Marlin_main.cpp 327 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int8_t busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool Stopped=false;
  276. #if NUM_SERVOS > 0
  277. Servo servos[NUM_SERVOS];
  278. #endif
  279. bool CooldownNoWait = true;
  280. bool target_direction;
  281. //Insert variables if CHDK is defined
  282. #ifdef CHDK
  283. unsigned long chdkHigh = 0;
  284. boolean chdkActive = false;
  285. #endif
  286. //! @name RAM save/restore printing
  287. //! @{
  288. bool saved_printing = false; //!< Print is paused and saved in RAM
  289. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  290. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  291. static float saved_pos[4] = { 0, 0, 0, 0 };
  292. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  293. static float saved_feedrate2 = 0;
  294. static uint8_t saved_active_extruder = 0;
  295. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  296. static bool saved_extruder_relative_mode = false;
  297. static int saved_fanSpeed = 0; //!< Print fan speed
  298. //! @}
  299. static int saved_feedmultiply_mm = 100;
  300. //===========================================================================
  301. //=============================Routines======================================
  302. //===========================================================================
  303. static void get_arc_coordinates();
  304. static bool setTargetedHotend(int code, uint8_t &extruder);
  305. static void print_time_remaining_init();
  306. static void wait_for_heater(long codenum, uint8_t extruder);
  307. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. #ifdef SDSUPPORT
  317. #include "SdFatUtil.h"
  318. int freeMemory() { return SdFatUtil::FreeRam(); }
  319. #else
  320. extern "C" {
  321. extern unsigned int __bss_end;
  322. extern unsigned int __heap_start;
  323. extern void *__brkval;
  324. int freeMemory() {
  325. int free_memory;
  326. if ((int)__brkval == 0)
  327. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  328. else
  329. free_memory = ((int)&free_memory) - ((int)__brkval);
  330. return free_memory;
  331. }
  332. }
  333. #endif //!SDSUPPORT
  334. void setup_killpin()
  335. {
  336. #if defined(KILL_PIN) && KILL_PIN > -1
  337. SET_INPUT(KILL_PIN);
  338. WRITE(KILL_PIN,HIGH);
  339. #endif
  340. }
  341. // Set home pin
  342. void setup_homepin(void)
  343. {
  344. #if defined(HOME_PIN) && HOME_PIN > -1
  345. SET_INPUT(HOME_PIN);
  346. WRITE(HOME_PIN,HIGH);
  347. #endif
  348. }
  349. void setup_photpin()
  350. {
  351. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  352. SET_OUTPUT(PHOTOGRAPH_PIN);
  353. WRITE(PHOTOGRAPH_PIN, LOW);
  354. #endif
  355. }
  356. void setup_powerhold()
  357. {
  358. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  359. SET_OUTPUT(SUICIDE_PIN);
  360. WRITE(SUICIDE_PIN, HIGH);
  361. #endif
  362. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  363. SET_OUTPUT(PS_ON_PIN);
  364. #if defined(PS_DEFAULT_OFF)
  365. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  366. #else
  367. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  368. #endif
  369. #endif
  370. }
  371. void suicide()
  372. {
  373. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  374. SET_OUTPUT(SUICIDE_PIN);
  375. WRITE(SUICIDE_PIN, LOW);
  376. #endif
  377. }
  378. void servo_init()
  379. {
  380. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  381. servos[0].attach(SERVO0_PIN);
  382. #endif
  383. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  384. servos[1].attach(SERVO1_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  387. servos[2].attach(SERVO2_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  390. servos[3].attach(SERVO3_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 5)
  393. #error "TODO: enter initalisation code for more servos"
  394. #endif
  395. }
  396. bool fans_check_enabled = true;
  397. #ifdef TMC2130
  398. extern int8_t CrashDetectMenu;
  399. void crashdet_enable()
  400. {
  401. tmc2130_sg_stop_on_crash = true;
  402. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  403. CrashDetectMenu = 1;
  404. }
  405. void crashdet_disable()
  406. {
  407. tmc2130_sg_stop_on_crash = false;
  408. tmc2130_sg_crash = 0;
  409. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  410. CrashDetectMenu = 0;
  411. }
  412. void crashdet_stop_and_save_print()
  413. {
  414. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  415. }
  416. void crashdet_restore_print_and_continue()
  417. {
  418. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  419. // babystep_apply();
  420. }
  421. void crashdet_stop_and_save_print2()
  422. {
  423. cli();
  424. planner_abort_hard(); //abort printing
  425. cmdqueue_reset(); //empty cmdqueue
  426. card.sdprinting = false;
  427. card.closefile();
  428. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  429. st_reset_timer();
  430. sei();
  431. }
  432. void crashdet_detected(uint8_t mask)
  433. {
  434. st_synchronize();
  435. static uint8_t crashDet_counter = 0;
  436. bool automatic_recovery_after_crash = true;
  437. if (crashDet_counter++ == 0) {
  438. crashDetTimer.start();
  439. }
  440. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  441. crashDetTimer.stop();
  442. crashDet_counter = 0;
  443. }
  444. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  445. automatic_recovery_after_crash = false;
  446. crashDetTimer.stop();
  447. crashDet_counter = 0;
  448. }
  449. else {
  450. crashDetTimer.start();
  451. }
  452. lcd_update_enable(true);
  453. lcd_clear();
  454. lcd_update(2);
  455. if (mask & X_AXIS_MASK)
  456. {
  457. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  458. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  459. }
  460. if (mask & Y_AXIS_MASK)
  461. {
  462. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  463. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  464. }
  465. lcd_update_enable(true);
  466. lcd_update(2);
  467. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  468. gcode_G28(true, true, false); //home X and Y
  469. st_synchronize();
  470. if (automatic_recovery_after_crash) {
  471. enquecommand_P(PSTR("CRASH_RECOVER"));
  472. }else{
  473. setTargetHotend(0, active_extruder);
  474. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  475. lcd_update_enable(true);
  476. if (yesno)
  477. {
  478. enquecommand_P(PSTR("CRASH_RECOVER"));
  479. }
  480. else
  481. {
  482. enquecommand_P(PSTR("CRASH_CANCEL"));
  483. }
  484. }
  485. }
  486. void crashdet_recover()
  487. {
  488. crashdet_restore_print_and_continue();
  489. tmc2130_sg_stop_on_crash = true;
  490. }
  491. void crashdet_cancel()
  492. {
  493. saved_printing = false;
  494. tmc2130_sg_stop_on_crash = true;
  495. if (saved_printing_type == PRINTING_TYPE_SD) {
  496. lcd_print_stop();
  497. }else if(saved_printing_type == PRINTING_TYPE_USB){
  498. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  499. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  500. }
  501. }
  502. #endif //TMC2130
  503. void failstats_reset_print()
  504. {
  505. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  506. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  511. }
  512. #ifdef MESH_BED_LEVELING
  513. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  514. #endif
  515. // Factory reset function
  516. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  517. // Level input parameter sets depth of reset
  518. int er_progress = 0;
  519. static void factory_reset(char level)
  520. {
  521. lcd_clear();
  522. switch (level) {
  523. // Level 0: Language reset
  524. case 0:
  525. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  526. WRITE(BEEPER, HIGH);
  527. _delay_ms(100);
  528. WRITE(BEEPER, LOW);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  534. WRITE(BEEPER, HIGH);
  535. _delay_ms(100);
  536. WRITE(BEEPER, LOW);
  537. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  538. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  549. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  551. lcd_menu_statistics();
  552. break;
  553. // Level 2: Prepare for shipping
  554. case 2:
  555. //lcd_puts_P(PSTR("Factory RESET"));
  556. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  557. // Force language selection at the next boot up.
  558. lang_reset();
  559. // Force the "Follow calibration flow" message at the next boot up.
  560. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  561. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  562. farm_no = 0;
  563. farm_mode = false;
  564. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  565. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  566. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  567. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  576. #ifdef FILAMENT_SENSOR
  577. fsensor_enable();
  578. fsensor_autoload_set(true);
  579. #endif //FILAMENT_SENSOR
  580. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  581. WRITE(BEEPER, HIGH);
  582. _delay_ms(100);
  583. WRITE(BEEPER, LOW);
  584. //_delay_ms(2000);
  585. break;
  586. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  587. case 3:
  588. lcd_puts_P(PSTR("Factory RESET"));
  589. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  590. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  591. WRITE(BEEPER, HIGH);
  592. _delay_ms(100);
  593. WRITE(BEEPER, LOW);
  594. er_progress = 0;
  595. lcd_puts_at_P(3, 3, PSTR(" "));
  596. lcd_set_cursor(3, 3);
  597. lcd_print(er_progress);
  598. // Erase EEPROM
  599. for (int i = 0; i < 4096; i++) {
  600. eeprom_update_byte((uint8_t*)i, 0xFF);
  601. if (i % 41 == 0) {
  602. er_progress++;
  603. lcd_puts_at_P(3, 3, PSTR(" "));
  604. lcd_set_cursor(3, 3);
  605. lcd_print(er_progress);
  606. lcd_puts_P(PSTR("%"));
  607. }
  608. }
  609. break;
  610. case 4:
  611. bowden_menu();
  612. break;
  613. default:
  614. break;
  615. }
  616. }
  617. extern "C" {
  618. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  619. }
  620. int uart_putchar(char c, FILE *)
  621. {
  622. MYSERIAL.write(c);
  623. return 0;
  624. }
  625. void lcd_splash()
  626. {
  627. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  628. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  629. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  630. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  631. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  632. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  633. }
  634. void factory_reset()
  635. {
  636. KEEPALIVE_STATE(PAUSED_FOR_USER);
  637. if (!READ(BTN_ENC))
  638. {
  639. _delay_ms(1000);
  640. if (!READ(BTN_ENC))
  641. {
  642. lcd_clear();
  643. lcd_puts_P(PSTR("Factory RESET"));
  644. SET_OUTPUT(BEEPER);
  645. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  646. WRITE(BEEPER, HIGH);
  647. while (!READ(BTN_ENC));
  648. WRITE(BEEPER, LOW);
  649. _delay_ms(2000);
  650. char level = reset_menu();
  651. factory_reset(level);
  652. switch (level) {
  653. case 0: _delay_ms(0); break;
  654. case 1: _delay_ms(0); break;
  655. case 2: _delay_ms(0); break;
  656. case 3: _delay_ms(0); break;
  657. }
  658. }
  659. }
  660. KEEPALIVE_STATE(IN_HANDLER);
  661. }
  662. void show_fw_version_warnings() {
  663. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  664. switch (FW_DEV_VERSION) {
  665. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  666. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  667. case(FW_VERSION_DEVEL):
  668. case(FW_VERSION_DEBUG):
  669. lcd_update_enable(false);
  670. lcd_clear();
  671. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  672. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  673. #else
  674. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  675. #endif
  676. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  677. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  678. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  679. lcd_wait_for_click();
  680. break;
  681. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  682. }
  683. lcd_update_enable(true);
  684. }
  685. //! @brief try to check if firmware is on right type of printer
  686. static void check_if_fw_is_on_right_printer(){
  687. #ifdef FILAMENT_SENSOR
  688. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  689. #ifdef IR_SENSOR
  690. swi2c_init();
  691. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  692. if (pat9125_detected){
  693. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  694. #endif //IR_SENSOR
  695. #ifdef PAT9125
  696. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  697. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  698. if (ir_detected){
  699. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  700. #endif //PAT9125
  701. }
  702. #endif //FILAMENT_SENSOR
  703. }
  704. uint8_t check_printer_version()
  705. {
  706. uint8_t version_changed = 0;
  707. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  708. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  709. if (printer_type != PRINTER_TYPE) {
  710. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  711. else version_changed |= 0b10;
  712. }
  713. if (motherboard != MOTHERBOARD) {
  714. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  715. else version_changed |= 0b01;
  716. }
  717. return version_changed;
  718. }
  719. #ifdef BOOTAPP
  720. #include "bootapp.h" //bootloader support
  721. #endif //BOOTAPP
  722. #if (LANG_MODE != 0) //secondary language support
  723. #ifdef W25X20CL
  724. // language update from external flash
  725. #define LANGBOOT_BLOCKSIZE 0x1000u
  726. #define LANGBOOT_RAMBUFFER 0x0800
  727. void update_sec_lang_from_external_flash()
  728. {
  729. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  730. {
  731. uint8_t lang = boot_reserved >> 4;
  732. uint8_t state = boot_reserved & 0xf;
  733. lang_table_header_t header;
  734. uint32_t src_addr;
  735. if (lang_get_header(lang, &header, &src_addr))
  736. {
  737. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  738. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  739. _delay(100);
  740. boot_reserved = (state + 1) | (lang << 4);
  741. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  742. {
  743. cli();
  744. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  745. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  746. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  747. if (state == 0)
  748. {
  749. //TODO - check header integrity
  750. }
  751. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  752. }
  753. else
  754. {
  755. //TODO - check sec lang data integrity
  756. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  757. }
  758. }
  759. }
  760. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  761. }
  762. #ifdef DEBUG_W25X20CL
  763. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  764. {
  765. lang_table_header_t header;
  766. uint8_t count = 0;
  767. uint32_t addr = 0x00000;
  768. while (1)
  769. {
  770. printf_P(_n("LANGTABLE%d:"), count);
  771. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  772. if (header.magic != LANG_MAGIC)
  773. {
  774. printf_P(_n("NG!\n"));
  775. break;
  776. }
  777. printf_P(_n("OK\n"));
  778. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  779. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  780. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  781. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  782. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  783. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  784. addr += header.size;
  785. codes[count] = header.code;
  786. count ++;
  787. }
  788. return count;
  789. }
  790. void list_sec_lang_from_external_flash()
  791. {
  792. uint16_t codes[8];
  793. uint8_t count = lang_xflash_enum_codes(codes);
  794. printf_P(_n("XFlash lang count = %hhd\n"), count);
  795. }
  796. #endif //DEBUG_W25X20CL
  797. #endif //W25X20CL
  798. #endif //(LANG_MODE != 0)
  799. static void w25x20cl_err_msg()
  800. {
  801. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  802. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  803. }
  804. // "Setup" function is called by the Arduino framework on startup.
  805. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  806. // are initialized by the main() routine provided by the Arduino framework.
  807. void setup()
  808. {
  809. mmu_init();
  810. ultralcd_init();
  811. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  812. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  813. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  814. spi_init();
  815. lcd_splash();
  816. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  817. #ifdef W25X20CL
  818. bool w25x20cl_success = w25x20cl_init();
  819. if (w25x20cl_success)
  820. {
  821. optiboot_w25x20cl_enter();
  822. #if (LANG_MODE != 0) //secondary language support
  823. update_sec_lang_from_external_flash();
  824. #endif //(LANG_MODE != 0)
  825. }
  826. else
  827. {
  828. w25x20cl_err_msg();
  829. }
  830. #else
  831. const bool w25x20cl_success = true;
  832. #endif //W25X20CL
  833. setup_killpin();
  834. setup_powerhold();
  835. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  836. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  837. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  838. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  839. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  840. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  841. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  842. if (farm_mode)
  843. {
  844. no_response = true; //we need confirmation by recieving PRUSA thx
  845. important_status = 8;
  846. prusa_statistics(8);
  847. selectedSerialPort = 1;
  848. #ifdef TMC2130
  849. //increased extruder current (PFW363)
  850. tmc2130_current_h[E_AXIS] = 36;
  851. tmc2130_current_r[E_AXIS] = 36;
  852. #endif //TMC2130
  853. #ifdef FILAMENT_SENSOR
  854. //disabled filament autoload (PFW360)
  855. fsensor_autoload_set(false);
  856. #endif //FILAMENT_SENSOR
  857. }
  858. MYSERIAL.begin(BAUDRATE);
  859. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  860. #ifndef W25X20CL
  861. SERIAL_PROTOCOLLNPGM("start");
  862. #endif //W25X20CL
  863. stdout = uartout;
  864. SERIAL_ECHO_START;
  865. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  866. #ifdef DEBUG_SEC_LANG
  867. lang_table_header_t header;
  868. uint32_t src_addr = 0x00000;
  869. if (lang_get_header(1, &header, &src_addr))
  870. {
  871. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  872. #define LT_PRINT_TEST 2
  873. // flash usage
  874. // total p.test
  875. //0 252718 t+c text code
  876. //1 253142 424 170 254
  877. //2 253040 322 164 158
  878. //3 253248 530 135 395
  879. #if (LT_PRINT_TEST==1) //not optimized printf
  880. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  881. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  882. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  883. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  884. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  885. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  886. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  887. #elif (LT_PRINT_TEST==2) //optimized printf
  888. printf_P(
  889. _n(
  890. " _src_addr = 0x%08lx\n"
  891. " _lt_magic = 0x%08lx %S\n"
  892. " _lt_size = 0x%04x (%d)\n"
  893. " _lt_count = 0x%04x (%d)\n"
  894. " _lt_chsum = 0x%04x\n"
  895. " _lt_code = 0x%04x (%c%c)\n"
  896. " _lt_resv1 = 0x%08lx\n"
  897. ),
  898. src_addr,
  899. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  900. header.size, header.size,
  901. header.count, header.count,
  902. header.checksum,
  903. header.code, header.code >> 8, header.code & 0xff,
  904. header.signature
  905. );
  906. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  907. MYSERIAL.print(" _src_addr = 0x");
  908. MYSERIAL.println(src_addr, 16);
  909. MYSERIAL.print(" _lt_magic = 0x");
  910. MYSERIAL.print(header.magic, 16);
  911. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  912. MYSERIAL.print(" _lt_size = 0x");
  913. MYSERIAL.print(header.size, 16);
  914. MYSERIAL.print(" (");
  915. MYSERIAL.print(header.size, 10);
  916. MYSERIAL.println(")");
  917. MYSERIAL.print(" _lt_count = 0x");
  918. MYSERIAL.print(header.count, 16);
  919. MYSERIAL.print(" (");
  920. MYSERIAL.print(header.count, 10);
  921. MYSERIAL.println(")");
  922. MYSERIAL.print(" _lt_chsum = 0x");
  923. MYSERIAL.println(header.checksum, 16);
  924. MYSERIAL.print(" _lt_code = 0x");
  925. MYSERIAL.print(header.code, 16);
  926. MYSERIAL.print(" (");
  927. MYSERIAL.print((char)(header.code >> 8), 0);
  928. MYSERIAL.print((char)(header.code & 0xff), 0);
  929. MYSERIAL.println(")");
  930. MYSERIAL.print(" _lt_resv1 = 0x");
  931. MYSERIAL.println(header.signature, 16);
  932. #endif //(LT_PRINT_TEST==)
  933. #undef LT_PRINT_TEST
  934. #if 0
  935. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  936. for (uint16_t i = 0; i < 1024; i++)
  937. {
  938. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  939. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  940. if ((i % 16) == 15) putchar('\n');
  941. }
  942. #endif
  943. uint16_t sum = 0;
  944. for (uint16_t i = 0; i < header.size; i++)
  945. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  946. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  947. sum -= header.checksum; //subtract checksum
  948. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  949. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  950. if (sum == header.checksum)
  951. printf_P(_n("Checksum OK\n"), sum);
  952. else
  953. printf_P(_n("Checksum NG\n"), sum);
  954. }
  955. else
  956. printf_P(_n("lang_get_header failed!\n"));
  957. #if 0
  958. for (uint16_t i = 0; i < 1024*10; i++)
  959. {
  960. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  961. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  962. if ((i % 16) == 15) putchar('\n');
  963. }
  964. #endif
  965. #if 0
  966. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  967. for (int i = 0; i < 4096; ++i) {
  968. int b = eeprom_read_byte((unsigned char*)i);
  969. if (b != 255) {
  970. SERIAL_ECHO(i);
  971. SERIAL_ECHO(":");
  972. SERIAL_ECHO(b);
  973. SERIAL_ECHOLN("");
  974. }
  975. }
  976. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  977. #endif
  978. #endif //DEBUG_SEC_LANG
  979. // Check startup - does nothing if bootloader sets MCUSR to 0
  980. byte mcu = MCUSR;
  981. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  982. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  983. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  984. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  985. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  986. if (mcu & 1) puts_P(MSG_POWERUP);
  987. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  988. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  989. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  990. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  991. MCUSR = 0;
  992. //SERIAL_ECHORPGM(MSG_MARLIN);
  993. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  994. #ifdef STRING_VERSION_CONFIG_H
  995. #ifdef STRING_CONFIG_H_AUTHOR
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  998. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  999. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1000. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1001. SERIAL_ECHOPGM("Compiled: ");
  1002. SERIAL_ECHOLNPGM(__DATE__);
  1003. #endif
  1004. #endif
  1005. SERIAL_ECHO_START;
  1006. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1007. SERIAL_ECHO(freeMemory());
  1008. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1009. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1010. //lcd_update_enable(false); // why do we need this?? - andre
  1011. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1012. bool previous_settings_retrieved = false;
  1013. uint8_t hw_changed = check_printer_version();
  1014. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1015. previous_settings_retrieved = Config_RetrieveSettings();
  1016. }
  1017. else { //printer version was changed so use default settings
  1018. Config_ResetDefault();
  1019. }
  1020. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1021. tp_init(); // Initialize temperature loop
  1022. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1023. else
  1024. {
  1025. w25x20cl_err_msg();
  1026. printf_P(_n("W25X20CL not responding.\n"));
  1027. }
  1028. plan_init(); // Initialize planner;
  1029. factory_reset();
  1030. lcd_encoder_diff=0;
  1031. #ifdef TMC2130
  1032. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1033. if (silentMode == 0xff) silentMode = 0;
  1034. tmc2130_mode = TMC2130_MODE_NORMAL;
  1035. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1036. if (crashdet && !farm_mode)
  1037. {
  1038. crashdet_enable();
  1039. puts_P(_N("CrashDetect ENABLED!"));
  1040. }
  1041. else
  1042. {
  1043. crashdet_disable();
  1044. puts_P(_N("CrashDetect DISABLED"));
  1045. }
  1046. #ifdef TMC2130_LINEARITY_CORRECTION
  1047. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1048. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1049. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1050. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1051. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1053. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1054. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1055. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1056. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1057. #endif //TMC2130_LINEARITY_CORRECTION
  1058. #ifdef TMC2130_VARIABLE_RESOLUTION
  1059. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1060. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1061. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1062. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1063. #else //TMC2130_VARIABLE_RESOLUTION
  1064. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1065. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1066. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1067. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1068. #endif //TMC2130_VARIABLE_RESOLUTION
  1069. #endif //TMC2130
  1070. st_init(); // Initialize stepper, this enables interrupts!
  1071. #ifdef TMC2130
  1072. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1073. update_mode_profile();
  1074. tmc2130_init();
  1075. #endif //TMC2130
  1076. setup_photpin();
  1077. servo_init();
  1078. // Reset the machine correction matrix.
  1079. // It does not make sense to load the correction matrix until the machine is homed.
  1080. world2machine_reset();
  1081. #ifdef FILAMENT_SENSOR
  1082. fsensor_init();
  1083. #endif //FILAMENT_SENSOR
  1084. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1085. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1086. #endif
  1087. setup_homepin();
  1088. #ifdef TMC2130
  1089. if (1) {
  1090. // try to run to zero phase before powering the Z motor.
  1091. // Move in negative direction
  1092. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1093. // Round the current micro-micro steps to micro steps.
  1094. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1095. // Until the phase counter is reset to zero.
  1096. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1097. _delay(2);
  1098. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1099. _delay(2);
  1100. }
  1101. }
  1102. #endif //TMC2130
  1103. #if defined(Z_AXIS_ALWAYS_ON)
  1104. enable_z();
  1105. #endif
  1106. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1107. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1108. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1109. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1110. if (farm_mode)
  1111. {
  1112. prusa_statistics(8);
  1113. }
  1114. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1115. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1116. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1117. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1118. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1119. // where all the EEPROM entries are set to 0x0ff.
  1120. // Once a firmware boots up, it forces at least a language selection, which changes
  1121. // EEPROM_LANG to number lower than 0x0ff.
  1122. // 1) Set a high power mode.
  1123. #ifdef TMC2130
  1124. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1125. tmc2130_mode = TMC2130_MODE_NORMAL;
  1126. #endif //TMC2130
  1127. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1128. }
  1129. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1130. // but this times out if a blocking dialog is shown in setup().
  1131. card.initsd();
  1132. #ifdef DEBUG_SD_SPEED_TEST
  1133. if (card.cardOK)
  1134. {
  1135. uint8_t* buff = (uint8_t*)block_buffer;
  1136. uint32_t block = 0;
  1137. uint32_t sumr = 0;
  1138. uint32_t sumw = 0;
  1139. for (int i = 0; i < 1024; i++)
  1140. {
  1141. uint32_t u = _micros();
  1142. bool res = card.card.readBlock(i, buff);
  1143. u = _micros() - u;
  1144. if (res)
  1145. {
  1146. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1147. sumr += u;
  1148. u = _micros();
  1149. res = card.card.writeBlock(i, buff);
  1150. u = _micros() - u;
  1151. if (res)
  1152. {
  1153. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1154. sumw += u;
  1155. }
  1156. else
  1157. {
  1158. printf_P(PSTR("writeBlock %4d error\n"), i);
  1159. break;
  1160. }
  1161. }
  1162. else
  1163. {
  1164. printf_P(PSTR("readBlock %4d error\n"), i);
  1165. break;
  1166. }
  1167. }
  1168. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1169. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1170. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1171. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1172. }
  1173. else
  1174. printf_P(PSTR("Card NG!\n"));
  1175. #endif //DEBUG_SD_SPEED_TEST
  1176. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1177. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1178. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1179. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1180. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1181. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1182. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1183. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1184. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1185. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1187. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1188. #ifdef SNMM
  1189. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1190. int _z = BOWDEN_LENGTH;
  1191. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1192. }
  1193. #endif
  1194. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1195. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1196. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1197. #if (LANG_MODE != 0) //secondary language support
  1198. #ifdef DEBUG_W25X20CL
  1199. W25X20CL_SPI_ENTER();
  1200. uint8_t uid[8]; // 64bit unique id
  1201. w25x20cl_rd_uid(uid);
  1202. puts_P(_n("W25X20CL UID="));
  1203. for (uint8_t i = 0; i < 8; i ++)
  1204. printf_P(PSTR("%02hhx"), uid[i]);
  1205. putchar('\n');
  1206. list_sec_lang_from_external_flash();
  1207. #endif //DEBUG_W25X20CL
  1208. // lang_reset();
  1209. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1210. lcd_language();
  1211. #ifdef DEBUG_SEC_LANG
  1212. uint16_t sec_lang_code = lang_get_code(1);
  1213. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1214. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1215. lang_print_sec_lang(uartout);
  1216. #endif //DEBUG_SEC_LANG
  1217. #endif //(LANG_MODE != 0)
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1220. temp_cal_active = false;
  1221. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1222. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1223. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1224. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1225. int16_t z_shift = 0;
  1226. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1227. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1228. temp_cal_active = false;
  1229. }
  1230. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1231. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1232. }
  1233. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1234. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1235. }
  1236. //mbl_mode_init();
  1237. mbl_settings_init();
  1238. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1239. if (SilentModeMenu_MMU == 255) {
  1240. SilentModeMenu_MMU = 1;
  1241. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1242. }
  1243. check_babystep(); //checking if Z babystep is in allowed range
  1244. #ifdef UVLO_SUPPORT
  1245. setup_uvlo_interrupt();
  1246. #endif //UVLO_SUPPORT
  1247. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1248. setup_fan_interrupt();
  1249. #endif //DEBUG_DISABLE_FANCHECK
  1250. #ifdef PAT9125
  1251. fsensor_setup_interrupt();
  1252. #endif //PAT9125
  1253. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1254. #ifndef DEBUG_DISABLE_STARTMSGS
  1255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1256. check_if_fw_is_on_right_printer();
  1257. show_fw_version_warnings();
  1258. switch (hw_changed) {
  1259. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1260. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1261. case(0b01):
  1262. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1263. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1264. break;
  1265. case(0b10):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1268. break;
  1269. case(0b11):
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1271. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1272. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1273. break;
  1274. default: break; //no change, show no message
  1275. }
  1276. if (!previous_settings_retrieved) {
  1277. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1278. Config_StoreSettings();
  1279. }
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1281. lcd_wizard(WizState::Run);
  1282. }
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1284. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1285. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1286. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1287. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1288. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1291. }
  1292. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1295. lcd_update_enable(true);
  1296. }
  1297. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1298. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1302. // Show the message.
  1303. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1304. }
  1305. }
  1306. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1307. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1308. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1309. update_current_firmware_version_to_eeprom();
  1310. lcd_selftest();
  1311. }
  1312. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1313. KEEPALIVE_STATE(IN_PROCESS);
  1314. #endif //DEBUG_DISABLE_STARTMSGS
  1315. lcd_update_enable(true);
  1316. lcd_clear();
  1317. lcd_update(2);
  1318. // Store the currently running firmware into an eeprom,
  1319. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1320. update_current_firmware_version_to_eeprom();
  1321. #ifdef TMC2130
  1322. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1323. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1324. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1325. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1326. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1327. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1328. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1329. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1330. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1331. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1332. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1333. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1334. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1335. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1336. #endif //TMC2130
  1337. #ifdef UVLO_SUPPORT
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1339. /*
  1340. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1341. else {
  1342. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1343. lcd_update_enable(true);
  1344. lcd_update(2);
  1345. lcd_setstatuspgm(_T(WELCOME_MSG));
  1346. }
  1347. */
  1348. manage_heater(); // Update temperatures
  1349. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1350. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1351. #endif
  1352. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1353. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1354. puts_P(_N("Automatic recovery!"));
  1355. #endif
  1356. recover_print(1);
  1357. }
  1358. else{
  1359. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1360. puts_P(_N("Normal recovery!"));
  1361. #endif
  1362. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1363. else {
  1364. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1365. lcd_update_enable(true);
  1366. lcd_update(2);
  1367. lcd_setstatuspgm(_T(WELCOME_MSG));
  1368. }
  1369. }
  1370. }
  1371. #endif //UVLO_SUPPORT
  1372. KEEPALIVE_STATE(NOT_BUSY);
  1373. #ifdef WATCHDOG
  1374. wdt_enable(WDTO_4S);
  1375. #endif //WATCHDOG
  1376. }
  1377. void trace();
  1378. #define CHUNK_SIZE 64 // bytes
  1379. #define SAFETY_MARGIN 1
  1380. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1381. int chunkHead = 0;
  1382. void serial_read_stream() {
  1383. setAllTargetHotends(0);
  1384. setTargetBed(0);
  1385. lcd_clear();
  1386. lcd_puts_P(PSTR(" Upload in progress"));
  1387. // first wait for how many bytes we will receive
  1388. uint32_t bytesToReceive;
  1389. // receive the four bytes
  1390. char bytesToReceiveBuffer[4];
  1391. for (int i=0; i<4; i++) {
  1392. int data;
  1393. while ((data = MYSERIAL.read()) == -1) {};
  1394. bytesToReceiveBuffer[i] = data;
  1395. }
  1396. // make it a uint32
  1397. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1398. // we're ready, notify the sender
  1399. MYSERIAL.write('+');
  1400. // lock in the routine
  1401. uint32_t receivedBytes = 0;
  1402. while (prusa_sd_card_upload) {
  1403. int i;
  1404. for (i=0; i<CHUNK_SIZE; i++) {
  1405. int data;
  1406. // check if we're not done
  1407. if (receivedBytes == bytesToReceive) {
  1408. break;
  1409. }
  1410. // read the next byte
  1411. while ((data = MYSERIAL.read()) == -1) {};
  1412. receivedBytes++;
  1413. // save it to the chunk
  1414. chunk[i] = data;
  1415. }
  1416. // write the chunk to SD
  1417. card.write_command_no_newline(&chunk[0]);
  1418. // notify the sender we're ready for more data
  1419. MYSERIAL.write('+');
  1420. // for safety
  1421. manage_heater();
  1422. // check if we're done
  1423. if(receivedBytes == bytesToReceive) {
  1424. trace(); // beep
  1425. card.closefile();
  1426. prusa_sd_card_upload = false;
  1427. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1428. }
  1429. }
  1430. }
  1431. /**
  1432. * Output a "busy" message at regular intervals
  1433. * while the machine is not accepting commands.
