTOCOLPGM(" E:");
  3711. SERIAL_PROTOCOL((int)active_extruder);
  3712. SERIAL_PROTOCOLPGM(" B:");
  3713. SERIAL_PROTOCOL_F(degBed(), 1);
  3714. SERIAL_PROTOCOLLN("");
  3715. }
  3716. codenum = millis();
  3717. }
  3718. manage_heater();
  3719. manage_inactivity();
  3720. lcd_update();
  3721. }
  3722. LCD_MESSAGERPGM(MSG_BED_DONE);
  3723. heating_status = 4;
  3724. previous_millis_cmd = millis();
  3725. #endif
  3726. break;
  3727. #if defined(FAN_PIN) && FAN_PIN > -1
  3728. case 106: //M106 Fan On
  3729. if (code_seen('S')){
  3730. fanSpeed=constrain(code_value(),0,255);
  3731. }
  3732. else {
  3733. fanSpeed=255;
  3734. }
  3735. break;
  3736. case 107: //M107 Fan Off
  3737. fanSpeed = 0;
  3738. break;
  3739. #endif //FAN_PIN
  3740. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3741. case 80: // M80 - Turn on Power Supply
  3742. SET_OUTPUT(PS_ON_PIN); //GND
  3743. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3744. // If you have a switch on suicide pin, this is useful
  3745. // if you want to start another print with suicide feature after
  3746. // a print without suicide...
  3747. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3748. SET_OUTPUT(SUICIDE_PIN);
  3749. WRITE(SUICIDE_PIN, HIGH);
  3750. #endif
  3751. #ifdef ULTIPANEL
  3752. powersupply = true;
  3753. LCD_MESSAGERPGM(WELCOME_MSG);
  3754. lcd_update();
  3755. #endif
  3756. break;
  3757. #endif
  3758. case 81: // M81 - Turn off Power Supply
  3759. disable_heater();
  3760. st_synchronize();
  3761. disable_e0();
  3762. disable_e1();
  3763. disable_e2();
  3764. finishAndDisableSteppers();
  3765. fanSpeed = 0;
  3766. delay(1000); // Wait a little before to switch off
  3767. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3768. st_synchronize();
  3769. suicide();
  3770. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3771. SET_OUTPUT(PS_ON_PIN);
  3772. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3773. #endif
  3774. #ifdef ULTIPANEL
  3775. powersupply = false;
  3776. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3777. /*
  3778. MACHNAME = "Prusa i3"
  3779. MSGOFF = "Vypnuto"
  3780. "Prusai3"" ""vypnuto""."
  3781. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3782. */
  3783. lcd_update();
  3784. #endif
  3785. break;
  3786. case 82:
  3787. axis_relative_modes[3] = false;
  3788. break;
  3789. case 83:
  3790. axis_relative_modes[3] = true;
  3791. break;
  3792. case 18: //compatibility
  3793. case 84: // M84
  3794. if(code_seen('S')){
  3795. stepper_inactive_time = code_value() * 1000;
  3796. }
  3797. else
  3798. {
  3799. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3800. if(all_axis)
  3801. {
  3802. st_synchronize();
  3803. disable_e0();
  3804. disable_e1();
  3805. disable_e2();
  3806. finishAndDisableSteppers();
  3807. }
  3808. else
  3809. {
  3810. st_synchronize();
  3811. if (code_seen('X')) disable_x();
  3812. if (code_seen('Y')) disable_y();
  3813. if (code_seen('Z')) disable_z();
  3814. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3815. if (code_seen('E')) {
  3816. disable_e0();
  3817. disable_e1();
  3818. disable_e2();
  3819. }
  3820. #endif
  3821. }
  3822. }
  3823. snmm_filaments_used = 0;
  3824. break;
  3825. case 85: // M85
  3826. if(code_seen('S')) {
  3827. max_inactive_time = code_value() * 1000;
  3828. }
  3829. break;
  3830. case 92: // M92
  3831. for(int8_t i=0; i < NUM_AXIS; i++)
  3832. {
  3833. if(code_seen(axis_codes[i]))
  3834. {
  3835. if(i == 3) { // E
  3836. float value = code_value();
  3837. if(value < 20.0) {
  3838. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3839. max_jerk[E_AXIS] *= factor;
  3840. max_feedrate[i] *= factor;
  3841. axis_steps_per_sqr_second[i] *= factor;
  3842. }
  3843. axis_steps_per_unit[i] = value;
  3844. }
  3845. else {
  3846. axis_steps_per_unit[i] = code_value();
  3847. }
  3848. }
  3849. }
  3850. break;
  3851. case 110: // M110 - reset line pos
  3852. if (code_seen('N'))
  3853. gcode_LastN = code_value_long();
  3854. else
  3855. gcode_LastN = 0;
  3856. break;
  3857. case 115: // M115
  3858. if (code_seen('V')) {
  3859. // Report the Prusa version number.
  3860. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3861. } else if (code_seen('U')) {
  3862. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3863. // pause the print and ask the user to upgrade the firmware.
  3864. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3865. } else {
  3866. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3867. }
  3868. break;
  3869. /* case 117: // M117 display message
  3870. starpos = (strchr(strchr_pointer + 5,'*'));
  3871. if(starpos!=NULL)
  3872. *(starpos)='\0';
  3873. lcd_setstatus(strchr_pointer + 5);
  3874. break;*/
  3875. case 114: // M114
  3876. SERIAL_PROTOCOLPGM("X:");
  3877. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3878. SERIAL_PROTOCOLPGM(" Y:");
  3879. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3880. SERIAL_PROTOCOLPGM(" Z:");
  3881. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3882. SERIAL_PROTOCOLPGM(" E:");
  3883. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3884. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3885. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3886. SERIAL_PROTOCOLPGM(" Y:");
  3887. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3888. SERIAL_PROTOCOLPGM(" Z:");
  3889. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3890. SERIAL_PROTOCOLLN("");
  3891. break;
  3892. case 120: // M120
  3893. enable_endstops(false) ;
  3894. break;
  3895. case 121: // M121
  3896. enable_endstops(true) ;
  3897. break;
  3898. case 119: // M119
  3899. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3900. SERIAL_PROTOCOLLN("");
  3901. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3902. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3903. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3904. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3905. }else{
  3906. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3907. }
  3908. SERIAL_PROTOCOLLN("");
  3909. #endif
  3910. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3911. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3912. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3913. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3914. }else{
  3915. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3916. }
  3917. SERIAL_PROTOCOLLN("");
  3918. #endif
  3919. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3920. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3921. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3922. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3923. }else{
  3924. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3925. }
  3926. SERIAL_PROTOCOLLN("");
  3927. #endif
  3928. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3929. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3930. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3931. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3932. }else{
  3933. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3934. }
  3935. SERIAL_PROTOCOLLN("");
  3936. #endif
  3937. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3938. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3939. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3940. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3941. }else{
  3942. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3943. }
  3944. SERIAL_PROTOCOLLN("");
  3945. #endif
  3946. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3947. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3948. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3949. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3950. }else{
  3951. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3952. }
  3953. SERIAL_PROTOCOLLN("");
  3954. #endif
  3955. break;
  3956. //TODO: update for all axis, use for loop
  3957. #ifdef BLINKM
  3958. case 150: // M150
  3959. {
  3960. byte red;
  3961. byte grn;
  3962. byte blu;
  3963. if(code_seen('R')) red = code_value();
  3964. if(code_seen('U')) grn = code_value();
  3965. if(code_seen('B')) blu = code_value();
  3966. SendColors(red,grn,blu);
