temperature.cpp 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #if IR_SENSOR_ANALOG
  59. int current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  64. int redundant_temperature_raw = 0;
  65. float redundant_temperature = 0.0;
  66. #endif
  67. #ifdef PIDTEMP
  68. float _Kp, _Ki, _Kd;
  69. int pid_cycle, pid_number_of_cycles;
  70. bool pid_tuning_finished = false;
  71. #ifdef PID_ADD_EXTRUSION_RATE
  72. float Kc=DEFAULT_Kc;
  73. #endif
  74. #endif //PIDTEMP
  75. #ifdef FAN_SOFT_PWM
  76. unsigned char fanSpeedSoftPwm;
  77. #endif
  78. #ifdef FANCHECK
  79. volatile uint8_t fan_check_error = EFCE_OK;
  80. #endif
  81. unsigned char soft_pwm_bed;
  82. #ifdef BABYSTEPPING
  83. volatile int babystepsTodo[3]={0,0,0};
  84. #endif
  85. //===========================================================================
  86. //=============================private variables============================
  87. //===========================================================================
  88. static volatile bool temp_meas_ready = false;
  89. #ifdef PIDTEMP
  90. //static cannot be external:
  91. static float iState_sum[EXTRUDERS] = { 0 };
  92. static float dState_last[EXTRUDERS] = { 0 };
  93. static float pTerm[EXTRUDERS];
  94. static float iTerm[EXTRUDERS];
  95. static float dTerm[EXTRUDERS];
  96. //int output;
  97. static float pid_error[EXTRUDERS];
  98. static float iState_sum_min[EXTRUDERS];
  99. static float iState_sum_max[EXTRUDERS];
  100. // static float pid_input[EXTRUDERS];
  101. // static float pid_output[EXTRUDERS];
  102. static bool pid_reset[EXTRUDERS];
  103. #endif //PIDTEMP
  104. #ifdef PIDTEMPBED
  105. //static cannot be external:
  106. static float temp_iState_bed = { 0 };
  107. static float temp_dState_bed = { 0 };
  108. static float pTerm_bed;
  109. static float iTerm_bed;
  110. static float dTerm_bed;
  111. //int output;
  112. static float pid_error_bed;
  113. static float temp_iState_min_bed;
  114. static float temp_iState_max_bed;
  115. #else //PIDTEMPBED
  116. static unsigned long previous_millis_bed_heater;
  117. #endif //PIDTEMPBED
  118. static unsigned char soft_pwm[EXTRUDERS];
  119. #ifdef FAN_SOFT_PWM
  120. static unsigned char soft_pwm_fan;
  121. #endif
  122. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  123. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  124. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  125. unsigned long extruder_autofan_last_check = _millis();
  126. uint8_t fanSpeedBckp = 255;
  127. bool fan_measuring = false;
  128. #endif
  129. #if EXTRUDERS > 3
  130. # error Unsupported number of extruders
  131. #elif EXTRUDERS > 2
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  133. #elif EXTRUDERS > 1
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  135. #else
  136. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  137. #endif
  138. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  139. // Init min and max temp with extreme values to prevent false errors during startup
  140. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  141. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  142. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  143. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  144. #ifdef BED_MINTEMP
  145. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  146. #endif
  147. #ifdef BED_MAXTEMP
  148. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  149. #endif
  150. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  151. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  152. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  153. #else
  154. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  155. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  156. #endif
  157. static float analog2temp(int raw, uint8_t e);
  158. static float analog2tempBed(int raw);
  159. static float analog2tempAmbient(int raw);
  160. static void updateTemperaturesFromRawValues();
  161. enum TempRunawayStates
  162. {
  163. TempRunaway_INACTIVE = 0,
  164. TempRunaway_PREHEAT = 1,
  165. TempRunaway_ACTIVE = 2,
  166. };
  167. #ifdef WATCH_TEMP_PERIOD
  168. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  169. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  170. #endif //WATCH_TEMP_PERIOD
  171. #ifndef SOFT_PWM_SCALE
  172. #define SOFT_PWM_SCALE 0
  173. #endif
  174. //===========================================================================
  175. //============================= functions ============================
  176. //===========================================================================
  177. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  178. static float temp_runaway_status[4];
  179. static float temp_runaway_target[4];
  180. static float temp_runaway_timer[4];
  181. static int temp_runaway_error_counter[4];
  182. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  183. static void temp_runaway_stop(bool isPreheat, bool isBed);
  184. #endif
  185. void PID_autotune(float temp, int extruder, int ncycles)
  186. {
  187. pid_number_of_cycles = ncycles;
  188. pid_tuning_finished = false;
  189. float input = 0.0;
  190. pid_cycle=0;
  191. bool heating = true;
  192. unsigned long temp_millis = _millis();
  193. unsigned long t1=temp_millis;
  194. unsigned long t2=temp_millis;
  195. long t_high = 0;
  196. long t_low = 0;
  197. long bias, d;
  198. float Ku, Tu;
  199. float max = 0, min = 10000;
  200. uint8_t safety_check_cycles = 0;
  201. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  202. float temp_ambient;
  203. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  204. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  205. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  206. unsigned long extruder_autofan_last_check = _millis();
  207. #endif
  208. if ((extruder >= EXTRUDERS)
  209. #if (TEMP_BED_PIN <= -1)
  210. ||(extruder < 0)
  211. #endif
  212. ){
  213. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  214. pid_tuning_finished = true;
  215. pid_cycle = 0;
  216. return;
  217. }
  218. SERIAL_ECHOLN("PID Autotune start");
  219. disable_heater(); // switch off all heaters.