  1434. */
  1435. void host_keepalive() {
  1436. #ifndef HOST_KEEPALIVE_FEATURE
  1437. return;
  1438. #endif //HOST_KEEPALIVE_FEATURE
  1439. if (farm_mode) return;
  1440. long ms = _millis();
  1441. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1442. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1443. switch (busy_state) {
  1444. case IN_HANDLER:
  1445. case IN_PROCESS:
  1446. SERIAL_ECHO_START;
  1447. SERIAL_ECHOLNPGM("busy: processing");
  1448. break;
  1449. case PAUSED_FOR_USER:
  1450. SERIAL_ECHO_START;
  1451. SERIAL_ECHOLNPGM("busy: paused for user");
  1452. break;
  1453. case PAUSED_FOR_INPUT:
  1454. SERIAL_ECHO_START;
  1455. SERIAL_ECHOLNPGM("busy: paused for input");
  1456. break;
  1457. default:
  1458. break;
  1459. }
  1460. }
  1461. prev_busy_signal_ms = ms;
  1462. }
  1463. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1464. // Before loop(), the setup() function is called by the main() routine.
  1465. void loop()
  1466. {
  1467. KEEPALIVE_STATE(NOT_BUSY);
  1468. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1469. {
  1470. is_usb_printing = true;
  1471. usb_printing_counter--;
  1472. _usb_timer = _millis();
  1473. }
  1474. if (usb_printing_counter == 0)
  1475. {
  1476. is_usb_printing = false;
  1477. }
  1478. if (prusa_sd_card_upload)
  1479. {
  1480. //we read byte-by byte
  1481. serial_read_stream();
  1482. } else
  1483. {
  1484. get_command();
  1485. #ifdef SDSUPPORT
  1486. card.checkautostart(false);
  1487. #endif
  1488. if(buflen)
  1489. {
  1490. cmdbuffer_front_already_processed = false;
  1491. #ifdef SDSUPPORT
  1492. if(card.saving)
  1493. {
  1494. // Saving a G-code file onto an SD-card is in progress.
  1495. // Saving starts with M28, saving until M29 is seen.
  1496. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1497. card.write_command(CMDBUFFER_CURRENT_STRING);
  1498. if(card.logging)
  1499. process_commands();
  1500. else
  1501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1502. } else {
  1503. card.closefile();
  1504. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1505. }
  1506. } else {
  1507. process_commands();
  1508. }
  1509. #else
  1510. process_commands();
  1511. #endif //SDSUPPORT
  1512. if (! cmdbuffer_front_already_processed && buflen)
  1513. {
  1514. // ptr points to the start of the block currently being processed.
  1515. // The first character in the block is the block type.
  1516. char *ptr = cmdbuffer + bufindr;
  1517. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1518. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1519. union {
  1520. struct {
  1521. char lo;
  1522. char hi;
  1523. } lohi;
  1524. uint16_t value;
  1525. } sdlen;
  1526. sdlen.value = 0;
  1527. {
  1528. // This block locks the interrupts globally for 3.25 us,
  1529. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1530. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1531. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1532. cli();
  1533. // Reset the command to something, which will be ignored by the power panic routine,
  1534. // so this buffer length will not be counted twice.
  1535. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1536. // Extract the current buffer length.
  1537. sdlen.lohi.lo = *ptr ++;
  1538. sdlen.lohi.hi = *ptr;
  1539. // and pass it to the planner queue.
  1540. planner_add_sd_length(sdlen.value);
  1541. sei();
  1542. }
  1543. }
  1544. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1545. cli();
  1546. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1547. // and one for each command to previous block in the planner queue.
  1548. planner_add_sd_length(1);
  1549. sei();
  1550. }
  1551. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1552. // this block's SD card length will not be counted twice as its command type has been replaced
  1553. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1554. cmdqueue_pop_front();
  1555. }
  1556. host_keepalive();
  1557. }
  1558. }
  1559. //check heater every n milliseconds
  1560. manage_heater();
  1561. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1562. checkHitEndstops();
  1563. lcd_update(0);
  1564. #ifdef TMC2130
  1565. tmc2130_check_overtemp();
  1566. if (tmc2130_sg_crash)
  1567. {
  1568. uint8_t crash = tmc2130_sg_crash;
  1569. tmc2130_sg_crash = 0;
  1570. // crashdet_stop_and_save_print();
  1571. switch (crash)
  1572. {
  1573. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1574. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1575. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1576. }
  1577. }
  1578. #endif //TMC2130
  1579. mmu_loop();
  1580. }
  1581. #define DEFINE_PGM_READ_ANY(type, reader) \
  1582. static inline type pgm_read_any(const type *p) \
  1583. { return pgm_read_##reader##_near(p); }
  1584. DEFINE_PGM_READ_ANY(float, float);
  1585. DEFINE_PGM_READ_ANY(signed char, byte);
  1586. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1587. static const PROGMEM type array##_P[3] = \
  1588. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1589. static inline type array(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); } \
  1591. type array##_ext(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); }
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1597. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1598. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1599. static void axis_is_at_home(int axis) {
  1600. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1601. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1602. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1603. }
  1604. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1605. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1606. //! @return original feedmultiply
  1607. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1608. saved_feedrate = feedrate;
  1609. int l_feedmultiply = feedmultiply;
  1610. feedmultiply = 100;
  1611. previous_millis_cmd = _millis();
  1612. enable_endstops(enable_endstops_now);
  1613. return l_feedmultiply;
  1614. }
  1615. //! @param original_feedmultiply feedmultiply to restore
  1616. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1617. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1618. enable_endstops(false);
  1619. #endif
  1620. feedrate = saved_feedrate;
  1621. feedmultiply = original_feedmultiply;
  1622. previous_millis_cmd = _millis();
  1623. }
  1624. #ifdef ENABLE_AUTO_BED_LEVELING
  1625. #ifdef AUTO_BED_LEVELING_GRID
  1626. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1627. {
  1628. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1629. planeNormal.debug("planeNormal");
  1630. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1631. //bedLevel.debug("bedLevel");
  1632. //plan_bed_level_matrix.debug("bed level before");
  1633. //vector_3 uncorrected_position = plan_get_position_mm();
  1634. //uncorrected_position.debug("position before");
  1635. vector_3 corrected_position = plan_get_position();
  1636. // corrected_position.debug("position after");
  1637. current_position[X_AXIS] = corrected_position.x;
  1638. current_position[Y_AXIS] = corrected_position.y;
  1639. current_position[Z_AXIS] = corrected_position.z;
  1640. // put the bed at 0 so we don't go below it.
  1641. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. #else // not AUTO_BED_LEVELING_GRID
  1645. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1646. plan_bed_level_matrix.set_to_identity();
  1647. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1648. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1649. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1650. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1651. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1652. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1653. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1654. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1655. vector_3 corrected_position = plan_get_position();
  1656. current_position[X_AXIS] = corrected_position.x;
  1657. current_position[Y_AXIS] = corrected_position.y;
  1658. current_position[Z_AXIS] = corrected_position.z;
  1659. // put the bed at 0 so we don't go below it.
  1660. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. }
  1663. #endif // AUTO_BED_LEVELING_GRID
  1664. static void run_z_probe() {
  1665. plan_bed_level_matrix.set_to_identity();
  1666. feedrate = homing_feedrate[Z_AXIS];
  1667. // move down until you find the bed
  1668. float zPosition = -10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. // we have to let the planner know where we are right now as it is not where we said to go.
  1672. zPosition = st_get_position_mm(Z_AXIS);
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1674. // move up the retract distance
  1675. zPosition += home_retract_mm(Z_AXIS);
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. // move back down slowly to find bed
  1679. feedrate = homing_feedrate[Z_AXIS]/4;
  1680. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1684. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. }
  1687. static void do_blocking_move_to(float x, float y, float z) {
  1688. float oldFeedRate = feedrate;
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. current_position[Z_AXIS] = z;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. feedrate = XY_TRAVEL_SPEED;
  1694. current_position[X_AXIS] = x;
  1695. current_position[Y_AXIS] = y;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = oldFeedRate;
  1699. }
  1700. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1701. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1702. }
  1703. /// Probe bed height at position (x,y), returns the measured z value
  1704. static float probe_pt(float x, float y, float z_before) {
  1705. // move to right place
  1706. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1707. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1708. run_z_probe();
  1709. float measured_z = current_position[Z_AXIS];
  1710. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1711. SERIAL_PROTOCOLPGM(" x: ");
  1712. SERIAL_PROTOCOL(x);
  1713. SERIAL_PROTOCOLPGM(" y: ");
  1714. SERIAL_PROTOCOL(y);
  1715. SERIAL_PROTOCOLPGM(" z: ");
  1716. SERIAL_PROTOCOL(measured_z);
  1717. SERIAL_PROTOCOLPGM("\n");
  1718. return measured_z;
  1719. }
  1720. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1721. #ifdef LIN_ADVANCE
  1722. /**
  1723. * M900: Set and/or Get advance K factor
  1724. *
  1725. * K<factor> Set advance K factor
  1726. */
  1727. inline void gcode_M900() {
  1728. st_synchronize();
  1729. const float newK = code_seen('K') ? code_value_float() : -1;
  1730. if (newK >= 0 && newK < 10)
  1731. extruder_advance_K = newK;
  1732. else
  1733. SERIAL_ECHOLNPGM("K out of allowed range!");
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOPGM("Advance K=");
  1736. SERIAL_ECHOLN(extruder_advance_K);
  1737. }
  1738. #endif // LIN_ADVANCE
  1739. bool check_commands() {
  1740. bool end_command_found = false;
  1741. while (buflen)
  1742. {
  1743. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1744. if (!cmdbuffer_front_already_processed)
  1745. cmdqueue_pop_front();
  1746. cmdbuffer_front_already_processed = false;
  1747. }
  1748. return end_command_found;
  1749. }
  1750. #ifdef TMC2130
  1751. bool calibrate_z_auto()
  1752. {
  1753. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1754. lcd_clear();
  1755. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1756. bool endstops_enabled = enable_endstops(true);
  1757. int axis_up_dir = -home_dir(Z_AXIS);
  1758. tmc2130_home_enter(Z_AXIS_MASK);
  1759. current_position[Z_AXIS] = 0;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. set_destination_to_current();
  1762. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1763. feedrate = homing_feedrate[Z_AXIS];
  1764. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1765. st_synchronize();
  1766. // current_position[axis] = 0;
  1767. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. tmc2130_home_exit();
  1769. enable_endstops(false);
  1770. current_position[Z_AXIS] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. set_destination_to_current();
  1773. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1774. feedrate = homing_feedrate[Z_AXIS] / 2;
  1775. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1776. st_synchronize();
  1777. enable_endstops(endstops_enabled);
  1778. if (PRINTER_TYPE == PRINTER_MK3) {
  1779. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1780. }
  1781. else {
  1782. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1783. }
  1784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1785. return true;
  1786. }
  1787. #endif //TMC2130
  1788. #ifdef TMC2130
  1789. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1790. #else
  1791. void homeaxis(int axis, uint8_t cnt)
  1792. #endif //TMC2130
  1793. {
  1794. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1795. #define HOMEAXIS_DO(LETTER) \
  1796. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1797. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1798. {
  1799. int axis_home_dir = home_dir(axis);
  1800. feedrate = homing_feedrate[axis];
  1801. #ifdef TMC2130
  1802. tmc2130_home_enter(X_AXIS_MASK << axis);
  1803. #endif //TMC2130
  1804. // Move away a bit, so that the print head does not touch the end position,
  1805. // and the following movement to endstop has a chance to achieve the required velocity
  1806. // for the stall guard to work.
  1807. current_position[axis] = 0;
  1808. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1809. set_destination_to_current();
  1810. // destination[axis] = 11.f;
  1811. destination[axis] = -3.f * axis_home_dir;
  1812. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1815. endstops_hit_on_purpose();
  1816. enable_endstops(false);
  1817. current_position[axis] = 0;
  1818. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1819. destination[axis] = 1. * axis_home_dir;
  1820. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1821. st_synchronize();
  1822. // Now continue to move up to the left end stop with the collision detection enabled.
  1823. enable_endstops(true);
  1824. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. for (uint8_t i = 0; i < cnt; i++)
  1828. {
  1829. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1830. endstops_hit_on_purpose();
  1831. enable_endstops(false);
  1832. current_position[axis] = 0;
  1833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1834. destination[axis] = -10.f * axis_home_dir;
  1835. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1836. st_synchronize();
  1837. endstops_hit_on_purpose();
  1838. // Now move left up to the collision, this time with a repeatable velocity.
  1839. enable_endstops(true);
  1840. destination[axis] = 11.f * axis_home_dir;
  1841. #ifdef TMC2130
  1842. feedrate = homing_feedrate[axis];
  1843. #else //TMC2130
  1844. feedrate = homing_feedrate[axis] / 2;
  1845. #endif //TMC2130
  1846. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1847. st_synchronize();
  1848. #ifdef TMC2130
  1849. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1850. if (pstep) pstep[i] = mscnt >> 4;
  1851. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1852. #endif //TMC2130
  1853. }
  1854. endstops_hit_on_purpose();
  1855. enable_endstops(false);
  1856. #ifdef TMC2130
  1857. uint8_t orig = tmc2130_home_origin[axis];
  1858. uint8_t back = tmc2130_home_bsteps[axis];
  1859. if (tmc2130_home_enabled && (orig <= 63))
  1860. {
  1861. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1862. if (back > 0)
  1863. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1864. }
  1865. else
  1866. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1867. tmc2130_home_exit();
  1868. #endif //TMC2130
  1869. axis_is_at_home(axis);
  1870. axis_known_position[axis] = true;
  1871. // Move from minimum
  1872. #ifdef TMC2130
  1873. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1874. #else //TMC2130
  1875. float dist = - axis_home_dir * 0.01f * 64;
  1876. #endif //TMC2130
  1877. current_position[axis] -= dist;
  1878. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1879. current_position[axis] += dist;
  1880. destination[axis] = current_position[axis];
  1881. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1882. st_synchronize();
  1883. feedrate = 0.0;
  1884. }
  1885. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1886. {
  1887. #ifdef TMC2130
  1888. FORCE_HIGH_POWER_START;
  1889. #endif
  1890. int axis_home_dir = home_dir(axis);
  1891. current_position[axis] = 0;
  1892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1894. feedrate = homing_feedrate[axis];
  1895. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1896. st_synchronize();
  1897. #ifdef TMC2130
  1898. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1899. FORCE_HIGH_POWER_END;
  1900. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1901. return;
  1902. }
  1903. #endif //TMC2130
  1904. current_position[axis] = 0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1908. st_synchronize();
  1909. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1910. feedrate = homing_feedrate[axis]/2 ;
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. #ifdef TMC2130
  1914. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1915. FORCE_HIGH_POWER_END;
  1916. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1917. return;
  1918. }
  1919. #endif //TMC2130
  1920. axis_is_at_home(axis);
  1921. destination[axis] = current_position[axis];
  1922. feedrate = 0.0;
  1923. endstops_hit_on_purpose();
  1924. axis_known_position[axis] = true;
  1925. #ifdef TMC2130
  1926. FORCE_HIGH_POWER_END;
  1927. #endif
  1928. }
  1929. enable_endstops(endstops_enabled);
  1930. }
  1931. /**/
  1932. void home_xy()
  1933. {
  1934. set_destination_to_current();
  1935. homeaxis(X_AXIS);
  1936. homeaxis(Y_AXIS);
  1937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1938. endstops_hit_on_purpose();
  1939. }
  1940. void refresh_cmd_timeout(void)
  1941. {
  1942. previous_millis_cmd = _millis();
  1943. }
  1944. #ifdef FWRETRACT
  1945. void retract(bool retracting, bool swapretract = false) {
  1946. if(retracting && !retracted[active_extruder]) {
  1947. destination[X_AXIS]=current_position[X_AXIS];
  1948. destination[Y_AXIS]=current_position[Y_AXIS];
  1949. destination[Z_AXIS]=current_position[Z_AXIS];
  1950. destination[E_AXIS]=current_position[E_AXIS];
  1951. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1952. plan_set_e_position(current_position[E_AXIS]);
  1953. float oldFeedrate = feedrate;
  1954. feedrate=cs.retract_feedrate*60;
  1955. retracted[active_extruder]=true;
  1956. prepare_move();
  1957. current_position[Z_AXIS]-=cs.retract_zlift;
  1958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1959. prepare_move();
  1960. feedrate = oldFeedrate;
  1961. } else if(!retracting && retracted[active_extruder]) {
  1962. destination[X_AXIS]=current_position[X_AXIS];
  1963. destination[Y_AXIS]=current_position[Y_AXIS];
  1964. destination[Z_AXIS]=current_position[Z_AXIS];
  1965. destination[E_AXIS]=current_position[E_AXIS];
  1966. current_position[Z_AXIS]+=cs.retract_zlift;
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1969. plan_set_e_position(current_position[E_AXIS]);
  1970. float oldFeedrate = feedrate;
  1971. feedrate=cs.retract_recover_feedrate*60;
  1972. retracted[active_extruder]=false;
  1973. prepare_move();
  1974. feedrate = oldFeedrate;
  1975. }
  1976. } //retract
  1977. #endif //FWRETRACT
  1978. void trace() {
  1979. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1980. _tone(BEEPER, 440);
  1981. _delay(25);
  1982. _noTone(BEEPER);
  1983. _delay(20);
  1984. }
  1985. /*
  1986. void ramming() {
  1987. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1988. if (current_temperature[0] < 230) {
  1989. //PLA
  1990. max_feedrate[E_AXIS] = 50;
  1991. //current_position[E_AXIS] -= 8;
  1992. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1993. //current_position[E_AXIS] += 8;
  1994. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1995. current_position[E_AXIS] += 5.4;
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1997. current_position[E_AXIS] += 3.2;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1999. current_position[E_AXIS] += 3;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2001. st_synchronize();
  2002. max_feedrate[E_AXIS] = 80;
  2003. current_position[E_AXIS] -= 82;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2005. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2006. current_position[E_AXIS] -= 20;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2008. current_position[E_AXIS] += 5;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2010. current_position[E_AXIS] += 5;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2012. current_position[E_AXIS] -= 10;
  2013. st_synchronize();
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2015. current_position[E_AXIS] += 10;
  2016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2017. current_position[E_AXIS] -= 10;
  2018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2019. current_position[E_AXIS] += 10;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2021. current_position[E_AXIS] -= 10;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2023. st_synchronize();
  2024. }
  2025. else {
  2026. //ABS
  2027. max_feedrate[E_AXIS] = 50;
  2028. //current_position[E_AXIS] -= 8;
  2029. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2030. //current_position[E_AXIS] += 8;
  2031. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2032. current_position[E_AXIS] += 3.1;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2034. current_position[E_AXIS] += 3.1;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2036. current_position[E_AXIS] += 4;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2038. st_synchronize();
  2039. //current_position[X_AXIS] += 23; //delay
  2040. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2041. //current_position[X_AXIS] -= 23; //delay
  2042. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2043. _delay(4700);
  2044. max_feedrate[E_AXIS] = 80;
  2045. current_position[E_AXIS] -= 92;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2047. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2048. current_position[E_AXIS] -= 5;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2050. current_position[E_AXIS] += 5;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2052. current_position[E_AXIS] -= 5;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2054. st_synchronize();
  2055. current_position[E_AXIS] += 5;
  2056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2057. current_position[E_AXIS] -= 5;
  2058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2061. current_position[E_AXIS] -= 5;
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2063. st_synchronize();
  2064. }
  2065. }
  2066. */
  2067. #ifdef TMC2130
  2068. void force_high_power_mode(bool start_high_power_section) {
  2069. uint8_t silent;
  2070. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2071. if (silent == 1) {
  2072. //we are in silent mode, set to normal mode to enable crash detection
  2073. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2074. st_synchronize();
  2075. cli();
  2076. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2077. update_mode_profile();
  2078. tmc2130_init();
  2079. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2080. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2081. st_reset_timer();
  2082. sei();
  2083. }
  2084. }
  2085. #endif //TMC2130
  2086. #ifdef TMC2130
  2087. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2088. #else
  2089. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2090. #endif //TMC2130
  2091. {
  2092. st_synchronize();
  2093. #if 0
  2094. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2095. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2096. #endif
  2097. // Flag for the display update routine and to disable the print cancelation during homing.
  2098. homing_flag = true;
  2099. // Which axes should be homed?
  2100. bool home_x = home_x_axis;
  2101. bool home_y = home_y_axis;
  2102. bool home_z = home_z_axis;
  2103. // Either all X,Y,Z codes are present, or none of them.
  2104. bool home_all_axes = home_x == home_y && home_x == home_z;
  2105. if (home_all_axes)
  2106. // No X/Y/Z code provided means to home all axes.
  2107. home_x = home_y = home_z = true;
  2108. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2109. if (home_all_axes) {
  2110. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2111. feedrate = homing_feedrate[Z_AXIS];
  2112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2113. st_synchronize();
  2114. }
  2115. #ifdef ENABLE_AUTO_BED_LEVELING
  2116. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2117. #endif //ENABLE_AUTO_BED_LEVELING
  2118. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2119. // the planner will not perform any adjustments in the XY plane.
  2120. // Wait for the motors to stop and update the current position with the absolute values.
  2121. world2machine_revert_to_uncorrected();
  2122. // For mesh bed leveling deactivate the matrix temporarily.
  2123. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2124. // in a single axis only.
  2125. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2126. #ifdef MESH_BED_LEVELING
  2127. uint8_t mbl_was_active = mbl.active;
  2128. mbl.active = 0;
  2129. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2130. #endif
  2131. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2132. // consumed during the first movements following this statement.
  2133. if (home_z)
  2134. babystep_undo();
  2135. saved_feedrate = feedrate;
  2136. int l_feedmultiply = feedmultiply;
  2137. feedmultiply = 100;
  2138. previous_millis_cmd = _millis();
  2139. enable_endstops(true);
  2140. memcpy(destination, current_position, sizeof(destination));
  2141. feedrate = 0.0;
  2142. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2143. if(home_z)
  2144. homeaxis(Z_AXIS);
  2145. #endif
  2146. #ifdef QUICK_HOME
  2147. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2148. if(home_x && home_y) //first diagonal move
  2149. {
  2150. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2151. int x_axis_home_dir = home_dir(X_AXIS);
  2152. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2153. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2154. feedrate = homing_feedrate[X_AXIS];
  2155. if(homing_feedrate[Y_AXIS]<feedrate)
  2156. feedrate = homing_feedrate[Y_AXIS];
  2157. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2158. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2159. } else {
  2160. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2161. }
  2162. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2163. st_synchronize();
  2164. axis_is_at_home(X_AXIS);
  2165. axis_is_at_home(Y_AXIS);
  2166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2167. destination[X_AXIS] = current_position[X_AXIS];
  2168. destination[Y_AXIS] = current_position[Y_AXIS];
  2169. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2170. feedrate = 0.0;
  2171. st_synchronize();
  2172. endstops_hit_on_purpose();
  2173. current_position[X_AXIS] = destination[X_AXIS];
  2174. current_position[Y_AXIS] = destination[Y_AXIS];
  2175. current_position[Z_AXIS] = destination[Z_AXIS];
  2176. }
  2177. #endif /* QUICK_HOME */
  2178. #ifdef TMC2130
  2179. if(home_x)
  2180. {
  2181. if (!calib)
  2182. homeaxis(X_AXIS);
  2183. else
  2184. tmc2130_home_calibrate(X_AXIS);
  2185. }
  2186. if(home_y)
  2187. {
  2188. if (!calib)
  2189. homeaxis(Y_AXIS);
  2190. else
  2191. tmc2130_home_calibrate(Y_AXIS);
  2192. }
  2193. #else //TMC2130
  2194. if(home_x) homeaxis(X_AXIS);
  2195. if(home_y) homeaxis(Y_AXIS);
  2196. #endif //TMC2130
  2197. if(home_x_axis && home_x_value != 0)
  2198. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2199. if(home_y_axis && home_y_value != 0)
  2200. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2201. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2202. #ifndef Z_SAFE_HOMING
  2203. if(home_z) {
  2204. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2205. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2206. feedrate = max_feedrate[Z_AXIS];
  2207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2208. st_synchronize();
  2209. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2210. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2211. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2212. {
  2213. homeaxis(X_AXIS);
  2214. homeaxis(Y_AXIS);
  2215. }
  2216. // 1st mesh bed leveling measurement point, corrected.
  2217. world2machine_initialize();
  2218. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2219. world2machine_reset();
  2220. if (destination[Y_AXIS] < Y_MIN_POS)
  2221. destination[Y_AXIS] = Y_MIN_POS;
  2222. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2223. feedrate = homing_feedrate[Z_AXIS]/10;
  2224. current_position[Z_AXIS] = 0;
  2225. enable_endstops(false);
  2226. #ifdef DEBUG_BUILD
  2227. SERIAL_ECHOLNPGM("plan_set_position()");
  2228. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2229. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2230. #endif
  2231. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2232. #ifdef DEBUG_BUILD
  2233. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2234. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2235. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2236. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2237. #endif
  2238. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2239. st_synchronize();
  2240. current_position[X_AXIS] = destination[X_AXIS];
  2241. current_position[Y_AXIS] = destination[Y_AXIS];
  2242. enable_endstops(true);
  2243. endstops_hit_on_purpose();
  2244. homeaxis(Z_AXIS);
  2245. #else // MESH_BED_LEVELING
  2246. homeaxis(Z_AXIS);
  2247. #endif // MESH_BED_LEVELING
  2248. }
  2249. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2250. if(home_all_axes) {
  2251. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2252. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2253. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2254. feedrate = XY_TRAVEL_SPEED/60;
  2255. current_position[Z_AXIS] = 0;
  2256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2257. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2258. st_synchronize();
  2259. current_position[X_AXIS] = destination[X_AXIS];
  2260. current_position[Y_AXIS] = destination[Y_AXIS];
  2261. homeaxis(Z_AXIS);
  2262. }
  2263. // Let's see if X and Y are homed and probe is inside bed area.
  2264. if(home_z) {
  2265. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2266. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2267. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2268. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2269. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2270. current_position[Z_AXIS] = 0;
  2271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2272. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2273. feedrate = max_feedrate[Z_AXIS];
  2274. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2275. st_synchronize();
  2276. homeaxis(Z_AXIS);
  2277. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2278. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2279. SERIAL_ECHO_START;
  2280. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2281. } else {
  2282. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2283. SERIAL_ECHO_START;
  2284. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2285. }
  2286. }
  2287. #endif // Z_SAFE_HOMING
  2288. #endif // Z_HOME_DIR < 0
  2289. if(home_z_axis && home_z_value != 0)
  2290. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2291. #ifdef ENABLE_AUTO_BED_LEVELING
  2292. if(home_z)
  2293. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2294. #endif
  2295. // Set the planner and stepper routine positions.
  2296. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2297. // contains the machine coordinates.
  2298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2299. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2300. enable_endstops(false);
  2301. #endif
  2302. feedrate = saved_feedrate;
  2303. feedmultiply = l_feedmultiply;
  2304. previous_millis_cmd = _millis();
  2305. endstops_hit_on_purpose();
  2306. #ifndef MESH_BED_LEVELING
  2307. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2308. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2309. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2310. lcd_adjust_z();
  2311. #endif
  2312. // Load the machine correction matrix
  2313. world2machine_initialize();
  2314. // and correct the current_position XY axes to match the transformed coordinate system.
  2315. world2machine_update_current();
  2316. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2317. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2318. {
  2319. if (! home_z && mbl_was_active) {
  2320. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2321. mbl.active = true;
  2322. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2323. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2324. }
  2325. }
  2326. else
  2327. {
  2328. st_synchronize();
  2329. homing_flag = false;
  2330. }
  2331. #endif
  2332. if (farm_mode) { prusa_statistics(20); };
  2333. homing_flag = false;
  2334. #if 0
  2335. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2336. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2337. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2338. #endif
  2339. }
  2340. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2341. {
  2342. #ifdef TMC2130
  2343. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2344. #else
  2345. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2346. #endif //TMC2130
  2347. }
  2348. void adjust_bed_reset()
  2349. {
  2350. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2351. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2352. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2353. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2354. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2355. }
  2356. //! @brief Calibrate XYZ
  2357. //! @param onlyZ if true, calibrate only Z axis
  2358. //! @param verbosity_level
  2359. //! @retval true Succeeded
  2360. //! @retval false Failed
  2361. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2362. {
  2363. bool final_result = false;
  2364. #ifdef TMC2130
  2365. FORCE_HIGH_POWER_START;
  2366. #endif // TMC2130
  2367. // Only Z calibration?
  2368. if (!onlyZ)
  2369. {
  2370. setTargetBed(0);
  2371. setAllTargetHotends(0);
  2372. adjust_bed_reset(); //reset bed level correction
  2373. }
  2374. // Disable the default update procedure of the display. We will do a modal dialog.