  3967. }
  3968. break;
  3969. #endif //BLINKM
  3970. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3971. {
  3972. tmp_extruder = active_extruder;
  3973. if(code_seen('T')) {
  3974. tmp_extruder = code_value();
  3975. if(tmp_extruder >= EXTRUDERS) {
  3976. SERIAL_ECHO_START;
  3977. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3978. break;
  3979. }
  3980. }
  3981. float area = .0;
  3982. if(code_seen('D')) {
  3983. float diameter = (float)code_value();
  3984. if (diameter == 0.0) {
  3985. // setting any extruder filament size disables volumetric on the assumption that
  3986. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3987. // for all extruders
  3988. volumetric_enabled = false;
  3989. } else {
  3990. filament_size[tmp_extruder] = (float)code_value();
  3991. // make sure all extruders have some sane value for the filament size
  3992. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3993. #if EXTRUDERS > 1
  3994. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3995. #if EXTRUDERS > 2
  3996. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3997. #endif
  3998. #endif
  3999. volumetric_enabled = true;
  4000. }
  4001. } else {
  4002. //reserved for setting filament diameter via UFID or filament measuring device
  4003. break;
  4004. }
  4005. calculate_volumetric_multipliers();
  4006. }
  4007. break;
  4008. case 201: // M201
  4009. for(int8_t i=0; i < NUM_AXIS; i++)
  4010. {
  4011. if(code_seen(axis_codes[i]))
  4012. {
  4013. max_acceleration_units_per_sq_second[i] = code_value();
  4014. }
  4015. }
  4016. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4017. reset_acceleration_rates();
  4018. break;
  4019. #if 0 // Not used for Sprinter/grbl gen6
  4020. case 202: // M202
  4021. for(int8_t i=0; i < NUM_AXIS; i++) {
  4022. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4023. }
  4024. break;
  4025. #endif
  4026. case 203: // M203 max feedrate mm/sec
  4027. for(int8_t i=0; i < NUM_AXIS; i++) {
  4028. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4029. }
  4030. break;
  4031. case 204: // M204 acclereration S normal moves T filmanent only moves
  4032. {
  4033. if(code_seen('S')) acceleration = code_value() ;
  4034. if(code_seen('T')) retract_acceleration = code_value() ;
  4035. }
  4036. break;
  4037. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4038. {
  4039. if(code_seen('S')) minimumfeedrate = code_value();
  4040. if(code_seen('T')) mintravelfeedrate = code_value();
  4041. if(code_seen('B')) minsegmenttime = code_value() ;
  4042. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4043. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4044. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4045. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4046. }
  4047. break;
  4048. case 206: // M206 additional homing offset
  4049. for(int8_t i=0; i < 3; i++)
  4050. {
  4051. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4052. }
  4053. break;
  4054. #ifdef FWRETRACT
  4055. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4056. {
  4057. if(code_seen('S'))
  4058. {
  4059. retract_length = code_value() ;
  4060. }
  4061. if(code_seen('F'))
  4062. {
  4063. retract_feedrate = code_value()/60 ;
  4064. }
  4065. if(code_seen('Z'))
  4066. {
  4067. retract_zlift = code_value() ;
  4068. }
  4069. }break;
  4070. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4071. {
  4072. if(code_seen('S'))
  4073. {
  4074. retract_recover_length = code_value() ;
  4075. }
  4076. if(code_seen('F'))
  4077. {
  4078. retract_recover_feedrate = code_value()/60 ;
  4079. }
  4080. }break;
  4081. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4082. {
  4083. if(code_seen('S'))
  4084. {
  4085. int t= code_value() ;
  4086. switch(t)
  4087. {
  4088. case 0:
  4089. {
  4090. autoretract_enabled=false;
  4091. retracted[0]=false;
  4092. #if EXTRUDERS > 1
  4093. retracted[1]=false;
  4094. #endif
  4095. #if EXTRUDERS > 2
  4096. retracted[2]=false;
  4097. #endif
  4098. }break;
  4099. case 1:
  4100. {
  4101. autoretract_enabled=true;
  4102. retracted[0]=false;
  4103. #if EXTRUDERS > 1
  4104. retracted[1]=false;
  4105. #endif
  4106. #if EXTRUDERS > 2
  4107. retracted[2]=false;
  4108. #endif
  4109. }break;
  4110. default:
  4111. SERIAL_ECHO_START;
  4112. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4113. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4114. SERIAL_ECHOLNPGM("\"");
  4115. }
  4116. }
  4117. }break;
  4118. #endif // FWRETRACT
  4119. #if EXTRUDERS > 1
  4120. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4121. {
  4122. if(setTargetedHotend(218)){
  4123. break;
  4124. }
  4125. if(code_seen('X'))
  4126. {
  4127. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4128. }
  4129. if(code_seen('Y'))
  4130. {
  4131. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4132. }
  4133. SERIAL_ECHO_START;
  4134. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4135. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4136. {
  4137. SERIAL_ECHO(" ");
  4138. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4139. SERIAL_ECHO(",");
  4140. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4141. }
  4142. SERIAL_ECHOLN("");
  4143. }break;
  4144. #endif
  4145. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4146. {
  4147. if(code_seen('S'))
  4148. {
  4149. feedmultiply = code_value() ;
  4150. }
  4151. }
  4152. break;
  4153. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4154. {
  4155. if(code_seen('S'))
  4156. {
  4157. int tmp_code = code_value();
  4158. if (code_seen('T'))
  4159. {
  4160. if(setTargetedHotend(221)){
  4161. break;
  4162. }
  4163. extruder_multiply[tmp_extruder] = tmp_code;
  4164. }
  4165. else
  4166. {
  4167. extrudemultiply = tmp_code ;
  4168. }
  4169. }
  4170. }
  4171. break;
  4172. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4173. {
  4174. if(code_seen('P')){
  4175. int pin_number = code_value(); // pin number
  4176. int pin_state = -1; // required pin state - default is inverted
  4177. if(code_seen('S')) pin_state = code_value(); // required pin state
  4178. if(pin_state >= -1 && pin_state <= 1){
  4179. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4180. {
  4181. if (sensitive_pins[i] == pin_number)
  4182. {
  4183. pin_number = -1;
  4184. break;
  4185. }
  4186. }
  4187. if (pin_number > -1)
  4188. {
  4189. int target = LOW;
  4190. st_synchronize();
  4191. pinMode(pin_number, INPUT);
  4192. switch(pin_state){
  4193. case 1:
  4194. target = HIGH;
  4195. break;
  4196. case 0:
  4197. target = LOW;
  4198. break;
  4199. case -1:
  4200. target = !digitalRead(pin_number);
  4201. break;
  4202. }
  4203. while(digitalRead(pin_number) != target){
  4204. manage_heater();
  4205. manage_inactivity();
  4206. lcd_update();
  4207. }
  4208. }
  4209. }
  4210. }
  4211. }
  4212. break;
  4213. #if NUM_SERVOS > 0
  4214. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4215. {
  4216. int servo_index = -1;
  4217. int servo_position = 0;
  4218. if (code_seen('P'))
  4219. servo_index = code_value();
  4220. if (code_seen('S')) {
  4221. servo_position = code_value();
  4222. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4223. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4224. servos[servo_index].attach(0);
  4225. #endif
  4226. servos[servo_index].write(servo_position);
  4227. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4228. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4229. servos[servo_index].detach();
  4230. #endif
  4231. }
  4232. else {
  4233. SERIAL_ECHO_START;
  4234. SERIAL_ECHO("Servo ");
  4235. SERIAL_ECHO(servo_index);
  4236. SERIAL_ECHOLN(" out of range");
  4237. }
  4238. }
  4239. else if (servo_index >= 0) {
  4240. SERIAL_PROTOCOL(MSG_OK);
  4241. SERIAL_PROTOCOL(" Servo ");
  4242. SERIAL_PROTOCOL(servo_index);
  4243. SERIAL_PROTOCOL(": ");
  4244. SERIAL_PROTOCOL(servos[servo_index].read());
  4245. SERIAL_PROTOCOLLN("");
  4246. }
  4247. }
  4248. break;
  4249. #endif // NUM_SERVOS > 0
  4250. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4251. case 300: // M300
  4252. {
  4253. int beepS = code_seen('S') ? code_value() : 110;
  4254. int beepP = code_seen('P') ? code_value() : 1000;