  220. if (extruder<0)
  221. {
  222. soft_pwm_bed = (MAX_BED_POWER)/2;
  223. timer02_set_pwm0(soft_pwm_bed << 1);
  224. bias = d = (MAX_BED_POWER)/2;
  225. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  226. }
  227. else
  228. {
  229. soft_pwm[extruder] = (PID_MAX)/2;
  230. bias = d = (PID_MAX)/2;
  231. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  232. }
  233. for(;;) {
  234. #ifdef WATCHDOG
  235. wdt_reset();
  236. #endif //WATCHDOG
  237. if(temp_meas_ready == true) { // temp sample ready
  238. updateTemperaturesFromRawValues();
  239. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  240. max=max(max,input);
  241. min=min(min,input);
  242. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  243. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  244. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  245. if(_millis() - extruder_autofan_last_check > 2500) {
  246. checkExtruderAutoFans();
  247. extruder_autofan_last_check = _millis();
  248. }
  249. #endif
  250. if(heating == true && input > temp) {
  251. if(_millis() - t2 > 5000) {
  252. heating=false;
  253. if (extruder<0)
  254. {
  255. soft_pwm_bed = (bias - d) >> 1;
  256. timer02_set_pwm0(soft_pwm_bed << 1);
  257. }
  258. else
  259. soft_pwm[extruder] = (bias - d) >> 1;
  260. t1=_millis();
  261. t_high=t1 - t2;
  262. max=temp;
  263. }
  264. }
  265. if(heating == false && input < temp) {
  266. if(_millis() - t1 > 5000) {
  267. heating=true;
  268. t2=_millis();
  269. t_low=t2 - t1;
  270. if(pid_cycle > 0) {
  271. bias += (d*(t_high - t_low))/(t_low + t_high);
  272. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  273. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  274. else d = bias;
  275. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  276. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  277. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  278. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  279. if(pid_cycle > 2) {
  280. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  281. Tu = ((float)(t_low + t_high)/1000.0);
  282. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  283. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  284. _Kp = 0.6*Ku;
  285. _Ki = 2*_Kp/Tu;
  286. _Kd = _Kp*Tu/8;
  287. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  288. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  289. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  290. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  291. /*
  292. _Kp = 0.33*Ku;
  293. _Ki = _Kp/Tu;
  294. _Kd = _Kp*Tu/3;
  295. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  296. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  297. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  298. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  299. _Kp = 0.2*Ku;
  300. _Ki = 2*_Kp/Tu;
  301. _Kd = _Kp*Tu/3;
  302. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  303. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  304. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  305. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  306. */
  307. }
  308. }
  309. if (extruder<0)
  310. {
  311. soft_pwm_bed = (bias + d) >> 1;
  312. timer02_set_pwm0(soft_pwm_bed << 1);
  313. }
  314. else
  315. soft_pwm[extruder] = (bias + d) >> 1;
  316. pid_cycle++;
  317. min=temp;
  318. }
  319. }
  320. }
  321. if(input > (temp + 20)) {
  322. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  323. pid_tuning_finished = true;
  324. pid_cycle = 0;
  325. return;
  326. }
  327. if(_millis() - temp_millis > 2000) {
  328. int p;
  329. if (extruder<0){
  330. p=soft_pwm_bed;
  331. SERIAL_PROTOCOLPGM("B:");
  332. }else{
  333. p=soft_pwm[extruder];
  334. SERIAL_PROTOCOLPGM("T:");
  335. }
  336. SERIAL_PROTOCOL(input);
  337. SERIAL_PROTOCOLPGM(" @:");
  338. SERIAL_PROTOCOLLN(p);
  339. if (safety_check_cycles == 0) { //save ambient temp
  340. temp_ambient = input;
  341. //SERIAL_ECHOPGM("Ambient T: ");
  342. //MYSERIAL.println(temp_ambient);
  343. safety_check_cycles++;
  344. }
  345. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  346. safety_check_cycles++;
  347. }
  348. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  349. safety_check_cycles++;
  350. //SERIAL_ECHOPGM("Time from beginning: ");
  351. //MYSERIAL.print(safety_check_cycles_count * 2);
  352. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  353. //MYSERIAL.println(input - temp_ambient);
  354. if (abs(input - temp_ambient) < 5.0) {
  355. temp_runaway_stop(false, (extruder<0));
  356. pid_tuning_finished = true;
  357. return;
  358. }
  359. }
  360. temp_millis = _millis();
  361. }
  362. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  363. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  364. pid_tuning_finished = true;
  365. pid_cycle = 0;
  366. return;
  367. }
  368. if(pid_cycle > ncycles) {
  369. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  370. pid_tuning_finished = true;
  371. pid_cycle = 0;
  372. return;
  373. }
  374. lcd_update(0);
  375. }
  376. }
  377. void updatePID()
  378. {
  379. #ifdef PIDTEMP
  380. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  381. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  382. }
  383. #endif
  384. #ifdef PIDTEMPBED
  385. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  386. #endif
  387. }
  388. int getHeaterPower(int heater) {
  389. if (heater<0)
  390. return soft_pwm_bed;
  391. return soft_pwm[heater];
  392. }
  393. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  394. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  395. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  396. #if defined(FAN_PIN) && FAN_PIN > -1
  397. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  398. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  399. #endif
  400. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  401. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  402. #endif
  403. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  404. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  405. #endif
  406. #endif
  407. void setExtruderAutoFanState(int pin, bool state)
  408. {
  409. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  410. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  411. pinMode(pin, OUTPUT);
  412. digitalWrite(pin, newFanSpeed);
  413. //analogWrite(pin, newFanSpeed);
  414. }
  415. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  416. void countFanSpeed()
  417. {
  418. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  419. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  420. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  421. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  422. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  423. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  424. SERIAL_ECHOLNPGM(" ");*/
  425. fan_edge_counter[0] = 0;
  426. fan_edge_counter[1] = 0;
  427. }
  428. void checkFanSpeed()
  429. {
  430. uint8_t max_print_fan_errors = 0;
  431. uint8_t max_extruder_fan_errors = 0;
  432. #ifdef FAN_SOFT_PWM
  433. max_print_fan_errors = 3; //15 seconds
  434. max_extruder_fan_errors = 2; //10seconds
  435. #else //FAN_SOFT_PWM
  436. max_print_fan_errors = 15; //15 seconds
  437. max_extruder_fan_errors = 5; //5 seconds
  438. #endif //FAN_SOFT_PWM
  439. if(fans_check_enabled != false)
  440. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  441. static unsigned char fan_speed_errors[2] = { 0,0 };
  442. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  443. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  444. else{
  445. fan_speed_errors[0] = 0;
  446. host_keepalive();
  447. }
  448. #endif
  449. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  450. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  451. else fan_speed_errors[1] = 0;
  452. #endif
  453. // drop the fan_check_error flag when both fans are ok
  454. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  455. // we may even send some info to the LCD from here
  456. fan_check_error = EFCE_OK;
  457. }
  458. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  459. fan_speed_errors[0] = 0;
  460. fanSpeedError(0); //extruder fan
  461. }
  462. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  463. fan_speed_errors[1] = 0;
  464. fanSpeedError(1); //print fan
  465. }
  466. }
  467. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  468. //! Extracted from fanSpeedError to save some space.
  469. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  470. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  471. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  472. SERIAL_ECHOLNRPGM(serialMsg);
  473. if (get_message_level() == 0) {
  474. Sound_MakeCustom(200,0,true);
  475. LCD_ALERTMESSAGERPGM(lcdMsg);
  476. }
  477. }
  478. void fanSpeedError(unsigned char _fan) {
  479. if (get_message_level() != 0 && isPrintPaused) return;
  480. //to ensure that target temp. is not set to zero in case taht we are resuming print
  481. if (card.sdprinting || is_usb_printing) {
  482. if (heating_status != 0) {
  483. lcd_print_stop();
  484. }
  485. else {
  486. fan_check_error = EFCE_DETECTED;
  487. }
  488. }
  489. else {
  490. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE); //for octoprint
  491. setTargetHotend0(0);
  492. heating_status = 0;
  493. fan_check_error = EFCE_REPORTED;
  494. }
  495. switch (_fan) {
  496. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  497. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  498. break;
  499. case 1:
  500. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  501. break;
  502. }
  503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  504. }
  505. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  506. void checkExtruderAutoFans()
  507. {
  508. uint8_t fanState = 0;
  509. // which fan pins need to be turned on?