  2375. lcd_update_enable(false);
  2376. // Let the planner use the uncorrected coordinates.
  2377. mbl.reset();
  2378. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2379. // the planner will not perform any adjustments in the XY plane.
  2380. // Wait for the motors to stop and update the current position with the absolute values.
  2381. world2machine_revert_to_uncorrected();
  2382. // Reset the baby step value applied without moving the axes.
  2383. babystep_reset();
  2384. // Mark all axes as in a need for homing.
  2385. memset(axis_known_position, 0, sizeof(axis_known_position));
  2386. // Home in the XY plane.
  2387. //set_destination_to_current();
  2388. int l_feedmultiply = setup_for_endstop_move();
  2389. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2390. home_xy();
  2391. enable_endstops(false);
  2392. current_position[X_AXIS] += 5;
  2393. current_position[Y_AXIS] += 5;
  2394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2395. st_synchronize();
  2396. // Let the user move the Z axes up to the end stoppers.
  2397. #ifdef TMC2130
  2398. if (calibrate_z_auto())
  2399. {
  2400. #else //TMC2130
  2401. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2402. {
  2403. #endif //TMC2130
  2404. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2405. if(onlyZ){
  2406. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2407. lcd_set_cursor(0, 3);
  2408. lcd_print(1);
  2409. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2410. }else{
  2411. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2412. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2413. lcd_set_cursor(0, 2);
  2414. lcd_print(1);
  2415. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2416. }
  2417. refresh_cmd_timeout();
  2418. #ifndef STEEL_SHEET
  2419. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2420. {
  2421. lcd_wait_for_cool_down();
  2422. }
  2423. #endif //STEEL_SHEET
  2424. if(!onlyZ)
  2425. {
  2426. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2427. #ifdef STEEL_SHEET
  2428. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2429. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2430. #endif //STEEL_SHEET
  2431. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2432. KEEPALIVE_STATE(IN_HANDLER);
  2433. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2434. lcd_set_cursor(0, 2);
  2435. lcd_print(1);
  2436. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2437. }
  2438. bool endstops_enabled = enable_endstops(false);
  2439. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2441. st_synchronize();
  2442. // Move the print head close to the bed.
  2443. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2444. enable_endstops(true);
  2445. #ifdef TMC2130
  2446. tmc2130_home_enter(Z_AXIS_MASK);
  2447. #endif //TMC2130
  2448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2449. st_synchronize();
  2450. #ifdef TMC2130
  2451. tmc2130_home_exit();
  2452. #endif //TMC2130
  2453. enable_endstops(endstops_enabled);
  2454. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2455. {
  2456. if (onlyZ)
  2457. {
  2458. clean_up_after_endstop_move(l_feedmultiply);
  2459. // Z only calibration.
  2460. // Load the machine correction matrix
  2461. world2machine_initialize();
  2462. // and correct the current_position to match the transformed coordinate system.
  2463. world2machine_update_current();
  2464. //FIXME
  2465. bool result = sample_mesh_and_store_reference();
  2466. if (result)
  2467. {
  2468. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2469. // Shipped, the nozzle height has been set already. The user can start printing now.
  2470. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2471. final_result = true;
  2472. // babystep_apply();
  2473. }
  2474. }
  2475. else
  2476. {
  2477. // Reset the baby step value and the baby step applied flag.
  2478. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2479. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2480. // Complete XYZ calibration.
  2481. uint8_t point_too_far_mask = 0;
  2482. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2483. clean_up_after_endstop_move(l_feedmultiply);
  2484. // Print head up.
  2485. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2487. st_synchronize();
  2488. //#ifndef NEW_XYZCAL
  2489. if (result >= 0)
  2490. {
  2491. #ifdef HEATBED_V2
  2492. sample_z();
  2493. #else //HEATBED_V2
  2494. point_too_far_mask = 0;
  2495. // Second half: The fine adjustment.
  2496. // Let the planner use the uncorrected coordinates.
  2497. mbl.reset();
  2498. world2machine_reset();
  2499. // Home in the XY plane.
  2500. int l_feedmultiply = setup_for_endstop_move();
  2501. home_xy();
  2502. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2503. clean_up_after_endstop_move(l_feedmultiply);
  2504. // Print head up.
  2505. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2507. st_synchronize();
  2508. // if (result >= 0) babystep_apply();
  2509. #endif //HEATBED_V2
  2510. }
  2511. //#endif //NEW_XYZCAL
  2512. lcd_update_enable(true);
  2513. lcd_update(2);
  2514. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2515. if (result >= 0)
  2516. {
  2517. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2518. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2519. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2520. final_result = true;
  2521. }
  2522. }
  2523. #ifdef TMC2130
  2524. tmc2130_home_exit();
  2525. #endif
  2526. }
  2527. else
  2528. {
  2529. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2530. final_result = false;
  2531. }
  2532. }
  2533. else
  2534. {
  2535. // Timeouted.
  2536. }
  2537. lcd_update_enable(true);
  2538. #ifdef TMC2130
  2539. FORCE_HIGH_POWER_END;
  2540. #endif // TMC2130
  2541. return final_result;
  2542. }
  2543. void gcode_M114()
  2544. {
  2545. SERIAL_PROTOCOLPGM("X:");
  2546. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2547. SERIAL_PROTOCOLPGM(" Y:");
  2548. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2549. SERIAL_PROTOCOLPGM(" Z:");
  2550. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2551. SERIAL_PROTOCOLPGM(" E:");
  2552. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2553. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2554. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2555. SERIAL_PROTOCOLPGM(" Y:");
  2556. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2557. SERIAL_PROTOCOLPGM(" Z:");
  2558. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2559. SERIAL_PROTOCOLPGM(" E:");
  2560. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2561. SERIAL_PROTOCOLLN("");
  2562. }
  2563. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2564. {
  2565. st_synchronize();
  2566. float lastpos[4];
  2567. if (farm_mode)
  2568. {
  2569. prusa_statistics(22);
  2570. }
  2571. //First backup current position and settings
  2572. int feedmultiplyBckp = feedmultiply;
  2573. float HotendTempBckp = degTargetHotend(active_extruder);
  2574. int fanSpeedBckp = fanSpeed;
  2575. lastpos[X_AXIS] = current_position[X_AXIS];
  2576. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2577. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2578. lastpos[E_AXIS] = current_position[E_AXIS];
  2579. //Retract E
  2580. current_position[E_AXIS] += e_shift;
  2581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2582. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2583. st_synchronize();
  2584. //Lift Z
  2585. current_position[Z_AXIS] += z_shift;
  2586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2587. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2588. st_synchronize();
  2589. //Move XY to side
  2590. current_position[X_AXIS] = x_position;
  2591. current_position[Y_AXIS] = y_position;
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2593. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2594. st_synchronize();
  2595. //Beep, manage nozzle heater and wait for user to start unload filament
  2596. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2597. lcd_change_fil_state = 0;
  2598. // Unload filament
  2599. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2600. else unload_filament(); //unload filament for single material (used also in M702)
  2601. //finish moves
  2602. st_synchronize();
  2603. if (!mmu_enabled)
  2604. {
  2605. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2606. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2607. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2608. if (lcd_change_fil_state == 0)
  2609. {
  2610. lcd_clear();
  2611. lcd_set_cursor(0, 2);
  2612. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2613. current_position[X_AXIS] -= 100;
  2614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2615. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2616. st_synchronize();
  2617. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2618. }
  2619. }
  2620. if (mmu_enabled)
  2621. {
  2622. if (!automatic) {
  2623. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2624. mmu_M600_wait_and_beep();
  2625. if (saved_printing) {
  2626. lcd_clear();
  2627. lcd_set_cursor(0, 2);
  2628. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2629. mmu_command(MmuCmd::R0);
  2630. manage_response(false, false);
  2631. }
  2632. }
  2633. mmu_M600_load_filament(automatic, HotendTempBckp);
  2634. }
  2635. else
  2636. M600_load_filament();
  2637. if (!automatic) M600_check_state(HotendTempBckp);
  2638. lcd_update_enable(true);
  2639. //Not let's go back to print
  2640. fanSpeed = fanSpeedBckp;
  2641. //Feed a little of filament to stabilize pressure
  2642. if (!automatic)
  2643. {
  2644. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2646. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2647. }
  2648. //Move XY back
  2649. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2650. FILAMENTCHANGE_XYFEED, active_extruder);
  2651. st_synchronize();
  2652. //Move Z back
  2653. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2654. FILAMENTCHANGE_ZFEED, active_extruder);
  2655. st_synchronize();
  2656. //Set E position to original
  2657. plan_set_e_position(lastpos[E_AXIS]);
  2658. memcpy(current_position, lastpos, sizeof(lastpos));
  2659. memcpy(destination, current_position, sizeof(current_position));
  2660. //Recover feed rate
  2661. feedmultiply = feedmultiplyBckp;
  2662. char cmd[9];
  2663. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2664. enquecommand(cmd);
  2665. #ifdef IR_SENSOR
  2666. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2667. fsensor_check_autoload();
  2668. #endif //IR_SENSOR
  2669. lcd_setstatuspgm(_T(WELCOME_MSG));
  2670. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2671. }
  2672. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2673. //!
  2674. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2675. //! during extruding (loading) filament.
  2676. void marlin_rise_z(void)
  2677. {
  2678. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2679. }
  2680. void gcode_M701()
  2681. {
  2682. printf_P(PSTR("gcode_M701 begin\n"));
  2683. if (mmu_enabled)
  2684. {
  2685. extr_adj(tmp_extruder);//loads current extruder
  2686. mmu_extruder = tmp_extruder;
  2687. }
  2688. else
  2689. {
  2690. enable_z();
  2691. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2692. #ifdef FSENSOR_QUALITY
  2693. fsensor_oq_meassure_start(40);
  2694. #endif //FSENSOR_QUALITY
  2695. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2696. current_position[E_AXIS] += 40;
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2698. st_synchronize();
  2699. marlin_rise_z();
  2700. current_position[E_AXIS] += 30;
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2702. load_filament_final_feed(); //slow sequence
  2703. st_synchronize();
  2704. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2705. delay_keep_alive(50);
  2706. _noTone(BEEPER);
  2707. if (!farm_mode && loading_flag) {
  2708. lcd_load_filament_color_check();
  2709. }
  2710. lcd_update_enable(true);
  2711. lcd_update(2);
  2712. lcd_setstatuspgm(_T(WELCOME_MSG));
  2713. disable_z();
  2714. loading_flag = false;
  2715. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2716. #ifdef FSENSOR_QUALITY
  2717. fsensor_oq_meassure_stop();
  2718. if (!fsensor_oq_result())
  2719. {
  2720. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2721. lcd_update_enable(true);
  2722. lcd_update(2);
  2723. if (disable)
  2724. fsensor_disable();
  2725. }
  2726. #endif //FSENSOR_QUALITY
  2727. }
  2728. }
  2729. /**
  2730. * @brief Get serial number from 32U2 processor
  2731. *
  2732. * Typical format of S/N is:CZPX0917X003XC13518
  2733. *
  2734. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2735. *
  2736. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2737. * reply is transmitted to serial port 1 character by character.
  2738. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2739. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2740. * in any case.
  2741. */
  2742. static void gcode_PRUSA_SN()
  2743. {
  2744. if (farm_mode) {
  2745. selectedSerialPort = 0;
  2746. putchar(';');
  2747. putchar('S');
  2748. int numbersRead = 0;
  2749. ShortTimer timeout;
  2750. timeout.start();
  2751. while (numbersRead < 19) {
  2752. while (MSerial.available() > 0) {
  2753. uint8_t serial_char = MSerial.read();
  2754. selectedSerialPort = 1;
  2755. putchar(serial_char);
  2756. numbersRead++;
  2757. selectedSerialPort = 0;
  2758. }
  2759. if (timeout.expired(100u)) break;
  2760. }
  2761. selectedSerialPort = 1;
  2762. putchar('\n');
  2763. #if 0
  2764. for (int b = 0; b < 3; b++) {
  2765. _tone(BEEPER, 110);
  2766. _delay(50);
  2767. _noTone(BEEPER);
  2768. _delay(50);
  2769. }
  2770. #endif
  2771. } else {
  2772. puts_P(_N("Not in farm mode."));
  2773. }
  2774. }
  2775. #ifdef BACKLASH_X
  2776. extern uint8_t st_backlash_x;
  2777. #endif //BACKLASH_X
  2778. #ifdef BACKLASH_Y
  2779. extern uint8_t st_backlash_y;
  2780. #endif //BACKLASH_Y
  2781. //! @brief Parse and process commands
  2782. //!
  2783. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2784. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2785. //!
  2786. //! Implemented Codes
  2787. //! -------------------
  2788. //!
  2789. //!@n PRUSA CODES
  2790. //!@n P F - Returns FW versions
  2791. //!@n P R - Returns revision of printer
  2792. //!
  2793. //!@n G0 -> G1
  2794. //!@n G1 - Coordinated Movement X Y Z E
  2795. //!@n G2 - CW ARC
  2796. //!@n G3 - CCW ARC
  2797. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2798. //!@n G10 - retract filament according to settings of M207
  2799. //!@n G11 - retract recover filament according to settings of M208
  2800. //!@n G28 - Home all Axis
  2801. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2802. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2803. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2804. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2805. //!@n G80 - Automatic mesh bed leveling
  2806. //!@n G81 - Print bed profile
  2807. //!@n G90 - Use Absolute Coordinates
  2808. //!@n G91 - Use Relative Coordinates
  2809. //!@n G92 - Set current position to coordinates given
  2810. //!
  2811. //!@n M Codes
  2812. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2813. //!@n M1 - Same as M0
  2814. //!@n M17 - Enable/Power all stepper motors
  2815. //!@n M18 - Disable all stepper motors; same as M84
  2816. //!@n M20 - List SD card
  2817. //!@n M21 - Init SD card
  2818. //!@n M22 - Release SD card
  2819. //!@n M23 - Select SD file (M23 filename.g)
  2820. //!@n M24 - Start/resume SD print
  2821. //!@n M25 - Pause SD print
  2822. //!@n M26 - Set SD position in bytes (M26 S12345)
  2823. //!@n M27 - Report SD print status
  2824. //!@n M28 - Start SD write (M28 filename.g)
  2825. //!@n M29 - Stop SD write
  2826. //!@n M30 - Delete file from SD (M30 filename.g)
  2827. //!@n M31 - Output time since last M109 or SD card start to serial
  2828. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2829. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2830. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2831. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2832. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2833. //!@n M73 - Show percent done and print time remaining
  2834. //!@n M80 - Turn on Power Supply
  2835. //!@n M81 - Turn off Power Supply
  2836. //!@n M82 - Set E codes absolute (default)
  2837. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2838. //!@n M84 - Disable steppers until next move,
  2839. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2840. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2841. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2842. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2843. //!@n M104 - Set extruder target temp
  2844. //!@n M105 - Read current temp
  2845. //!@n M106 - Fan on
  2846. //!@n M107 - Fan off
  2847. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2848. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2849. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2850. //!@n M112 - Emergency stop
  2851. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2852. //!@n M114 - Output current position to serial port
  2853. //!@n M115 - Capabilities string
  2854. //!@n M117 - display message
  2855. //!@n M119 - Output Endstop status to serial port
  2856. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2857. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2858. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2859. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2860. //!@n M140 - Set bed target temp
  2861. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2862. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2863. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2864. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2865. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2866. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2867. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2868. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2869. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2870. //!@n M206 - set additional homing offset
  2871. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2872. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2873. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2874. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2875. //!@n M220 S<factor in percent>- set speed factor override percentage
  2876. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2877. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2878. //!@n M240 - Trigger a camera to take a photograph
  2879. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2880. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2881. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2882. //!@n M301 - Set PID parameters P I and D
  2883. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2884. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2885. //!@n M304 - Set bed PID parameters P I and D
  2886. //!@n M400 - Finish all moves
  2887. //!@n M401 - Lower z-probe if present
  2888. //!@n M402 - Raise z-probe if present
  2889. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2890. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2891. //!@n M406 - Turn off Filament Sensor extrusion control
  2892. //!@n M407 - Displays measured filament diameter
  2893. //!@n M500 - stores parameters in EEPROM
  2894. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2895. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2896. //!@n M503 - print the current settings (from memory not from EEPROM)
  2897. //!@n M509 - force language selection on next restart
  2898. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2899. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2900. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2901. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2902. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2903. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2904. //!@n M907 - Set digital trimpot motor current using axis codes.
  2905. //!@n M908 - Control digital trimpot directly.
  2906. //!@n M350 - Set microstepping mode.
  2907. //!@n M351 - Toggle MS1 MS2 pins directly.
  2908. //!
  2909. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2910. //!@n M999 - Restart after being stopped by error
  2911. void process_commands()
  2912. {
  2913. #ifdef FANCHECK
  2914. if (fan_check_error){
  2915. fan_check_error = false;
  2916. lcd_pause_print();
  2917. return;
  2918. }
  2919. #endif
  2920. if (!buflen) return; //empty command
  2921. #ifdef FILAMENT_RUNOUT_SUPPORT
  2922. SET_INPUT(FR_SENS);
  2923. #endif
  2924. #ifdef CMDBUFFER_DEBUG
  2925. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2926. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2927. SERIAL_ECHOLNPGM("");
  2928. SERIAL_ECHOPGM("In cmdqueue: ");
  2929. SERIAL_ECHO(buflen);
  2930. SERIAL_ECHOLNPGM("");
  2931. #endif /* CMDBUFFER_DEBUG */
  2932. unsigned long codenum; //throw away variable
  2933. char *starpos = NULL;
  2934. #ifdef ENABLE_AUTO_BED_LEVELING
  2935. float x_tmp, y_tmp, z_tmp, real_z;
  2936. #endif
  2937. // PRUSA GCODES
  2938. KEEPALIVE_STATE(IN_HANDLER);
  2939. #ifdef SNMM
  2940. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2941. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2942. int8_t SilentMode;
  2943. #endif
  2944. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2945. starpos = (strchr(strchr_pointer + 5, '*'));
  2946. if (starpos != NULL)
  2947. *(starpos) = '\0';
  2948. lcd_setstatus(strchr_pointer + 5);
  2949. }
  2950. #ifdef TMC2130
  2951. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2952. {
  2953. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2954. {
  2955. uint8_t mask = 0;
  2956. if (code_seen('X')) mask |= X_AXIS_MASK;
  2957. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2958. crashdet_detected(mask);
  2959. }
  2960. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2961. crashdet_recover();
  2962. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2963. crashdet_cancel();
  2964. }
  2965. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2966. {
  2967. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2968. {
  2969. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2970. axis = (axis == 'E')?3:(axis - 'X');
  2971. if (axis < 4)
  2972. {
  2973. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2974. tmc2130_set_wave(axis, 247, fac);
  2975. }
  2976. }
  2977. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2978. {
  2979. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2980. axis = (axis == 'E')?3:(axis - 'X');
  2981. if (axis < 4)
  2982. {
  2983. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2984. uint16_t res = tmc2130_get_res(axis);
  2985. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2986. }
  2987. }
  2988. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2989. {
  2990. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2991. axis = (axis == 'E')?3:(axis - 'X');
  2992. if (axis < 4)
  2993. {
  2994. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2995. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2996. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2997. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2998. char* str_end = 0;
  2999. if (CMDBUFFER_CURRENT_STRING[14])
  3000. {
  3001. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3002. if (str_end && *str_end)
  3003. {
  3004. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3005. if (str_end && *str_end)
  3006. {
  3007. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3008. if (str_end && *str_end)
  3009. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3010. }
  3011. }
  3012. }
  3013. tmc2130_chopper_config[axis].toff = chop0;
  3014. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3015. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3016. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3017. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3018. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3019. }
  3020. }
  3021. }
  3022. #ifdef BACKLASH_X
  3023. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3024. {
  3025. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3026. st_backlash_x = bl;
  3027. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3028. }
  3029. #endif //BACKLASH_X
  3030. #ifdef BACKLASH_Y
  3031. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3032. {
  3033. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3034. st_backlash_y = bl;
  3035. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3036. }
  3037. #endif //BACKLASH_Y
  3038. #endif //TMC2130
  3039. else if(code_seen("PRUSA")){
  3040. if (code_seen("Ping")) { //! PRUSA Ping
  3041. if (farm_mode) {
  3042. PingTime = _millis();
  3043. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3044. }
  3045. }
  3046. else if (code_seen("PRN")) { //! PRUSA PRN
  3047. printf_P(_N("%d"), status_number);
  3048. }else if (code_seen("FAN")) { //! PRUSA FAN
  3049. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3050. }else if (code_seen("fn")) { //! PRUSA fn
  3051. if (farm_mode) {
  3052. printf_P(_N("%d"), farm_no);
  3053. }
  3054. else {
  3055. puts_P(_N("Not in farm mode."));
  3056. }
  3057. }
  3058. else if (code_seen("thx")) //! PRUSA thx
  3059. {
  3060. no_response = false;
  3061. }
  3062. else if (code_seen("uvlo")) //! PRUSA uvlo
  3063. {
  3064. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3065. enquecommand_P(PSTR("M24"));
  3066. }
  3067. #ifdef FILAMENT_SENSOR
  3068. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3069. {
  3070. fsensor_restore_print_and_continue();
  3071. }
  3072. #endif //FILAMENT_SENSOR
  3073. else if (code_seen("MMURES")) //! PRUSA MMURES
  3074. {
  3075. mmu_reset();
  3076. }
  3077. else if (code_seen("RESET")) { //! PRUSA RESET
  3078. // careful!
  3079. if (farm_mode) {
  3080. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3081. boot_app_magic = BOOT_APP_MAGIC;
  3082. boot_app_flags = BOOT_APP_FLG_RUN;
  3083. wdt_enable(WDTO_15MS);
  3084. cli();
  3085. while(1);
  3086. #else //WATCHDOG
  3087. asm volatile("jmp 0x3E000");
  3088. #endif //WATCHDOG
  3089. }
  3090. else {
  3091. MYSERIAL.println("Not in farm mode.");
  3092. }
  3093. }else if (code_seen("fv")) { //! PRUSA fv
  3094. // get file version
  3095. #ifdef SDSUPPORT
  3096. card.openFile(strchr_pointer + 3,true);
  3097. while (true) {
  3098. uint16_t readByte = card.get();
  3099. MYSERIAL.write(readByte);
  3100. if (readByte=='\n') {
  3101. break;
  3102. }
  3103. }
  3104. card.closefile();
  3105. #endif // SDSUPPORT
  3106. } else if (code_seen("M28")) { //! PRUSA M28
  3107. trace();
  3108. prusa_sd_card_upload = true;
  3109. card.openFile(strchr_pointer+4,false);
  3110. } else if (code_seen("SN")) { //! PRUSA SN
  3111. gcode_PRUSA_SN();
  3112. } else if(code_seen("Fir")){ //! PRUSA Fir
  3113. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3114. } else if(code_seen("Rev")){ //! PRUSA Rev
  3115. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3116. } else if(code_seen("Lang")) { //! PRUSA Lang
  3117. lang_reset();
  3118. } else if(code_seen("Lz")) { //! PRUSA Lz
  3119. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3120. } else if(code_seen("Beat")) { //! PRUSA Beat
  3121. // Kick farm link timer
  3122. kicktime = _millis();
  3123. } else if(code_seen("FR")) { //! PRUSA FR
  3124. // Factory full reset
  3125. factory_reset(0);
  3126. }
  3127. //else if (code_seen('Cal')) {
  3128. // lcd_calibration();
  3129. // }
  3130. }
  3131. else if (code_seen('^')) {
  3132. // nothing, this is a version line
  3133. } else if(code_seen('G'))
  3134. {
  3135. gcode_in_progress = (int)code_value();
  3136. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3137. switch (gcode_in_progress)
  3138. {
  3139. case 0: // G0 -> G1
  3140. case 1: // G1
  3141. if(Stopped == false) {
  3142. #ifdef FILAMENT_RUNOUT_SUPPORT
  3143. if(READ(FR_SENS)){
  3144. int feedmultiplyBckp=feedmultiply;
  3145. float target[4];
  3146. float lastpos[4];
  3147. target[X_AXIS]=current_position[X_AXIS];
  3148. target[Y_AXIS]=current_position[Y_AXIS];
  3149. target[Z_AXIS]=current_position[Z_AXIS];
  3150. target[E_AXIS]=current_position[E_AXIS];
  3151. lastpos[X_AXIS]=current_position[X_AXIS];
  3152. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3153. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3154. lastpos[E_AXIS]=current_position[E_AXIS];
  3155. //retract by E
  3156. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3158. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3160. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3161. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3163. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3165. //finish moves
  3166. st_synchronize();
  3167. //disable extruder steppers so filament can be removed
  3168. disable_e0();
  3169. disable_e1();
  3170. disable_e2();
  3171. _delay(100);
  3172. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3173. uint8_t cnt=0;
  3174. int counterBeep = 0;
  3175. lcd_wait_interact();
  3176. while(!lcd_clicked()){
  3177. cnt++;
  3178. manage_heater();
  3179. manage_inactivity(true);
  3180. //lcd_update(0);
  3181. if(cnt==0)
  3182. {
  3183. #if BEEPER > 0
  3184. if (counterBeep== 500){
  3185. counterBeep = 0;
  3186. }
  3187. SET_OUTPUT(BEEPER);
  3188. if (counterBeep== 0){
  3189. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3190. WRITE(BEEPER,HIGH);
  3191. }
  3192. if (counterBeep== 20){
  3193. WRITE(BEEPER,LOW);
  3194. }
  3195. counterBeep++;
  3196. #else
  3197. #endif
  3198. }
  3199. }
  3200. WRITE(BEEPER,LOW);
  3201. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3202. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3203. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3204. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3205. lcd_change_fil_state = 0;
  3206. lcd_loading_filament();
  3207. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3208. lcd_change_fil_state = 0;
  3209. lcd_alright();
  3210. switch(lcd_change_fil_state){
  3211. case 2:
  3212. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3213. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3214. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3216. lcd_loading_filament();
  3217. break;
  3218. case 3:
  3219. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3220. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3221. lcd_loading_color();
  3222. break;
  3223. default:
  3224. lcd_change_success();
  3225. break;
  3226. }
  3227. }
  3228. target[E_AXIS]+= 5;
  3229. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3230. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3231. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3232. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3233. //plan_set_e_position(current_position[E_AXIS]);
  3234. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3235. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3236. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3237. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3238. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3239. plan_set_e_position(lastpos[E_AXIS]);
  3240. feedmultiply=feedmultiplyBckp;
  3241. char cmd[9];
  3242. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3243. enquecommand(cmd);
  3244. }
  3245. #endif
  3246. get_coordinates(); // For X Y Z E F
  3247. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3248. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3249. }
  3250. #ifdef FWRETRACT
  3251. if(cs.autoretract_enabled)
  3252. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3253. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3254. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3255. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3256. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3257. retract(!retracted[active_extruder]);
  3258. return;
  3259. }
  3260. }
  3261. #endif //FWRETRACT
  3262. prepare_move();
  3263. //ClearToSend();
  3264. }
  3265. break;
  3266. case 2: // G2 - CW ARC
  3267. if(Stopped == false) {
  3268. get_arc_coordinates();
  3269. prepare_arc_move(true);
  3270. }
  3271. break;
  3272. case 3: // G3 - CCW ARC
  3273. if(Stopped == false) {
  3274. get_arc_coordinates();
  3275. prepare_arc_move(false);
  3276. }
  3277. break;
  3278. case 4: // G4 dwell
  3279. codenum = 0;
  3280. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3281. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3282. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3283. st_synchronize();
  3284. codenum += _millis(); // keep track of when we started waiting
  3285. previous_millis_cmd = _millis();
  3286. while(_millis() < codenum) {
  3287. manage_heater();
  3288. manage_inactivity();
  3289. lcd_update(0);
  3290. }
  3291. break;
  3292. #ifdef FWRETRACT
  3293. case 10: // G10 retract
  3294. #if EXTRUDERS > 1
  3295. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3296. retract(true,retracted_swap[active_extruder]);
  3297. #else
  3298. retract(true);
  3299. #endif
  3300. break;
  3301. case 11: // G11 retract_recover
  3302. #if EXTRUDERS > 1
  3303. retract(false,retracted_swap[active_extruder]);
  3304. #else
  3305. retract(false);
  3306. #endif
  3307. break;
  3308. #endif //FWRETRACT
  3309. case 28: //G28 Home all Axis one at a time
  3310. {
  3311. long home_x_value = 0;
  3312. long home_y_value = 0;
  3313. long home_z_value = 0;
  3314. // Which axes should be homed?
  3315. bool home_x = code_seen(axis_codes[X_AXIS]);
  3316. home_x_value = code_value_long();
  3317. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3318. home_y_value = code_value_long();
  3319. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3320. home_z_value = code_value_long();
  3321. bool without_mbl = code_seen('W');
  3322. // calibrate?
  3323. #ifdef TMC2130
  3324. bool calib = code_seen('C');
  3325. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3326. #else
  3327. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3328. #endif //TMC2130
  3329. if ((home_x || home_y || without_mbl || home_z) == false) {
  3330. // Push the commands to the front of the message queue in the reverse order!
  3331. // There shall be always enough space reserved for these commands.