  4255. if (beepS > 0)
  4256. {
  4257. #if BEEPER > 0
  4258. tone(BEEPER, beepS);
  4259. delay(beepP);
  4260. noTone(BEEPER);
  4261. #elif defined(ULTRALCD)
  4262. lcd_buzz(beepS, beepP);
  4263. #elif defined(LCD_USE_I2C_BUZZER)
  4264. lcd_buzz(beepP, beepS);
  4265. #endif
  4266. }
  4267. else
  4268. {
  4269. delay(beepP);
  4270. }
  4271. }
  4272. break;
  4273. #endif // M300
  4274. #ifdef PIDTEMP
  4275. case 301: // M301
  4276. {
  4277. if(code_seen('P')) Kp = code_value();
  4278. if(code_seen('I')) Ki = scalePID_i(code_value());
  4279. if(code_seen('D')) Kd = scalePID_d(code_value());
  4280. #ifdef PID_ADD_EXTRUSION_RATE
  4281. if(code_seen('C')) Kc = code_value();
  4282. #endif
  4283. updatePID();
  4284. SERIAL_PROTOCOLRPGM(MSG_OK);
  4285. SERIAL_PROTOCOL(" p:");
  4286. SERIAL_PROTOCOL(Kp);
  4287. SERIAL_PROTOCOL(" i:");
  4288. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4289. SERIAL_PROTOCOL(" d:");
  4290. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4291. #ifdef PID_ADD_EXTRUSION_RATE
  4292. SERIAL_PROTOCOL(" c:");
  4293. //Kc does not have scaling applied above, or in resetting defaults
  4294. SERIAL_PROTOCOL(Kc);
  4295. #endif
  4296. SERIAL_PROTOCOLLN("");
  4297. }
  4298. break;
  4299. #endif //PIDTEMP
  4300. #ifdef PIDTEMPBED
  4301. case 304: // M304
  4302. {
  4303. if(code_seen('P')) bedKp = code_value();
  4304. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4305. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4306. updatePID();
  4307. SERIAL_PROTOCOLRPGM(MSG_OK);
  4308. SERIAL_PROTOCOL(" p:");
  4309. SERIAL_PROTOCOL(bedKp);
  4310. SERIAL_PROTOCOL(" i:");
  4311. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4312. SERIAL_PROTOCOL(" d:");
  4313. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4314. SERIAL_PROTOCOLLN("");
  4315. }
  4316. break;
  4317. #endif //PIDTEMP
  4318. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4319. {
  4320. #ifdef CHDK
  4321. SET_OUTPUT(CHDK);
  4322. WRITE(CHDK, HIGH);
  4323. chdkHigh = millis();
  4324. chdkActive = true;
  4325. #else
  4326. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4327. const uint8_t NUM_PULSES=16;
  4328. const float PULSE_LENGTH=0.01524;
  4329. for(int i=0; i < NUM_PULSES; i++) {
  4330. WRITE(PHOTOGRAPH_PIN, HIGH);
  4331. _delay_ms(PULSE_LENGTH);
  4332. WRITE(PHOTOGRAPH_PIN, LOW);
  4333. _delay_ms(PULSE_LENGTH);
  4334. }
  4335. delay(7.33);
  4336. for(int i=0; i < NUM_PULSES; i++) {
  4337. WRITE(PHOTOGRAPH_PIN, HIGH);
  4338. _delay_ms(PULSE_LENGTH);
  4339. WRITE(PHOTOGRAPH_PIN, LOW);
  4340. _delay_ms(PULSE_LENGTH);
  4341. }
  4342. #endif
  4343. #endif //chdk end if
  4344. }
  4345. break;
  4346. #ifdef DOGLCD
  4347. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4348. {
  4349. if (code_seen('C')) {
  4350. lcd_setcontrast( ((int)code_value())&63 );
  4351. }
  4352. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4353. SERIAL_PROTOCOL(lcd_contrast);
  4354. SERIAL_PROTOCOLLN("");
  4355. }
  4356. break;
  4357. #endif
  4358. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4359. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4360. {
  4361. float temp = .0;
  4362. if (code_seen('S')) temp=code_value();
  4363. set_extrude_min_temp(temp);
  4364. }
  4365. break;
  4366. #endif
  4367. case 303: // M303 PID autotune
  4368. {
  4369. float temp = 150.0;
  4370. int e=0;
  4371. int c=5;
  4372. if (code_seen('E')) e=code_value();
  4373. if (e<0)
  4374. temp=70;
  4375. if (code_seen('S')) temp=code_value();
  4376. if (code_seen('C')) c=code_value();
  4377. PID_autotune(temp, e, c);
  4378. }
  4379. break;
  4380. case 400: // M400 finish all moves
  4381. {
  4382. st_synchronize();
  4383. }
  4384. break;
  4385. #ifdef FILAMENT_SENSOR
  4386. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4387. {
  4388. #if (FILWIDTH_PIN > -1)
  4389. if(code_seen('N')) filament_width_nominal=code_value();
  4390. else{
  4391. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4392. SERIAL_PROTOCOLLN(filament_width_nominal);
  4393. }
  4394. #endif
  4395. }
  4396. break;
  4397. case 405: //M405 Turn on filament sensor for control
  4398. {
  4399. if(code_seen('D')) meas_delay_cm=code_value();
  4400. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4401. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4402. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4403. {
  4404. int temp_ratio = widthFil_to_size_ratio();
  4405. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4406. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4407. }
  4408. delay_index1=0;
  4409. delay_index2=0;
  4410. }
  4411. filament_sensor = true ;
  4412. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4413. //SERIAL_PROTOCOL(filament_width_meas);
  4414. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4415. //SERIAL_PROTOCOL(extrudemultiply);
  4416. }
  4417. break;
  4418. case 406: //M406 Turn off filament sensor for control
  4419. {
  4420. filament_sensor = false ;
  4421. }
  4422. break;
  4423. case 407: //M407 Display measured filament diameter
  4424. {
  4425. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4426. SERIAL_PROTOCOLLN(filament_width_meas);
  4427. }
  4428. break;
  4429. #endif
  4430. case 500: // M500 Store settings in EEPROM
  4431. {
  4432. Config_StoreSettings();
  4433. }
  4434. break;
  4435. case 501: // M501 Read settings from EEPROM
  4436. {
  4437. Config_RetrieveSettings();
  4438. }
  4439. break;
  4440. case 502: // M502 Revert to default settings
  4441. {
  4442. Config_ResetDefault();
  4443. }
  4444. break;
  4445. case 503: // M503 print settings currently in memory
  4446. {
  4447. Config_PrintSettings();
  4448. }
  4449. break;
  4450. case 509: //M509 Force language selection
  4451. {
  4452. lcd_force_language_selection();
  4453. SERIAL_ECHO_START;
  4454. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4455. }
  4456. break;
  4457. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4458. case 540:
  4459. {
  4460. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4461. }
  4462. break;
  4463. #endif
  4464. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4465. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4466. {
  4467. float value;
  4468. if (code_seen('Z'))
  4469. {
  4470. value = code_value();
  4471. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4472. {
  4473. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4474. SERIAL_ECHO_START;
  4475. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4476. SERIAL_PROTOCOLLN("");
  4477. }
  4478. else
  4479. {
  4480. SERIAL_ECHO_START;
  4481. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4482. SERIAL_ECHORPGM(MSG_Z_MIN);
  4483. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4484. SERIAL_ECHORPGM(MSG_Z_MAX);
  4485. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4486. SERIAL_PROTOCOLLN("");
  4487. }
  4488. }
  4489. else
  4490. {
  4491. SERIAL_ECHO_START;
  4492. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4493. SERIAL_ECHO(-zprobe_zoffset);
  4494. SERIAL_PROTOCOLLN("");
  4495. }
  4496. break;
  4497. }
  4498. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4499. #ifdef FILAMENTCHANGEENABLE
  4500. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4501. {
  4502. st_synchronize();
  4503. float target[4];
  4504. float lastpos[4];
  4505. if (farm_mode)
  4506. {
  4507. prusa_statistics(22);
  4508. }
  4509. feedmultiplyBckp=feedmultiply;
  4510. int8_t TooLowZ = 0;
  4511. target[X_AXIS]=current_position[X_AXIS];
  4512. target[Y_AXIS]=current_position[Y_AXIS];
  4513. target[Z_AXIS]=current_position[Z_AXIS];
  4514. target[E_AXIS]=current_position[E_AXIS];
  4515. lastpos[X_AXIS]=current_position[X_AXIS];
  4516. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4517. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4518. lastpos[E_AXIS]=current_position[E_AXIS];
  4519. //Retract extruder
  4520. if(code_seen('E'))
  4521. {
  4522. target[E_AXIS]+= code_value();
  4523. }
  4524. else
  4525. {
  4526. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4527. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4528. #endif
  4529. }