  510. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  511. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  512. fanState |= 1;
  513. #endif
  514. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  515. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  516. {
  517. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  518. fanState |= 1;
  519. else
  520. fanState |= 2;
  521. }
  522. #endif
  523. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  524. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  525. {
  526. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  527. fanState |= 1;
  528. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  529. fanState |= 2;
  530. else
  531. fanState |= 4;
  532. }
  533. #endif
  534. // update extruder auto fan states
  535. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  536. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  537. #endif
  538. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  539. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  540. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  541. #endif
  542. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  543. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  544. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  545. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  546. #endif
  547. }
  548. #endif // any extruder auto fan pins set
  549. // ready for eventually parameters adjusting
  550. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  551. //void resetPID(uint8_t extruder)
  552. {
  553. }
  554. void manage_heater()
  555. {
  556. #ifdef WATCHDOG
  557. wdt_reset();
  558. #endif //WATCHDOG
  559. float pid_input;
  560. float pid_output;
  561. if(temp_meas_ready != true) //better readability
  562. return;
  563. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  564. updateTemperaturesFromRawValues();
  565. check_max_temp();
  566. check_min_temp();
  567. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  568. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  569. #endif
  570. for(int e = 0; e < EXTRUDERS; e++)
  571. {
  572. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  573. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  574. #endif
  575. #ifdef PIDTEMP
  576. pid_input = current_temperature[e];
  577. #ifndef PID_OPENLOOP
  578. if(target_temperature[e] == 0) {
  579. pid_output = 0;
  580. pid_reset[e] = true;
  581. } else {
  582. pid_error[e] = target_temperature[e] - pid_input;
  583. if(pid_reset[e]) {
  584. iState_sum[e] = 0.0;
  585. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  586. pid_reset[e] = false;
  587. }
  588. #ifndef PonM
  589. pTerm[e] = cs.Kp * pid_error[e];
  590. iState_sum[e] += pid_error[e];
  591. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  592. iTerm[e] = cs.Ki * iState_sum[e];
  593. // PID_K1 defined in Configuration.h in the PID settings
  594. #define K2 (1.0-PID_K1)
  595. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  596. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  597. if (pid_output > PID_MAX) {
  598. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  599. pid_output=PID_MAX;
  600. } else if (pid_output < 0) {
  601. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  602. pid_output=0;
  603. }
  604. #else // PonM ("Proportional on Measurement" method)
  605. iState_sum[e] += cs.Ki * pid_error[e];
  606. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  607. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  608. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  609. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  610. pid_output = constrain(pid_output, 0, PID_MAX);
  611. #endif // PonM
  612. }
  613. dState_last[e] = pid_input;
  614. #else
  615. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  616. #endif //PID_OPENLOOP
  617. #ifdef PID_DEBUG
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHO(" PID_DEBUG ");
  620. SERIAL_ECHO(e);
  621. SERIAL_ECHO(": Input ");
  622. SERIAL_ECHO(pid_input);
  623. SERIAL_ECHO(" Output ");
  624. SERIAL_ECHO(pid_output);
  625. SERIAL_ECHO(" pTerm ");
  626. SERIAL_ECHO(pTerm[e]);
  627. SERIAL_ECHO(" iTerm ");
  628. SERIAL_ECHO(iTerm[e]);
  629. SERIAL_ECHO(" dTerm ");
  630. SERIAL_ECHOLN(-dTerm[e]);
  631. #endif //PID_DEBUG
  632. #else /* PID off */
  633. pid_output = 0;
  634. if(current_temperature[e] < target_temperature[e]) {
  635. pid_output = PID_MAX;
  636. }
  637. #endif
  638. // Check if temperature is within the correct range
  639. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  640. {
  641. soft_pwm[e] = (int)pid_output >> 1;
  642. }
  643. else
  644. {
  645. soft_pwm[e] = 0;
  646. }
  647. #ifdef WATCH_TEMP_PERIOD
  648. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  649. {
  650. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  651. {
  652. setTargetHotend(0, e);
  653. LCD_MESSAGEPGM("Heating failed");
  654. SERIAL_ECHO_START;
  655. SERIAL_ECHOLN("Heating failed");
  656. }else{
  657. watchmillis[e] = 0;
  658. }
  659. }
  660. #endif
  661. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  662. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  663. disable_heater();
  664. if(IsStopped() == false) {
  665. SERIAL_ERROR_START;
  666. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  667. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  668. }
  669. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  670. Stop();
  671. #endif
  672. }
  673. #endif
  674. } // End extruder for loop
  675. #define FAN_CHECK_PERIOD 5000 //5s
  676. #define FAN_CHECK_DURATION 100 //100ms
  677. #ifndef DEBUG_DISABLE_FANCHECK
  678. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  679. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  680. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  681. #ifdef FAN_SOFT_PWM
  682. #ifdef FANCHECK
  683. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  684. extruder_autofan_last_check = _millis();
  685. fanSpeedBckp = fanSpeedSoftPwm;
  686. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  687. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  688. fanSpeedSoftPwm = 255;
  689. }
  690. fan_measuring = true;
  691. }
  692. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  693. countFanSpeed();
  694. checkFanSpeed();
  695. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  696. fanSpeedSoftPwm = fanSpeedBckp;
  697. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  698. extruder_autofan_last_check = _millis();
  699. fan_measuring = false;
  700. }
  701. #endif //FANCHECK
  702. checkExtruderAutoFans();
  703. #else //FAN_SOFT_PWM
  704. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  705. {
  706. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  707. countFanSpeed();
  708. checkFanSpeed();
  709. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  710. checkExtruderAutoFans();
  711. extruder_autofan_last_check = _millis();
  712. }
  713. #endif //FAN_SOFT_PWM
  714. #endif
  715. #endif //DEBUG_DISABLE_FANCHECK
  716. #ifndef PIDTEMPBED
  717. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  718. return;
  719. previous_millis_bed_heater = _millis();
  720. #endif
  721. #if TEMP_SENSOR_BED != 0
  722. #ifdef PIDTEMPBED
  723. pid_input = current_temperature_bed;
  724. #ifndef PID_OPENLOOP
  725. pid_error_bed = target_temperature_bed - pid_input;
  726. pTerm_bed = cs.bedKp * pid_error_bed;
  727. temp_iState_bed += pid_error_bed;
  728. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  729. iTerm_bed = cs.bedKi * temp_iState_bed;
  730. //PID_K1 defined in Configuration.h in the PID settings
  731. #define K2 (1.0-PID_K1)
  732. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  733. temp_dState_bed = pid_input;
  734. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  735. if (pid_output > MAX_BED_POWER) {
  736. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  737. pid_output=MAX_BED_POWER;
  738. } else if (pid_output < 0){
  739. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  740. pid_output=0;
  741. }
  742. #else
  743. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  744. #endif //PID_OPENLOOP
  745. if(current_temperature_bed < BED_MAXTEMP)
  746. {
  747. soft_pwm_bed = (int)pid_output >> 1;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. }
  750. else {
  751. soft_pwm_bed = 0;
  752. timer02_set_pwm0(soft_pwm_bed << 1);
  753. }
  754. #elif !defined(BED_LIMIT_SWITCHING)
  755. // Check if temperature is within the correct range
  756. if(current_temperature_bed < BED_MAXTEMP)
  757. {
  758. if(current_temperature_bed >= target_temperature_bed)
  759. {
  760. soft_pwm_bed = 0;
  761. timer02_set_pwm0(soft_pwm_bed << 1);
  762. }
  763. else
  764. {
  765. soft_pwm_bed = MAX_BED_POWER>>1;
  766. timer02_set_pwm0(soft_pwm_bed << 1);
  767. }
  768. }
  769. else
  770. {
  771. soft_pwm_bed = 0;
  772. timer02_set_pwm0(soft_pwm_bed << 1);
  773. WRITE(HEATER_BED_PIN,LOW);
  774. }
  775. #else //#ifdef BED_LIMIT_SWITCHING
  776. // Check if temperature is within the correct band
  777. if(current_temperature_bed < BED_MAXTEMP)
  778. {
  779. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  780. {
  781. soft_pwm_bed = 0;
  782. timer02_set_pwm0(soft_pwm_bed << 1);
  783. }
  784. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  785. {
  786. soft_pwm_bed = MAX_BED_POWER>>1;
  787. timer02_set_pwm0(soft_pwm_bed << 1);
  788. }
  789. }
  790. else
  791. {
  792. soft_pwm_bed = 0;
  793. timer02_set_pwm0(soft_pwm_bed << 1);
  794. WRITE(HEATER_BED_PIN,LOW);
  795. }
  796. #endif
  797. if(target_temperature_bed==0)
  798. {
  799. soft_pwm_bed = 0;
  800. timer02_set_pwm0(soft_pwm_bed << 1);
  801. }
  802. #endif
  803. host_keepalive();
  804. }
  805. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  806. // Derived from RepRap FiveD extruder::getTemperature()
  807. // For hot end temperature measurement.