  3332. goto case_G80;
  3333. }
  3334. break;
  3335. }
  3336. #ifdef ENABLE_AUTO_BED_LEVELING
  3337. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3338. {
  3339. #if Z_MIN_PIN == -1
  3340. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3341. #endif
  3342. // Prevent user from running a G29 without first homing in X and Y
  3343. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3344. {
  3345. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3346. SERIAL_ECHO_START;
  3347. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3348. break; // abort G29, since we don't know where we are
  3349. }
  3350. st_synchronize();
  3351. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3352. //vector_3 corrected_position = plan_get_position_mm();
  3353. //corrected_position.debug("position before G29");
  3354. plan_bed_level_matrix.set_to_identity();
  3355. vector_3 uncorrected_position = plan_get_position();
  3356. //uncorrected_position.debug("position durring G29");
  3357. current_position[X_AXIS] = uncorrected_position.x;
  3358. current_position[Y_AXIS] = uncorrected_position.y;
  3359. current_position[Z_AXIS] = uncorrected_position.z;
  3360. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3361. int l_feedmultiply = setup_for_endstop_move();
  3362. feedrate = homing_feedrate[Z_AXIS];
  3363. #ifdef AUTO_BED_LEVELING_GRID
  3364. // probe at the points of a lattice grid
  3365. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3366. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3367. // solve the plane equation ax + by + d = z
  3368. // A is the matrix with rows [x y 1] for all the probed points
  3369. // B is the vector of the Z positions
  3370. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3371. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3372. // "A" matrix of the linear system of equations
  3373. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3374. // "B" vector of Z points
  3375. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3376. int probePointCounter = 0;
  3377. bool zig = true;
  3378. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3379. {
  3380. int xProbe, xInc;
  3381. if (zig)
  3382. {
  3383. xProbe = LEFT_PROBE_BED_POSITION;
  3384. //xEnd = RIGHT_PROBE_BED_POSITION;
  3385. xInc = xGridSpacing;
  3386. zig = false;
  3387. } else // zag
  3388. {
  3389. xProbe = RIGHT_PROBE_BED_POSITION;
  3390. //xEnd = LEFT_PROBE_BED_POSITION;
  3391. xInc = -xGridSpacing;
  3392. zig = true;
  3393. }
  3394. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3395. {
  3396. float z_before;
  3397. if (probePointCounter == 0)
  3398. {
  3399. // raise before probing
  3400. z_before = Z_RAISE_BEFORE_PROBING;
  3401. } else
  3402. {
  3403. // raise extruder
  3404. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3405. }
  3406. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3407. eqnBVector[probePointCounter] = measured_z;
  3408. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3409. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3410. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3411. probePointCounter++;
  3412. xProbe += xInc;
  3413. }
  3414. }
  3415. clean_up_after_endstop_move(l_feedmultiply);
  3416. // solve lsq problem
  3417. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3418. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3419. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3420. SERIAL_PROTOCOLPGM(" b: ");
  3421. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3422. SERIAL_PROTOCOLPGM(" d: ");
  3423. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3424. set_bed_level_equation_lsq(plane_equation_coefficients);
  3425. free(plane_equation_coefficients);
  3426. #else // AUTO_BED_LEVELING_GRID not defined
  3427. // Probe at 3 arbitrary points
  3428. // probe 1
  3429. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3430. // probe 2
  3431. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3432. // probe 3
  3433. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3434. clean_up_after_endstop_move(l_feedmultiply);
  3435. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3436. #endif // AUTO_BED_LEVELING_GRID
  3437. st_synchronize();
  3438. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3439. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3440. // When the bed is uneven, this height must be corrected.
  3441. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3442. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3443. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3444. z_tmp = current_position[Z_AXIS];
  3445. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3446. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3448. }
  3449. break;
  3450. #ifndef Z_PROBE_SLED
  3451. case 30: // G30 Single Z Probe
  3452. {
  3453. st_synchronize();
  3454. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3455. int l_feedmultiply = setup_for_endstop_move();
  3456. feedrate = homing_feedrate[Z_AXIS];
  3457. run_z_probe();
  3458. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3459. SERIAL_PROTOCOLPGM(" X: ");
  3460. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3461. SERIAL_PROTOCOLPGM(" Y: ");
  3462. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3463. SERIAL_PROTOCOLPGM(" Z: ");
  3464. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3465. SERIAL_PROTOCOLPGM("\n");
  3466. clean_up_after_endstop_move(l_feedmultiply);
  3467. }
  3468. break;
  3469. #else
  3470. case 31: // dock the sled
  3471. dock_sled(true);
  3472. break;
  3473. case 32: // undock the sled
  3474. dock_sled(false);
  3475. break;
  3476. #endif // Z_PROBE_SLED
  3477. #endif // ENABLE_AUTO_BED_LEVELING
  3478. #ifdef MESH_BED_LEVELING
  3479. case 30: // G30 Single Z Probe
  3480. {
  3481. st_synchronize();
  3482. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3483. int l_feedmultiply = setup_for_endstop_move();
  3484. feedrate = homing_feedrate[Z_AXIS];
  3485. find_bed_induction_sensor_point_z(-10.f, 3);
  3486. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3487. clean_up_after_endstop_move(l_feedmultiply);
  3488. }
  3489. break;
  3490. case 75:
  3491. {
  3492. for (int i = 40; i <= 110; i++)
  3493. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3494. }
  3495. break;
  3496. case 76: //! G76 - PINDA probe temperature calibration
  3497. {
  3498. #ifdef PINDA_THERMISTOR
  3499. if (true)
  3500. {
  3501. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3502. //we need to know accurate position of first calibration point
  3503. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3504. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3505. break;
  3506. }
  3507. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3508. {
  3509. // We don't know where we are! HOME!
  3510. // Push the commands to the front of the message queue in the reverse order!
  3511. // There shall be always enough space reserved for these commands.
  3512. repeatcommand_front(); // repeat G76 with all its parameters
  3513. enquecommand_front_P((PSTR("G28 W0")));
  3514. break;
  3515. }
  3516. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3517. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3518. if (result)
  3519. {
  3520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. current_position[Z_AXIS] = 50;
  3523. current_position[Y_AXIS] = 180;
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. st_synchronize();
  3526. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3527. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3528. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3530. st_synchronize();
  3531. gcode_G28(false, false, true);
  3532. }
  3533. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3534. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3535. current_position[Z_AXIS] = 100;
  3536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3537. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3538. lcd_temp_cal_show_result(false);
  3539. break;
  3540. }
  3541. }
  3542. lcd_update_enable(true);
  3543. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3544. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3545. float zero_z;
  3546. int z_shift = 0; //unit: steps
  3547. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3548. if (start_temp < 35) start_temp = 35;
  3549. if (start_temp < current_temperature_pinda) start_temp += 5;
  3550. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3551. // setTargetHotend(200, 0);
  3552. setTargetBed(70 + (start_temp - 30));
  3553. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3554. custom_message_state = 1;
  3555. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3556. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3558. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3559. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3561. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3563. st_synchronize();
  3564. while (current_temperature_pinda < start_temp)
  3565. {
  3566. delay_keep_alive(1000);
  3567. serialecho_temperatures();
  3568. }
  3569. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3570. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3572. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3573. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3575. st_synchronize();
  3576. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3577. if (find_z_result == false) {
  3578. lcd_temp_cal_show_result(find_z_result);
  3579. break;
  3580. }
  3581. zero_z = current_position[Z_AXIS];
  3582. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3583. int i = -1; for (; i < 5; i++)
  3584. {
  3585. float temp = (40 + i * 5);
  3586. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3587. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3588. if (start_temp <= temp) break;
  3589. }
  3590. for (i++; i < 5; i++)
  3591. {
  3592. float temp = (40 + i * 5);
  3593. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3594. custom_message_state = i + 2;
  3595. setTargetBed(50 + 10 * (temp - 30) / 5);
  3596. // setTargetHotend(255, 0);
  3597. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3600. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3602. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3604. st_synchronize();
  3605. while (current_temperature_pinda < temp)
  3606. {
  3607. delay_keep_alive(1000);
  3608. serialecho_temperatures();
  3609. }
  3610. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3612. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3613. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3615. st_synchronize();
  3616. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3617. if (find_z_result == false) {
  3618. lcd_temp_cal_show_result(find_z_result);
  3619. break;
  3620. }
  3621. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3622. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3623. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3624. }
  3625. lcd_temp_cal_show_result(true);
  3626. break;
  3627. }
  3628. #endif //PINDA_THERMISTOR
  3629. setTargetBed(PINDA_MIN_T);
  3630. float zero_z;
  3631. int z_shift = 0; //unit: steps
  3632. int t_c; // temperature
  3633. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3634. // We don't know where we are! HOME!
  3635. // Push the commands to the front of the message queue in the reverse order!
  3636. // There shall be always enough space reserved for these commands.
  3637. repeatcommand_front(); // repeat G76 with all its parameters
  3638. enquecommand_front_P((PSTR("G28 W0")));
  3639. break;
  3640. }
  3641. puts_P(_N("PINDA probe calibration start"));
  3642. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3643. custom_message_state = 1;
  3644. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3645. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3646. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3647. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3649. st_synchronize();
  3650. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3651. delay_keep_alive(1000);
  3652. serialecho_temperatures();
  3653. }
  3654. //enquecommand_P(PSTR("M190 S50"));
  3655. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3656. delay_keep_alive(1000);
  3657. serialecho_temperatures();
  3658. }
  3659. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3660. current_position[Z_AXIS] = 5;
  3661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3662. current_position[X_AXIS] = BED_X0;
  3663. current_position[Y_AXIS] = BED_Y0;
  3664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3665. st_synchronize();
  3666. find_bed_induction_sensor_point_z(-1.f);
  3667. zero_z = current_position[Z_AXIS];
  3668. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3669. for (int i = 0; i<5; i++) {
  3670. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3671. custom_message_state = i + 2;
  3672. t_c = 60 + i * 10;
  3673. setTargetBed(t_c);
  3674. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3675. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3676. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3678. st_synchronize();
  3679. while (degBed() < t_c) {
  3680. delay_keep_alive(1000);
  3681. serialecho_temperatures();
  3682. }
  3683. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3684. delay_keep_alive(1000);
  3685. serialecho_temperatures();
  3686. }
  3687. current_position[Z_AXIS] = 5;
  3688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3689. current_position[X_AXIS] = BED_X0;
  3690. current_position[Y_AXIS] = BED_Y0;
  3691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3692. st_synchronize();
  3693. find_bed_induction_sensor_point_z(-1.f);
  3694. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3695. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3696. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3697. }
  3698. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3699. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3700. puts_P(_N("Temperature calibration done."));
  3701. disable_x();
  3702. disable_y();
  3703. disable_z();
  3704. disable_e0();
  3705. disable_e1();
  3706. disable_e2();
  3707. setTargetBed(0); //set bed target temperature back to 0
  3708. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3709. temp_cal_active = true;
  3710. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3711. lcd_update_enable(true);
  3712. lcd_update(2);
  3713. }
  3714. break;
  3715. /**
  3716. * G80: Mesh-based Z probe, probes a grid and produces a
  3717. * mesh to compensate for variable bed height
  3718. *
  3719. * The S0 report the points as below
  3720. * @code{.unparsed}
  3721. * +----> X-axis
  3722. * |
  3723. * |
  3724. * v Y-axis
  3725. * @endcode
  3726. */
  3727. case 80:
  3728. #ifdef MK1BP
  3729. break;
  3730. #endif //MK1BP
  3731. case_G80:
  3732. {
  3733. mesh_bed_leveling_flag = true;
  3734. static bool run = false;
  3735. #ifdef SUPPORT_VERBOSITY
  3736. int8_t verbosity_level = 0;
  3737. if (code_seen('V')) {
  3738. // Just 'V' without a number counts as V1.
  3739. char c = strchr_pointer[1];
  3740. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3741. }
  3742. #endif //SUPPORT_VERBOSITY
  3743. // Firstly check if we know where we are
  3744. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3745. // We don't know where we are! HOME!
  3746. // Push the commands to the front of the message queue in the reverse order!
  3747. // There shall be always enough space reserved for these commands.
  3748. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3749. repeatcommand_front(); // repeat G80 with all its parameters
  3750. enquecommand_front_P((PSTR("G28 W0")));
  3751. }
  3752. else {
  3753. mesh_bed_leveling_flag = false;
  3754. }
  3755. break;
  3756. }
  3757. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3758. if (code_seen('N')) {
  3759. nMeasPoints = code_value_uint8();
  3760. if (nMeasPoints != 7) {
  3761. nMeasPoints = 3;
  3762. }
  3763. }
  3764. else {
  3765. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3766. }
  3767. uint8_t nProbeRetry = 3;
  3768. if (code_seen('R')) {
  3769. nProbeRetry = code_value_uint8();
  3770. if (nProbeRetry > 10) {
  3771. nProbeRetry = 10;
  3772. }
  3773. }
  3774. else {
  3775. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3776. }
  3777. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3778. bool temp_comp_start = true;
  3779. #ifdef PINDA_THERMISTOR
  3780. temp_comp_start = false;
  3781. #endif //PINDA_THERMISTOR
  3782. if (temp_comp_start)
  3783. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3784. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3785. temp_compensation_start();
  3786. run = true;
  3787. repeatcommand_front(); // repeat G80 with all its parameters
  3788. enquecommand_front_P((PSTR("G28 W0")));
  3789. }
  3790. else {
  3791. mesh_bed_leveling_flag = false;
  3792. }
  3793. break;
  3794. }
  3795. run = false;
  3796. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3797. mesh_bed_leveling_flag = false;
  3798. break;
  3799. }
  3800. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3801. unsigned int custom_message_type_old = custom_message_type;
  3802. unsigned int custom_message_state_old = custom_message_state;
  3803. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3804. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3805. lcd_update(1);
  3806. mbl.reset(); //reset mesh bed leveling
  3807. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3808. // consumed during the first movements following this statement.
  3809. babystep_undo();
  3810. // Cycle through all points and probe them
  3811. // First move up. During this first movement, the babystepping will be reverted.
  3812. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3814. // The move to the first calibration point.
  3815. current_position[X_AXIS] = BED_X0;
  3816. current_position[Y_AXIS] = BED_Y0;
  3817. #ifdef SUPPORT_VERBOSITY
  3818. if (verbosity_level >= 1)
  3819. {
  3820. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3821. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3822. }
  3823. #else //SUPPORT_VERBOSITY
  3824. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3825. #endif //SUPPORT_VERBOSITY
  3826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3827. // Wait until the move is finished.
  3828. st_synchronize();
  3829. uint8_t mesh_point = 0; //index number of calibration point
  3830. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3831. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3832. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3833. #ifdef SUPPORT_VERBOSITY
  3834. if (verbosity_level >= 1) {
  3835. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3836. }
  3837. #endif // SUPPORT_VERBOSITY
  3838. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3839. const char *kill_message = NULL;
  3840. while (mesh_point != nMeasPoints * nMeasPoints) {
  3841. // Get coords of a measuring point.
  3842. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3843. uint8_t iy = mesh_point / nMeasPoints;
  3844. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3845. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3846. custom_message_state--;
  3847. mesh_point++;
  3848. continue; //skip
  3849. }*/
  3850. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3851. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3852. {
  3853. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3854. }
  3855. float z0 = 0.f;
  3856. if (has_z && (mesh_point > 0)) {
  3857. uint16_t z_offset_u = 0;
  3858. if (nMeasPoints == 7) {
  3859. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3860. }
  3861. else {
  3862. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3863. }
  3864. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3865. #ifdef SUPPORT_VERBOSITY
  3866. if (verbosity_level >= 1) {
  3867. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3868. }
  3869. #endif // SUPPORT_VERBOSITY
  3870. }
  3871. // Move Z up to MESH_HOME_Z_SEARCH.
  3872. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3873. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3874. float init_z_bckp = current_position[Z_AXIS];
  3875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3876. st_synchronize();
  3877. // Move to XY position of the sensor point.
  3878. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3879. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3880. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3881. #ifdef SUPPORT_VERBOSITY
  3882. if (verbosity_level >= 1) {
  3883. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3884. SERIAL_PROTOCOL(mesh_point);
  3885. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3886. }
  3887. #else //SUPPORT_VERBOSITY
  3888. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3889. #endif // SUPPORT_VERBOSITY
  3890. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3892. st_synchronize();
  3893. // Go down until endstop is hit
  3894. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3895. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3896. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3897. break;
  3898. }
  3899. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3900. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3901. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3903. st_synchronize();
  3904. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3905. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3906. break;
  3907. }
  3908. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3909. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3910. break;
  3911. }
  3912. }
  3913. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3914. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3915. break;
  3916. }
  3917. #ifdef SUPPORT_VERBOSITY
  3918. if (verbosity_level >= 10) {
  3919. SERIAL_ECHOPGM("X: ");
  3920. MYSERIAL.print(current_position[X_AXIS], 5);
  3921. SERIAL_ECHOLNPGM("");
  3922. SERIAL_ECHOPGM("Y: ");
  3923. MYSERIAL.print(current_position[Y_AXIS], 5);
  3924. SERIAL_PROTOCOLPGM("\n");
  3925. }
  3926. #endif // SUPPORT_VERBOSITY
  3927. float offset_z = 0;
  3928. #ifdef PINDA_THERMISTOR
  3929. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3930. #endif //PINDA_THERMISTOR
  3931. // #ifdef SUPPORT_VERBOSITY
  3932. /* if (verbosity_level >= 1)
  3933. {
  3934. SERIAL_ECHOPGM("mesh bed leveling: ");
  3935. MYSERIAL.print(current_position[Z_AXIS], 5);
  3936. SERIAL_ECHOPGM(" offset: ");
  3937. MYSERIAL.print(offset_z, 5);
  3938. SERIAL_ECHOLNPGM("");
  3939. }*/
  3940. // #endif // SUPPORT_VERBOSITY
  3941. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3942. custom_message_state--;
  3943. mesh_point++;
  3944. lcd_update(1);
  3945. }
  3946. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3947. #ifdef SUPPORT_VERBOSITY
  3948. if (verbosity_level >= 20) {
  3949. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3950. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3951. MYSERIAL.print(current_position[Z_AXIS], 5);
  3952. }
  3953. #endif // SUPPORT_VERBOSITY
  3954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3955. st_synchronize();
  3956. if (mesh_point != nMeasPoints * nMeasPoints) {
  3957. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3958. bool bState;
  3959. do { // repeat until Z-leveling o.k.
  3960. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3961. #ifdef TMC2130
  3962. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3963. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3964. #else // TMC2130
  3965. lcd_wait_for_click_delay(0); // ~ no timeout
  3966. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3967. #endif // TMC2130
  3968. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3969. bState=enable_z_endstop(false);
  3970. current_position[Z_AXIS] -= 1;
  3971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3972. st_synchronize();
  3973. enable_z_endstop(true);
  3974. #ifdef TMC2130
  3975. tmc2130_home_enter(Z_AXIS_MASK);
  3976. #endif // TMC2130
  3977. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3979. st_synchronize();
  3980. #ifdef TMC2130
  3981. tmc2130_home_exit();
  3982. #endif // TMC2130
  3983. enable_z_endstop(bState);
  3984. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3985. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3986. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3987. lcd_update_enable(true); // display / status-line recovery
  3988. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3989. repeatcommand_front(); // re-run (i.e. of "G80")
  3990. break;
  3991. }
  3992. clean_up_after_endstop_move(l_feedmultiply);
  3993. // SERIAL_ECHOLNPGM("clean up finished ");
  3994. bool apply_temp_comp = true;
  3995. #ifdef PINDA_THERMISTOR
  3996. apply_temp_comp = false;
  3997. #endif
  3998. if (apply_temp_comp)
  3999. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4000. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4001. // SERIAL_ECHOLNPGM("babystep applied");
  4002. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4003. #ifdef SUPPORT_VERBOSITY
  4004. if (verbosity_level >= 1) {
  4005. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4006. }
  4007. #endif // SUPPORT_VERBOSITY
  4008. for (uint8_t i = 0; i < 4; ++i) {
  4009. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4010. long correction = 0;
  4011. if (code_seen(codes[i]))
  4012. correction = code_value_long();
  4013. else if (eeprom_bed_correction_valid) {
  4014. unsigned char *addr = (i < 2) ?
  4015. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4016. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4017. correction = eeprom_read_int8(addr);
  4018. }
  4019. if (correction == 0)
  4020. continue;
  4021. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4022. SERIAL_ERROR_START;
  4023. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4024. SERIAL_ECHO(correction);
  4025. SERIAL_ECHOLNPGM(" microns");
  4026. }
  4027. else {
  4028. float offset = float(correction) * 0.001f;
  4029. switch (i) {
  4030. case 0:
  4031. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4032. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4033. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4034. }
  4035. }
  4036. break;
  4037. case 1:
  4038. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4039. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4040. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4041. }
  4042. }
  4043. break;
  4044. case 2:
  4045. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4046. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4047. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4048. }
  4049. }
  4050. break;
  4051. case 3:
  4052. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4053. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4054. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4055. }
  4056. }
  4057. break;
  4058. }
  4059. }
  4060. }
  4061. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4062. if (nMeasPoints == 3) {
  4063. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4064. }
  4065. /*
  4066. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4067. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4068. SERIAL_PROTOCOLPGM(",");
  4069. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4070. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4071. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4072. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4073. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4074. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4075. SERIAL_PROTOCOLPGM(" ");
  4076. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4077. }
  4078. SERIAL_PROTOCOLPGM("\n");
  4079. }
  4080. */
  4081. if (nMeasPoints == 7 && magnet_elimination) {
  4082. mbl_interpolation(nMeasPoints);
  4083. }
  4084. /*
  4085. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4086. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4087. SERIAL_PROTOCOLPGM(",");
  4088. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4089. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4090. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4091. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4092. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4093. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4094. SERIAL_PROTOCOLPGM(" ");
  4095. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4096. }
  4097. SERIAL_PROTOCOLPGM("\n");
  4098. }
  4099. */
  4100. // SERIAL_ECHOLNPGM("Upsample finished");
  4101. mbl.active = 1; //activate mesh bed leveling
  4102. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4103. go_home_with_z_lift();
  4104. // SERIAL_ECHOLNPGM("Go home finished");
  4105. //unretract (after PINDA preheat retraction)
  4106. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4107. current_position[E_AXIS] += default_retraction;
  4108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4109. }
  4110. KEEPALIVE_STATE(NOT_BUSY);
  4111. // Restore custom message state
  4112. lcd_setstatuspgm(_T(WELCOME_MSG));
  4113. custom_message_type = custom_message_type_old;
  4114. custom_message_state = custom_message_state_old;
  4115. mesh_bed_leveling_flag = false;
  4116. mesh_bed_run_from_menu = false;
  4117. lcd_update(2);
  4118. }
  4119. break;
  4120. /**
  4121. * G81: Print mesh bed leveling status and bed profile if activated
  4122. */
  4123. case 81:
  4124. if (mbl.active) {
  4125. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4126. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4127. SERIAL_PROTOCOLPGM(",");
  4128. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4129. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4130. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4131. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4132. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4133. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4134. SERIAL_PROTOCOLPGM(" ");
  4135. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4136. }
  4137. SERIAL_PROTOCOLPGM("\n");
  4138. }
  4139. }
  4140. else
  4141. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4142. break;
  4143. #if 0
  4144. /**
  4145. * G82: Single Z probe at current location
  4146. *
  4147. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4148. *
  4149. */
  4150. case 82:
  4151. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4152. int l_feedmultiply = setup_for_endstop_move();
  4153. find_bed_induction_sensor_point_z();
  4154. clean_up_after_endstop_move(l_feedmultiply);
  4155. SERIAL_PROTOCOLPGM("Bed found at: ");
  4156. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4157. SERIAL_PROTOCOLPGM("\n");
  4158. break;
  4159. /**
  4160. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4161. */
  4162. case 83:
  4163. {
  4164. int babystepz = code_seen('S') ? code_value() : 0;
  4165. int BabyPosition = code_seen('P') ? code_value() : 0;
  4166. if (babystepz != 0) {
  4167. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4168. // Is the axis indexed starting with zero or one?
  4169. if (BabyPosition > 4) {
  4170. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4171. }else{
  4172. // Save it to the eeprom
  4173. babystepLoadZ = babystepz;
  4174. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4175. // adjust the Z
  4176. babystepsTodoZadd(babystepLoadZ);
  4177. }
  4178. }
  4179. }
  4180. break;
  4181. /**
  4182. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4183. */
  4184. case 84:
  4185. babystepsTodoZsubtract(babystepLoadZ);
  4186. // babystepLoadZ = 0;
  4187. break;
  4188. /**
  4189. * G85: Prusa3D specific: Pick best babystep
  4190. */
  4191. case 85:
  4192. lcd_pick_babystep();
  4193. break;
  4194. #endif
  4195. /**
  4196. * G86: Prusa3D specific: Disable babystep correction after home.
  4197. * This G-code will be performed at the start of a calibration script.
  4198. */
  4199. case 86:
  4200. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4201. break;
  4202. /**
  4203. * G87: Prusa3D specific: Enable babystep correction after home
  4204. * This G-code will be performed at the end of a calibration script.
  4205. */
  4206. case 87:
  4207. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4208. break;
  4209. /**
  4210. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4211. */
  4212. case 88:
  4213. break;
  4214. #endif // ENABLE_MESH_BED_LEVELING
  4215. case 90: // G90
  4216. relative_mode = false;
  4217. break;
  4218. case 91: // G91
  4219. relative_mode = true;
  4220. break;
  4221. case 92: // G92
  4222. if(!code_seen(axis_codes[E_AXIS]))
  4223. st_synchronize();
  4224. for(int8_t i=0; i < NUM_AXIS; i++) {
  4225. if(code_seen(axis_codes[i])) {
  4226. if(i == E_AXIS) {
  4227. current_position[i] = code_value();
  4228. plan_set_e_position(current_position[E_AXIS]);
  4229. }
  4230. else {
  4231. current_position[i] = code_value()+cs.add_homing[i];
  4232. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4233. }
  4234. }
  4235. }
  4236. break;
  4237. case 98: //! G98 (activate farm mode)
  4238. farm_mode = 1;
  4239. PingTime = _millis();
  4240. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4241. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4242. SilentModeMenu = SILENT_MODE_OFF;
  4243. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4244. break;
  4245. case 99: //! G99 (deactivate farm mode)
  4246. farm_mode = 0;
  4247. lcd_printer_connected();
  4248. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4249. lcd_update(2);
  4250. break;
  4251. default:
  4252. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4253. }
  4254. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4255. gcode_in_progress = 0;
  4256. } // end if(code_seen('G'))
  4257. else if(code_seen('M'))
  4258. {
  4259. int index;
  4260. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4261. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4262. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4263. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4264. } else
  4265. {
  4266. mcode_in_progress = (int)code_value();
  4267. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4268. switch(mcode_in_progress)
  4269. {
  4270. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4271. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4272. {
  4273. char *src = strchr_pointer + 2;
  4274. codenum = 0;
  4275. bool hasP = false, hasS = false;
  4276. if (code_seen('P')) {
  4277. codenum = code_value(); // milliseconds to wait
  4278. hasP = codenum > 0;
  4279. }
  4280. if (code_seen('S')) {
  4281. codenum = code_value() * 1000; // seconds to wait
  4282. hasS = codenum > 0;
  4283. }
  4284. starpos = strchr(src, '*');
  4285. if (starpos != NULL) *(starpos) = '\0';
  4286. while (*src == ' ') ++src;
  4287. if (!hasP && !hasS && *src != '\0') {
  4288. lcd_setstatus(src);
  4289. } else {
  4290. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4291. }
  4292. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4293. st_synchronize();
  4294. previous_millis_cmd = _millis();
  4295. if (codenum > 0){
  4296. codenum += _millis(); // keep track of when we started waiting
  4297. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4298. while(_millis() < codenum && !lcd_clicked()){
  4299. manage_heater();
  4300. manage_inactivity(true);
  4301. lcd_update(0);
  4302. }
  4303. KEEPALIVE_STATE(IN_HANDLER);
  4304. lcd_ignore_click(false);
  4305. }else{
  4306. marlin_wait_for_click();
  4307. }
  4308. if (IS_SD_PRINTING)
  4309. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4310. else
  4311. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4312. }
  4313. break;
  4314. case 17:
  4315. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4316. enable_x();
  4317. enable_y();
  4318. enable_z();
  4319. enable_e0();
  4320. enable_e1();
  4321. enable_e2();
  4322. break;
  4323. #ifdef SDSUPPORT
  4324. case 20: // M20 - list SD card
  4325. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4326. card.ls();
  4327. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4328. break;
  4329. case 21: // M21 - init SD card
  4330. card.initsd();
  4331. break;
  4332. case 22: //M22 - release SD card
  4333. card.release();
  4334. break;
  4335. case 23: //M23 - Select file
  4336. starpos = (strchr(strchr_pointer + 4,'*'));
  4337. if(starpos!=NULL)
  4338. *(starpos)='\0';
  4339. card.openFile(strchr_pointer + 4,true);
  4340. break;
  4341. case 24: //M24 - Start SD print
  4342. if (!card.paused)
  4343. failstats_reset_print();
  4344. card.startFileprint();
  4345. starttime=_millis();
  4346. break;
  4347. case 25: //M25 - Pause SD print
  4348. card.pauseSDPrint();
  4349. break;
  4350. case 26: //M26 - Set SD index
  4351. if(card.cardOK && code_seen('S')) {
  4352. card.setIndex(code_value_long());
  4353. }
  4354. break;
  4355. case 27: //M27 - Get SD status
  4356. card.getStatus();
  4357. break;
  4358. case 28: //M28 - Start SD write
  4359. starpos = (strchr(strchr_pointer + 4,'*'));
  4360. if(starpos != NULL){
  4361. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4362. strchr_pointer = strchr(npos,' ') + 1;
  4363. *(starpos) = '\0';
  4364. }
  4365. card.openFile(strchr_pointer+4,false);
  4366. break;
  4367. case 29: //M29 - Stop SD write
  4368. //processed in write to file routine above
  4369. //card,saving = false;
  4370. break;
  4371. case 30: //M30 <filename> Delete File
  4372. if (card.cardOK){
  4373. card.closefile();
  4374. starpos = (strchr(strchr_pointer + 4,'*'));
  4375. if(starpos != NULL){
  4376. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4377. strchr_pointer = strchr(npos,' ') + 1;
  4378. *(starpos) = '\0';
  4379. }
  4380. card.removeFile(strchr_pointer + 4);
  4381. }
  4382. break;
  4383. case 32: //M32 - Select file and start SD print
  4384. {
  4385. if(card.sdprinting) {
  4386. st_synchronize();
  4387. }
  4388. starpos = (strchr(strchr_pointer + 4,'*'));
  4389. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4390. if(namestartpos==NULL)
  4391. {
  4392. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4393. }
  4394. else
  4395. namestartpos++; //to skip the '!'
  4396. if(starpos!=NULL)
  4397. *(starpos)='\0';
  4398. bool call_procedure=(code_seen('P'));
  4399. if(strchr_pointer>namestartpos)
  4400. call_procedure=false; //false alert, 'P' found within filename
  4401. if( card.cardOK )
  4402. {
  4403. card.openFile(namestartpos,true,!call_procedure);
  4404. if(code_seen('S'))
  4405. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4406. card.setIndex(code_value_long());
  4407. card.startFileprint();
  4408. if(!call_procedure)
  4409. starttime=_millis(); //procedure calls count as normal print time.