  4530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4531. //Lift Z
  4532. if(code_seen('Z'))
  4533. {
  4534. target[Z_AXIS]+= code_value();
  4535. }
  4536. else
  4537. {
  4538. #ifdef FILAMENTCHANGE_ZADD
  4539. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4540. if(target[Z_AXIS] < 10){
  4541. target[Z_AXIS]+= 10 ;
  4542. TooLowZ = 1;
  4543. }else{
  4544. TooLowZ = 0;
  4545. }
  4546. #endif
  4547. }
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4549. //Move XY to side
  4550. if(code_seen('X'))
  4551. {
  4552. target[X_AXIS]+= code_value();
  4553. }
  4554. else
  4555. {
  4556. #ifdef FILAMENTCHANGE_XPOS
  4557. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4558. #endif
  4559. }
  4560. if(code_seen('Y'))
  4561. {
  4562. target[Y_AXIS]= code_value();
  4563. }
  4564. else
  4565. {
  4566. #ifdef FILAMENTCHANGE_YPOS
  4567. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4568. #endif
  4569. }
  4570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4571. st_synchronize();
  4572. custom_message = true;
  4573. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4574. // Unload filament
  4575. if(code_seen('L'))
  4576. {
  4577. target[E_AXIS]+= code_value();
  4578. }
  4579. else
  4580. {
  4581. #ifdef SNMM
  4582. #else
  4583. #ifdef FILAMENTCHANGE_FINALRETRACT
  4584. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4585. #endif
  4586. #endif // SNMM
  4587. }
  4588. #ifdef SNMM
  4589. target[E_AXIS] += 12;
  4590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4591. target[E_AXIS] += 6;
  4592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4593. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4595. st_synchronize();
  4596. target[E_AXIS] += (FIL_COOLING);
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4598. target[E_AXIS] += (FIL_COOLING*-1);
  4599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4600. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4601. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4602. st_synchronize();
  4603. #else
  4604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4605. #endif // SNMM
  4606. //finish moves
  4607. st_synchronize();
  4608. //disable extruder steppers so filament can be removed
  4609. disable_e0();
  4610. disable_e1();
  4611. disable_e2();
  4612. delay(100);
  4613. //Wait for user to insert filament
  4614. uint8_t cnt=0;
  4615. int counterBeep = 0;
  4616. lcd_wait_interact();
  4617. load_filament_time = millis();
  4618. while(!lcd_clicked()){
  4619. cnt++;
  4620. manage_heater();
  4621. manage_inactivity(true);
  4622. /*#ifdef SNMM
  4623. target[E_AXIS] += 0.002;
  4624. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4625. #endif // SNMM*/
  4626. if(cnt==0)
  4627. {
  4628. #if BEEPER > 0
  4629. if (counterBeep== 500){
  4630. counterBeep = 0;
  4631. }
  4632. SET_OUTPUT(BEEPER);
  4633. if (counterBeep== 0){
  4634. WRITE(BEEPER,HIGH);
  4635. }
  4636. if (counterBeep== 20){
  4637. WRITE(BEEPER,LOW);
  4638. }
  4639. counterBeep++;
  4640. #else
  4641. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4642. lcd_buzz(1000/6,100);
  4643. #else
  4644. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4645. #endif
  4646. #endif
  4647. }
  4648. }
  4649. WRITE(BEEPER, LOW);
  4650. #ifdef SNMM
  4651. display_loading();
  4652. do {
  4653. target[E_AXIS] += 0.002;
  4654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4655. delay_keep_alive(2);
  4656. } while (!lcd_clicked());
  4657. /*if (millis() - load_filament_time > 2) {
  4658. load_filament_time = millis();
  4659. target[E_AXIS] += 0.001;
  4660. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4661. }*/
  4662. #endif
  4663. //Filament inserted
  4664. //Feed the filament to the end of nozzle quickly
  4665. #ifdef SNMM
  4666. st_synchronize();
  4667. target[E_AXIS] += bowden_length[snmm_extruder];
  4668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4669. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4671. target[E_AXIS] += 40;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4673. target[E_AXIS] += 10;
  4674. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4675. #else
  4676. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4678. #endif // SNMM
  4679. //Extrude some filament
  4680. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4682. //Wait for user to check the state
  4683. lcd_change_fil_state = 0;
  4684. lcd_loading_filament();
  4685. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4686. lcd_change_fil_state = 0;
  4687. lcd_alright();
  4688. switch(lcd_change_fil_state){
  4689. // Filament failed to load so load it again
  4690. case 2:
  4691. #ifdef SNMM
  4692. display_loading();
  4693. do {
  4694. target[E_AXIS] += 0.002;
  4695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4696. delay_keep_alive(2);
  4697. } while (!lcd_clicked());
  4698. st_synchronize();
  4699. target[E_AXIS] += bowden_length[snmm_extruder];
  4700. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4701. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4703. target[E_AXIS] += 40;
  4704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4705. target[E_AXIS] += 10;
  4706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4707. #else
  4708. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4709. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4710. #endif
  4711. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4713. lcd_loading_filament();
  4714. break;
  4715. // Filament loaded properly but color is not clear
  4716. case 3:
  4717. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4719. lcd_loading_color();
  4720. break;
  4721. // Everything good
  4722. default:
  4723. lcd_change_success();
  4724. lcd_update_enable(true);
  4725. break;
  4726. }
  4727. }
  4728. //Not let's go back to print
  4729. //Feed a little of filament to stabilize pressure
  4730. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4732. //Retract
  4733. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4734. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4735. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4736. //Move XY back
  4737. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4738. //Move Z back
  4739. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4740. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4741. //Unretract
  4742. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4743. //Set E position to original
  4744. plan_set_e_position(lastpos[E_AXIS]);
  4745. //Recover feed rate
  4746. feedmultiply=feedmultiplyBckp;
  4747. char cmd[9];
  4748. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4749. enquecommand(cmd);
  4750. lcd_setstatuspgm(WELCOME_MSG);
  4751. custom_message = false;
  4752. custom_message_type = 0;
  4753. }
  4754. break;
  4755. #endif //FILAMENTCHANGEENABLE
  4756. case 601: {
  4757. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4758. }
  4759. break;
  4760. case 602: {
  4761. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4762. }
  4763. break;
  4764. #ifdef LIN_ADVANCE
  4765. case 900: // M900: Set LIN_ADVANCE options.
  4766. gcode_M900();
  4767. break;
  4768. #endif
  4769. case 907: // M907 Set digital trimpot motor current using axis codes.
  4770. {
  4771. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4772. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4773. if(code_seen('B')) digipot_current(4,code_value());
  4774. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4775. #endif
  4776. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4777. if(code_seen('X')) digipot_current(0, code_value());
  4778. #endif
  4779. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4780. if(code_seen('Z')) digipot_current(1, code_value());
  4781. #endif
  4782. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4783. if(code_seen('E')) digipot_current(2, code_value());
  4784. #endif
  4785. #ifdef DIGIPOT_I2C
  4786. // this one uses actual amps in floating point
  4787. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4788. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4789. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4790. #endif
  4791. }
  4792. break;
  4793. case 908: // M908 Control digital trimpot directly.