  808. static float analog2temp(int raw, uint8_t e) {
  809. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  810. if(e > EXTRUDERS)
  811. #else
  812. if(e >= EXTRUDERS)
  813. #endif
  814. {
  815. SERIAL_ERROR_START;
  816. SERIAL_ERROR((int)e);
  817. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  818. kill(PSTR(""), 6);
  819. return 0.0;
  820. }
  821. #ifdef HEATER_0_USES_MAX6675
  822. if (e == 0)
  823. {
  824. return 0.25 * raw;
  825. }
  826. #endif
  827. if(heater_ttbl_map[e] != NULL)
  828. {
  829. float celsius = 0;
  830. uint8_t i;
  831. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  832. for (i=1; i<heater_ttbllen_map[e]; i++)
  833. {
  834. if (PGM_RD_W((*tt)[i][0]) > raw)
  835. {
  836. celsius = PGM_RD_W((*tt)[i-1][1]) +
  837. (raw - PGM_RD_W((*tt)[i-1][0])) *
  838. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  839. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  840. break;
  841. }
  842. }
  843. // Overflow: Set to last value in the table
  844. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  845. return celsius;
  846. }
  847. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  848. }
  849. // Derived from RepRap FiveD extruder::getTemperature()
  850. // For bed temperature measurement.
  851. static float analog2tempBed(int raw) {
  852. #ifdef BED_USES_THERMISTOR
  853. float celsius = 0;
  854. byte i;
  855. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  856. {
  857. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  858. {
  859. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  860. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  861. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  862. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  863. break;
  864. }
  865. }
  866. // Overflow: Set to last value in the table
  867. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  868. // temperature offset adjustment
  869. #ifdef BED_OFFSET
  870. float _offset = BED_OFFSET;
  871. float _offset_center = BED_OFFSET_CENTER;
  872. float _offset_start = BED_OFFSET_START;
  873. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  874. float _second_koef = (_offset / 2) / (100 - _offset_center);
  875. if (celsius >= _offset_start && celsius <= _offset_center)
  876. {
  877. celsius = celsius + (_first_koef * (celsius - _offset_start));
  878. }
  879. else if (celsius > _offset_center && celsius <= 100)
  880. {
  881. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  882. }
  883. else if (celsius > 100)
  884. {
  885. celsius = celsius + _offset;
  886. }
  887. #endif
  888. return celsius;
  889. #elif defined BED_USES_AD595
  890. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  891. #else
  892. return 0;
  893. #endif
  894. }
  895. #ifdef AMBIENT_THERMISTOR
  896. static float analog2tempAmbient(int raw)
  897. {
  898. float celsius = 0;
  899. byte i;
  900. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  901. {
  902. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  903. {
  904. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  905. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  906. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  907. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  908. break;
  909. }
  910. }
  911. // Overflow: Set to last value in the table
  912. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  913. return celsius;
  914. }
  915. #endif //AMBIENT_THERMISTOR
  916. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  917. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  918. static void updateTemperaturesFromRawValues()
  919. {
  920. for(uint8_t e=0;e<EXTRUDERS;e++)
  921. {
  922. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  923. }
  924. #ifdef PINDA_THERMISTOR
  925. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  926. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  927. #endif
  928. #ifdef AMBIENT_THERMISTOR
  929. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  930. #endif
  931. #ifdef DEBUG_HEATER_BED_SIM
  932. current_temperature_bed = target_temperature_bed;
  933. #else //DEBUG_HEATER_BED_SIM
  934. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  935. #endif //DEBUG_HEATER_BED_SIM
  936. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  937. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  938. #endif
  939. CRITICAL_SECTION_START;
  940. temp_meas_ready = false;
  941. CRITICAL_SECTION_END;
  942. }
  943. void tp_init()
  944. {
  945. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  946. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  947. MCUCR=(1<<JTD);
  948. MCUCR=(1<<JTD);
  949. #endif
  950. // Finish init of mult extruder arrays
  951. for(int e = 0; e < EXTRUDERS; e++) {
  952. // populate with the first value
  953. maxttemp[e] = maxttemp[0];
  954. #ifdef PIDTEMP
  955. iState_sum_min[e] = 0.0;
  956. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  957. #endif //PIDTEMP
  958. #ifdef PIDTEMPBED
  959. temp_iState_min_bed = 0.0;
  960. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  961. #endif //PIDTEMPBED
  962. }
  963. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  964. SET_OUTPUT(HEATER_0_PIN);
  965. #endif
  966. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  967. SET_OUTPUT(HEATER_1_PIN);
  968. #endif
  969. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  970. SET_OUTPUT(HEATER_2_PIN);
  971. #endif
  972. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  973. SET_OUTPUT(HEATER_BED_PIN);
  974. #endif
  975. #if defined(FAN_PIN) && (FAN_PIN > -1)
  976. SET_OUTPUT(FAN_PIN);
  977. #ifdef FAST_PWM_FAN
  978. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  979. #endif
  980. #ifdef FAN_SOFT_PWM
  981. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  982. #endif
  983. #endif
  984. #ifdef HEATER_0_USES_MAX6675
  985. #ifndef SDSUPPORT
  986. SET_OUTPUT(SCK_PIN);
  987. WRITE(SCK_PIN,0);
  988. SET_OUTPUT(MOSI_PIN);
  989. WRITE(MOSI_PIN,1);
  990. SET_INPUT(MISO_PIN);
  991. WRITE(MISO_PIN,1);
  992. #endif
  993. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  994. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  995. pinMode(SS_PIN, OUTPUT);
  996. digitalWrite(SS_PIN,0);
  997. pinMode(MAX6675_SS, OUTPUT);
  998. digitalWrite(MAX6675_SS,1);
  999. #endif
  1000. adc_init();
  1001. timer0_init();
  1002. OCR2B = 128;
  1003. TIMSK2 |= (1<<OCIE2B);
  1004. // Wait for temperature measurement to settle
  1005. _delay(250);
  1006. #ifdef HEATER_0_MINTEMP
  1007. minttemp[0] = HEATER_0_MINTEMP;
  1008. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1009. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1010. minttemp_raw[0] += OVERSAMPLENR;
  1011. #else
  1012. minttemp_raw[0] -= OVERSAMPLENR;
  1013. #endif
  1014. }
  1015. #endif //MINTEMP
  1016. #ifdef HEATER_0_MAXTEMP
  1017. maxttemp[0] = HEATER_0_MAXTEMP;
  1018. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1019. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1020. maxttemp_raw[0] -= OVERSAMPLENR;
  1021. #else
  1022. maxttemp_raw[0] += OVERSAMPLENR;
  1023. #endif
  1024. }
  1025. #endif //MAXTEMP
  1026. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1027. minttemp[1] = HEATER_1_MINTEMP;
  1028. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1029. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1030. minttemp_raw[1] += OVERSAMPLENR;
  1031. #else
  1032. minttemp_raw[1] -= OVERSAMPLENR;
  1033. #endif
  1034. }
  1035. #endif // MINTEMP 1
  1036. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1037. maxttemp[1] = HEATER_1_MAXTEMP;
  1038. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1039. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1040. maxttemp_raw[1] -= OVERSAMPLENR;
  1041. #else
  1042. maxttemp_raw[1] += OVERSAMPLENR;
  1043. #endif
  1044. }
  1045. #endif //MAXTEMP 1
  1046. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1047. minttemp[2] = HEATER_2_MINTEMP;
  1048. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1049. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1050. minttemp_raw[2] += OVERSAMPLENR;