  4410. }
  4411. } break;
  4412. case 928: //M928 - Start SD write
  4413. starpos = (strchr(strchr_pointer + 5,'*'));
  4414. if(starpos != NULL){
  4415. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4416. strchr_pointer = strchr(npos,' ') + 1;
  4417. *(starpos) = '\0';
  4418. }
  4419. card.openLogFile(strchr_pointer+5);
  4420. break;
  4421. #endif //SDSUPPORT
  4422. case 31: //M31 take time since the start of the SD print or an M109 command
  4423. {
  4424. stoptime=_millis();
  4425. char time[30];
  4426. unsigned long t=(stoptime-starttime)/1000;
  4427. int sec,min;
  4428. min=t/60;
  4429. sec=t%60;
  4430. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4431. SERIAL_ECHO_START;
  4432. SERIAL_ECHOLN(time);
  4433. lcd_setstatus(time);
  4434. autotempShutdown();
  4435. }
  4436. break;
  4437. case 42: //M42 -Change pin status via gcode
  4438. if (code_seen('S'))
  4439. {
  4440. int pin_status = code_value();
  4441. int pin_number = LED_PIN;
  4442. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4443. pin_number = code_value();
  4444. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4445. {
  4446. if (sensitive_pins[i] == pin_number)
  4447. {
  4448. pin_number = -1;
  4449. break;
  4450. }
  4451. }
  4452. #if defined(FAN_PIN) && FAN_PIN > -1
  4453. if (pin_number == FAN_PIN)
  4454. fanSpeed = pin_status;
  4455. #endif
  4456. if (pin_number > -1)
  4457. {
  4458. pinMode(pin_number, OUTPUT);
  4459. digitalWrite(pin_number, pin_status);
  4460. analogWrite(pin_number, pin_status);
  4461. }
  4462. }
  4463. break;
  4464. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4465. // Reset the baby step value and the baby step applied flag.
  4466. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4467. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4468. // Reset the skew and offset in both RAM and EEPROM.
  4469. reset_bed_offset_and_skew();
  4470. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4471. // the planner will not perform any adjustments in the XY plane.
  4472. // Wait for the motors to stop and update the current position with the absolute values.
  4473. world2machine_revert_to_uncorrected();
  4474. break;
  4475. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4476. {
  4477. int8_t verbosity_level = 0;
  4478. bool only_Z = code_seen('Z');
  4479. #ifdef SUPPORT_VERBOSITY
  4480. if (code_seen('V'))
  4481. {
  4482. // Just 'V' without a number counts as V1.
  4483. char c = strchr_pointer[1];
  4484. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4485. }
  4486. #endif //SUPPORT_VERBOSITY
  4487. gcode_M45(only_Z, verbosity_level);
  4488. }
  4489. break;
  4490. /*
  4491. case 46:
  4492. {
  4493. // M46: Prusa3D: Show the assigned IP address.
  4494. uint8_t ip[4];
  4495. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4496. if (hasIP) {
  4497. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4498. SERIAL_ECHO(int(ip[0]));
  4499. SERIAL_ECHOPGM(".");
  4500. SERIAL_ECHO(int(ip[1]));
  4501. SERIAL_ECHOPGM(".");
  4502. SERIAL_ECHO(int(ip[2]));
  4503. SERIAL_ECHOPGM(".");
  4504. SERIAL_ECHO(int(ip[3]));
  4505. SERIAL_ECHOLNPGM("");
  4506. } else {
  4507. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4508. }
  4509. break;
  4510. }
  4511. */
  4512. case 47:
  4513. //! M47: Prusa3D: Show end stops dialog on the display.
  4514. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4515. lcd_diag_show_end_stops();
  4516. KEEPALIVE_STATE(IN_HANDLER);
  4517. break;
  4518. #if 0
  4519. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4520. {
  4521. // Disable the default update procedure of the display. We will do a modal dialog.
  4522. lcd_update_enable(false);
  4523. // Let the planner use the uncorrected coordinates.
  4524. mbl.reset();
  4525. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4526. // the planner will not perform any adjustments in the XY plane.
  4527. // Wait for the motors to stop and update the current position with the absolute values.
  4528. world2machine_revert_to_uncorrected();
  4529. // Move the print head close to the bed.
  4530. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4532. st_synchronize();
  4533. // Home in the XY plane.
  4534. set_destination_to_current();
  4535. int l_feedmultiply = setup_for_endstop_move();
  4536. home_xy();
  4537. int8_t verbosity_level = 0;
  4538. if (code_seen('V')) {
  4539. // Just 'V' without a number counts as V1.
  4540. char c = strchr_pointer[1];
  4541. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4542. }
  4543. bool success = scan_bed_induction_points(verbosity_level);
  4544. clean_up_after_endstop_move(l_feedmultiply);
  4545. // Print head up.
  4546. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4548. st_synchronize();
  4549. lcd_update_enable(true);
  4550. break;
  4551. }
  4552. #endif
  4553. #ifdef ENABLE_AUTO_BED_LEVELING
  4554. #ifdef Z_PROBE_REPEATABILITY_TEST
  4555. //! M48 Z-Probe repeatability measurement function.
  4556. //!
  4557. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4558. //!
  4559. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4560. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4561. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4562. //! regenerated.
  4563. //!
  4564. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4565. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4566. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4567. //!
  4568. case 48: // M48 Z-Probe repeatability
  4569. {
  4570. #if Z_MIN_PIN == -1
  4571. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4572. #endif
  4573. double sum=0.0;
  4574. double mean=0.0;
  4575. double sigma=0.0;
  4576. double sample_set[50];
  4577. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4578. double X_current, Y_current, Z_current;
  4579. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4580. if (code_seen('V') || code_seen('v')) {
  4581. verbose_level = code_value();
  4582. if (verbose_level<0 || verbose_level>4 ) {
  4583. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4584. goto Sigma_Exit;
  4585. }
  4586. }
  4587. if (verbose_level > 0) {
  4588. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4589. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4590. }
  4591. if (code_seen('n')) {
  4592. n_samples = code_value();
  4593. if (n_samples<4 || n_samples>50 ) {
  4594. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4595. goto Sigma_Exit;
  4596. }
  4597. }
  4598. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4599. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4600. Z_current = st_get_position_mm(Z_AXIS);
  4601. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4602. ext_position = st_get_position_mm(E_AXIS);
  4603. if (code_seen('X') || code_seen('x') ) {
  4604. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4605. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4606. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4607. goto Sigma_Exit;
  4608. }
  4609. }
  4610. if (code_seen('Y') || code_seen('y') ) {
  4611. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4612. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4613. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4614. goto Sigma_Exit;
  4615. }
  4616. }
  4617. if (code_seen('L') || code_seen('l') ) {
  4618. n_legs = code_value();
  4619. if ( n_legs==1 )
  4620. n_legs = 2;
  4621. if ( n_legs<0 || n_legs>15 ) {
  4622. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4623. goto Sigma_Exit;
  4624. }
  4625. }
  4626. //
  4627. // Do all the preliminary setup work. First raise the probe.
  4628. //
  4629. st_synchronize();
  4630. plan_bed_level_matrix.set_to_identity();
  4631. plan_buffer_line( X_current, Y_current, Z_start_location,
  4632. ext_position,
  4633. homing_feedrate[Z_AXIS]/60,
  4634. active_extruder);
  4635. st_synchronize();
  4636. //
  4637. // Now get everything to the specified probe point So we can safely do a probe to
  4638. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4639. // use that as a starting point for each probe.
  4640. //
  4641. if (verbose_level > 2)
  4642. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4643. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4644. ext_position,
  4645. homing_feedrate[X_AXIS]/60,
  4646. active_extruder);
  4647. st_synchronize();
  4648. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4649. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4650. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4651. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4652. //
  4653. // OK, do the inital probe to get us close to the bed.
  4654. // Then retrace the right amount and use that in subsequent probes
  4655. //
  4656. int l_feedmultiply = setup_for_endstop_move();
  4657. run_z_probe();
  4658. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4659. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4660. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4661. ext_position,
  4662. homing_feedrate[X_AXIS]/60,
  4663. active_extruder);
  4664. st_synchronize();
  4665. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4666. for( n=0; n<n_samples; n++) {
  4667. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4668. if ( n_legs) {
  4669. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4670. int rotational_direction, l;
  4671. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4672. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4673. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4674. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4675. //SERIAL_ECHOPAIR(" theta: ",theta);
  4676. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4677. //SERIAL_PROTOCOLLNPGM("");
  4678. for( l=0; l<n_legs-1; l++) {
  4679. if (rotational_direction==1)
  4680. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4681. else
  4682. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4683. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4684. if ( radius<0.0 )
  4685. radius = -radius;
  4686. X_current = X_probe_location + cos(theta) * radius;
  4687. Y_current = Y_probe_location + sin(theta) * radius;
  4688. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4689. X_current = X_MIN_POS;
  4690. if ( X_current>X_MAX_POS)
  4691. X_current = X_MAX_POS;
  4692. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4693. Y_current = Y_MIN_POS;
  4694. if ( Y_current>Y_MAX_POS)
  4695. Y_current = Y_MAX_POS;
  4696. if (verbose_level>3 ) {
  4697. SERIAL_ECHOPAIR("x: ", X_current);
  4698. SERIAL_ECHOPAIR("y: ", Y_current);
  4699. SERIAL_PROTOCOLLNPGM("");
  4700. }
  4701. do_blocking_move_to( X_current, Y_current, Z_current );
  4702. }
  4703. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4704. }
  4705. int l_feedmultiply = setup_for_endstop_move();
  4706. run_z_probe();
  4707. sample_set[n] = current_position[Z_AXIS];
  4708. //
  4709. // Get the current mean for the data points we have so far
  4710. //
  4711. sum=0.0;
  4712. for( j=0; j<=n; j++) {
  4713. sum = sum + sample_set[j];
  4714. }
  4715. mean = sum / (double (n+1));
  4716. //
  4717. // Now, use that mean to calculate the standard deviation for the
  4718. // data points we have so far
  4719. //
  4720. sum=0.0;
  4721. for( j=0; j<=n; j++) {
  4722. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4723. }
  4724. sigma = sqrt( sum / (double (n+1)) );
  4725. if (verbose_level > 1) {
  4726. SERIAL_PROTOCOL(n+1);
  4727. SERIAL_PROTOCOL(" of ");
  4728. SERIAL_PROTOCOL(n_samples);
  4729. SERIAL_PROTOCOLPGM(" z: ");
  4730. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4731. }
  4732. if (verbose_level > 2) {
  4733. SERIAL_PROTOCOL(" mean: ");
  4734. SERIAL_PROTOCOL_F(mean,6);
  4735. SERIAL_PROTOCOL(" sigma: ");
  4736. SERIAL_PROTOCOL_F(sigma,6);
  4737. }
  4738. if (verbose_level > 0)
  4739. SERIAL_PROTOCOLPGM("\n");
  4740. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4741. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4742. st_synchronize();
  4743. }
  4744. _delay(1000);
  4745. clean_up_after_endstop_move(l_feedmultiply);
  4746. // enable_endstops(true);
  4747. if (verbose_level > 0) {
  4748. SERIAL_PROTOCOLPGM("Mean: ");
  4749. SERIAL_PROTOCOL_F(mean, 6);
  4750. SERIAL_PROTOCOLPGM("\n");
  4751. }
  4752. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4753. SERIAL_PROTOCOL_F(sigma, 6);
  4754. SERIAL_PROTOCOLPGM("\n\n");
  4755. Sigma_Exit:
  4756. break;
  4757. }
  4758. #endif // Z_PROBE_REPEATABILITY_TEST
  4759. #endif // ENABLE_AUTO_BED_LEVELING
  4760. case 73: //M73 show percent done and time remaining
  4761. if(code_seen('P')) print_percent_done_normal = code_value();
  4762. if(code_seen('R')) print_time_remaining_normal = code_value();
  4763. if(code_seen('Q')) print_percent_done_silent = code_value();
  4764. if(code_seen('S')) print_time_remaining_silent = code_value();
  4765. {
  4766. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4767. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4768. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4769. }
  4770. break;
  4771. case 104: // M104
  4772. {
  4773. uint8_t extruder;
  4774. if(setTargetedHotend(104,extruder)){
  4775. break;
  4776. }
  4777. if (code_seen('S'))
  4778. {
  4779. setTargetHotendSafe(code_value(), extruder);
  4780. }
  4781. setWatch();
  4782. break;
  4783. }
  4784. case 112: // M112 -Emergency Stop
  4785. kill(_n(""), 3);
  4786. break;
  4787. case 140: // M140 set bed temp
  4788. if (code_seen('S')) setTargetBed(code_value());
  4789. break;
  4790. case 105 : // M105
  4791. {
  4792. uint8_t extruder;
  4793. if(setTargetedHotend(105, extruder)){
  4794. break;
  4795. }
  4796. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4797. SERIAL_PROTOCOLPGM("ok T:");
  4798. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4799. SERIAL_PROTOCOLPGM(" /");
  4800. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4801. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4802. SERIAL_PROTOCOLPGM(" B:");
  4803. SERIAL_PROTOCOL_F(degBed(),1);
  4804. SERIAL_PROTOCOLPGM(" /");
  4805. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4806. #endif //TEMP_BED_PIN
  4807. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4808. SERIAL_PROTOCOLPGM(" T");
  4809. SERIAL_PROTOCOL(cur_extruder);
  4810. SERIAL_PROTOCOLPGM(":");
  4811. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4812. SERIAL_PROTOCOLPGM(" /");
  4813. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4814. }
  4815. #else
  4816. SERIAL_ERROR_START;
  4817. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4818. #endif
  4819. SERIAL_PROTOCOLPGM(" @:");
  4820. #ifdef EXTRUDER_WATTS
  4821. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4822. SERIAL_PROTOCOLPGM("W");
  4823. #else
  4824. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4825. #endif
  4826. SERIAL_PROTOCOLPGM(" B@:");
  4827. #ifdef BED_WATTS
  4828. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4829. SERIAL_PROTOCOLPGM("W");
  4830. #else
  4831. SERIAL_PROTOCOL(getHeaterPower(-1));
  4832. #endif
  4833. #ifdef PINDA_THERMISTOR
  4834. SERIAL_PROTOCOLPGM(" P:");
  4835. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4836. #endif //PINDA_THERMISTOR
  4837. #ifdef AMBIENT_THERMISTOR
  4838. SERIAL_PROTOCOLPGM(" A:");
  4839. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4840. #endif //AMBIENT_THERMISTOR
  4841. #ifdef SHOW_TEMP_ADC_VALUES
  4842. {float raw = 0.0;
  4843. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4844. SERIAL_PROTOCOLPGM(" ADC B:");
  4845. SERIAL_PROTOCOL_F(degBed(),1);
  4846. SERIAL_PROTOCOLPGM("C->");
  4847. raw = rawBedTemp();
  4848. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4849. SERIAL_PROTOCOLPGM(" Rb->");
  4850. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4851. SERIAL_PROTOCOLPGM(" Rxb->");
  4852. SERIAL_PROTOCOL_F(raw, 5);
  4853. #endif
  4854. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4855. SERIAL_PROTOCOLPGM(" T");
  4856. SERIAL_PROTOCOL(cur_extruder);
  4857. SERIAL_PROTOCOLPGM(":");
  4858. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4859. SERIAL_PROTOCOLPGM("C->");
  4860. raw = rawHotendTemp(cur_extruder);
  4861. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4862. SERIAL_PROTOCOLPGM(" Rt");
  4863. SERIAL_PROTOCOL(cur_extruder);
  4864. SERIAL_PROTOCOLPGM("->");
  4865. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4866. SERIAL_PROTOCOLPGM(" Rx");
  4867. SERIAL_PROTOCOL(cur_extruder);
  4868. SERIAL_PROTOCOLPGM("->");
  4869. SERIAL_PROTOCOL_F(raw, 5);
  4870. }}
  4871. #endif
  4872. SERIAL_PROTOCOLLN("");
  4873. KEEPALIVE_STATE(NOT_BUSY);
  4874. return;
  4875. break;
  4876. }
  4877. case 109:
  4878. {// M109 - Wait for extruder heater to reach target.
  4879. uint8_t extruder;
  4880. if(setTargetedHotend(109, extruder)){
  4881. break;
  4882. }
  4883. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4884. heating_status = 1;
  4885. if (farm_mode) { prusa_statistics(1); };
  4886. #ifdef AUTOTEMP
  4887. autotemp_enabled=false;
  4888. #endif
  4889. if (code_seen('S')) {
  4890. setTargetHotendSafe(code_value(), extruder);
  4891. CooldownNoWait = true;
  4892. } else if (code_seen('R')) {
  4893. setTargetHotendSafe(code_value(), extruder);
  4894. CooldownNoWait = false;
  4895. }
  4896. #ifdef AUTOTEMP
  4897. if (code_seen('S')) autotemp_min=code_value();
  4898. if (code_seen('B')) autotemp_max=code_value();
  4899. if (code_seen('F'))
  4900. {
  4901. autotemp_factor=code_value();
  4902. autotemp_enabled=true;
  4903. }
  4904. #endif
  4905. setWatch();
  4906. codenum = _millis();
  4907. /* See if we are heating up or cooling down */
  4908. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4909. KEEPALIVE_STATE(NOT_BUSY);
  4910. cancel_heatup = false;
  4911. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4912. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4913. KEEPALIVE_STATE(IN_HANDLER);
  4914. heating_status = 2;
  4915. if (farm_mode) { prusa_statistics(2); };
  4916. //starttime=_millis();
  4917. previous_millis_cmd = _millis();
  4918. }
  4919. break;
  4920. case 190: // M190 - Wait for bed heater to reach target.
  4921. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4922. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4923. heating_status = 3;
  4924. if (farm_mode) { prusa_statistics(1); };
  4925. if (code_seen('S'))
  4926. {
  4927. setTargetBed(code_value());
  4928. CooldownNoWait = true;
  4929. }
  4930. else if (code_seen('R'))
  4931. {
  4932. setTargetBed(code_value());
  4933. CooldownNoWait = false;
  4934. }
  4935. codenum = _millis();
  4936. cancel_heatup = false;
  4937. target_direction = isHeatingBed(); // true if heating, false if cooling
  4938. KEEPALIVE_STATE(NOT_BUSY);
  4939. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4940. {
  4941. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4942. {
  4943. if (!farm_mode) {
  4944. float tt = degHotend(active_extruder);
  4945. SERIAL_PROTOCOLPGM("T:");
  4946. SERIAL_PROTOCOL(tt);
  4947. SERIAL_PROTOCOLPGM(" E:");
  4948. SERIAL_PROTOCOL((int)active_extruder);
  4949. SERIAL_PROTOCOLPGM(" B:");
  4950. SERIAL_PROTOCOL_F(degBed(), 1);
  4951. SERIAL_PROTOCOLLN("");
  4952. }
  4953. codenum = _millis();
  4954. }
  4955. manage_heater();
  4956. manage_inactivity();
  4957. lcd_update(0);
  4958. }
  4959. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4960. KEEPALIVE_STATE(IN_HANDLER);
  4961. heating_status = 4;
  4962. previous_millis_cmd = _millis();
  4963. #endif
  4964. break;
  4965. #if defined(FAN_PIN) && FAN_PIN > -1
  4966. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4967. if (code_seen('S')){
  4968. fanSpeed=constrain(code_value(),0,255);
  4969. }
  4970. else {
  4971. fanSpeed=255;
  4972. }
  4973. break;
  4974. case 107: //M107 Fan Off
  4975. fanSpeed = 0;
  4976. break;
  4977. #endif //FAN_PIN
  4978. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4979. case 80: // M80 - Turn on Power Supply
  4980. SET_OUTPUT(PS_ON_PIN); //GND
  4981. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4982. // If you have a switch on suicide pin, this is useful
  4983. // if you want to start another print with suicide feature after
  4984. // a print without suicide...
  4985. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4986. SET_OUTPUT(SUICIDE_PIN);
  4987. WRITE(SUICIDE_PIN, HIGH);
  4988. #endif
  4989. powersupply = true;
  4990. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4991. lcd_update(0);
  4992. break;
  4993. #endif
  4994. case 81: // M81 - Turn off Power Supply
  4995. disable_heater();
  4996. st_synchronize();
  4997. disable_e0();
  4998. disable_e1();
  4999. disable_e2();
  5000. finishAndDisableSteppers();
  5001. fanSpeed = 0;
  5002. _delay(1000); // Wait a little before to switch off
  5003. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5004. st_synchronize();
  5005. suicide();
  5006. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5007. SET_OUTPUT(PS_ON_PIN);
  5008. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5009. #endif
  5010. powersupply = false;
  5011. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5012. lcd_update(0);
  5013. break;
  5014. case 82:
  5015. axis_relative_modes[3] = false;
  5016. break;
  5017. case 83:
  5018. axis_relative_modes[3] = true;
  5019. break;
  5020. case 18: //compatibility
  5021. case 84: // M84
  5022. if(code_seen('S')){
  5023. stepper_inactive_time = code_value() * 1000;
  5024. }
  5025. else
  5026. {
  5027. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5028. if(all_axis)
  5029. {
  5030. st_synchronize();
  5031. disable_e0();
  5032. disable_e1();
  5033. disable_e2();
  5034. finishAndDisableSteppers();
  5035. }
  5036. else
  5037. {
  5038. st_synchronize();
  5039. if (code_seen('X')) disable_x();
  5040. if (code_seen('Y')) disable_y();
  5041. if (code_seen('Z')) disable_z();
  5042. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5043. if (code_seen('E')) {
  5044. disable_e0();
  5045. disable_e1();
  5046. disable_e2();
  5047. }
  5048. #endif
  5049. }
  5050. }
  5051. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5052. print_time_remaining_init();
  5053. snmm_filaments_used = 0;
  5054. break;
  5055. case 85: // M85
  5056. if(code_seen('S')) {
  5057. max_inactive_time = code_value() * 1000;
  5058. }
  5059. break;
  5060. #ifdef SAFETYTIMER
  5061. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5062. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5063. if (code_seen('S')) {
  5064. safetytimer_inactive_time = code_value() * 1000;
  5065. safetyTimer.start();
  5066. }
  5067. break;
  5068. #endif
  5069. case 92: // M92
  5070. for(int8_t i=0; i < NUM_AXIS; i++)
  5071. {
  5072. if(code_seen(axis_codes[i]))
  5073. {
  5074. if(i == 3) { // E
  5075. float value = code_value();
  5076. if(value < 20.0) {
  5077. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5078. cs.max_jerk[E_AXIS] *= factor;
  5079. max_feedrate[i] *= factor;
  5080. axis_steps_per_sqr_second[i] *= factor;
  5081. }
  5082. cs.axis_steps_per_unit[i] = value;
  5083. }
  5084. else {
  5085. cs.axis_steps_per_unit[i] = code_value();
  5086. }
  5087. }
  5088. }
  5089. break;
  5090. case 110: //! M110 N<line number> - reset line pos
  5091. if (code_seen('N'))
  5092. gcode_LastN = code_value_long();
  5093. break;
  5094. case 113: // M113 - Get or set Host Keepalive interval
  5095. if (code_seen('S')) {
  5096. host_keepalive_interval = (uint8_t)code_value_short();
  5097. // NOMORE(host_keepalive_interval, 60);
  5098. }
  5099. else {
  5100. SERIAL_ECHO_START;
  5101. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5102. SERIAL_PROTOCOLLN("");
  5103. }
  5104. break;
  5105. case 115: // M115
  5106. if (code_seen('V')) {
  5107. // Report the Prusa version number.
  5108. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5109. } else if (code_seen('U')) {
  5110. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5111. // pause the print and ask the user to upgrade the firmware.
  5112. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5113. } else {
  5114. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5115. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5116. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5117. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5118. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5119. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5120. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5121. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5122. SERIAL_ECHOPGM(" UUID:");
  5123. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5124. }
  5125. break;
  5126. /* case 117: // M117 display message
  5127. starpos = (strchr(strchr_pointer + 5,'*'));
  5128. if(starpos!=NULL)
  5129. *(starpos)='\0';
  5130. lcd_setstatus(strchr_pointer + 5);
  5131. break;*/
  5132. case 114: // M114
  5133. gcode_M114();
  5134. break;
  5135. case 120: //! M120 - Disable endstops
  5136. enable_endstops(false) ;
  5137. break;
  5138. case 121: //! M121 - Enable endstops
  5139. enable_endstops(true) ;
  5140. break;
  5141. case 119: // M119
  5142. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5143. SERIAL_PROTOCOLLN("");
  5144. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5145. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5146. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5147. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5148. }else{
  5149. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5150. }
  5151. SERIAL_PROTOCOLLN("");
  5152. #endif
  5153. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5154. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5155. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5156. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5157. }else{
  5158. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5159. }
  5160. SERIAL_PROTOCOLLN("");
  5161. #endif
  5162. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5163. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5164. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5165. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5166. }else{
  5167. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5168. }
  5169. SERIAL_PROTOCOLLN("");
  5170. #endif
  5171. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5172. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5173. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5174. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5175. }else{
  5176. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5177. }
  5178. SERIAL_PROTOCOLLN("");
  5179. #endif
  5180. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5181. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5182. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5183. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5184. }else{
  5185. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5186. }
  5187. SERIAL_PROTOCOLLN("");
  5188. #endif
  5189. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5190. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5191. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5192. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5193. }else{
  5194. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5195. }
  5196. SERIAL_PROTOCOLLN("");
  5197. #endif
  5198. break;
  5199. //TODO: update for all axis, use for loop
  5200. #ifdef BLINKM
  5201. case 150: // M150
  5202. {
  5203. byte red;
  5204. byte grn;
  5205. byte blu;
  5206. if(code_seen('R')) red = code_value();
  5207. if(code_seen('U')) grn = code_value();
  5208. if(code_seen('B')) blu = code_value();
  5209. SendColors(red,grn,blu);
  5210. }
  5211. break;
  5212. #endif //BLINKM
  5213. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5214. {
  5215. uint8_t extruder = active_extruder;
  5216. if(code_seen('T')) {
  5217. extruder = code_value();
  5218. if(extruder >= EXTRUDERS) {
  5219. SERIAL_ECHO_START;
  5220. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5221. break;
  5222. }
  5223. }
  5224. if(code_seen('D')) {
  5225. float diameter = (float)code_value();
  5226. if (diameter == 0.0) {
  5227. // setting any extruder filament size disables volumetric on the assumption that
  5228. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5229. // for all extruders
  5230. cs.volumetric_enabled = false;
  5231. } else {
  5232. cs.filament_size[extruder] = (float)code_value();
  5233. // make sure all extruders have some sane value for the filament size
  5234. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5235. #if EXTRUDERS > 1
  5236. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5237. #if EXTRUDERS > 2
  5238. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5239. #endif
  5240. #endif
  5241. cs.volumetric_enabled = true;
  5242. }
  5243. } else {
  5244. //reserved for setting filament diameter via UFID or filament measuring device
  5245. break;
  5246. }
  5247. calculate_extruder_multipliers();
  5248. }
  5249. break;
  5250. case 201: // M201
  5251. for (int8_t i = 0; i < NUM_AXIS; i++)
  5252. {
  5253. if (code_seen(axis_codes[i]))
  5254. {
  5255. unsigned long val = code_value();
  5256. #ifdef TMC2130
  5257. unsigned long val_silent = val;
  5258. if ((i == X_AXIS) || (i == Y_AXIS))
  5259. {
  5260. if (val > NORMAL_MAX_ACCEL_XY)
  5261. val = NORMAL_MAX_ACCEL_XY;
  5262. if (val_silent > SILENT_MAX_ACCEL_XY)
  5263. val_silent = SILENT_MAX_ACCEL_XY;
  5264. }
  5265. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5266. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5267. #else //TMC2130
  5268. max_acceleration_units_per_sq_second[i] = val;
  5269. #endif //TMC2130
  5270. }
  5271. }
  5272. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5273. reset_acceleration_rates();
  5274. break;
  5275. #if 0 // Not used for Sprinter/grbl gen6
  5276. case 202: // M202
  5277. for(int8_t i=0; i < NUM_AXIS; i++) {
  5278. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5279. }
  5280. break;
  5281. #endif
  5282. case 203: // M203 max feedrate mm/sec
  5283. for (int8_t i = 0; i < NUM_AXIS; i++)
  5284. {
  5285. if (code_seen(axis_codes[i]))
  5286. {
  5287. float val = code_value();
  5288. #ifdef TMC2130
  5289. float val_silent = val;
  5290. if ((i == X_AXIS) || (i == Y_AXIS))
  5291. {
  5292. if (val > NORMAL_MAX_FEEDRATE_XY)
  5293. val = NORMAL_MAX_FEEDRATE_XY;
  5294. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5295. val_silent = SILENT_MAX_FEEDRATE_XY;
  5296. }
  5297. cs.max_feedrate_normal[i] = val;
  5298. cs.max_feedrate_silent[i] = val_silent;
  5299. #else //TMC2130
  5300. max_feedrate[i] = val;
  5301. #endif //TMC2130
  5302. }
  5303. }
  5304. break;
  5305. case 204:
  5306. //! M204 acclereration settings.
  5307. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5308. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5309. {
  5310. if(code_seen('S')) {
  5311. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5312. // and it is also generated by Slic3r to control acceleration per extrusion type
  5313. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5314. cs.acceleration = code_value();
  5315. // Interpret the T value as retract acceleration in the old Marlin format.
  5316. if(code_seen('T'))
  5317. cs.retract_acceleration = code_value();
  5318. } else {
  5319. // New acceleration format, compatible with the upstream Marlin.
  5320. if(code_seen('P'))
  5321. cs.acceleration = code_value();
  5322. if(code_seen('R'))
  5323. cs.retract_acceleration = code_value();
  5324. if(code_seen('T')) {
  5325. // Interpret the T value as the travel acceleration in the new Marlin format.