  4794. {
  4795. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4796. uint8_t channel,current;
  4797. if(code_seen('P')) channel=code_value();
  4798. if(code_seen('S')) current=code_value();
  4799. digitalPotWrite(channel, current);
  4800. #endif
  4801. }
  4802. break;
  4803. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4804. {
  4805. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4806. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4807. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4808. if(code_seen('B')) microstep_mode(4,code_value());
  4809. microstep_readings();
  4810. #endif
  4811. }
  4812. break;
  4813. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4814. {
  4815. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4816. if(code_seen('S')) switch((int)code_value())
  4817. {
  4818. case 1:
  4819. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4820. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4821. break;
  4822. case 2:
  4823. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4824. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4825. break;
  4826. }
  4827. microstep_readings();
  4828. #endif
  4829. }
  4830. break;
  4831. case 701: //M701: load filament
  4832. {
  4833. enable_z();
  4834. custom_message = true;
  4835. custom_message_type = 2;
  4836. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4837. current_position[E_AXIS] += 70;
  4838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4839. current_position[E_AXIS] += 25;
  4840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4841. st_synchronize();
  4842. if (!farm_mode && loading_flag) {
  4843. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4844. while (!clean) {
  4845. lcd_update_enable(true);
  4846. lcd_update(2);
  4847. current_position[E_AXIS] += 25;
  4848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4849. st_synchronize();
  4850. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4851. }
  4852. }
  4853. lcd_update_enable(true);
  4854. lcd_update(2);
  4855. lcd_setstatuspgm(WELCOME_MSG);
  4856. disable_z();
  4857. loading_flag = false;
  4858. custom_message = false;
  4859. custom_message_type = 0;
  4860. }
  4861. break;
  4862. case 702:
  4863. {
  4864. #ifdef SNMM
  4865. if (code_seen('U')) {
  4866. extr_unload_used(); //unload all filaments which were used in current print
  4867. }
  4868. else if (code_seen('C')) {
  4869. extr_unload(); //unload just current filament
  4870. }
  4871. else {
  4872. extr_unload_all(); //unload all filaments
  4873. }
  4874. #else
  4875. custom_message = true;
  4876. custom_message_type = 2;
  4877. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4878. current_position[E_AXIS] -= 80;
  4879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4880. st_synchronize();
  4881. lcd_setstatuspgm(WELCOME_MSG);
  4882. custom_message = false;
  4883. custom_message_type = 0;
  4884. #endif
  4885. }
  4886. break;
  4887. case 999: // M999: Restart after being stopped
  4888. Stopped = false;
  4889. lcd_reset_alert_level();
  4890. gcode_LastN = Stopped_gcode_LastN;
  4891. FlushSerialRequestResend();
  4892. break;
  4893. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4894. }
  4895. } // end if(code_seen('M')) (end of M codes)
  4896. else if(code_seen('T'))
  4897. {
  4898. int index;
  4899. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4900. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4901. SERIAL_ECHOLNPGM("Invalid T code.");
  4902. }
  4903. else {
  4904. if (*(strchr_pointer + index) == '?') {
  4905. tmp_extruder = choose_extruder_menu();
  4906. }
  4907. else {
  4908. tmp_extruder = code_value();
  4909. }
  4910. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4911. #ifdef SNMM
  4912. #ifdef LIN_ADVANCE
  4913. if (snmm_extruder != tmp_extruder)
  4914. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4915. #endif
  4916. snmm_extruder = tmp_extruder;
  4917. st_synchronize();
  4918. delay(100);
  4919. disable_e0();
  4920. disable_e1();
  4921. disable_e2();
  4922. pinMode(E_MUX0_PIN, OUTPUT);
  4923. pinMode(E_MUX1_PIN, OUTPUT);
  4924. pinMode(E_MUX2_PIN, OUTPUT);
  4925. delay(100);
  4926. SERIAL_ECHO_START;
  4927. SERIAL_ECHO("T:");
  4928. SERIAL_ECHOLN((int)tmp_extruder);
  4929. switch (tmp_extruder) {
  4930. case 1:
  4931. WRITE(E_MUX0_PIN, HIGH);
  4932. WRITE(E_MUX1_PIN, LOW);
  4933. WRITE(E_MUX2_PIN, LOW);
  4934. break;
  4935. case 2:
  4936. WRITE(E_MUX0_PIN, LOW);
  4937. WRITE(E_MUX1_PIN, HIGH);
  4938. WRITE(E_MUX2_PIN, LOW);
  4939. break;
  4940. case 3:
  4941. WRITE(E_MUX0_PIN, HIGH);
  4942. WRITE(E_MUX1_PIN, HIGH);
  4943. WRITE(E_MUX2_PIN, LOW);
  4944. break;
  4945. default:
  4946. WRITE(E_MUX0_PIN, LOW);
  4947. WRITE(E_MUX1_PIN, LOW);
  4948. WRITE(E_MUX2_PIN, LOW);
  4949. break;
  4950. }
  4951. delay(100);
  4952. #else
  4953. if (tmp_extruder >= EXTRUDERS) {
  4954. SERIAL_ECHO_START;
  4955. SERIAL_ECHOPGM("T");
  4956. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4957. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4958. }
  4959. else {
  4960. boolean make_move = false;
  4961. if (code_seen('F')) {
  4962. make_move = true;
  4963. next_feedrate = code_value();
  4964. if (next_feedrate > 0.0) {
  4965. feedrate = next_feedrate;
  4966. }
  4967. }
  4968. #if EXTRUDERS > 1
  4969. if (tmp_extruder != active_extruder) {
  4970. // Save current position to return to after applying extruder offset
  4971. memcpy(destination, current_position, sizeof(destination));
  4972. // Offset extruder (only by XY)
  4973. int i;
  4974. for (i = 0; i < 2; i++) {
  4975. current_position[i] = current_position[i] -
  4976. extruder_offset[i][active_extruder] +
  4977. extruder_offset[i][tmp_extruder];
  4978. }
  4979. // Set the new active extruder and position
  4980. active_extruder = tmp_extruder;
  4981. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4982. // Move to the old position if 'F' was in the parameters
  4983. if (make_move && Stopped == false) {
  4984. prepare_move();
  4985. }
  4986. }
  4987. #endif
  4988. SERIAL_ECHO_START;
  4989. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4990. SERIAL_PROTOCOLLN((int)active_extruder);
  4991. }
  4992. #endif
  4993. }
  4994. } // end if(code_seen('T')) (end of T codes)
  4995. #ifdef DEBUG_DCODES
  4996. else if (code_seen('D')) // D codes (debug)
  4997. {
  4998. switch((int)code_value_uint8())
  4999. {
  5000. case 0: // D0 - Reset
  5001. if (*(strchr_pointer + 1) == 0) break;
  5002. MYSERIAL.println("D0 - Reset");
  5003. asm volatile("jmp 0x00000");
  5004. break;
  5005. case 1: // D1 - Clear EEPROM
  5006. {
  5007. MYSERIAL.println("D1 - Clear EEPROM");
  5008. cli();
  5009. for (int i = 0; i < 4096; i++)
  5010. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5011. sei();
  5012. }
  5013. break;
  5014. case 2: // D2 - Read/Write PIN
  5015. {
  5016. if (code_seen('P')) // Pin (0-255)
  5017. {
  5018. int pin = (int)code_value();
  5019. if ((pin >= 0) && (pin <= 255))
  5020. {
  5021. if (code_seen('F')) // Function in/out (0/1)
  5022. {
  5023. int fnc = (int)code_value();
  5024. if (fnc == 0) pinMode(pin, INPUT);
  5025. else if (fnc == 1) pinMode(pin, OUTPUT);
  5026. }
  5027. if (code_seen('V')) // Value (0/1)
  5028. {
  5029. int val = (int)code_value();
  5030. if (val == 0) digitalWrite(pin, LOW);
  5031. else if (val == 1) digitalWrite(pin, HIGH);
  5032. }
  5033. else
  5034. {
  5035. int val = (digitalRead(pin) != LOW)?1:0;
  5036. MYSERIAL.print("PIN");
  5037. MYSERIAL.print(pin);
  5038. MYSERIAL.print("=");
  5039. MYSERIAL.println(val);
  5040. }
  5041. }
  5042. }
  5043. }
  5044. break;
  5045. }
  5046. }
  5047. #endif //DEBUG_DCODES
  5048. else
  5049. {
  5050. SERIAL_ECHO_START;
  5051. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5052. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5053. SERIAL_ECHOLNPGM("\"");
  5054. }
  5055. ClearToSend();
  5056. }
  5057. void FlushSerialRequestResend()
  5058. {
  5059. //char cmdbuffer[bufindr][100]="Resend:";
  5060. MYSERIAL.flush();
  5061. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5062. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5063. ClearToSend();
  5064. }
  5065. // Confirm the execution of a command, if sent from a serial line.
  5066. // Execution of a command from a SD card will not be confirmed.
  5067. void ClearToSend()
  5068. {
  5069. previous_millis_cmd = millis();
  5070. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5071. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5072. }
  5073. void get_coordinates()
  5074. {
  5075. bool seen[4]={false,false,false,false};
  5076. for(int8_t i=0; i < NUM_AXIS; i++) {
  5077. if(code_seen(axis_codes[i]))
  5078. {
  5079. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5080. seen[i]=true;
  5081. }
  5082. else destination[i] = current_position[i]; //Are these else lines really needed?
  5083. }
  5084. if(code_seen('F')) {
  5085. next_feedrate = code_value();
  5086. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5087. }
  5088. }
  5089. void get_arc_coordinates()
  5090. {
  5091. #ifdef SF_ARC_FIX
  5092. bool relative_mode_backup = relative_mode;
  5093. relative_mode = true;
  5094. #endif
  5095. get_coordinates();
  5096. #ifdef SF_ARC_FIX
  5097. relative_mode=relative_mode_backup;
  5098. #endif
  5099. if(code_seen('I')) {
  5100. offset[0] = code_value();
  5101. }
  5102. else {
  5103. offset[0] = 0.0;
  5104. }
  5105. if(code_seen('J')) {
  5106. offset[1] = code_value();
  5107. }
  5108. else {
  5109. offset[1] = 0.0;
  5110. }
  5111. }
  5112. void clamp_to_software_endstops(float target[3])
  5113. {
  5114. #ifdef DEBUG_DISABLE_SWLIMITS
  5115. return;
  5116. #endif //DEBUG_DISABLE_SWLIMITS
  5117. world2machine_clamp(target[0], target[1]);
  5118. // Clamp the Z coordinate.