  1051. #else
  1052. minttemp_raw[2] -= OVERSAMPLENR;
  1053. #endif
  1054. }
  1055. #endif //MINTEMP 2
  1056. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1057. maxttemp[2] = HEATER_2_MAXTEMP;
  1058. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1059. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1060. maxttemp_raw[2] -= OVERSAMPLENR;
  1061. #else
  1062. maxttemp_raw[2] += OVERSAMPLENR;
  1063. #endif
  1064. }
  1065. #endif //MAXTEMP 2
  1066. #ifdef BED_MINTEMP
  1067. /* No bed MINTEMP error implemented?!? */
  1068. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1069. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1070. bed_minttemp_raw += OVERSAMPLENR;
  1071. #else
  1072. bed_minttemp_raw -= OVERSAMPLENR;
  1073. #endif
  1074. }
  1075. #endif //BED_MINTEMP
  1076. #ifdef BED_MAXTEMP
  1077. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1078. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1079. bed_maxttemp_raw -= OVERSAMPLENR;
  1080. #else
  1081. bed_maxttemp_raw += OVERSAMPLENR;
  1082. #endif
  1083. }
  1084. #endif //BED_MAXTEMP
  1085. }
  1086. void setWatch()
  1087. {
  1088. #ifdef WATCH_TEMP_PERIOD
  1089. for (int e = 0; e < EXTRUDERS; e++)
  1090. {
  1091. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1092. {
  1093. watch_start_temp[e] = degHotend(e);
  1094. watchmillis[e] = _millis();
  1095. }
  1096. }
  1097. #endif
  1098. }
  1099. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1100. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1101. {
  1102. float __delta;
  1103. float __hysteresis = 0;
  1104. int __timeout = 0;
  1105. bool temp_runaway_check_active = false;
  1106. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1107. static int __preheat_counter[2] = { 0,0};
  1108. static int __preheat_errors[2] = { 0,0};
  1109. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1110. {
  1111. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1112. if (_isbed)
  1113. {
  1114. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1115. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1116. }
  1117. #endif
  1118. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1119. if (!_isbed)
  1120. {
  1121. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1122. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1123. }
  1124. #endif
  1125. temp_runaway_timer[_heater_id] = _millis();
  1126. if (_output == 0)
  1127. {
  1128. temp_runaway_check_active = false;
  1129. temp_runaway_error_counter[_heater_id] = 0;
  1130. }
  1131. if (temp_runaway_target[_heater_id] != _target_temperature)
  1132. {
  1133. if (_target_temperature > 0)
  1134. {
  1135. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1136. temp_runaway_target[_heater_id] = _target_temperature;
  1137. __preheat_start[_heater_id] = _current_temperature;
  1138. __preheat_counter[_heater_id] = 0;
  1139. }
  1140. else
  1141. {
  1142. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1143. temp_runaway_target[_heater_id] = _target_temperature;
  1144. }
  1145. }
  1146. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1147. {
  1148. __preheat_counter[_heater_id]++;
  1149. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1150. {
  1151. /*SERIAL_ECHOPGM("Heater:");
  1152. MYSERIAL.print(_heater_id);
  1153. SERIAL_ECHOPGM(" T:");
  1154. MYSERIAL.print(_current_temperature);
  1155. SERIAL_ECHOPGM(" Tstart:");
  1156. MYSERIAL.print(__preheat_start[_heater_id]);
  1157. SERIAL_ECHOPGM(" delta:");
  1158. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1159. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1160. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1161. __delta=2.0;
  1162. if(_isbed)
  1163. {
  1164. __delta=3.0;
  1165. if(_current_temperature>90.0) __delta=2.0;
  1166. if(_current_temperature>105.0) __delta=0.6;
  1167. }
  1168. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1169. __preheat_errors[_heater_id]++;
  1170. /*SERIAL_ECHOPGM(" Preheat errors:");
  1171. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1172. }
  1173. else {
  1174. //SERIAL_ECHOLNPGM("");
  1175. __preheat_errors[_heater_id] = 0;
  1176. }
  1177. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1178. {
  1179. if (farm_mode) { prusa_statistics(0); }
  1180. temp_runaway_stop(true, _isbed);
  1181. if (farm_mode) { prusa_statistics(91); }
  1182. }
  1183. __preheat_start[_heater_id] = _current_temperature;
  1184. __preheat_counter[_heater_id] = 0;
  1185. }
  1186. }
  1187. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1188. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1189. {
  1190. /*SERIAL_ECHOPGM("Heater:");
  1191. MYSERIAL.print(_heater_id);
  1192. MYSERIAL.println(" ->tempRunaway");*/
  1193. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1194. temp_runaway_check_active = false;
  1195. temp_runaway_error_counter[_heater_id] = 0;
  1196. }
  1197. if (_output > 0)
  1198. {
  1199. temp_runaway_check_active = true;
  1200. }
  1201. if (temp_runaway_check_active)
  1202. {
  1203. // we are in range
  1204. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1205. {
  1206. temp_runaway_check_active = false;
  1207. temp_runaway_error_counter[_heater_id] = 0;
  1208. }
  1209. else
  1210. {
  1211. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1212. {
  1213. temp_runaway_error_counter[_heater_id]++;
  1214. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1215. {
  1216. if (farm_mode) { prusa_statistics(0); }
  1217. temp_runaway_stop(false, _isbed);
  1218. if (farm_mode) { prusa_statistics(90); }
  1219. }
  1220. }
  1221. }
  1222. }
  1223. }
  1224. }
  1225. void temp_runaway_stop(bool isPreheat, bool isBed)
  1226. {
  1227. cancel_heatup = true;
  1228. quickStop();
  1229. if (card.sdprinting)
  1230. {
  1231. card.sdprinting = false;
  1232. card.closefile();
  1233. }
  1234. // Clean the input command queue
  1235. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1236. cmdqueue_reset();
  1237. disable_heater();
  1238. disable_x();
  1239. disable_y();
  1240. disable_e0();
  1241. disable_e1();
  1242. disable_e2();
  1243. manage_heater();
  1244. lcd_update(0);
  1245. Sound_MakeCustom(200,0,true);
  1246. if (isPreheat)
  1247. {
  1248. Stop();
  1249. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1250. SERIAL_ERROR_START;
  1251. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1252. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1253. SET_OUTPUT(FAN_PIN);
  1254. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1255. #ifdef FAN_SOFT_PWM
  1256. fanSpeedSoftPwm = 255;
  1257. #else //FAN_SOFT_PWM
  1258. analogWrite(FAN_PIN, 255);
  1259. #endif //FAN_SOFT_PWM
  1260. fanSpeed = 255;
  1261. delayMicroseconds(2000);
  1262. }
  1263. else
  1264. {
  1265. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1266. SERIAL_ERROR_START;
  1267. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1268. }
  1269. }
  1270. #endif
  1271. void disable_heater()
  1272. {
  1273. setAllTargetHotends(0);
  1274. setTargetBed(0);
  1275. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1276. target_temperature[0]=0;
  1277. soft_pwm[0]=0;
  1278. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1279. WRITE(HEATER_0_PIN,LOW);
  1280. #endif
  1281. #endif
  1282. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1283. target_temperature[1]=0;
  1284. soft_pwm[1]=0;
  1285. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1286. WRITE(HEATER_1_PIN,LOW);
  1287. #endif
  1288. #endif
  1289. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1290. target_temperature[2]=0;
  1291. soft_pwm[2]=0;
  1292. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1293. WRITE(HEATER_2_PIN,LOW);
  1294. #endif
  1295. #endif
  1296. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1297. target_temperature_bed=0;
  1298. soft_pwm_bed=0;
  1299. timer02_set_pwm0(soft_pwm_bed << 1);
  1300. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1301. //WRITE(HEATER_BED_PIN,LOW);
  1302. #endif
  1303. #endif
  1304. }
  1305. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1306. //! than raw const char * of the messages themselves.