  5326. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5327. // travel_acceleration = code_value();
  5328. }
  5329. }
  5330. }
  5331. break;
  5332. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5333. {
  5334. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5335. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5336. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5337. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5338. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5339. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5340. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5341. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5342. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5343. }
  5344. break;
  5345. case 206: // M206 additional homing offset
  5346. for(int8_t i=0; i < 3; i++)
  5347. {
  5348. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5349. }
  5350. break;
  5351. #ifdef FWRETRACT
  5352. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5353. {
  5354. if(code_seen('S'))
  5355. {
  5356. cs.retract_length = code_value() ;
  5357. }
  5358. if(code_seen('F'))
  5359. {
  5360. cs.retract_feedrate = code_value()/60 ;
  5361. }
  5362. if(code_seen('Z'))
  5363. {
  5364. cs.retract_zlift = code_value() ;
  5365. }
  5366. }break;
  5367. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5368. {
  5369. if(code_seen('S'))
  5370. {
  5371. cs.retract_recover_length = code_value() ;
  5372. }
  5373. if(code_seen('F'))
  5374. {
  5375. cs.retract_recover_feedrate = code_value()/60 ;
  5376. }
  5377. }break;
  5378. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5379. {
  5380. if(code_seen('S'))
  5381. {
  5382. int t= code_value() ;
  5383. switch(t)
  5384. {
  5385. case 0:
  5386. {
  5387. cs.autoretract_enabled=false;
  5388. retracted[0]=false;
  5389. #if EXTRUDERS > 1
  5390. retracted[1]=false;
  5391. #endif
  5392. #if EXTRUDERS > 2
  5393. retracted[2]=false;
  5394. #endif
  5395. }break;
  5396. case 1:
  5397. {
  5398. cs.autoretract_enabled=true;
  5399. retracted[0]=false;
  5400. #if EXTRUDERS > 1
  5401. retracted[1]=false;
  5402. #endif
  5403. #if EXTRUDERS > 2
  5404. retracted[2]=false;
  5405. #endif
  5406. }break;
  5407. default:
  5408. SERIAL_ECHO_START;
  5409. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5410. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5411. SERIAL_ECHOLNPGM("\"(1)");
  5412. }
  5413. }
  5414. }break;
  5415. #endif // FWRETRACT
  5416. #if EXTRUDERS > 1
  5417. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5418. {
  5419. uint8_t extruder;
  5420. if(setTargetedHotend(218, extruder)){
  5421. break;
  5422. }
  5423. if(code_seen('X'))
  5424. {
  5425. extruder_offset[X_AXIS][extruder] = code_value();
  5426. }
  5427. if(code_seen('Y'))
  5428. {
  5429. extruder_offset[Y_AXIS][extruder] = code_value();
  5430. }
  5431. SERIAL_ECHO_START;
  5432. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5433. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5434. {
  5435. SERIAL_ECHO(" ");
  5436. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5437. SERIAL_ECHO(",");
  5438. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5439. }
  5440. SERIAL_ECHOLN("");
  5441. }break;
  5442. #endif
  5443. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5444. {
  5445. if (code_seen('B')) //backup current speed factor
  5446. {
  5447. saved_feedmultiply_mm = feedmultiply;
  5448. }
  5449. if(code_seen('S'))
  5450. {
  5451. feedmultiply = code_value() ;
  5452. }
  5453. if (code_seen('R')) { //restore previous feedmultiply
  5454. feedmultiply = saved_feedmultiply_mm;
  5455. }
  5456. }
  5457. break;
  5458. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5459. {
  5460. if(code_seen('S'))
  5461. {
  5462. int tmp_code = code_value();
  5463. if (code_seen('T'))
  5464. {
  5465. uint8_t extruder;
  5466. if(setTargetedHotend(221, extruder)){
  5467. break;
  5468. }
  5469. extruder_multiply[extruder] = tmp_code;
  5470. }
  5471. else
  5472. {
  5473. extrudemultiply = tmp_code ;
  5474. }
  5475. }
  5476. calculate_extruder_multipliers();
  5477. }
  5478. break;
  5479. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5480. {
  5481. if(code_seen('P')){
  5482. int pin_number = code_value(); // pin number
  5483. int pin_state = -1; // required pin state - default is inverted
  5484. if(code_seen('S')) pin_state = code_value(); // required pin state
  5485. if(pin_state >= -1 && pin_state <= 1){
  5486. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5487. {
  5488. if (sensitive_pins[i] == pin_number)
  5489. {
  5490. pin_number = -1;
  5491. break;
  5492. }
  5493. }
  5494. if (pin_number > -1)
  5495. {
  5496. int target = LOW;
  5497. st_synchronize();
  5498. pinMode(pin_number, INPUT);
  5499. switch(pin_state){
  5500. case 1:
  5501. target = HIGH;
  5502. break;
  5503. case 0:
  5504. target = LOW;
  5505. break;
  5506. case -1:
  5507. target = !digitalRead(pin_number);
  5508. break;
  5509. }
  5510. while(digitalRead(pin_number) != target){
  5511. manage_heater();
  5512. manage_inactivity();
  5513. lcd_update(0);
  5514. }
  5515. }
  5516. }
  5517. }
  5518. }
  5519. break;
  5520. #if NUM_SERVOS > 0
  5521. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5522. {
  5523. int servo_index = -1;
  5524. int servo_position = 0;
  5525. if (code_seen('P'))
  5526. servo_index = code_value();
  5527. if (code_seen('S')) {
  5528. servo_position = code_value();
  5529. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5530. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5531. servos[servo_index].attach(0);
  5532. #endif
  5533. servos[servo_index].write(servo_position);
  5534. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5535. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5536. servos[servo_index].detach();
  5537. #endif
  5538. }
  5539. else {
  5540. SERIAL_ECHO_START;
  5541. SERIAL_ECHO("Servo ");
  5542. SERIAL_ECHO(servo_index);
  5543. SERIAL_ECHOLN(" out of range");
  5544. }
  5545. }
  5546. else if (servo_index >= 0) {
  5547. SERIAL_PROTOCOL(MSG_OK);
  5548. SERIAL_PROTOCOL(" Servo ");
  5549. SERIAL_PROTOCOL(servo_index);
  5550. SERIAL_PROTOCOL(": ");
  5551. SERIAL_PROTOCOL(servos[servo_index].read());
  5552. SERIAL_PROTOCOLLN("");
  5553. }
  5554. }
  5555. break;
  5556. #endif // NUM_SERVOS > 0
  5557. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5558. case 300: // M300
  5559. {
  5560. int beepS = code_seen('S') ? code_value() : 110;
  5561. int beepP = code_seen('P') ? code_value() : 1000;
  5562. if (beepS > 0)
  5563. {
  5564. #if BEEPER > 0
  5565. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5566. _tone(BEEPER, beepS);
  5567. _delay(beepP);
  5568. _noTone(BEEPER);
  5569. #endif
  5570. }
  5571. else
  5572. {
  5573. _delay(beepP);
  5574. }
  5575. }
  5576. break;
  5577. #endif // M300
  5578. #ifdef PIDTEMP
  5579. case 301: // M301
  5580. {
  5581. if(code_seen('P')) cs.Kp = code_value();
  5582. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5583. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5584. #ifdef PID_ADD_EXTRUSION_RATE
  5585. if(code_seen('C')) Kc = code_value();
  5586. #endif
  5587. updatePID();
  5588. SERIAL_PROTOCOLRPGM(MSG_OK);
  5589. SERIAL_PROTOCOL(" p:");
  5590. SERIAL_PROTOCOL(cs.Kp);
  5591. SERIAL_PROTOCOL(" i:");
  5592. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5593. SERIAL_PROTOCOL(" d:");
  5594. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5595. #ifdef PID_ADD_EXTRUSION_RATE
  5596. SERIAL_PROTOCOL(" c:");
  5597. //Kc does not have scaling applied above, or in resetting defaults
  5598. SERIAL_PROTOCOL(Kc);
  5599. #endif
  5600. SERIAL_PROTOCOLLN("");
  5601. }
  5602. break;
  5603. #endif //PIDTEMP
  5604. #ifdef PIDTEMPBED
  5605. case 304: // M304
  5606. {
  5607. if(code_seen('P')) cs.bedKp = code_value();
  5608. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5609. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5610. updatePID();
  5611. SERIAL_PROTOCOLRPGM(MSG_OK);
  5612. SERIAL_PROTOCOL(" p:");
  5613. SERIAL_PROTOCOL(cs.bedKp);
  5614. SERIAL_PROTOCOL(" i:");
  5615. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5616. SERIAL_PROTOCOL(" d:");
  5617. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5618. SERIAL_PROTOCOLLN("");
  5619. }
  5620. break;
  5621. #endif //PIDTEMP
  5622. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5623. {
  5624. #ifdef CHDK
  5625. SET_OUTPUT(CHDK);
  5626. WRITE(CHDK, HIGH);
  5627. chdkHigh = _millis();
  5628. chdkActive = true;
  5629. #else
  5630. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5631. const uint8_t NUM_PULSES=16;
  5632. const float PULSE_LENGTH=0.01524;
  5633. for(int i=0; i < NUM_PULSES; i++) {
  5634. WRITE(PHOTOGRAPH_PIN, HIGH);
  5635. _delay_ms(PULSE_LENGTH);
  5636. WRITE(PHOTOGRAPH_PIN, LOW);
  5637. _delay_ms(PULSE_LENGTH);
  5638. }
  5639. _delay(7.33);
  5640. for(int i=0; i < NUM_PULSES; i++) {
  5641. WRITE(PHOTOGRAPH_PIN, HIGH);
  5642. _delay_ms(PULSE_LENGTH);
  5643. WRITE(PHOTOGRAPH_PIN, LOW);
  5644. _delay_ms(PULSE_LENGTH);
  5645. }
  5646. #endif
  5647. #endif //chdk end if
  5648. }
  5649. break;
  5650. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5651. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5652. {
  5653. float temp = .0;
  5654. if (code_seen('S')) temp=code_value();
  5655. set_extrude_min_temp(temp);
  5656. }
  5657. break;
  5658. #endif
  5659. case 303: // M303 PID autotune
  5660. {
  5661. float temp = 150.0;
  5662. int e=0;
  5663. int c=5;
  5664. if (code_seen('E')) e=code_value();
  5665. if (e<0)
  5666. temp=70;
  5667. if (code_seen('S')) temp=code_value();
  5668. if (code_seen('C')) c=code_value();
  5669. PID_autotune(temp, e, c);
  5670. }
  5671. break;
  5672. case 400: // M400 finish all moves
  5673. {
  5674. st_synchronize();
  5675. }
  5676. break;
  5677. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5678. {
  5679. //! currently three different materials are needed (default, flex and PVA)
  5680. //! add storing this information for different load/unload profiles etc. in the future
  5681. //!firmware does not wait for "ok" from mmu
  5682. if (mmu_enabled)
  5683. {
  5684. uint8_t extruder = 255;
  5685. uint8_t filament = FILAMENT_UNDEFINED;
  5686. if(code_seen('E')) extruder = code_value();
  5687. if(code_seen('F')) filament = code_value();
  5688. mmu_set_filament_type(extruder, filament);
  5689. }
  5690. }
  5691. break;
  5692. case 500: // M500 Store settings in EEPROM
  5693. {
  5694. Config_StoreSettings();
  5695. }
  5696. break;
  5697. case 501: // M501 Read settings from EEPROM
  5698. {
  5699. Config_RetrieveSettings();
  5700. }
  5701. break;
  5702. case 502: // M502 Revert to default settings
  5703. {
  5704. Config_ResetDefault();
  5705. }
  5706. break;
  5707. case 503: // M503 print settings currently in memory
  5708. {
  5709. Config_PrintSettings();
  5710. }
  5711. break;
  5712. case 509: //M509 Force language selection
  5713. {
  5714. lang_reset();
  5715. SERIAL_ECHO_START;
  5716. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5717. }
  5718. break;
  5719. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5720. case 540:
  5721. {
  5722. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5723. }
  5724. break;
  5725. #endif
  5726. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5727. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5728. {
  5729. float value;
  5730. if (code_seen('Z'))
  5731. {
  5732. value = code_value();
  5733. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5734. {
  5735. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5736. SERIAL_ECHO_START;
  5737. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5738. SERIAL_PROTOCOLLN("");
  5739. }
  5740. else
  5741. {
  5742. SERIAL_ECHO_START;
  5743. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5744. SERIAL_ECHORPGM(MSG_Z_MIN);
  5745. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5746. SERIAL_ECHORPGM(MSG_Z_MAX);
  5747. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5748. SERIAL_PROTOCOLLN("");
  5749. }
  5750. }
  5751. else
  5752. {
  5753. SERIAL_ECHO_START;
  5754. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5755. SERIAL_ECHO(-cs.zprobe_zoffset);
  5756. SERIAL_PROTOCOLLN("");
  5757. }
  5758. break;
  5759. }
  5760. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5761. #ifdef FILAMENTCHANGEENABLE
  5762. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5763. {
  5764. st_synchronize();
  5765. float x_position = current_position[X_AXIS];
  5766. float y_position = current_position[Y_AXIS];
  5767. float z_shift = 0;
  5768. float e_shift_init = 0;
  5769. float e_shift_late = 0;
  5770. bool automatic = false;
  5771. //Retract extruder
  5772. if(code_seen('E'))
  5773. {
  5774. e_shift_init = code_value();
  5775. }
  5776. else
  5777. {
  5778. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5779. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5780. #endif
  5781. }
  5782. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5783. if (code_seen('L'))
  5784. {
  5785. e_shift_late = code_value();
  5786. }
  5787. else
  5788. {
  5789. #ifdef FILAMENTCHANGE_FINALRETRACT
  5790. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5791. #endif
  5792. }
  5793. //Lift Z
  5794. if(code_seen('Z'))
  5795. {
  5796. z_shift = code_value();
  5797. }
  5798. else
  5799. {
  5800. #ifdef FILAMENTCHANGE_ZADD
  5801. z_shift= FILAMENTCHANGE_ZADD ;
  5802. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5803. #endif
  5804. }
  5805. //Move XY to side
  5806. if(code_seen('X'))
  5807. {
  5808. x_position = code_value();
  5809. }
  5810. else
  5811. {
  5812. #ifdef FILAMENTCHANGE_XPOS
  5813. x_position = FILAMENTCHANGE_XPOS;
  5814. #endif
  5815. }
  5816. if(code_seen('Y'))
  5817. {
  5818. y_position = code_value();
  5819. }
  5820. else
  5821. {
  5822. #ifdef FILAMENTCHANGE_YPOS
  5823. y_position = FILAMENTCHANGE_YPOS ;
  5824. #endif
  5825. }
  5826. if (mmu_enabled && code_seen("AUTO"))
  5827. automatic = true;
  5828. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5829. }
  5830. break;
  5831. #endif //FILAMENTCHANGEENABLE
  5832. case 601: //! M601 - Pause print
  5833. {
  5834. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5835. lcd_pause_print();
  5836. }
  5837. break;
  5838. case 602: { //! M602 - Resume print
  5839. lcd_resume_print();
  5840. }
  5841. break;
  5842. #ifdef PINDA_THERMISTOR
  5843. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5844. {
  5845. int set_target_pinda = 0;
  5846. if (code_seen('S')) {
  5847. set_target_pinda = code_value();
  5848. }
  5849. else {
  5850. break;
  5851. }
  5852. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5853. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5854. SERIAL_PROTOCOL(set_target_pinda);
  5855. SERIAL_PROTOCOLLN("");
  5856. codenum = _millis();
  5857. cancel_heatup = false;
  5858. bool is_pinda_cooling = false;
  5859. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5860. is_pinda_cooling = true;
  5861. }
  5862. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5863. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5864. {
  5865. SERIAL_PROTOCOLPGM("P:");
  5866. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5867. SERIAL_PROTOCOLPGM("/");
  5868. SERIAL_PROTOCOL(set_target_pinda);
  5869. SERIAL_PROTOCOLLN("");
  5870. codenum = _millis();
  5871. }
  5872. manage_heater();
  5873. manage_inactivity();
  5874. lcd_update(0);
  5875. }
  5876. LCD_MESSAGERPGM(MSG_OK);
  5877. break;
  5878. }
  5879. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5880. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5881. uint8_t cal_status = calibration_status_pinda();
  5882. int16_t usteps = 0;
  5883. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5884. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5885. for (uint8_t i = 0; i < 6; i++)
  5886. {
  5887. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5888. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5889. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5890. SERIAL_PROTOCOLPGM(", ");
  5891. SERIAL_PROTOCOL(35 + (i * 5));
  5892. SERIAL_PROTOCOLPGM(", ");
  5893. SERIAL_PROTOCOL(usteps);
  5894. SERIAL_PROTOCOLPGM(", ");
  5895. SERIAL_PROTOCOL(mm * 1000);
  5896. SERIAL_PROTOCOLLN("");
  5897. }
  5898. }
  5899. else if (code_seen('!')) { // ! - Set factory default values
  5900. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5901. int16_t z_shift = 8; //40C - 20um - 8usteps
  5902. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5903. z_shift = 24; //45C - 60um - 24usteps
  5904. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5905. z_shift = 48; //50C - 120um - 48usteps
  5906. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5907. z_shift = 80; //55C - 200um - 80usteps
  5908. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5909. z_shift = 120; //60C - 300um - 120usteps
  5910. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5911. SERIAL_PROTOCOLLN("factory restored");
  5912. }
  5913. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5914. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5915. int16_t z_shift = 0;
  5916. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5917. SERIAL_PROTOCOLLN("zerorized");
  5918. }
  5919. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5920. int16_t usteps = code_value();
  5921. if (code_seen('I')) {
  5922. uint8_t index = code_value();
  5923. if (index < 5) {
  5924. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5925. SERIAL_PROTOCOLLN("OK");
  5926. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5927. for (uint8_t i = 0; i < 6; i++)
  5928. {
  5929. usteps = 0;
  5930. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5931. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5932. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5933. SERIAL_PROTOCOLPGM(", ");
  5934. SERIAL_PROTOCOL(35 + (i * 5));
  5935. SERIAL_PROTOCOLPGM(", ");
  5936. SERIAL_PROTOCOL(usteps);
  5937. SERIAL_PROTOCOLPGM(", ");
  5938. SERIAL_PROTOCOL(mm * 1000);
  5939. SERIAL_PROTOCOLLN("");
  5940. }
  5941. }
  5942. }
  5943. }
  5944. else {
  5945. SERIAL_PROTOCOLPGM("no valid command");
  5946. }
  5947. break;
  5948. #endif //PINDA_THERMISTOR
  5949. #ifdef LIN_ADVANCE
  5950. case 900: // M900: Set LIN_ADVANCE options.
  5951. gcode_M900();
  5952. break;
  5953. #endif
  5954. case 907: // M907 Set digital trimpot motor current using axis codes.
  5955. {
  5956. #ifdef TMC2130
  5957. for (int i = 0; i < NUM_AXIS; i++)
  5958. if(code_seen(axis_codes[i]))
  5959. {
  5960. long cur_mA = code_value_long();
  5961. uint8_t val = tmc2130_cur2val(cur_mA);
  5962. tmc2130_set_current_h(i, val);
  5963. tmc2130_set_current_r(i, val);
  5964. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5965. }
  5966. #else //TMC2130
  5967. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5968. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5969. if(code_seen('B')) st_current_set(4,code_value());
  5970. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5971. #endif
  5972. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5973. if(code_seen('X')) st_current_set(0, code_value());
  5974. #endif
  5975. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5976. if(code_seen('Z')) st_current_set(1, code_value());
  5977. #endif
  5978. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5979. if(code_seen('E')) st_current_set(2, code_value());
  5980. #endif
  5981. #endif //TMC2130
  5982. }
  5983. break;
  5984. case 908: // M908 Control digital trimpot directly.
  5985. {
  5986. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5987. uint8_t channel,current;
  5988. if(code_seen('P')) channel=code_value();
  5989. if(code_seen('S')) current=code_value();
  5990. digitalPotWrite(channel, current);
  5991. #endif
  5992. }
  5993. break;
  5994. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5995. case 910: //! M910 - TMC2130 init
  5996. {
  5997. tmc2130_init();
  5998. }
  5999. break;
  6000. case 911: //! M911 - Set TMC2130 holding currents
  6001. {
  6002. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6003. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6004. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6005. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6006. }
  6007. break;
  6008. case 912: //! M912 - Set TMC2130 running currents
  6009. {
  6010. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6011. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6012. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6013. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6014. }
  6015. break;
  6016. case 913: //! M913 - Print TMC2130 currents
  6017. {
  6018. tmc2130_print_currents();
  6019. }
  6020. break;
  6021. case 914: //! M914 - Set normal mode
  6022. {
  6023. tmc2130_mode = TMC2130_MODE_NORMAL;
  6024. update_mode_profile();
  6025. tmc2130_init();
  6026. }
  6027. break;
  6028. case 915: //! M915 - Set silent mode
  6029. {
  6030. tmc2130_mode = TMC2130_MODE_SILENT;
  6031. update_mode_profile();
  6032. tmc2130_init();
  6033. }
  6034. break;
  6035. case 916: //! M916 - Set sg_thrs
  6036. {
  6037. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6038. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6039. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6040. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6041. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6042. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6043. }
  6044. break;
  6045. case 917: //! M917 - Set TMC2130 pwm_ampl
  6046. {
  6047. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6048. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6049. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6050. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6051. }
  6052. break;
  6053. case 918: //! M918 - Set TMC2130 pwm_grad
  6054. {
  6055. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6056. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6057. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6058. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6059. }
  6060. break;
  6061. #endif //TMC2130_SERVICE_CODES_M910_M918
  6062. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6063. {
  6064. #ifdef TMC2130
  6065. if(code_seen('E'))
  6066. {
  6067. uint16_t res_new = code_value();
  6068. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6069. {
  6070. st_synchronize();
  6071. uint8_t axis = E_AXIS;
  6072. uint16_t res = tmc2130_get_res(axis);
  6073. tmc2130_set_res(axis, res_new);
  6074. cs.axis_ustep_resolution[axis] = res_new;
  6075. if (res_new > res)
  6076. {
  6077. uint16_t fac = (res_new / res);
  6078. cs.axis_steps_per_unit[axis] *= fac;
  6079. position[E_AXIS] *= fac;
  6080. }
  6081. else
  6082. {
  6083. uint16_t fac = (res / res_new);
  6084. cs.axis_steps_per_unit[axis] /= fac;
  6085. position[E_AXIS] /= fac;
  6086. }
  6087. }
  6088. }
  6089. #else //TMC2130
  6090. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6091. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6092. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6093. if(code_seen('B')) microstep_mode(4,code_value());
  6094. microstep_readings();
  6095. #endif
  6096. #endif //TMC2130
  6097. }
  6098. break;
  6099. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6100. {
  6101. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6102. if(code_seen('S')) switch((int)code_value())
  6103. {
  6104. case 1:
  6105. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6106. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6107. break;
  6108. case 2:
  6109. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6110. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6111. break;
  6112. }
  6113. microstep_readings();
  6114. #endif
  6115. }
  6116. break;
  6117. case 701: //! M701 - load filament
  6118. {
  6119. if (mmu_enabled && code_seen('E'))
  6120. tmp_extruder = code_value();
  6121. gcode_M701();
  6122. }
  6123. break;
  6124. case 702: //! M702 [U C] -
  6125. {
  6126. #ifdef SNMM
  6127. if (code_seen('U'))
  6128. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6129. else if (code_seen('C'))
  6130. extr_unload(); //! if "C" unload just current filament
  6131. else
  6132. extr_unload_all(); //! otherwise unload all filaments
  6133. #else
  6134. if (code_seen('C')) {
  6135. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6136. }
  6137. else {
  6138. if(mmu_enabled) extr_unload(); //! unload current filament
  6139. else unload_filament();
  6140. }
  6141. #endif //SNMM
  6142. }
  6143. break;
  6144. case 999: // M999: Restart after being stopped
  6145. Stopped = false;
  6146. lcd_reset_alert_level();
  6147. gcode_LastN = Stopped_gcode_LastN;
  6148. FlushSerialRequestResend();
  6149. break;
  6150. default:
  6151. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6152. }
  6153. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6154. mcode_in_progress = 0;
  6155. }
  6156. }
  6157. // end if(code_seen('M')) (end of M codes)
  6158. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6159. //! select filament in case of MMU_V2
  6160. //! if extruder is "?", open menu to let the user select extruder/filament
  6161. //!
  6162. //! For MMU_V2:
  6163. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6164. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6165. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6166. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6167. else if(code_seen('T'))
  6168. {
  6169. int index;
  6170. bool load_to_nozzle = false;
  6171. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6172. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6173. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6174. SERIAL_ECHOLNPGM("Invalid T code.");
  6175. }
  6176. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6177. if (mmu_enabled)
  6178. {
  6179. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6180. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6181. {
  6182. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6183. }
  6184. else
  6185. {
  6186. st_synchronize();
  6187. mmu_command(MmuCmd::T0 + tmp_extruder);
  6188. manage_response(true, true, MMU_TCODE_MOVE);
  6189. }
  6190. }
  6191. }
  6192. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6193. if (mmu_enabled)
  6194. {
  6195. st_synchronize();
  6196. mmu_continue_loading(is_usb_printing);
  6197. mmu_extruder = tmp_extruder; //filament change is finished
  6198. mmu_load_to_nozzle();
  6199. }
  6200. }
  6201. else {
  6202. if (*(strchr_pointer + index) == '?')
  6203. {
  6204. if(mmu_enabled)
  6205. {
  6206. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6207. load_to_nozzle = true;
  6208. } else
  6209. {
  6210. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6211. }
  6212. }
  6213. else {
  6214. tmp_extruder = code_value();
  6215. if (mmu_enabled && lcd_autoDepleteEnabled())
  6216. {
  6217. tmp_extruder = ad_getAlternative(tmp_extruder);
  6218. }
  6219. }
  6220. st_synchronize();
  6221. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6222. if (mmu_enabled)
  6223. {
  6224. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6225. {
  6226. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6227. }
  6228. else
  6229. {
  6230. mmu_command(MmuCmd::T0 + tmp_extruder);
  6231. manage_response(true, true, MMU_TCODE_MOVE);
  6232. mmu_continue_loading(is_usb_printing);
  6233. mmu_extruder = tmp_extruder; //filament change is finished
  6234. if (load_to_nozzle)// for single material usage with mmu
  6235. {
  6236. mmu_load_to_nozzle();
  6237. }
  6238. }
  6239. }
  6240. else
  6241. {
  6242. #ifdef SNMM
  6243. mmu_extruder = tmp_extruder;
  6244. _delay(100);
  6245. disable_e0();
  6246. disable_e1();
  6247. disable_e2();
  6248. pinMode(E_MUX0_PIN, OUTPUT);
  6249. pinMode(E_MUX1_PIN, OUTPUT);
  6250. _delay(100);
  6251. SERIAL_ECHO_START;
  6252. SERIAL_ECHO("T:");
  6253. SERIAL_ECHOLN((int)tmp_extruder);
  6254. switch (tmp_extruder) {
  6255. case 1:
  6256. WRITE(E_MUX0_PIN, HIGH);
  6257. WRITE(E_MUX1_PIN, LOW);
  6258. break;
  6259. case 2:
  6260. WRITE(E_MUX0_PIN, LOW);
  6261. WRITE(E_MUX1_PIN, HIGH);
  6262. break;
  6263. case 3:
  6264. WRITE(E_MUX0_PIN, HIGH);
  6265. WRITE(E_MUX1_PIN, HIGH);
  6266. break;
  6267. default:
  6268. WRITE(E_MUX0_PIN, LOW);
  6269. WRITE(E_MUX1_PIN, LOW);
  6270. break;
  6271. }
  6272. _delay(100);
  6273. #else //SNMM
  6274. if (tmp_extruder >= EXTRUDERS) {
  6275. SERIAL_ECHO_START;
  6276. SERIAL_ECHOPGM("T");
  6277. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6278. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6279. }
  6280. else {
  6281. #if EXTRUDERS > 1
  6282. boolean make_move = false;
  6283. #endif
  6284. if (code_seen('F')) {
  6285. #if EXTRUDERS > 1
  6286. make_move = true;
  6287. #endif
  6288. next_feedrate = code_value();
  6289. if (next_feedrate > 0.0) {
  6290. feedrate = next_feedrate;
  6291. }
  6292. }
  6293. #if EXTRUDERS > 1
  6294. if (tmp_extruder != active_extruder) {
  6295. // Save current position to return to after applying extruder offset
  6296. memcpy(destination, current_position, sizeof(destination));
  6297. // Offset extruder (only by XY)
  6298. int i;
  6299. for (i = 0; i < 2; i++) {
  6300. current_position[i] = current_position[i] -
  6301. extruder_offset[i][active_extruder] +
  6302. extruder_offset[i][tmp_extruder];
  6303. }
  6304. // Set the new active extruder and position
  6305. active_extruder = tmp_extruder;
  6306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6307. // Move to the old position if 'F' was in the parameters
  6308. if (make_move && Stopped == false) {
  6309. prepare_move();
  6310. }
  6311. }
  6312. #endif
  6313. SERIAL_ECHO_START;
  6314. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6315. SERIAL_PROTOCOLLN((int)active_extruder);
  6316. }
  6317. #endif //SNMM
  6318. }
  6319. }
  6320. } // end if(code_seen('T')) (end of T codes)
  6321. else if (code_seen('D')) // D codes (debug)
  6322. {
  6323. switch((int)code_value())
  6324. {
  6325. case -1: //! D-1 - Endless loop
  6326. dcode__1(); break;
  6327. #ifdef DEBUG_DCODES
  6328. case 0: //! D0 - Reset
  6329. dcode_0(); break;
  6330. case 1: //! D1 - Clear EEPROM
  6331. dcode_1(); break;
  6332. case 2: //! D2 - Read/Write RAM
  6333. dcode_2(); break;
  6334. #endif //DEBUG_DCODES
  6335. #ifdef DEBUG_DCODE3
  6336. case 3: //! D3 - Read/Write EEPROM
  6337. dcode_3(); break;
  6338. #endif //DEBUG_DCODE3
  6339. #ifdef DEBUG_DCODES
  6340. case 4: //! D4 - Read/Write PIN
  6341. dcode_4(); break;
  6342. #endif //DEBUG_DCODES
  6343. #ifdef DEBUG_DCODE5
  6344. case 5: // D5 - Read/Write FLASH
  6345. dcode_5(); break;
  6346. break;
  6347. #endif //DEBUG_DCODE5
  6348. #ifdef DEBUG_DCODES
  6349. case 6: // D6 - Read/Write external FLASH
  6350. dcode_6(); break;
  6351. case 7: //! D7 - Read/Write Bootloader
  6352. dcode_7(); break;
  6353. case 8: //! D8 - Read/Write PINDA
  6354. dcode_8(); break;
  6355. case 9: //! D9 - Read/Write ADC
  6356. dcode_9(); break;
  6357. case 10: //! D10 - XYZ calibration = OK
  6358. dcode_10(); break;
  6359. #endif //DEBUG_DCODES
  6360. #ifdef HEATBED_ANALYSIS
  6361. case 80:
  6362. {
  6363. float dimension_x = 40;
  6364. float dimension_y = 40;
  6365. int points_x = 40;
  6366. int points_y = 40;
  6367. float offset_x = 74;
  6368. float offset_y = 33;
  6369. if (code_seen('E')) dimension_x = code_value();
  6370. if (code_seen('F')) dimension_y = code_value();
  6371. if (code_seen('G')) {points_x = code_value(); }
  6372. if (code_seen('H')) {points_y = code_value(); }
  6373. if (code_seen('I')) {offset_x = code_value(); }
  6374. if (code_seen('J')) {offset_y = code_value(); }
  6375. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6376. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6377. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6378. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6379. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6380. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6381. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6382. }break;
  6383. case 81:
  6384. {
  6385. float dimension_x = 40;
  6386. float dimension_y = 40;
  6387. int points_x = 40;
  6388. int points_y = 40;
  6389. float offset_x = 74;
  6390. float offset_y = 33;
  6391. if (code_seen('E')) dimension_x = code_value();
  6392. if (code_seen('F')) dimension_y = code_value();
  6393. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6394. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6395. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6396. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6397. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6398. } break;
  6399. #endif //HEATBED_ANALYSIS
  6400. #ifdef DEBUG_DCODES
  6401. case 106: //D106 print measured fan speed for different pwm values
  6402. {
  6403. for (int i = 255; i > 0; i = i - 5) {
  6404. fanSpeed = i;
  6405. //delay_keep_alive(2000);
  6406. for (int j = 0; j < 100; j++) {
  6407. delay_keep_alive(100);
  6408. }
  6409. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6410. }
  6411. }break;
  6412. #ifdef TMC2130
  6413. case 2130: //! D2130 - TMC2130
  6414. dcode_2130(); break;
  6415. #endif //TMC2130
  6416. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6417. case 9125: //! D9125 - FILAMENT_SENSOR
  6418. dcode_9125(); break;
  6419. #endif //FILAMENT_SENSOR
  6420. #endif //DEBUG_DCODES
  6421. }
  6422. }
  6423. else
  6424. {
  6425. SERIAL_ECHO_START;
  6426. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6427. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6428. SERIAL_ECHOLNPGM("\"(2)");
  6429. }
  6430. KEEPALIVE_STATE(NOT_BUSY);
  6431. ClearToSend();
  6432. }
  6433. void FlushSerialRequestResend()
  6434. {
  6435. //char cmdbuffer[bufindr][100]="Resend:";
  6436. MYSERIAL.flush();
  6437. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6438. }
  6439. // Confirm the execution of a command, if sent from a serial line.