  5119. if (min_software_endstops) {
  5120. float negative_z_offset = 0;
  5121. #ifdef ENABLE_AUTO_BED_LEVELING
  5122. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5123. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5124. #endif
  5125. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5126. }
  5127. if (max_software_endstops) {
  5128. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5129. }
  5130. }
  5131. #ifdef MESH_BED_LEVELING
  5132. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5133. float dx = x - current_position[X_AXIS];
  5134. float dy = y - current_position[Y_AXIS];
  5135. float dz = z - current_position[Z_AXIS];
  5136. int n_segments = 0;
  5137. if (mbl.active) {
  5138. float len = abs(dx) + abs(dy);
  5139. if (len > 0)
  5140. // Split to 3cm segments or shorter.
  5141. n_segments = int(ceil(len / 30.f));
  5142. }
  5143. if (n_segments > 1) {
  5144. float de = e - current_position[E_AXIS];
  5145. for (int i = 1; i < n_segments; ++ i) {
  5146. float t = float(i) / float(n_segments);
  5147. plan_buffer_line(
  5148. current_position[X_AXIS] + t * dx,
  5149. current_position[Y_AXIS] + t * dy,
  5150. current_position[Z_AXIS] + t * dz,
  5151. current_position[E_AXIS] + t * de,
  5152. feed_rate, extruder);
  5153. }
  5154. }
  5155. // The rest of the path.
  5156. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5157. current_position[X_AXIS] = x;
  5158. current_position[Y_AXIS] = y;
  5159. current_position[Z_AXIS] = z;
  5160. current_position[E_AXIS] = e;
  5161. }
  5162. #endif // MESH_BED_LEVELING
  5163. void prepare_move()
  5164. {
  5165. clamp_to_software_endstops(destination);
  5166. previous_millis_cmd = millis();
  5167. // Do not use feedmultiply for E or Z only moves
  5168. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5169. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5170. }
  5171. else {
  5172. #ifdef MESH_BED_LEVELING
  5173. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5174. #else
  5175. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5176. #endif
  5177. }
  5178. for(int8_t i=0; i < NUM_AXIS; i++) {
  5179. current_position[i] = destination[i];
  5180. }
  5181. }
  5182. void prepare_arc_move(char isclockwise) {
  5183. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5184. // Trace the arc
  5185. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5186. // As far as the parser is concerned, the position is now == target. In reality the
  5187. // motion control system might still be processing the action and the real tool position
  5188. // in any intermediate location.
  5189. for(int8_t i=0; i < NUM_AXIS; i++) {
  5190. current_position[i] = destination[i];
  5191. }
  5192. previous_millis_cmd = millis();
  5193. }
  5194. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5195. #if defined(FAN_PIN)
  5196. #if CONTROLLERFAN_PIN == FAN_PIN
  5197. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5198. #endif
  5199. #endif
  5200. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5201. unsigned long lastMotorCheck = 0;
  5202. void controllerFan()
  5203. {
  5204. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5205. {
  5206. lastMotorCheck = millis();
  5207. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5208. #if EXTRUDERS > 2
  5209. || !READ(E2_ENABLE_PIN)
  5210. #endif
  5211. #if EXTRUDER > 1
  5212. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5213. || !READ(X2_ENABLE_PIN)
  5214. #endif
  5215. || !READ(E1_ENABLE_PIN)
  5216. #endif
  5217. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5218. {
  5219. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5220. }
  5221. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5222. {
  5223. digitalWrite(CONTROLLERFAN_PIN, 0);
  5224. analogWrite(CONTROLLERFAN_PIN, 0);
  5225. }
  5226. else
  5227. {
  5228. // allows digital or PWM fan output to be used (see M42 handling)
  5229. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5230. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5231. }
  5232. }
  5233. }
  5234. #endif
  5235. #ifdef TEMP_STAT_LEDS
  5236. static bool blue_led = false;
  5237. static bool red_led = false;
  5238. static uint32_t stat_update = 0;
  5239. void handle_status_leds(void) {
  5240. float max_temp = 0.0;
  5241. if(millis() > stat_update) {
  5242. stat_update += 500; // Update every 0.5s
  5243. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5244. max_temp = max(max_temp, degHotend(cur_extruder));
  5245. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5246. }
  5247. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5248. max_temp = max(max_temp, degTargetBed());
  5249. max_temp = max(max_temp, degBed());
  5250. #endif
  5251. if((max_temp > 55.0) && (red_led == false)) {
  5252. digitalWrite(STAT_LED_RED, 1);
  5253. digitalWrite(STAT_LED_BLUE, 0);
  5254. red_led = true;
  5255. blue_led = false;
  5256. }
  5257. if((max_temp < 54.0) && (blue_led == false)) {
  5258. digitalWrite(STAT_LED_RED, 0);
  5259. digitalWrite(STAT_LED_BLUE, 1);
  5260. red_led = false;
  5261. blue_led = true;
  5262. }
  5263. }
  5264. }
  5265. #endif
  5266. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5267. {
  5268. #if defined(KILL_PIN) && KILL_PIN > -1
  5269. static int killCount = 0; // make the inactivity button a bit less responsive
  5270. const int KILL_DELAY = 10000;
  5271. #endif
  5272. if(buflen < (BUFSIZE-1)){
  5273. get_command();
  5274. }
  5275. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5276. if(max_inactive_time)
  5277. kill();
  5278. if(stepper_inactive_time) {
  5279. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5280. {
  5281. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5282. disable_x();
  5283. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5284. disable_y();
  5285. disable_z();
  5286. disable_e0();
  5287. disable_e1();
  5288. disable_e2();
  5289. }
  5290. }
  5291. }
  5292. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5293. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5294. {
  5295. chdkActive = false;
  5296. WRITE(CHDK, LOW);
  5297. }
  5298. #endif
  5299. #if defined(KILL_PIN) && KILL_PIN > -1
  5300. // Check if the kill button was pressed and wait just in case it was an accidental
  5301. // key kill key press
  5302. // -------------------------------------------------------------------------------
  5303. if( 0 == READ(KILL_PIN) )
  5304. {
  5305. killCount++;
  5306. }
  5307. else if (killCount > 0)
  5308. {
  5309. killCount--;
  5310. }
  5311. // Exceeded threshold and we can confirm that it was not accidental
  5312. // KILL the machine
  5313. // ----------------------------------------------------------------
  5314. if ( killCount >= KILL_DELAY)
  5315. {
  5316. kill();
  5317. }
  5318. #endif
  5319. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5320. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5321. #endif
  5322. #ifdef EXTRUDER_RUNOUT_PREVENT
  5323. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5324. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5325. {
  5326. bool oldstatus=READ(E0_ENABLE_PIN);
  5327. enable_e0();
  5328. float oldepos=current_position[E_AXIS];
  5329. float oldedes=destination[E_AXIS];
  5330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5331. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5332. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5333. current_position[E_AXIS]=oldepos;
  5334. destination[E_AXIS]=oldedes;
  5335. plan_set_e_position(oldepos);
  5336. previous_millis_cmd=millis();
  5337. st_synchronize();
  5338. WRITE(E0_ENABLE_PIN,oldstatus);
  5339. }
  5340. #endif
  5341. #ifdef TEMP_STAT_LEDS
  5342. handle_status_leds();
  5343. #endif
  5344. check_axes_activity();
  5345. }
  5346. void kill(const char *full_screen_message)
  5347. {
  5348. cli(); // Stop interrupts
  5349. disable_heater();
  5350. disable_x();
  5351. // SERIAL_ECHOLNPGM("kill - disable Y");
  5352. disable_y();
  5353. disable_z();
  5354. disable_e0();
  5355. disable_e1();
  5356. disable_e2();
  5357. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5358. pinMode(PS_ON_PIN,INPUT);
  5359. #endif
  5360. SERIAL_ERROR_START;
  5361. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5362. if (full_screen_message != NULL) {
  5363. SERIAL_ERRORLNRPGM(full_screen_message);
  5364. lcd_display_message_fullscreen_P(full_screen_message);
  5365. } else {
  5366. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5367. }
  5368. // FMC small patch to update the LCD before ending
  5369. sei(); // enable interrupts
  5370. for ( int i=5; i--; lcd_update())