  1307. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1308. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1309. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1310. //! remember the last alert message sent to the LCD
  1311. //! to prevent flicker and improve speed
  1312. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1313. void max_temp_error(uint8_t e) {
  1314. disable_heater();
  1315. if(IsStopped() == false) {
  1316. SERIAL_ERROR_START;
  1317. SERIAL_ERRORLN((int)e);
  1318. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1319. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1320. }
  1321. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1322. Stop();
  1323. #endif
  1324. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1325. SET_OUTPUT(FAN_PIN);
  1326. SET_OUTPUT(BEEPER);
  1327. WRITE(FAN_PIN, 1);
  1328. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1329. WRITE(BEEPER, 1);
  1330. // fanSpeed will consumed by the check_axes_activity() routine.
  1331. fanSpeed=255;
  1332. if (farm_mode) { prusa_statistics(93); }
  1333. }
  1334. void min_temp_error(uint8_t e) {
  1335. #ifdef DEBUG_DISABLE_MINTEMP
  1336. return;
  1337. #endif
  1338. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1339. disable_heater();
  1340. static const char err[] PROGMEM = "Err: MINTEMP";
  1341. if(IsStopped() == false) {
  1342. SERIAL_ERROR_START;
  1343. SERIAL_ERRORLN((int)e);
  1344. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1345. lcd_setalertstatuspgm(err);
  1346. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1347. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1348. // we are already stopped due to some error, only update the status message without flickering
  1349. lcd_updatestatuspgm(err);
  1350. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1351. }
  1352. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1353. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1354. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1355. // lcd_print_stop();
  1356. // }
  1357. Stop();
  1358. #endif
  1359. if (farm_mode) { prusa_statistics(92); }
  1360. }
  1361. void bed_max_temp_error(void) {
  1362. #if HEATER_BED_PIN > -1
  1363. //WRITE(HEATER_BED_PIN, 0);
  1364. #endif
  1365. if(IsStopped() == false) {
  1366. SERIAL_ERROR_START;
  1367. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1368. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1369. }
  1370. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1371. Stop();
  1372. #endif
  1373. }
  1374. void bed_min_temp_error(void) {
  1375. #ifdef DEBUG_DISABLE_MINTEMP
  1376. return;
  1377. #endif
  1378. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1379. #if HEATER_BED_PIN > -1
  1380. //WRITE(HEATER_BED_PIN, 0);
  1381. #endif
  1382. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1383. if(IsStopped() == false) {
  1384. SERIAL_ERROR_START;
  1385. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1386. lcd_setalertstatuspgm(err);
  1387. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1388. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1389. // we are already stopped due to some error, only update the status message without flickering
  1390. lcd_updatestatuspgm(err);
  1391. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1392. }
  1393. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1394. Stop();
  1395. #endif
  1396. }
  1397. #ifdef HEATER_0_USES_MAX6675
  1398. #define MAX6675_HEAT_INTERVAL 250
  1399. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1400. int max6675_temp = 2000;
  1401. int read_max6675()
  1402. {
  1403. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1404. return max6675_temp;
  1405. max6675_previous_millis = _millis();
  1406. max6675_temp = 0;
  1407. #ifdef PRR
  1408. PRR &= ~(1<<PRSPI);
  1409. #elif defined PRR0
  1410. PRR0 &= ~(1<<PRSPI);
  1411. #endif
  1412. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1413. // enable TT_MAX6675
  1414. WRITE(MAX6675_SS, 0);
  1415. // ensure 100ns delay - a bit extra is fine
  1416. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1417. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1418. // read MSB
  1419. SPDR = 0;
  1420. for (;(SPSR & (1<<SPIF)) == 0;);
  1421. max6675_temp = SPDR;
  1422. max6675_temp <<= 8;
  1423. // read LSB
  1424. SPDR = 0;
  1425. for (;(SPSR & (1<<SPIF)) == 0;);
  1426. max6675_temp |= SPDR;
  1427. // disable TT_MAX6675
  1428. WRITE(MAX6675_SS, 1);
  1429. if (max6675_temp & 4)
  1430. {
  1431. // thermocouple open
  1432. max6675_temp = 2000;
  1433. }
  1434. else
  1435. {
  1436. max6675_temp = max6675_temp >> 3;
  1437. }
  1438. return max6675_temp;
  1439. }
  1440. #endif
  1441. extern "C" {
  1442. void adc_ready(void) //callback from adc when sampling finished
  1443. {
  1444. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1445. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1446. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1447. #ifdef VOLT_PWR_PIN
  1448. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1449. #endif
  1450. #ifdef AMBIENT_THERMISTOR
  1451. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1452. #endif //AMBIENT_THERMISTOR
  1453. #ifdef VOLT_BED_PIN
  1454. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1455. #endif
  1456. #if IR_SENSOR_ANALOG
  1457. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1458. #endif //IR_SENSOR_ANALOG
  1459. temp_meas_ready = true;
  1460. }
  1461. } // extern "C"
  1462. // Timer2 (originaly timer0) is shared with millies
  1463. #ifdef SYSTEM_TIMER_2
  1464. ISR(TIMER2_COMPB_vect)
  1465. #else //SYSTEM_TIMER_2
  1466. ISR(TIMER0_COMPB_vect)
  1467. #endif //SYSTEM_TIMER_2
  1468. {
  1469. static bool _lock = false;
  1470. if (_lock) return;
  1471. _lock = true;
  1472. asm("sei");
  1473. if (!temp_meas_ready) adc_cycle();
  1474. lcd_buttons_update();
  1475. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1476. static uint8_t soft_pwm_0;
  1477. #ifdef SLOW_PWM_HEATERS
  1478. static unsigned char slow_pwm_count = 0;
  1479. static unsigned char state_heater_0 = 0;
  1480. static unsigned char state_timer_heater_0 = 0;
  1481. #endif
  1482. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1483. static unsigned char soft_pwm_1;
  1484. #ifdef SLOW_PWM_HEATERS
  1485. static unsigned char state_heater_1 = 0;
  1486. static unsigned char state_timer_heater_1 = 0;
  1487. #endif
  1488. #endif
  1489. #if EXTRUDERS > 2
  1490. static unsigned char soft_pwm_2;
  1491. #ifdef SLOW_PWM_HEATERS
  1492. static unsigned char state_heater_2 = 0;
  1493. static unsigned char state_timer_heater_2 = 0;
  1494. #endif
  1495. #endif
  1496. #if HEATER_BED_PIN > -1
  1497. // @@DR static unsigned char soft_pwm_b;
  1498. #ifdef SLOW_PWM_HEATERS
  1499. static unsigned char state_heater_b = 0;
  1500. static unsigned char state_timer_heater_b = 0;
  1501. #endif
  1502. #endif
  1503. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1504. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1505. #endif
  1506. #ifndef SLOW_PWM_HEATERS
  1507. /*
  1508. * standard PWM modulation
  1509. */
  1510. if (pwm_count == 0)
  1511. {
  1512. soft_pwm_0 = soft_pwm[0];
  1513. if(soft_pwm_0 > 0)
  1514. {
  1515. WRITE(HEATER_0_PIN,1);
  1516. #ifdef HEATERS_PARALLEL
  1517. WRITE(HEATER_1_PIN,1);
  1518. #endif
  1519. } else WRITE(HEATER_0_PIN,0);
  1520. #if EXTRUDERS > 1
  1521. soft_pwm_1 = soft_pwm[1];
  1522. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1523. #endif
  1524. #if EXTRUDERS > 2
  1525. soft_pwm_2 = soft_pwm[2];
  1526. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1527. #endif
  1528. }
  1529. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1530. #if 0 // @@DR vypnuto pro hw pwm bedu