  6440. // Execution of a command from a SD card will not be confirmed.
  6441. void ClearToSend()
  6442. {
  6443. previous_millis_cmd = _millis();
  6444. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6445. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6446. }
  6447. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6448. void update_currents() {
  6449. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6450. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6451. float tmp_motor[3];
  6452. //SERIAL_ECHOLNPGM("Currents updated: ");
  6453. if (destination[Z_AXIS] < Z_SILENT) {
  6454. //SERIAL_ECHOLNPGM("LOW");
  6455. for (uint8_t i = 0; i < 3; i++) {
  6456. st_current_set(i, current_low[i]);
  6457. /*MYSERIAL.print(int(i));
  6458. SERIAL_ECHOPGM(": ");
  6459. MYSERIAL.println(current_low[i]);*/
  6460. }
  6461. }
  6462. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6463. //SERIAL_ECHOLNPGM("HIGH");
  6464. for (uint8_t i = 0; i < 3; i++) {
  6465. st_current_set(i, current_high[i]);
  6466. /*MYSERIAL.print(int(i));
  6467. SERIAL_ECHOPGM(": ");
  6468. MYSERIAL.println(current_high[i]);*/
  6469. }
  6470. }
  6471. else {
  6472. for (uint8_t i = 0; i < 3; i++) {
  6473. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6474. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6475. st_current_set(i, tmp_motor[i]);
  6476. /*MYSERIAL.print(int(i));
  6477. SERIAL_ECHOPGM(": ");
  6478. MYSERIAL.println(tmp_motor[i]);*/
  6479. }
  6480. }
  6481. }
  6482. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6483. void get_coordinates()
  6484. {
  6485. bool seen[4]={false,false,false,false};
  6486. for(int8_t i=0; i < NUM_AXIS; i++) {
  6487. if(code_seen(axis_codes[i]))
  6488. {
  6489. bool relative = axis_relative_modes[i] || relative_mode;
  6490. destination[i] = (float)code_value();
  6491. if (i == E_AXIS) {
  6492. float emult = extruder_multiplier[active_extruder];
  6493. if (emult != 1.) {
  6494. if (! relative) {
  6495. destination[i] -= current_position[i];
  6496. relative = true;
  6497. }
  6498. destination[i] *= emult;
  6499. }
  6500. }
  6501. if (relative)
  6502. destination[i] += current_position[i];
  6503. seen[i]=true;
  6504. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6505. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6506. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6507. }
  6508. else destination[i] = current_position[i]; //Are these else lines really needed?
  6509. }
  6510. if(code_seen('F')) {
  6511. next_feedrate = code_value();
  6512. #ifdef MAX_SILENT_FEEDRATE
  6513. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6514. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6515. #endif //MAX_SILENT_FEEDRATE
  6516. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6517. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6518. {
  6519. // float e_max_speed =
  6520. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6521. }
  6522. }
  6523. }
  6524. void get_arc_coordinates()
  6525. {
  6526. #ifdef SF_ARC_FIX
  6527. bool relative_mode_backup = relative_mode;
  6528. relative_mode = true;
  6529. #endif
  6530. get_coordinates();
  6531. #ifdef SF_ARC_FIX
  6532. relative_mode=relative_mode_backup;
  6533. #endif
  6534. if(code_seen('I')) {
  6535. offset[0] = code_value();
  6536. }
  6537. else {
  6538. offset[0] = 0.0;
  6539. }
  6540. if(code_seen('J')) {
  6541. offset[1] = code_value();
  6542. }
  6543. else {
  6544. offset[1] = 0.0;
  6545. }
  6546. }
  6547. void clamp_to_software_endstops(float target[3])
  6548. {
  6549. #ifdef DEBUG_DISABLE_SWLIMITS
  6550. return;
  6551. #endif //DEBUG_DISABLE_SWLIMITS
  6552. world2machine_clamp(target[0], target[1]);
  6553. // Clamp the Z coordinate.
  6554. if (min_software_endstops) {
  6555. float negative_z_offset = 0;
  6556. #ifdef ENABLE_AUTO_BED_LEVELING
  6557. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6558. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6559. #endif
  6560. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6561. }
  6562. if (max_software_endstops) {
  6563. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6564. }
  6565. }
  6566. #ifdef MESH_BED_LEVELING
  6567. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6568. float dx = x - current_position[X_AXIS];
  6569. float dy = y - current_position[Y_AXIS];
  6570. float dz = z - current_position[Z_AXIS];
  6571. int n_segments = 0;
  6572. if (mbl.active) {
  6573. float len = abs(dx) + abs(dy);
  6574. if (len > 0)
  6575. // Split to 3cm segments or shorter.
  6576. n_segments = int(ceil(len / 30.f));
  6577. }
  6578. if (n_segments > 1) {
  6579. float de = e - current_position[E_AXIS];
  6580. for (int i = 1; i < n_segments; ++ i) {
  6581. float t = float(i) / float(n_segments);
  6582. if (saved_printing || (mbl.active == false)) return;
  6583. plan_buffer_line(
  6584. current_position[X_AXIS] + t * dx,
  6585. current_position[Y_AXIS] + t * dy,
  6586. current_position[Z_AXIS] + t * dz,
  6587. current_position[E_AXIS] + t * de,
  6588. feed_rate, extruder);
  6589. }
  6590. }
  6591. // The rest of the path.
  6592. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6593. current_position[X_AXIS] = x;
  6594. current_position[Y_AXIS] = y;
  6595. current_position[Z_AXIS] = z;
  6596. current_position[E_AXIS] = e;
  6597. }
  6598. #endif // MESH_BED_LEVELING
  6599. void prepare_move()
  6600. {
  6601. clamp_to_software_endstops(destination);
  6602. previous_millis_cmd = _millis();
  6603. // Do not use feedmultiply for E or Z only moves
  6604. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6606. }
  6607. else {
  6608. #ifdef MESH_BED_LEVELING
  6609. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6610. #else
  6611. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6612. #endif
  6613. }
  6614. for(int8_t i=0; i < NUM_AXIS; i++) {
  6615. current_position[i] = destination[i];
  6616. }
  6617. }
  6618. void prepare_arc_move(char isclockwise) {
  6619. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6620. // Trace the arc
  6621. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6622. // As far as the parser is concerned, the position is now == target. In reality the
  6623. // motion control system might still be processing the action and the real tool position
  6624. // in any intermediate location.
  6625. for(int8_t i=0; i < NUM_AXIS; i++) {
  6626. current_position[i] = destination[i];
  6627. }
  6628. previous_millis_cmd = _millis();
  6629. }
  6630. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6631. #if defined(FAN_PIN)
  6632. #if CONTROLLERFAN_PIN == FAN_PIN
  6633. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6634. #endif
  6635. #endif
  6636. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6637. unsigned long lastMotorCheck = 0;
  6638. void controllerFan()
  6639. {
  6640. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6641. {
  6642. lastMotorCheck = _millis();
  6643. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6644. #if EXTRUDERS > 2
  6645. || !READ(E2_ENABLE_PIN)
  6646. #endif
  6647. #if EXTRUDER > 1
  6648. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6649. || !READ(X2_ENABLE_PIN)
  6650. #endif
  6651. || !READ(E1_ENABLE_PIN)
  6652. #endif
  6653. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6654. {
  6655. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6656. }
  6657. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6658. {
  6659. digitalWrite(CONTROLLERFAN_PIN, 0);
  6660. analogWrite(CONTROLLERFAN_PIN, 0);
  6661. }
  6662. else
  6663. {
  6664. // allows digital or PWM fan output to be used (see M42 handling)
  6665. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6666. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6667. }
  6668. }
  6669. }
  6670. #endif
  6671. #ifdef TEMP_STAT_LEDS
  6672. static bool blue_led = false;
  6673. static bool red_led = false;
  6674. static uint32_t stat_update = 0;
  6675. void handle_status_leds(void) {
  6676. float max_temp = 0.0;
  6677. if(_millis() > stat_update) {
  6678. stat_update += 500; // Update every 0.5s
  6679. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6680. max_temp = max(max_temp, degHotend(cur_extruder));
  6681. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6682. }
  6683. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6684. max_temp = max(max_temp, degTargetBed());
  6685. max_temp = max(max_temp, degBed());
  6686. #endif
  6687. if((max_temp > 55.0) && (red_led == false)) {
  6688. digitalWrite(STAT_LED_RED, 1);
  6689. digitalWrite(STAT_LED_BLUE, 0);
  6690. red_led = true;
  6691. blue_led = false;
  6692. }
  6693. if((max_temp < 54.0) && (blue_led == false)) {
  6694. digitalWrite(STAT_LED_RED, 0);
  6695. digitalWrite(STAT_LED_BLUE, 1);
  6696. red_led = false;
  6697. blue_led = true;
  6698. }
  6699. }
  6700. }
  6701. #endif
  6702. #ifdef SAFETYTIMER
  6703. /**
  6704. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6705. *
  6706. * Full screen blocking notification message is shown after heater turning off.
  6707. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6708. * damage print.
  6709. *
  6710. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6711. */
  6712. static void handleSafetyTimer()
  6713. {
  6714. #if (EXTRUDERS > 1)
  6715. #error Implemented only for one extruder.
  6716. #endif //(EXTRUDERS > 1)
  6717. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6718. {
  6719. safetyTimer.stop();
  6720. }
  6721. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6722. {
  6723. safetyTimer.start();
  6724. }
  6725. else if (safetyTimer.expired(safetytimer_inactive_time))
  6726. {
  6727. setTargetBed(0);
  6728. setAllTargetHotends(0);
  6729. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6730. }
  6731. }
  6732. #endif //SAFETYTIMER
  6733. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6734. {
  6735. bool bInhibitFlag;
  6736. #ifdef FILAMENT_SENSOR
  6737. if (mmu_enabled == false)
  6738. {
  6739. //-// if (mcode_in_progress != 600) //M600 not in progress
  6740. #ifdef PAT9125
  6741. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6742. #endif // PAT9125
  6743. #ifdef IR_SENSOR
  6744. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6745. #endif // IR_SENSOR
  6746. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6747. {
  6748. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6749. {
  6750. if (fsensor_check_autoload())
  6751. {
  6752. #ifdef PAT9125
  6753. fsensor_autoload_check_stop();
  6754. #endif //PAT9125
  6755. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6756. if(0)
  6757. {
  6758. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6759. _tone(BEEPER, 1000);
  6760. delay_keep_alive(50);
  6761. _noTone(BEEPER);
  6762. loading_flag = true;
  6763. enquecommand_front_P((PSTR("M701")));
  6764. }
  6765. else
  6766. {
  6767. /*
  6768. lcd_update_enable(false);
  6769. show_preheat_nozzle_warning();
  6770. lcd_update_enable(true);
  6771. */
  6772. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6773. bFilamentFirstRun=false;
  6774. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6775. {
  6776. bFilamentPreheatState=true;
  6777. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6778. menu_submenu(mFilamentItemForce);
  6779. }
  6780. else
  6781. {
  6782. menu_submenu(mFilamentMenu);
  6783. lcd_timeoutToStatus.start();
  6784. }
  6785. }
  6786. }
  6787. }
  6788. else
  6789. {
  6790. #ifdef PAT9125
  6791. fsensor_autoload_check_stop();
  6792. #endif //PAT9125
  6793. fsensor_update();
  6794. }
  6795. }
  6796. }
  6797. #endif //FILAMENT_SENSOR
  6798. #ifdef SAFETYTIMER
  6799. handleSafetyTimer();
  6800. #endif //SAFETYTIMER
  6801. #if defined(KILL_PIN) && KILL_PIN > -1
  6802. static int killCount = 0; // make the inactivity button a bit less responsive
  6803. const int KILL_DELAY = 10000;
  6804. #endif
  6805. if(buflen < (BUFSIZE-1)){
  6806. get_command();
  6807. }
  6808. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6809. if(max_inactive_time)
  6810. kill(_n(""), 4);
  6811. if(stepper_inactive_time) {
  6812. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6813. {
  6814. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6815. disable_x();
  6816. disable_y();
  6817. disable_z();
  6818. disable_e0();
  6819. disable_e1();
  6820. disable_e2();
  6821. }
  6822. }
  6823. }
  6824. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6825. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6826. {
  6827. chdkActive = false;
  6828. WRITE(CHDK, LOW);
  6829. }
  6830. #endif
  6831. #if defined(KILL_PIN) && KILL_PIN > -1
  6832. // Check if the kill button was pressed and wait just in case it was an accidental
  6833. // key kill key press
  6834. // -------------------------------------------------------------------------------
  6835. if( 0 == READ(KILL_PIN) )
  6836. {
  6837. killCount++;
  6838. }
  6839. else if (killCount > 0)
  6840. {
  6841. killCount--;
  6842. }
  6843. // Exceeded threshold and we can confirm that it was not accidental
  6844. // KILL the machine
  6845. // ----------------------------------------------------------------
  6846. if ( killCount >= KILL_DELAY)
  6847. {
  6848. kill("", 5);
  6849. }
  6850. #endif
  6851. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6852. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6853. #endif
  6854. #ifdef EXTRUDER_RUNOUT_PREVENT
  6855. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6856. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6857. {
  6858. bool oldstatus=READ(E0_ENABLE_PIN);
  6859. enable_e0();
  6860. float oldepos=current_position[E_AXIS];
  6861. float oldedes=destination[E_AXIS];
  6862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6863. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6864. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6865. current_position[E_AXIS]=oldepos;
  6866. destination[E_AXIS]=oldedes;
  6867. plan_set_e_position(oldepos);
  6868. previous_millis_cmd=_millis();
  6869. st_synchronize();
  6870. WRITE(E0_ENABLE_PIN,oldstatus);
  6871. }
  6872. #endif
  6873. #ifdef TEMP_STAT_LEDS
  6874. handle_status_leds();
  6875. #endif
  6876. check_axes_activity();
  6877. mmu_loop();
  6878. }
  6879. void kill(const char *full_screen_message, unsigned char id)
  6880. {
  6881. printf_P(_N("KILL: %d\n"), id);
  6882. //return;
  6883. cli(); // Stop interrupts
  6884. disable_heater();
  6885. disable_x();
  6886. // SERIAL_ECHOLNPGM("kill - disable Y");
  6887. disable_y();
  6888. disable_z();
  6889. disable_e0();
  6890. disable_e1();
  6891. disable_e2();
  6892. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6893. pinMode(PS_ON_PIN,INPUT);
  6894. #endif
  6895. SERIAL_ERROR_START;
  6896. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6897. if (full_screen_message != NULL) {
  6898. SERIAL_ERRORLNRPGM(full_screen_message);
  6899. lcd_display_message_fullscreen_P(full_screen_message);
  6900. } else {
  6901. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6902. }
  6903. // FMC small patch to update the LCD before ending
  6904. sei(); // enable interrupts
  6905. for ( int i=5; i--; lcd_update(0))
  6906. {
  6907. _delay(200);
  6908. }
  6909. cli(); // disable interrupts
  6910. suicide();
  6911. while(1)
  6912. {
  6913. #ifdef WATCHDOG
  6914. wdt_reset();
  6915. #endif //WATCHDOG
  6916. /* Intentionally left empty */
  6917. } // Wait for reset
  6918. }
  6919. void Stop()
  6920. {
  6921. disable_heater();
  6922. if(Stopped == false) {
  6923. Stopped = true;
  6924. lcd_print_stop();
  6925. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6926. SERIAL_ERROR_START;
  6927. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6928. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6929. }
  6930. }
  6931. bool IsStopped() { return Stopped; };
  6932. #ifdef FAST_PWM_FAN
  6933. void setPwmFrequency(uint8_t pin, int val)
  6934. {
  6935. val &= 0x07;
  6936. switch(digitalPinToTimer(pin))
  6937. {
  6938. #if defined(TCCR0A)
  6939. case TIMER0A:
  6940. case TIMER0B:
  6941. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6942. // TCCR0B |= val;
  6943. break;
  6944. #endif
  6945. #if defined(TCCR1A)
  6946. case TIMER1A:
  6947. case TIMER1B:
  6948. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6949. // TCCR1B |= val;
  6950. break;
  6951. #endif
  6952. #if defined(TCCR2)
  6953. case TIMER2:
  6954. case TIMER2:
  6955. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6956. TCCR2 |= val;
  6957. break;
  6958. #endif
  6959. #if defined(TCCR2A)
  6960. case TIMER2A:
  6961. case TIMER2B:
  6962. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6963. TCCR2B |= val;
  6964. break;
  6965. #endif
  6966. #if defined(TCCR3A)
  6967. case TIMER3A:
  6968. case TIMER3B:
  6969. case TIMER3C:
  6970. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6971. TCCR3B |= val;
  6972. break;
  6973. #endif
  6974. #if defined(TCCR4A)
  6975. case TIMER4A:
  6976. case TIMER4B:
  6977. case TIMER4C:
  6978. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6979. TCCR4B |= val;
  6980. break;
  6981. #endif
  6982. #if defined(TCCR5A)
  6983. case TIMER5A:
  6984. case TIMER5B:
  6985. case TIMER5C:
  6986. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6987. TCCR5B |= val;
  6988. break;
  6989. #endif
  6990. }
  6991. }
  6992. #endif //FAST_PWM_FAN
  6993. //! @brief Get and validate extruder number
  6994. //!
  6995. //! If it is not specified, active_extruder is returned in parameter extruder.
  6996. //! @param [in] code M code number
  6997. //! @param [out] extruder
  6998. //! @return error
  6999. //! @retval true Invalid extruder specified in T code
  7000. //! @retval false Valid extruder specified in T code, or not specifiead
  7001. bool setTargetedHotend(int code, uint8_t &extruder)
  7002. {
  7003. extruder = active_extruder;
  7004. if(code_seen('T')) {
  7005. extruder = code_value();
  7006. if(extruder >= EXTRUDERS) {
  7007. SERIAL_ECHO_START;
  7008. switch(code){
  7009. case 104:
  7010. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7011. break;
  7012. case 105:
  7013. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7014. break;
  7015. case 109:
  7016. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7017. break;
  7018. case 218:
  7019. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7020. break;
  7021. case 221:
  7022. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7023. break;
  7024. }
  7025. SERIAL_PROTOCOLLN((int)extruder);
  7026. return true;
  7027. }
  7028. }
  7029. return false;
  7030. }
  7031. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7032. {
  7033. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7034. {
  7035. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7036. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7037. }
  7038. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7039. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7040. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7041. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7042. total_filament_used = 0;
  7043. }
  7044. float calculate_extruder_multiplier(float diameter) {
  7045. float out = 1.f;
  7046. if (cs.volumetric_enabled && diameter > 0.f) {
  7047. float area = M_PI * diameter * diameter * 0.25;
  7048. out = 1.f / area;
  7049. }
  7050. if (extrudemultiply != 100)
  7051. out *= float(extrudemultiply) * 0.01f;
  7052. return out;
  7053. }
  7054. void calculate_extruder_multipliers() {
  7055. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7056. #if EXTRUDERS > 1
  7057. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7058. #if EXTRUDERS > 2
  7059. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7060. #endif
  7061. #endif
  7062. }
  7063. void delay_keep_alive(unsigned int ms)
  7064. {
  7065. for (;;) {
  7066. manage_heater();
  7067. // Manage inactivity, but don't disable steppers on timeout.
  7068. manage_inactivity(true);
  7069. lcd_update(0);
  7070. if (ms == 0)
  7071. break;
  7072. else if (ms >= 50) {
  7073. _delay(50);
  7074. ms -= 50;
  7075. } else {
  7076. _delay(ms);
  7077. ms = 0;
  7078. }
  7079. }
  7080. }
  7081. static void wait_for_heater(long codenum, uint8_t extruder) {
  7082. #ifdef TEMP_RESIDENCY_TIME
  7083. long residencyStart;
  7084. residencyStart = -1;
  7085. /* continue to loop until we have reached the target temp
  7086. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7087. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7088. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7089. #else
  7090. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7091. #endif //TEMP_RESIDENCY_TIME
  7092. if ((_millis() - codenum) > 1000UL)
  7093. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7094. if (!farm_mode) {
  7095. SERIAL_PROTOCOLPGM("T:");
  7096. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7097. SERIAL_PROTOCOLPGM(" E:");
  7098. SERIAL_PROTOCOL((int)extruder);
  7099. #ifdef TEMP_RESIDENCY_TIME
  7100. SERIAL_PROTOCOLPGM(" W:");
  7101. if (residencyStart > -1)
  7102. {
  7103. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7104. SERIAL_PROTOCOLLN(codenum);
  7105. }
  7106. else
  7107. {
  7108. SERIAL_PROTOCOLLN("?");
  7109. }
  7110. }
  7111. #else
  7112. SERIAL_PROTOCOLLN("");
  7113. #endif
  7114. codenum = _millis();
  7115. }
  7116. manage_heater();
  7117. manage_inactivity(true); //do not disable steppers
  7118. lcd_update(0);
  7119. #ifdef TEMP_RESIDENCY_TIME
  7120. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7121. or when current temp falls outside the hysteresis after target temp was reached */
  7122. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7123. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7124. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7125. {
  7126. residencyStart = _millis();
  7127. }
  7128. #endif //TEMP_RESIDENCY_TIME
  7129. }
  7130. }
  7131. void check_babystep()
  7132. {
  7133. int babystep_z;
  7134. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7135. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7136. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7137. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7138. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7139. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7140. lcd_update_enable(true);
  7141. }
  7142. }
  7143. #ifdef HEATBED_ANALYSIS
  7144. void d_setup()
  7145. {
  7146. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7147. pinMode(D_DATA, INPUT_PULLUP);
  7148. pinMode(D_REQUIRE, OUTPUT);
  7149. digitalWrite(D_REQUIRE, HIGH);
  7150. }
  7151. float d_ReadData()
  7152. {
  7153. int digit[13];
  7154. String mergeOutput;
  7155. float output;
  7156. digitalWrite(D_REQUIRE, HIGH);
  7157. for (int i = 0; i<13; i++)
  7158. {
  7159. for (int j = 0; j < 4; j++)
  7160. {
  7161. while (digitalRead(D_DATACLOCK) == LOW) {}
  7162. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7163. bitWrite(digit[i], j, digitalRead(D_DATA));
  7164. }
  7165. }
  7166. digitalWrite(D_REQUIRE, LOW);
  7167. mergeOutput = "";
  7168. output = 0;
  7169. for (int r = 5; r <= 10; r++) //Merge digits
  7170. {
  7171. mergeOutput += digit[r];
  7172. }
  7173. output = mergeOutput.toFloat();
  7174. if (digit[4] == 8) //Handle sign
  7175. {
  7176. output *= -1;
  7177. }
  7178. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7179. {
  7180. output /= 10;
  7181. }
  7182. return output;
  7183. }
  7184. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7185. int t1 = 0;
  7186. int t_delay = 0;
  7187. int digit[13];
  7188. int m;
  7189. char str[3];
  7190. //String mergeOutput;
  7191. char mergeOutput[15];
  7192. float output;
  7193. int mesh_point = 0; //index number of calibration point
  7194. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7195. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7196. float mesh_home_z_search = 4;
  7197. float measure_z_heigth = 0.2f;
  7198. float row[x_points_num];
  7199. int ix = 0;
  7200. int iy = 0;
  7201. const char* filename_wldsd = "mesh.txt";
  7202. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7203. char numb_wldsd[8]; // (" -A.BCD" + null)
  7204. #ifdef MICROMETER_LOGGING
  7205. d_setup();
  7206. #endif //MICROMETER_LOGGING
  7207. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7208. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7209. unsigned int custom_message_type_old = custom_message_type;
  7210. unsigned int custom_message_state_old = custom_message_state;
  7211. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7212. custom_message_state = (x_points_num * y_points_num) + 10;
  7213. lcd_update(1);
  7214. //mbl.reset();
  7215. babystep_undo();
  7216. card.openFile(filename_wldsd, false);
  7217. /*destination[Z_AXIS] = mesh_home_z_search;
  7218. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7220. for(int8_t i=0; i < NUM_AXIS; i++) {
  7221. current_position[i] = destination[i];
  7222. }
  7223. st_synchronize();
  7224. */
  7225. destination[Z_AXIS] = measure_z_heigth;
  7226. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7227. for(int8_t i=0; i < NUM_AXIS; i++) {
  7228. current_position[i] = destination[i];
  7229. }
  7230. st_synchronize();
  7231. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7232. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7233. SERIAL_PROTOCOL(x_points_num);
  7234. SERIAL_PROTOCOLPGM(",");
  7235. SERIAL_PROTOCOL(y_points_num);
  7236. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7237. SERIAL_PROTOCOL(mesh_home_z_search);
  7238. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7239. SERIAL_PROTOCOL(x_dimension);
  7240. SERIAL_PROTOCOLPGM(",");
  7241. SERIAL_PROTOCOL(y_dimension);
  7242. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7243. while (mesh_point != x_points_num * y_points_num) {
  7244. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7245. iy = mesh_point / x_points_num;
  7246. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7247. float z0 = 0.f;
  7248. /*destination[Z_AXIS] = mesh_home_z_search;
  7249. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7250. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7251. for(int8_t i=0; i < NUM_AXIS; i++) {
  7252. current_position[i] = destination[i];
  7253. }
  7254. st_synchronize();*/
  7255. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7256. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7257. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7258. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7259. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7260. for(int8_t i=0; i < NUM_AXIS; i++) {
  7261. current_position[i] = destination[i];
  7262. }
  7263. st_synchronize();
  7264. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7265. delay_keep_alive(1000);
  7266. #ifdef MICROMETER_LOGGING
  7267. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7268. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7269. //strcat(data_wldsd, numb_wldsd);
  7270. //MYSERIAL.println(data_wldsd);
  7271. //delay(1000);
  7272. //delay(3000);
  7273. //t1 = millis();
  7274. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7275. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7276. memset(digit, 0, sizeof(digit));
  7277. //cli();
  7278. digitalWrite(D_REQUIRE, LOW);
  7279. for (int i = 0; i<13; i++)
  7280. {
  7281. //t1 = millis();
  7282. for (int j = 0; j < 4; j++)
  7283. {
  7284. while (digitalRead(D_DATACLOCK) == LOW) {}
  7285. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7286. //printf_P(PSTR("Done %d\n"), j);
  7287. bitWrite(digit[i], j, digitalRead(D_DATA));
  7288. }
  7289. //t_delay = (millis() - t1);
  7290. //SERIAL_PROTOCOLPGM(" ");
  7291. //SERIAL_PROTOCOL_F(t_delay, 5);
  7292. //SERIAL_PROTOCOLPGM(" ");
  7293. }
  7294. //sei();
  7295. digitalWrite(D_REQUIRE, HIGH);
  7296. mergeOutput[0] = '\0';
  7297. output = 0;
  7298. for (int r = 5; r <= 10; r++) //Merge digits
  7299. {
  7300. sprintf(str, "%d", digit[r]);
  7301. strcat(mergeOutput, str);
  7302. }
  7303. output = atof(mergeOutput);
  7304. if (digit[4] == 8) //Handle sign
  7305. {
  7306. output *= -1;
  7307. }
  7308. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7309. {
  7310. output *= 0.1;
  7311. }
  7312. //output = d_ReadData();
  7313. //row[ix] = current_position[Z_AXIS];
  7314. //row[ix] = d_ReadData();
  7315. row[ix] = output;
  7316. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7317. memset(data_wldsd, 0, sizeof(data_wldsd));
  7318. for (int i = 0; i < x_points_num; i++) {
  7319. SERIAL_PROTOCOLPGM(" ");
  7320. SERIAL_PROTOCOL_F(row[i], 5);
  7321. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7322. dtostrf(row[i], 7, 3, numb_wldsd);
  7323. strcat(data_wldsd, numb_wldsd);
  7324. }
  7325. card.write_command(data_wldsd);
  7326. SERIAL_PROTOCOLPGM("\n");
  7327. }
  7328. custom_message_state--;
  7329. mesh_point++;
  7330. lcd_update(1);
  7331. }
  7332. #endif //MICROMETER_LOGGING
  7333. card.closefile();
  7334. //clean_up_after_endstop_move(l_feedmultiply);
  7335. }
  7336. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7337. int t1 = 0;
  7338. int t_delay = 0;
  7339. int digit[13];
  7340. int m;
  7341. char str[3];
  7342. //String mergeOutput;
  7343. char mergeOutput[15];
  7344. float output;
  7345. int mesh_point = 0; //index number of calibration point
  7346. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7347. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7348. float mesh_home_z_search = 4;
  7349. float row[x_points_num];
  7350. int ix = 0;
  7351. int iy = 0;
  7352. const char* filename_wldsd = "wldsd.txt";
  7353. char data_wldsd[70];
  7354. char numb_wldsd[10];
  7355. d_setup();
  7356. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7357. // We don't know where we are! HOME!