  5371. {
  5372. delay(200);
  5373. }
  5374. cli(); // disable interrupts
  5375. suicide();
  5376. while(1) { /* Intentionally left empty */ } // Wait for reset
  5377. }
  5378. void Stop()
  5379. {
  5380. disable_heater();
  5381. if(Stopped == false) {
  5382. Stopped = true;
  5383. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5384. SERIAL_ERROR_START;
  5385. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5386. LCD_MESSAGERPGM(MSG_STOPPED);
  5387. }
  5388. }
  5389. bool IsStopped() { return Stopped; };
  5390. #ifdef FAST_PWM_FAN
  5391. void setPwmFrequency(uint8_t pin, int val)
  5392. {
  5393. val &= 0x07;
  5394. switch(digitalPinToTimer(pin))
  5395. {
  5396. #if defined(TCCR0A)
  5397. case TIMER0A:
  5398. case TIMER0B:
  5399. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5400. // TCCR0B |= val;
  5401. break;
  5402. #endif
  5403. #if defined(TCCR1A)
  5404. case TIMER1A:
  5405. case TIMER1B:
  5406. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5407. // TCCR1B |= val;
  5408. break;
  5409. #endif
  5410. #if defined(TCCR2)
  5411. case TIMER2:
  5412. case TIMER2:
  5413. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5414. TCCR2 |= val;
  5415. break;
  5416. #endif
  5417. #if defined(TCCR2A)
  5418. case TIMER2A:
  5419. case TIMER2B:
  5420. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5421. TCCR2B |= val;
  5422. break;
  5423. #endif
  5424. #if defined(TCCR3A)
  5425. case TIMER3A:
  5426. case TIMER3B:
  5427. case TIMER3C:
  5428. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5429. TCCR3B |= val;
  5430. break;
  5431. #endif
  5432. #if defined(TCCR4A)
  5433. case TIMER4A:
  5434. case TIMER4B:
  5435. case TIMER4C:
  5436. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5437. TCCR4B |= val;
  5438. break;
  5439. #endif
  5440. #if defined(TCCR5A)
  5441. case TIMER5A:
  5442. case TIMER5B:
  5443. case TIMER5C:
  5444. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5445. TCCR5B |= val;
  5446. break;
  5447. #endif
  5448. }
  5449. }
  5450. #endif //FAST_PWM_FAN
  5451. bool setTargetedHotend(int code){
  5452. tmp_extruder = active_extruder;
  5453. if(code_seen('T')) {
  5454. tmp_extruder = code_value();
  5455. if(tmp_extruder >= EXTRUDERS) {
  5456. SERIAL_ECHO_START;
  5457. switch(code){
  5458. case 104:
  5459. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5460. break;
  5461. case 105:
  5462. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5463. break;
  5464. case 109:
  5465. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5466. break;
  5467. case 218:
  5468. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5469. break;
  5470. case 221:
  5471. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5472. break;
  5473. }
  5474. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5475. return true;
  5476. }
  5477. }
  5478. return false;
  5479. }
  5480. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5481. {
  5482. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5483. {
  5484. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5485. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5486. }
  5487. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5488. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5489. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5490. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5491. total_filament_used = 0;
  5492. }
  5493. float calculate_volumetric_multiplier(float diameter) {
  5494. float area = .0;
  5495. float radius = .0;
  5496. radius = diameter * .5;
  5497. if (! volumetric_enabled || radius == 0) {
  5498. area = 1;
  5499. }
  5500. else {
  5501. area = M_PI * pow(radius, 2);
  5502. }
  5503. return 1.0 / area;
  5504. }
  5505. void calculate_volumetric_multipliers() {
  5506. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5507. #if EXTRUDERS > 1
  5508. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5509. #if EXTRUDERS > 2
  5510. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5511. #endif
  5512. #endif
  5513. }
  5514. void delay_keep_alive(unsigned int ms)
  5515. {
  5516. for (;;) {
  5517. manage_heater();
  5518. // Manage inactivity, but don't disable steppers on timeout.
  5519. manage_inactivity(true);
  5520. lcd_update();
  5521. if (ms == 0)
  5522. break;
  5523. else if (ms >= 50) {
  5524. delay(50);
  5525. ms -= 50;
  5526. } else {
  5527. delay(ms);
  5528. ms = 0;
  5529. }
  5530. }
  5531. }
  5532. void wait_for_heater(long codenum) {
  5533. #ifdef TEMP_RESIDENCY_TIME
  5534. long residencyStart;
  5535. residencyStart = -1;
  5536. /* continue to loop until we have reached the target temp
  5537. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5538. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5539. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5540. #else
  5541. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5542. #endif //TEMP_RESIDENCY_TIME
  5543. if ((millis() - codenum) > 1000UL)
  5544. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5545. if (!farm_mode) {
  5546. SERIAL_PROTOCOLPGM("T:");
  5547. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5548. SERIAL_PROTOCOLPGM(" E:");
  5549. SERIAL_PROTOCOL((int)tmp_extruder);
  5550. #ifdef TEMP_RESIDENCY_TIME
  5551. SERIAL_PROTOCOLPGM(" W:");
  5552. if (residencyStart > -1)
  5553. {
  5554. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5555. SERIAL_PROTOCOLLN(codenum);
  5556. }
  5557. else
  5558. {
  5559. SERIAL_PROTOCOLLN("?");
  5560. }
  5561. }
  5562. #else
  5563. SERIAL_PROTOCOLLN("");
  5564. #endif
  5565. codenum = millis();
  5566. }
  5567. manage_heater();
  5568. manage_inactivity();
  5569. lcd_update();
  5570. #ifdef TEMP_RESIDENCY_TIME
  5571. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5572. or when current temp falls outside the hysteresis after target temp was reached */
  5573. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5574. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5575. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5576. {
  5577. residencyStart = millis();
  5578. }
  5579. #endif //TEMP_RESIDENCY_TIME
  5580. }
  5581. }
  5582. void check_babystep() {
  5583. int babystep_z;
  5584. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5585. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5586. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5587. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5588. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5589. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5590. lcd_update_enable(true);
  5591. }
  5592. }
  5593. #ifdef DIS
  5594. void d_setup()
  5595. {
  5596. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5597. pinMode(D_DATA, INPUT_PULLUP);
  5598. pinMode(D_REQUIRE, OUTPUT);
  5599. digitalWrite(D_REQUIRE, HIGH);
  5600. }
  5601. float d_ReadData()
  5602. {
  5603. int digit[13];
  5604. String mergeOutput;
  5605. float output;
  5606. digitalWrite(D_REQUIRE, HIGH);
  5607. for (int i = 0; i<13; i++)
  5608. {
  5609. for (int j = 0; j < 4; j++)
  5610. {
  5611. while (digitalRead(D_DATACLOCK) == LOW) {}
  5612. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5613. bitWrite(digit[i], j, digitalRead(D_DATA));
  5614. }
  5615. }
  5616. digitalWrite(D_REQUIRE, LOW);
  5617. mergeOutput = "";
  5618. output = 0;
  5619. for (int r = 5; r <= 10; r++) //Merge digits
  5620. {
  5621. mergeOutput += digit[r];
  5622. }
  5623. output = mergeOutput.toFloat();
  5624. if (digit[4] == 8) //Handle sign
  5625. {
  5626. output *= -1;
  5627. }
  5628. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5629. {
  5630. output /= 10;
  5631. }
  5632. return output;
  5633. }
  5634. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5635. int t1 = 0;
  5636. int t_delay = 0;
  5637. int digit[13];
  5638. int m;
  5639. char str[3];
  5640. //String mergeOutput;
  5641. char mergeOutput[15];
  5642. float output;
  5643. int mesh_point = 0; //index number of calibration point
  5644. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5645. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5646. float mesh_home_z_search = 4;
  5647. float row[x_points_num];
  5648. int ix = 0;
  5649. int iy = 0;
  5650. char* filename_wldsd = "wldsd.txt";
  5651. char data_wldsd[70];
  5652. char numb_wldsd[10];
  5653. d_setup();
  5654. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5655. // We don't know where we are! HOME!
  5656. // Push the commands to the front of the message queue in the reverse order!
  5657. // There shall be always enough space reserved for these commands.