  1531. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1532. // teoreticky by se tato cast uz vubec nemusela poustet
  1533. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1534. {
  1535. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1536. # ifndef SYSTEM_TIMER_2
  1537. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1538. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1539. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1540. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1541. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1542. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1543. # endif //SYSTEM_TIMER_2
  1544. }
  1545. #endif
  1546. #endif
  1547. #ifdef FAN_SOFT_PWM
  1548. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1549. {
  1550. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1551. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1552. }
  1553. #endif
  1554. if(soft_pwm_0 < pwm_count)
  1555. {
  1556. WRITE(HEATER_0_PIN,0);
  1557. #ifdef HEATERS_PARALLEL
  1558. WRITE(HEATER_1_PIN,0);
  1559. #endif
  1560. }
  1561. #if EXTRUDERS > 1
  1562. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1563. #endif
  1564. #if EXTRUDERS > 2
  1565. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1566. #endif
  1567. #if 0 // @@DR
  1568. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1569. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1570. //WRITE(HEATER_BED_PIN,0);
  1571. }
  1572. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1573. #endif
  1574. #endif
  1575. #ifdef FAN_SOFT_PWM
  1576. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1577. #endif
  1578. pwm_count += (1 << SOFT_PWM_SCALE);
  1579. pwm_count &= 0x7f;
  1580. #else //ifndef SLOW_PWM_HEATERS
  1581. /*
  1582. * SLOW PWM HEATERS
  1583. *
  1584. * for heaters drived by relay
  1585. */
  1586. #ifndef MIN_STATE_TIME
  1587. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1588. #endif
  1589. if (slow_pwm_count == 0) {
  1590. // EXTRUDER 0
  1591. soft_pwm_0 = soft_pwm[0];
  1592. if (soft_pwm_0 > 0) {
  1593. // turn ON heather only if the minimum time is up
  1594. if (state_timer_heater_0 == 0) {
  1595. // if change state set timer
  1596. if (state_heater_0 == 0) {
  1597. state_timer_heater_0 = MIN_STATE_TIME;
  1598. }
  1599. state_heater_0 = 1;
  1600. WRITE(HEATER_0_PIN, 1);
  1601. #ifdef HEATERS_PARALLEL
  1602. WRITE(HEATER_1_PIN, 1);
  1603. #endif
  1604. }
  1605. } else {
  1606. // turn OFF heather only if the minimum time is up
  1607. if (state_timer_heater_0 == 0) {
  1608. // if change state set timer
  1609. if (state_heater_0 == 1) {
  1610. state_timer_heater_0 = MIN_STATE_TIME;
  1611. }
  1612. state_heater_0 = 0;
  1613. WRITE(HEATER_0_PIN, 0);
  1614. #ifdef HEATERS_PARALLEL
  1615. WRITE(HEATER_1_PIN, 0);
  1616. #endif
  1617. }
  1618. }
  1619. #if EXTRUDERS > 1
  1620. // EXTRUDER 1
  1621. soft_pwm_1 = soft_pwm[1];
  1622. if (soft_pwm_1 > 0) {
  1623. // turn ON heather only if the minimum time is up
  1624. if (state_timer_heater_1 == 0) {
  1625. // if change state set timer
  1626. if (state_heater_1 == 0) {
  1627. state_timer_heater_1 = MIN_STATE_TIME;
  1628. }
  1629. state_heater_1 = 1;
  1630. WRITE(HEATER_1_PIN, 1);
  1631. }
  1632. } else {
  1633. // turn OFF heather only if the minimum time is up
  1634. if (state_timer_heater_1 == 0) {
  1635. // if change state set timer
  1636. if (state_heater_1 == 1) {
  1637. state_timer_heater_1 = MIN_STATE_TIME;
  1638. }
  1639. state_heater_1 = 0;
  1640. WRITE(HEATER_1_PIN, 0);
  1641. }
  1642. }
  1643. #endif
  1644. #if EXTRUDERS > 2
  1645. // EXTRUDER 2
  1646. soft_pwm_2 = soft_pwm[2];
  1647. if (soft_pwm_2 > 0) {
  1648. // turn ON heather only if the minimum time is up
  1649. if (state_timer_heater_2 == 0) {
  1650. // if change state set timer
  1651. if (state_heater_2 == 0) {
  1652. state_timer_heater_2 = MIN_STATE_TIME;
  1653. }
  1654. state_heater_2 = 1;
  1655. WRITE(HEATER_2_PIN, 1);
  1656. }
  1657. } else {
  1658. // turn OFF heather only if the minimum time is up
  1659. if (state_timer_heater_2 == 0) {
  1660. // if change state set timer
  1661. if (state_heater_2 == 1) {
  1662. state_timer_heater_2 = MIN_STATE_TIME;
  1663. }
  1664. state_heater_2 = 0;
  1665. WRITE(HEATER_2_PIN, 0);
  1666. }
  1667. }
  1668. #endif
  1669. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1670. // BED
  1671. soft_pwm_b = soft_pwm_bed;
  1672. if (soft_pwm_b > 0) {
  1673. // turn ON heather only if the minimum time is up
  1674. if (state_timer_heater_b == 0) {
  1675. // if change state set timer
  1676. if (state_heater_b == 0) {
  1677. state_timer_heater_b = MIN_STATE_TIME;
  1678. }
  1679. state_heater_b = 1;
  1680. //WRITE(HEATER_BED_PIN, 1);
  1681. }
  1682. } else {
  1683. // turn OFF heather only if the minimum time is up
  1684. if (state_timer_heater_b == 0) {
  1685. // if change state set timer
  1686. if (state_heater_b == 1) {
  1687. state_timer_heater_b = MIN_STATE_TIME;
  1688. }
  1689. state_heater_b = 0;
  1690. WRITE(HEATER_BED_PIN, 0);
  1691. }
  1692. }
  1693. #endif
  1694. } // if (slow_pwm_count == 0)
  1695. // EXTRUDER 0
  1696. if (soft_pwm_0 < slow_pwm_count) {
  1697. // turn OFF heather only if the minimum time is up
  1698. if (state_timer_heater_0 == 0) {
  1699. // if change state set timer
  1700. if (state_heater_0 == 1) {
  1701. state_timer_heater_0 = MIN_STATE_TIME;
  1702. }
  1703. state_heater_0 = 0;
  1704. WRITE(HEATER_0_PIN, 0);
  1705. #ifdef HEATERS_PARALLEL
  1706. WRITE(HEATER_1_PIN, 0);
  1707. #endif
  1708. }
  1709. }
  1710. #if EXTRUDERS > 1
  1711. // EXTRUDER 1
  1712. if (soft_pwm_1 < slow_pwm_count) {
  1713. // turn OFF heather only if the minimum time is up
  1714. if (state_timer_heater_1 == 0) {
  1715. // if change state set timer
  1716. if (state_heater_1 == 1) {
  1717. state_timer_heater_1 = MIN_STATE_TIME;
  1718. }
  1719. state_heater_1 = 0;
  1720. WRITE(HEATER_1_PIN, 0);
  1721. }
  1722. }
  1723. #endif
  1724. #if EXTRUDERS > 2
  1725. // EXTRUDER 2
  1726. if (soft_pwm_2 < slow_pwm_count) {
  1727. // turn OFF heather only if the minimum time is up
  1728. if (state_timer_heater_2 == 0) {
  1729. // if change state set timer
  1730. if (state_heater_2 == 1) {
  1731. state_timer_heater_2 = MIN_STATE_TIME;
  1732. }
  1733. state_heater_2 = 0;
  1734. WRITE(HEATER_2_PIN, 0);
  1735. }
  1736. }
  1737. #endif
  1738. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1739. // BED
  1740. if (soft_pwm_b < slow_pwm_count) {
  1741. // turn OFF heather only if the minimum time is up
  1742. if (state_timer_heater_b == 0) {
  1743. // if change state set timer
  1744. if (state_heater_b == 1) {
  1745. state_timer_heater_b = MIN_STATE_TIME;
  1746. }
  1747. state_heater_b = 0;
  1748. WRITE(HEATER_BED_PIN, 0);
  1749. }
  1750. }
  1751. #endif
  1752. #ifdef FAN_SOFT_PWM
  1753. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1754. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1755. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1756. }
  1757. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1758. #endif
  1759. pwm_count += (1 << SOFT_PWM_SCALE);
  1760. pwm_count &= 0x7f;
  1761. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1762. if ((pwm_count % 64) == 0) {
  1763. slow_pwm_count++;
  1764. slow_pwm_count &= 0x7f;
  1765. // Extruder 0
  1766. if (state_timer_heater_0 > 0) {
  1767. state_timer_heater_0--;
  1768. }
  1769. #if EXTRUDERS > 1
  1770. // Extruder 1
  1771. if (state_timer_heater_1 > 0)
  1772. state_timer_heater_1--;
  1773. #endif
  1774. #if EXTRUDERS > 2
  1775. // Extruder 2
  1776. if (state_timer_heater_2 > 0)