  5658. repeatcommand_front(); // repeat G80 with all its parameters
  5659. enquecommand_front_P((PSTR("G28 W0")));
  5660. enquecommand_front_P((PSTR("G1 Z5")));
  5661. return;
  5662. }
  5663. bool custom_message_old = custom_message;
  5664. unsigned int custom_message_type_old = custom_message_type;
  5665. unsigned int custom_message_state_old = custom_message_state;
  5666. custom_message = true;
  5667. custom_message_type = 1;
  5668. custom_message_state = (x_points_num * y_points_num) + 10;
  5669. lcd_update(1);
  5670. mbl.reset();
  5671. babystep_undo();
  5672. card.openFile(filename_wldsd, false);
  5673. current_position[Z_AXIS] = mesh_home_z_search;
  5674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5675. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5676. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5677. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5678. setup_for_endstop_move(false);
  5679. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5680. SERIAL_PROTOCOL(x_points_num);
  5681. SERIAL_PROTOCOLPGM(",");
  5682. SERIAL_PROTOCOL(y_points_num);
  5683. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5684. SERIAL_PROTOCOL(mesh_home_z_search);
  5685. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5686. SERIAL_PROTOCOL(x_dimension);
  5687. SERIAL_PROTOCOLPGM(",");
  5688. SERIAL_PROTOCOL(y_dimension);
  5689. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5690. while (mesh_point != x_points_num * y_points_num) {
  5691. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5692. iy = mesh_point / x_points_num;
  5693. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5694. float z0 = 0.f;
  5695. current_position[Z_AXIS] = mesh_home_z_search;
  5696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5697. st_synchronize();
  5698. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5699. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5701. st_synchronize();
  5702. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5703. break;
  5704. card.closefile();
  5705. }
  5706. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5707. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5708. //strcat(data_wldsd, numb_wldsd);
  5709. //MYSERIAL.println(data_wldsd);
  5710. //delay(1000);
  5711. //delay(3000);
  5712. //t1 = millis();
  5713. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5714. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5715. memset(digit, 0, sizeof(digit));
  5716. //cli();
  5717. digitalWrite(D_REQUIRE, LOW);
  5718. for (int i = 0; i<13; i++)
  5719. {
  5720. //t1 = millis();
  5721. for (int j = 0; j < 4; j++)
  5722. {
  5723. while (digitalRead(D_DATACLOCK) == LOW) {}
  5724. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5725. bitWrite(digit[i], j, digitalRead(D_DATA));
  5726. }
  5727. //t_delay = (millis() - t1);
  5728. //SERIAL_PROTOCOLPGM(" ");
  5729. //SERIAL_PROTOCOL_F(t_delay, 5);
  5730. //SERIAL_PROTOCOLPGM(" ");
  5731. }
  5732. //sei();
  5733. digitalWrite(D_REQUIRE, HIGH);
  5734. mergeOutput[0] = '\0';
  5735. output = 0;
  5736. for (int r = 5; r <= 10; r++) //Merge digits
  5737. {
  5738. sprintf(str, "%d", digit[r]);
  5739. strcat(mergeOutput, str);
  5740. }
  5741. output = atof(mergeOutput);
  5742. if (digit[4] == 8) //Handle sign
  5743. {
  5744. output *= -1;
  5745. }
  5746. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5747. {
  5748. output *= 0.1;
  5749. }
  5750. //output = d_ReadData();
  5751. //row[ix] = current_position[Z_AXIS];
  5752. memset(data_wldsd, 0, sizeof(data_wldsd));
  5753. for (int i = 0; i <3; i++) {
  5754. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5755. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5756. strcat(data_wldsd, numb_wldsd);
  5757. strcat(data_wldsd, ";");
  5758. }
  5759. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5760. dtostrf(output, 8, 5, numb_wldsd);
  5761. strcat(data_wldsd, numb_wldsd);
  5762. //strcat(data_wldsd, ";");
  5763. card.write_command(data_wldsd);
  5764. //row[ix] = d_ReadData();
  5765. row[ix] = output; // current_position[Z_AXIS];
  5766. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5767. for (int i = 0; i < x_points_num; i++) {
  5768. SERIAL_PROTOCOLPGM(" ");
  5769. SERIAL_PROTOCOL_F(row[i], 5);
  5770. }
  5771. SERIAL_PROTOCOLPGM("\n");
  5772. }
  5773. custom_message_state--;
  5774. mesh_point++;
  5775. lcd_update(1);
  5776. }
  5777. card.closefile();
  5778. }
  5779. #endif
  5780. void temp_compensation_start() {
  5781. custom_message = true;
  5782. custom_message_type = 5;
  5783. custom_message_state = PINDA_HEAT_T + 1;
  5784. lcd_update(2);
  5785. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5786. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5787. }
  5788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5789. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5790. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5791. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5793. st_synchronize();
  5794. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5795. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5796. delay_keep_alive(1000);
  5797. custom_message_state = PINDA_HEAT_T - i;
  5798. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5799. else lcd_update(1);
  5800. }
  5801. custom_message_type = 0;
  5802. custom_message_state = 0;
  5803. custom_message = false;
  5804. }
  5805. void temp_compensation_apply() {
  5806. int i_add;
  5807. int compensation_value;
  5808. int z_shift = 0;
  5809. float z_shift_mm;
  5810. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5811. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5812. i_add = (target_temperature_bed - 60) / 10;
  5813. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5814. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5815. }else {
  5816. //interpolation
  5817. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5818. }
  5819. SERIAL_PROTOCOLPGM("\n");
  5820. SERIAL_PROTOCOLPGM("Z shift applied:");
  5821. MYSERIAL.print(z_shift_mm);
  5822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5823. st_synchronize();
  5824. plan_set_z_position(current_position[Z_AXIS]);
  5825. }
  5826. else {
  5827. //we have no temp compensation data
  5828. }
  5829. }
  5830. float temp_comp_interpolation(float inp_temperature) {
  5831. //cubic spline interpolation
  5832. int n, i, j, k;
  5833. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5834. int shift[10];
  5835. int temp_C[10];
  5836. n = 6; //number of measured points
  5837. shift[0] = 0;
  5838. for (i = 0; i < n; i++) {
  5839. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5840. temp_C[i] = 50 + i * 10; //temperature in C
  5841. x[i] = (float)temp_C[i];
  5842. f[i] = (float)shift[i];
  5843. }
  5844. if (inp_temperature < x[0]) return 0;
  5845. for (i = n - 1; i>0; i--) {
  5846. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5847. h[i - 1] = x[i] - x[i - 1];
  5848. }
  5849. //*********** formation of h, s , f matrix **************
  5850. for (i = 1; i<n - 1; i++) {
  5851. m[i][i] = 2 * (h[i - 1] + h[i]);
  5852. if (i != 1) {
  5853. m[i][i - 1] = h[i - 1];
  5854. m[i - 1][i] = h[i - 1];
  5855. }
  5856. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5857. }
  5858. //*********** forward elimination **************
  5859. for (i = 1; i<n - 2; i++) {
  5860. temp = (m[i + 1][i] / m[i][i]);
  5861. for (j = 1; j <= n - 1; j++)
  5862. m[i + 1][j] -= temp*m[i][j];
  5863. }
  5864. //*********** backward substitution *********
  5865. for (i = n - 2; i>0; i--) {
  5866. sum = 0;
  5867. for (j = i; j <= n - 2; j++)
  5868. sum += m[i][j] * s[j];
  5869. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5870. }
  5871. for (i = 0; i<n - 1; i++)
  5872. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5873. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5874. b = s[i] / 2;
  5875. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5876. d = f[i];
  5877. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5878. }
  5879. return sum;
  5880. }
  5881. void long_pause() //long pause print
  5882. {
  5883. st_synchronize();
  5884. //save currently set parameters to global variables
  5885. saved_feedmultiply = feedmultiply;
  5886. HotendTempBckp = degTargetHotend(active_extruder);
  5887. fanSpeedBckp = fanSpeed;
  5888. start_pause_print = millis();
  5889. //save position
  5890. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5891. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5892. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5893. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5894. //retract
  5895. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5897. //lift z
  5898. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5899. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5901. //set nozzle target temperature to 0
  5902. setTargetHotend(0, 0);
  5903. setTargetHotend(0, 1);
  5904. setTargetHotend(0, 2);
  5905. //Move XY to side
  5906. current_position[X_AXIS] = X_PAUSE_POS;
  5907. current_position[Y_AXIS] = Y_PAUSE_POS;
  5908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5909. // Turn off the print fan
  5910. fanSpeed = 0;
  5911. st_synchronize();
  5912. }
  5913. void serialecho_temperatures() {
  5914. float tt = degHotend(active_extruder);
  5915. SERIAL_PROTOCOLPGM("T:");
  5916. SERIAL_PROTOCOL(tt);
  5917. SERIAL_PROTOCOLPGM(" E:");
  5918. SERIAL_PROTOCOL((int)active_extruder);
  5919. SERIAL_PROTOCOLPGM(" B:");
  5920. SERIAL_PROTOCOL_F(degBed(), 1);
  5921. SERIAL_PROTOCOLLN("");
  5922. }