  1777. state_timer_heater_2--;
  1778. #endif
  1779. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1780. // Bed
  1781. if (state_timer_heater_b > 0)
  1782. state_timer_heater_b--;
  1783. #endif
  1784. } //if ((pwm_count % 64) == 0) {
  1785. #endif //ifndef SLOW_PWM_HEATERS
  1786. #ifdef BABYSTEPPING
  1787. for(uint8_t axis=0;axis<3;axis++)
  1788. {
  1789. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1790. if(curTodo>0)
  1791. {
  1792. asm("cli");
  1793. babystep(axis,/*fwd*/true);
  1794. babystepsTodo[axis]--; //less to do next time
  1795. asm("sei");
  1796. }
  1797. else
  1798. if(curTodo<0)
  1799. {
  1800. asm("cli");
  1801. babystep(axis,/*fwd*/false);
  1802. babystepsTodo[axis]++; //less to do next time
  1803. asm("sei");
  1804. }
  1805. }
  1806. #endif //BABYSTEPPING
  1807. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1808. check_fans();
  1809. #endif //(defined(TACH_0))
  1810. _lock = false;
  1811. }
  1812. void check_max_temp()
  1813. {
  1814. //heater
  1815. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1816. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1817. #else
  1818. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1819. #endif
  1820. max_temp_error(0);
  1821. }
  1822. //bed
  1823. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1824. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1825. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1826. #else
  1827. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1828. #endif
  1829. target_temperature_bed = 0;
  1830. bed_max_temp_error();
  1831. }
  1832. #endif
  1833. }
  1834. //! number of repeating the same state with consecutive step() calls
  1835. //! used to slow down text switching
  1836. struct alert_automaton_mintemp {
  1837. private:
  1838. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1839. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1840. States state = States::Init;
  1841. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1842. void substep(States next_state){
  1843. if( repeat == 0 ){
  1844. state = next_state; // advance to the next state
  1845. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1846. } else {
  1847. --repeat;
  1848. }
  1849. }
  1850. public:
  1851. //! brief state automaton step routine
  1852. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1853. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1854. void step(float current_temp, float mintemp){
  1855. static const char m2[] PROGMEM = "MINTEMP fixed";
  1856. static const char m1[] PROGMEM = "Please restart";
  1857. switch(state){
  1858. case States::Init: // initial state - check hysteresis
  1859. if( current_temp > mintemp ){
  1860. state = States::TempAboveMintemp;
  1861. }
  1862. // otherwise keep the Err MINTEMP alert message on the display,
  1863. // i.e. do not transfer to state 1
  1864. break;
  1865. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1866. lcd_setalertstatuspgm(m2);
  1867. substep(States::ShowMintemp);
  1868. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1869. break;
  1870. case States::ShowPleaseRestart: // displaying "Please restart"
  1871. lcd_updatestatuspgm(m1);
  1872. substep(States::ShowMintemp);
  1873. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1874. break;
  1875. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1876. lcd_updatestatuspgm(m2);
  1877. substep(States::ShowPleaseRestart);
  1878. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1879. break;
  1880. }
  1881. }
  1882. };
  1883. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1884. void check_min_temp_heater0()
  1885. {
  1886. //heater
  1887. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1888. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1889. #else
  1890. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1891. #endif
  1892. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1893. min_temp_error(0);
  1894. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1895. // no recovery, just force the user to restart the printer
  1896. // which is a safer variant than just continuing printing
  1897. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1898. // we shall signalize, that MINTEMP has been fixed
  1899. // Code notice: normally the alert_automaton instance would have been placed here
  1900. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1901. // due to stupid compiler that takes 16 more bytes.
  1902. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1903. }
  1904. }
  1905. void check_min_temp_bed()
  1906. {
  1907. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1908. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1909. #else
  1910. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1911. #endif
  1912. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1913. bed_min_temp_error();
  1914. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1915. // no recovery, just force the user to restart the printer
  1916. // which is a safer variant than just continuing printing
  1917. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1918. }
  1919. }
  1920. void check_min_temp()
  1921. {
  1922. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1923. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1924. #ifdef AMBIENT_THERMISTOR
  1925. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1926. { // ambient temperature is low
  1927. #endif //AMBIENT_THERMISTOR
  1928. // *** 'common' part of code for MK2.5 & MK3
  1929. // * nozzle checking
  1930. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1931. { // ~ nozzle heating is on
  1932. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1933. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1934. {
  1935. bCheckingOnHeater=true; // not necessary
  1936. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1937. }
  1938. }
  1939. else { // ~ nozzle heating is off
  1940. oTimer4minTempHeater.start();
  1941. bCheckingOnHeater=false;
  1942. }
  1943. // * bed checking
  1944. if(target_temperature_bed>BED_MINTEMP)
  1945. { // ~ bed heating is on
  1946. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1947. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1948. {
  1949. bCheckingOnBed=true; // not necessary
  1950. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1951. }
  1952. }
  1953. else { // ~ bed heating is off
  1954. oTimer4minTempBed.start();
  1955. bCheckingOnBed=false;
  1956. }
  1957. // *** end of 'common' part
  1958. #ifdef AMBIENT_THERMISTOR
  1959. }
  1960. else { // ambient temperature is standard
  1961. check_min_temp_heater0();
  1962. check_min_temp_bed();
  1963. }
  1964. #endif //AMBIENT_THERMISTOR
  1965. }
  1966. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1967. void check_fans() {
  1968. #ifdef FAN_SOFT_PWM
  1969. if (READ(TACH_0) != fan_state[0]) {
  1970. if(fan_measuring) fan_edge_counter[0] ++;
  1971. fan_state[0] = !fan_state[0];
  1972. }
  1973. #else //FAN_SOFT_PWM
  1974. if (READ(TACH_0) != fan_state[0]) {
  1975. fan_edge_counter[0] ++;
  1976. fan_state[0] = !fan_state[0];
  1977. }
  1978. #endif
  1979. //if (READ(TACH_1) != fan_state[1]) {
  1980. // fan_edge_counter[1] ++;
  1981. // fan_state[1] = !fan_state[1];
  1982. //}
  1983. }
  1984. #endif //TACH_0
  1985. #ifdef PIDTEMP
  1986. // Apply the scale factors to the PID values
  1987. float scalePID_i(float i)
  1988. {
  1989. return i*PID_dT;
  1990. }
  1991. float unscalePID_i(float i)
  1992. {
  1993. return i/PID_dT;
  1994. }
  1995. float scalePID_d(float d)
  1996. {
  1997. return d/PID_dT;
  1998. }
  1999. float unscalePID_d(float d)
  2000. {
  2001. return d*PID_dT;
  2002. }
  2003. #endif //PIDTEMP