  7358. // Push the commands to the front of the message queue in the reverse order!
  7359. // There shall be always enough space reserved for these commands.
  7360. repeatcommand_front(); // repeat G80 with all its parameters
  7361. enquecommand_front_P((PSTR("G28 W0")));
  7362. enquecommand_front_P((PSTR("G1 Z5")));
  7363. return;
  7364. }
  7365. unsigned int custom_message_type_old = custom_message_type;
  7366. unsigned int custom_message_state_old = custom_message_state;
  7367. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7368. custom_message_state = (x_points_num * y_points_num) + 10;
  7369. lcd_update(1);
  7370. mbl.reset();
  7371. babystep_undo();
  7372. card.openFile(filename_wldsd, false);
  7373. current_position[Z_AXIS] = mesh_home_z_search;
  7374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7375. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7376. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7377. int l_feedmultiply = setup_for_endstop_move(false);
  7378. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7379. SERIAL_PROTOCOL(x_points_num);
  7380. SERIAL_PROTOCOLPGM(",");
  7381. SERIAL_PROTOCOL(y_points_num);
  7382. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7383. SERIAL_PROTOCOL(mesh_home_z_search);
  7384. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7385. SERIAL_PROTOCOL(x_dimension);
  7386. SERIAL_PROTOCOLPGM(",");
  7387. SERIAL_PROTOCOL(y_dimension);
  7388. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7389. while (mesh_point != x_points_num * y_points_num) {
  7390. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7391. iy = mesh_point / x_points_num;
  7392. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7393. float z0 = 0.f;
  7394. current_position[Z_AXIS] = mesh_home_z_search;
  7395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7396. st_synchronize();
  7397. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7398. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7400. st_synchronize();
  7401. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7402. break;
  7403. card.closefile();
  7404. }
  7405. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7406. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7407. //strcat(data_wldsd, numb_wldsd);
  7408. //MYSERIAL.println(data_wldsd);
  7409. //_delay(1000);
  7410. //_delay(3000);
  7411. //t1 = _millis();
  7412. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7413. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7414. memset(digit, 0, sizeof(digit));
  7415. //cli();
  7416. digitalWrite(D_REQUIRE, LOW);
  7417. for (int i = 0; i<13; i++)
  7418. {
  7419. //t1 = _millis();
  7420. for (int j = 0; j < 4; j++)
  7421. {
  7422. while (digitalRead(D_DATACLOCK) == LOW) {}
  7423. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7424. bitWrite(digit[i], j, digitalRead(D_DATA));
  7425. }
  7426. //t_delay = (_millis() - t1);
  7427. //SERIAL_PROTOCOLPGM(" ");
  7428. //SERIAL_PROTOCOL_F(t_delay, 5);
  7429. //SERIAL_PROTOCOLPGM(" ");
  7430. }
  7431. //sei();
  7432. digitalWrite(D_REQUIRE, HIGH);
  7433. mergeOutput[0] = '\0';
  7434. output = 0;
  7435. for (int r = 5; r <= 10; r++) //Merge digits
  7436. {
  7437. sprintf(str, "%d", digit[r]);
  7438. strcat(mergeOutput, str);
  7439. }
  7440. output = atof(mergeOutput);
  7441. if (digit[4] == 8) //Handle sign
  7442. {
  7443. output *= -1;
  7444. }
  7445. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7446. {
  7447. output *= 0.1;
  7448. }
  7449. //output = d_ReadData();
  7450. //row[ix] = current_position[Z_AXIS];
  7451. memset(data_wldsd, 0, sizeof(data_wldsd));
  7452. for (int i = 0; i <3; i++) {
  7453. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7454. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7455. strcat(data_wldsd, numb_wldsd);
  7456. strcat(data_wldsd, ";");
  7457. }
  7458. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7459. dtostrf(output, 8, 5, numb_wldsd);
  7460. strcat(data_wldsd, numb_wldsd);
  7461. //strcat(data_wldsd, ";");
  7462. card.write_command(data_wldsd);
  7463. //row[ix] = d_ReadData();
  7464. row[ix] = output; // current_position[Z_AXIS];
  7465. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7466. for (int i = 0; i < x_points_num; i++) {
  7467. SERIAL_PROTOCOLPGM(" ");
  7468. SERIAL_PROTOCOL_F(row[i], 5);
  7469. }
  7470. SERIAL_PROTOCOLPGM("\n");
  7471. }
  7472. custom_message_state--;
  7473. mesh_point++;
  7474. lcd_update(1);
  7475. }
  7476. card.closefile();
  7477. clean_up_after_endstop_move(l_feedmultiply);
  7478. }
  7479. #endif //HEATBED_ANALYSIS
  7480. void temp_compensation_start() {
  7481. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7482. custom_message_state = PINDA_HEAT_T + 1;
  7483. lcd_update(2);
  7484. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7485. current_position[E_AXIS] -= default_retraction;
  7486. }
  7487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7488. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7489. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7490. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7492. st_synchronize();
  7493. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7494. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7495. delay_keep_alive(1000);
  7496. custom_message_state = PINDA_HEAT_T - i;
  7497. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7498. else lcd_update(1);
  7499. }
  7500. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7501. custom_message_state = 0;
  7502. }
  7503. void temp_compensation_apply() {
  7504. int i_add;
  7505. int z_shift = 0;
  7506. float z_shift_mm;
  7507. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7508. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7509. i_add = (target_temperature_bed - 60) / 10;
  7510. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7511. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7512. }else {
  7513. //interpolation
  7514. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7515. }
  7516. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7518. st_synchronize();
  7519. plan_set_z_position(current_position[Z_AXIS]);
  7520. }
  7521. else {
  7522. //we have no temp compensation data
  7523. }
  7524. }
  7525. float temp_comp_interpolation(float inp_temperature) {
  7526. //cubic spline interpolation
  7527. int n, i, j;
  7528. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7529. int shift[10];
  7530. int temp_C[10];
  7531. n = 6; //number of measured points
  7532. shift[0] = 0;
  7533. for (i = 0; i < n; i++) {
  7534. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7535. temp_C[i] = 50 + i * 10; //temperature in C
  7536. #ifdef PINDA_THERMISTOR
  7537. temp_C[i] = 35 + i * 5; //temperature in C
  7538. #else
  7539. temp_C[i] = 50 + i * 10; //temperature in C
  7540. #endif
  7541. x[i] = (float)temp_C[i];
  7542. f[i] = (float)shift[i];
  7543. }
  7544. if (inp_temperature < x[0]) return 0;
  7545. for (i = n - 1; i>0; i--) {
  7546. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7547. h[i - 1] = x[i] - x[i - 1];
  7548. }
  7549. //*********** formation of h, s , f matrix **************
  7550. for (i = 1; i<n - 1; i++) {
  7551. m[i][i] = 2 * (h[i - 1] + h[i]);
  7552. if (i != 1) {
  7553. m[i][i - 1] = h[i - 1];
  7554. m[i - 1][i] = h[i - 1];
  7555. }
  7556. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7557. }
  7558. //*********** forward elimination **************
  7559. for (i = 1; i<n - 2; i++) {
  7560. temp = (m[i + 1][i] / m[i][i]);
  7561. for (j = 1; j <= n - 1; j++)
  7562. m[i + 1][j] -= temp*m[i][j];
  7563. }
  7564. //*********** backward substitution *********
  7565. for (i = n - 2; i>0; i--) {
  7566. sum = 0;
  7567. for (j = i; j <= n - 2; j++)
  7568. sum += m[i][j] * s[j];
  7569. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7570. }
  7571. for (i = 0; i<n - 1; i++)
  7572. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7573. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7574. b = s[i] / 2;
  7575. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7576. d = f[i];
  7577. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7578. }
  7579. return sum;
  7580. }
  7581. #ifdef PINDA_THERMISTOR
  7582. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7583. {
  7584. if (!temp_cal_active) return 0;
  7585. if (!calibration_status_pinda()) return 0;
  7586. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7587. }
  7588. #endif //PINDA_THERMISTOR
  7589. void long_pause() //long pause print
  7590. {
  7591. st_synchronize();
  7592. start_pause_print = _millis();
  7593. //retract
  7594. current_position[E_AXIS] -= default_retraction;
  7595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7596. //lift z
  7597. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7598. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7600. //Move XY to side
  7601. current_position[X_AXIS] = X_PAUSE_POS;
  7602. current_position[Y_AXIS] = Y_PAUSE_POS;
  7603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7604. // Turn off the print fan
  7605. fanSpeed = 0;
  7606. st_synchronize();
  7607. }
  7608. void serialecho_temperatures() {
  7609. float tt = degHotend(active_extruder);
  7610. SERIAL_PROTOCOLPGM("T:");
  7611. SERIAL_PROTOCOL(tt);
  7612. SERIAL_PROTOCOLPGM(" E:");
  7613. SERIAL_PROTOCOL((int)active_extruder);
  7614. SERIAL_PROTOCOLPGM(" B:");
  7615. SERIAL_PROTOCOL_F(degBed(), 1);
  7616. SERIAL_PROTOCOLLN("");
  7617. }
  7618. extern uint32_t sdpos_atomic;
  7619. #ifdef UVLO_SUPPORT
  7620. void uvlo_()
  7621. {
  7622. unsigned long time_start = _millis();
  7623. bool sd_print = card.sdprinting;
  7624. // Conserve power as soon as possible.
  7625. disable_x();
  7626. disable_y();
  7627. #ifdef TMC2130
  7628. tmc2130_set_current_h(Z_AXIS, 20);
  7629. tmc2130_set_current_r(Z_AXIS, 20);
  7630. tmc2130_set_current_h(E_AXIS, 20);
  7631. tmc2130_set_current_r(E_AXIS, 20);
  7632. #endif //TMC2130
  7633. // Indicate that the interrupt has been triggered.
  7634. // SERIAL_ECHOLNPGM("UVLO");
  7635. // Read out the current Z motor microstep counter. This will be later used
  7636. // for reaching the zero full step before powering off.
  7637. uint16_t z_microsteps = 0;
  7638. #ifdef TMC2130
  7639. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7640. #endif //TMC2130
  7641. // Calculate the file position, from which to resume this print.
  7642. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7643. {
  7644. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7645. sd_position -= sdlen_planner;
  7646. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7647. sd_position -= sdlen_cmdqueue;
  7648. if (sd_position < 0) sd_position = 0;
  7649. }
  7650. // Backup the feedrate in mm/min.
  7651. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7652. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7653. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7654. // are in action.
  7655. planner_abort_hard();
  7656. // Store the current extruder position.
  7657. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7658. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7659. // Clean the input command queue.
  7660. cmdqueue_reset();
  7661. card.sdprinting = false;
  7662. // card.closefile();
  7663. // Enable stepper driver interrupt to move Z axis.
  7664. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7665. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7666. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7667. sei();
  7668. plan_buffer_line(
  7669. current_position[X_AXIS],
  7670. current_position[Y_AXIS],
  7671. current_position[Z_AXIS],
  7672. current_position[E_AXIS] - default_retraction,
  7673. 95, active_extruder);
  7674. st_synchronize();
  7675. disable_e0();
  7676. plan_buffer_line(
  7677. current_position[X_AXIS],
  7678. current_position[Y_AXIS],
  7679. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7680. current_position[E_AXIS] - default_retraction,
  7681. 40, active_extruder);
  7682. st_synchronize();
  7683. disable_e0();
  7684. plan_buffer_line(
  7685. current_position[X_AXIS],
  7686. current_position[Y_AXIS],
  7687. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7688. current_position[E_AXIS] - default_retraction,
  7689. 40, active_extruder);
  7690. st_synchronize();
  7691. disable_e0();
  7692. disable_z();
  7693. // Move Z up to the next 0th full step.
  7694. // Write the file position.
  7695. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7696. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7697. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7698. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7699. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7700. // Scale the z value to 1u resolution.
  7701. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7702. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7703. }
  7704. // Read out the current Z motor microstep counter. This will be later used
  7705. // for reaching the zero full step before powering off.
  7706. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7707. // Store the current position.
  7708. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7709. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7710. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7711. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7712. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7713. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7714. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7715. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7716. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7717. #if EXTRUDERS > 1
  7718. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7719. #if EXTRUDERS > 2
  7720. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7721. #endif
  7722. #endif
  7723. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7724. #ifdef LIN_ADVANCE
  7725. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  7726. #endif
  7727. // Finaly store the "power outage" flag.
  7728. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7729. st_synchronize();
  7730. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7731. disable_z();
  7732. // Increment power failure counter
  7733. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7734. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7735. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7736. #if 0
  7737. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7738. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7740. st_synchronize();
  7741. #endif
  7742. wdt_enable(WDTO_500MS);
  7743. WRITE(BEEPER,HIGH);
  7744. while(1)
  7745. ;
  7746. }
  7747. void uvlo_tiny()
  7748. {
  7749. uint16_t z_microsteps=0;
  7750. // Conserve power as soon as possible.
  7751. disable_x();
  7752. disable_y();
  7753. disable_e0();
  7754. #ifdef TMC2130
  7755. tmc2130_set_current_h(Z_AXIS, 20);
  7756. tmc2130_set_current_r(Z_AXIS, 20);
  7757. #endif //TMC2130
  7758. // Read out the current Z motor microstep counter
  7759. #ifdef TMC2130
  7760. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7761. #endif //TMC2130
  7762. planner_abort_hard();
  7763. sei();
  7764. plan_buffer_line(
  7765. current_position[X_AXIS],
  7766. current_position[Y_AXIS],
  7767. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7768. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7769. current_position[E_AXIS],
  7770. 40, active_extruder);
  7771. st_synchronize();
  7772. disable_z();
  7773. // Finaly store the "power outage" flag.
  7774. //if(sd_print)
  7775. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7776. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7777. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7778. // Increment power failure counter
  7779. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7780. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7781. wdt_enable(WDTO_500MS);
  7782. WRITE(BEEPER,HIGH);
  7783. while(1)
  7784. ;
  7785. }
  7786. #endif //UVLO_SUPPORT
  7787. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7788. void setup_fan_interrupt() {
  7789. //INT7
  7790. DDRE &= ~(1 << 7); //input pin
  7791. PORTE &= ~(1 << 7); //no internal pull-up
  7792. //start with sensing rising edge
  7793. EICRB &= ~(1 << 6);
  7794. EICRB |= (1 << 7);
  7795. //enable INT7 interrupt
  7796. EIMSK |= (1 << 7);
  7797. }
  7798. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7799. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7800. ISR(INT7_vect) {
  7801. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7802. #ifdef FAN_SOFT_PWM
  7803. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7804. #else //FAN_SOFT_PWM
  7805. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7806. #endif //FAN_SOFT_PWM
  7807. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7808. t_fan_rising_edge = millis_nc();
  7809. }
  7810. else { //interrupt was triggered by falling edge
  7811. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7812. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7813. }
  7814. }
  7815. EICRB ^= (1 << 6); //change edge
  7816. }
  7817. #endif
  7818. #ifdef UVLO_SUPPORT
  7819. void setup_uvlo_interrupt() {
  7820. DDRE &= ~(1 << 4); //input pin
  7821. PORTE &= ~(1 << 4); //no internal pull-up
  7822. //sensing falling edge
  7823. EICRB |= (1 << 0);
  7824. EICRB &= ~(1 << 1);
  7825. //enable INT4 interrupt
  7826. EIMSK |= (1 << 4);
  7827. }
  7828. ISR(INT4_vect) {
  7829. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7830. SERIAL_ECHOLNPGM("INT4");
  7831. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7832. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7833. }
  7834. void recover_print(uint8_t automatic) {
  7835. char cmd[30];
  7836. lcd_update_enable(true);
  7837. lcd_update(2);
  7838. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7839. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7840. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7841. // Lift the print head, so one may remove the excess priming material.
  7842. if(!bTiny&&(current_position[Z_AXIS]<25))
  7843. enquecommand_P(PSTR("G1 Z25 F800"));
  7844. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7845. enquecommand_P(PSTR("G28 X Y"));
  7846. // Set the target bed and nozzle temperatures and wait.
  7847. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7848. enquecommand(cmd);
  7849. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7850. enquecommand(cmd);
  7851. enquecommand_P(PSTR("M83")); //E axis relative mode
  7852. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7853. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7854. if(automatic == 0){
  7855. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7856. }
  7857. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7858. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7859. // Restart the print.
  7860. restore_print_from_eeprom();
  7861. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7862. }
  7863. void recover_machine_state_after_power_panic(bool bTiny)
  7864. {
  7865. char cmd[30];
  7866. // 1) Recover the logical cordinates at the time of the power panic.
  7867. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7868. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7869. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7870. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7871. // The current position after power panic is moved to the next closest 0th full step.
  7872. if(bTiny)
  7873. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7874. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7875. else
  7876. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7877. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7878. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7879. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7880. sprintf_P(cmd, PSTR("G92 E"));
  7881. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7882. enquecommand(cmd);
  7883. }
  7884. memcpy(destination, current_position, sizeof(destination));
  7885. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7886. print_world_coordinates();
  7887. // 2) Initialize the logical to physical coordinate system transformation.
  7888. world2machine_initialize();
  7889. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7890. mbl.active = false;
  7891. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7892. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7893. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7894. // Scale the z value to 10u resolution.
  7895. int16_t v;
  7896. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7897. if (v != 0)
  7898. mbl.active = true;
  7899. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7900. }
  7901. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7902. // print_mesh_bed_leveling_table();
  7903. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7904. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7905. babystep_load();
  7906. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7908. // 6) Power up the motors, mark their positions as known.
  7909. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7910. axis_known_position[X_AXIS] = true; enable_x();
  7911. axis_known_position[Y_AXIS] = true; enable_y();
  7912. axis_known_position[Z_AXIS] = true; enable_z();
  7913. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7914. print_physical_coordinates();
  7915. // 7) Recover the target temperatures.
  7916. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7917. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7918. // 8) Recover extruder multipilers
  7919. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7920. #if EXTRUDERS > 1
  7921. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7922. #if EXTRUDERS > 2
  7923. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7924. #endif
  7925. #endif
  7926. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7927. #ifdef LIN_ADVANCE
  7928. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  7929. #endif
  7930. }
  7931. void restore_print_from_eeprom() {
  7932. int feedrate_rec;
  7933. uint8_t fan_speed_rec;
  7934. char cmd[30];
  7935. char filename[13];
  7936. uint8_t depth = 0;
  7937. char dir_name[9];
  7938. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7939. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7940. SERIAL_ECHOPGM("Feedrate:");
  7941. MYSERIAL.println(feedrate_rec);
  7942. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7943. MYSERIAL.println(int(depth));
  7944. for (int i = 0; i < depth; i++) {
  7945. for (int j = 0; j < 8; j++) {
  7946. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7947. }
  7948. dir_name[8] = '\0';
  7949. MYSERIAL.println(dir_name);
  7950. strcpy(dir_names[i], dir_name);
  7951. card.chdir(dir_name);
  7952. }
  7953. for (int i = 0; i < 8; i++) {
  7954. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7955. }
  7956. filename[8] = '\0';
  7957. MYSERIAL.print(filename);
  7958. strcat_P(filename, PSTR(".gco"));
  7959. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7960. enquecommand(cmd);
  7961. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7962. SERIAL_ECHOPGM("Position read from eeprom:");
  7963. MYSERIAL.println(position);
  7964. // E axis relative mode.
  7965. enquecommand_P(PSTR("M83"));
  7966. // Move to the XY print position in logical coordinates, where the print has been killed.
  7967. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7968. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7969. strcat_P(cmd, PSTR(" F2000"));
  7970. enquecommand(cmd);
  7971. // Move the Z axis down to the print, in logical coordinates.
  7972. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7973. enquecommand(cmd);
  7974. // Unretract.
  7975. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7976. // Set the feedrate saved at the power panic.
  7977. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7978. enquecommand(cmd);
  7979. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7980. {
  7981. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7982. }
  7983. // Set the fan speed saved at the power panic.
  7984. strcpy_P(cmd, PSTR("M106 S"));
  7985. strcat(cmd, itostr3(int(fan_speed_rec)));
  7986. enquecommand(cmd);
  7987. // Set a position in the file.
  7988. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7989. enquecommand(cmd);
  7990. enquecommand_P(PSTR("G4 S0"));
  7991. enquecommand_P(PSTR("PRUSA uvlo"));
  7992. }
  7993. #endif //UVLO_SUPPORT
  7994. //! @brief Immediately stop print moves
  7995. //!
  7996. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7997. //! If printing from sd card, position in file is saved.
  7998. //! If printing from USB, line number is saved.
  7999. //!
  8000. //! @param z_move
  8001. //! @param e_move
  8002. void stop_and_save_print_to_ram(float z_move, float e_move)
  8003. {
  8004. if (saved_printing) return;
  8005. #if 0
  8006. unsigned char nplanner_blocks;
  8007. #endif
  8008. unsigned char nlines;
  8009. uint16_t sdlen_planner;
  8010. uint16_t sdlen_cmdqueue;
  8011. cli();
  8012. if (card.sdprinting) {
  8013. #if 0
  8014. nplanner_blocks = number_of_blocks();
  8015. #endif
  8016. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8017. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8018. saved_sdpos -= sdlen_planner;
  8019. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8020. saved_sdpos -= sdlen_cmdqueue;
  8021. saved_printing_type = PRINTING_TYPE_SD;
  8022. }
  8023. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8024. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8025. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8026. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8027. saved_sdpos -= nlines;
  8028. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8029. saved_printing_type = PRINTING_TYPE_USB;
  8030. }
  8031. else {
  8032. saved_printing_type = PRINTING_TYPE_NONE;
  8033. //not sd printing nor usb printing
  8034. }
  8035. #if 0
  8036. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8037. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8038. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8039. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8040. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8041. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8042. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8043. {
  8044. card.setIndex(saved_sdpos);
  8045. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8046. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8047. MYSERIAL.print(char(card.get()));
  8048. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8049. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8050. MYSERIAL.print(char(card.get()));
  8051. SERIAL_ECHOLNPGM("End of command buffer");
  8052. }
  8053. {
  8054. // Print the content of the planner buffer, line by line:
  8055. card.setIndex(saved_sdpos);
  8056. int8_t iline = 0;
  8057. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8058. SERIAL_ECHOPGM("Planner line (from file): ");
  8059. MYSERIAL.print(int(iline), DEC);
  8060. SERIAL_ECHOPGM(", length: ");
  8061. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8062. SERIAL_ECHOPGM(", steps: (");
  8063. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8064. SERIAL_ECHOPGM(",");
  8065. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8066. SERIAL_ECHOPGM(",");
  8067. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8068. SERIAL_ECHOPGM(",");
  8069. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8070. SERIAL_ECHOPGM("), events: ");
  8071. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8072. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8073. MYSERIAL.print(char(card.get()));
  8074. }
  8075. }
  8076. {
  8077. // Print the content of the command buffer, line by line:
  8078. int8_t iline = 0;
  8079. union {
  8080. struct {
  8081. char lo;
  8082. char hi;
  8083. } lohi;
  8084. uint16_t value;
  8085. } sdlen_single;
  8086. int _bufindr = bufindr;
  8087. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8088. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8089. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8090. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8091. }
  8092. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8093. MYSERIAL.print(int(iline), DEC);
  8094. SERIAL_ECHOPGM(", type: ");
  8095. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8096. SERIAL_ECHOPGM(", len: ");
  8097. MYSERIAL.println(sdlen_single.value, DEC);
  8098. // Print the content of the buffer line.
  8099. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8100. SERIAL_ECHOPGM("Buffer line (from file): ");
  8101. MYSERIAL.println(int(iline), DEC);
  8102. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8103. MYSERIAL.print(char(card.get()));
  8104. if (-- _buflen == 0)
  8105. break;
  8106. // First skip the current command ID and iterate up to the end of the string.
  8107. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8108. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8109. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8110. // If the end of the buffer was empty,
  8111. if (_bufindr == sizeof(cmdbuffer)) {
  8112. // skip to the start and find the nonzero command.
  8113. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8114. }
  8115. }
  8116. }
  8117. #endif
  8118. #if 0
  8119. saved_feedrate2 = feedrate; //save feedrate
  8120. #else
  8121. // Try to deduce the feedrate from the first block of the planner.
  8122. // Speed is in mm/min.
  8123. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8124. #endif
  8125. planner_abort_hard(); //abort printing
  8126. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8127. saved_active_extruder = active_extruder; //save active_extruder
  8128. saved_extruder_temperature = degTargetHotend(active_extruder);
  8129. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8130. saved_fanSpeed = fanSpeed;
  8131. cmdqueue_reset(); //empty cmdqueue
  8132. card.sdprinting = false;
  8133. // card.closefile();
  8134. saved_printing = true;
  8135. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8136. st_reset_timer();
  8137. sei();
  8138. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8139. #if 1
  8140. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8141. char buf[48];
  8142. // First unretract (relative extrusion)
  8143. if(!saved_extruder_relative_mode){
  8144. strcpy_P(buf, PSTR("M83"));
  8145. enquecommand(buf, false);
  8146. }
  8147. //retract 45mm/s
  8148. strcpy_P(buf, PSTR("G1 E"));
  8149. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8150. strcat_P(buf, PSTR(" F"));
  8151. dtostrf(2700, 8, 3, buf + strlen(buf));
  8152. enquecommand(buf, false);
  8153. // Then lift Z axis
  8154. strcpy_P(buf, PSTR("G1 Z"));
  8155. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8156. strcat_P(buf, PSTR(" F"));
  8157. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8158. // At this point the command queue is empty.
  8159. enquecommand(buf, false);
  8160. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8161. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8162. repeatcommand_front();
  8163. #else
  8164. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8165. st_synchronize(); //wait moving
  8166. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8167. memcpy(destination, current_position, sizeof(destination));
  8168. #endif
  8169. }
  8170. }
  8171. //! @brief Restore print from ram
  8172. //!
  8173. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8174. //! waits for extruder temperature restore, then restores position and continues
  8175. //! print moves.
  8176. //! Internaly lcd_update() is called by wait_for_heater().
  8177. //!
  8178. //! @param e_move
  8179. void restore_print_from_ram_and_continue(float e_move)
  8180. {
  8181. if (!saved_printing) return;
  8182. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8183. // current_position[axis] = st_get_position_mm(axis);
  8184. active_extruder = saved_active_extruder; //restore active_extruder
  8185. if (saved_extruder_temperature) {
  8186. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8187. heating_status = 1;
  8188. wait_for_heater(_millis(), saved_active_extruder);
  8189. heating_status = 2;
  8190. }
  8191. feedrate = saved_feedrate2; //restore feedrate
  8192. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8193. fanSpeed = saved_fanSpeed;
  8194. float e = saved_pos[E_AXIS] - e_move;
  8195. plan_set_e_position(e);
  8196. //first move print head in XY to the saved position:
  8197. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8198. st_synchronize();
  8199. //then move Z
  8200. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8201. st_synchronize();
  8202. //and finaly unretract (35mm/s)
  8203. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8204. st_synchronize();
  8205. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8206. memcpy(destination, current_position, sizeof(destination));
  8207. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8208. card.setIndex(saved_sdpos);
  8209. sdpos_atomic = saved_sdpos;
  8210. card.sdprinting = true;
  8211. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8212. }
  8213. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8214. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8215. serial_count = 0;
  8216. FlushSerialRequestResend();
  8217. }
  8218. else {
  8219. //not sd printing nor usb printing
  8220. }
  8221. lcd_setstatuspgm(_T(WELCOME_MSG));
  8222. saved_printing = false;
  8223. }
  8224. void print_world_coordinates()
  8225. {
  8226. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8227. }
  8228. void print_physical_coordinates()
  8229. {
  8230. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8231. }
  8232. void print_mesh_bed_leveling_table()
  8233. {
  8234. SERIAL_ECHOPGM("mesh bed leveling: ");
  8235. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8236. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8237. MYSERIAL.print(mbl.z_values[y][x], 3);
  8238. SERIAL_ECHOPGM(" ");
  8239. }
  8240. SERIAL_ECHOLNPGM("");
  8241. }
  8242. uint16_t print_time_remaining() {
  8243. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8244. #ifdef TMC2130
  8245. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8246. else print_t = print_time_remaining_silent;
  8247. #else
  8248. print_t = print_time_remaining_normal;
  8249. #endif //TMC2130
  8250. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8251. return print_t;
  8252. }
  8253. uint8_t calc_percent_done()
  8254. {
  8255. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8256. uint8_t percent_done = 0;
  8257. #ifdef TMC2130
  8258. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8259. percent_done = print_percent_done_normal;
  8260. }
  8261. else if (print_percent_done_silent <= 100) {
  8262. percent_done = print_percent_done_silent;
  8263. }
  8264. #else
  8265. if (print_percent_done_normal <= 100) {
  8266. percent_done = print_percent_done_normal;
  8267. }
  8268. #endif //TMC2130
  8269. else {
  8270. percent_done = card.percentDone();
  8271. }
  8272. return percent_done;
  8273. }
  8274. static void print_time_remaining_init()
  8275. {
  8276. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8277. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8278. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8279. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8280. }
  8281. void load_filament_final_feed()
  8282. {
  8283. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8285. }
  8286. //! @brief Wait for user to check the state
  8287. //! @par nozzle_temp nozzle temperature to load filament
  8288. void M600_check_state(float nozzle_temp)
  8289. {
  8290. lcd_change_fil_state = 0;
  8291. while (lcd_change_fil_state != 1)
  8292. {
  8293. lcd_change_fil_state = 0;
  8294. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8295. lcd_alright();
  8296. KEEPALIVE_STATE(IN_HANDLER);
  8297. switch(lcd_change_fil_state)
  8298. {
  8299. // Filament failed to load so load it again
  8300. case 2:
  8301. if (mmu_enabled)
  8302. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8303. else
  8304. M600_load_filament_movements();
  8305. break;
  8306. // Filament loaded properly but color is not clear
  8307. case 3:
  8308. st_synchronize();
  8309. load_filament_final_feed();
  8310. lcd_loading_color();
  8311. st_synchronize();
  8312. break;
  8313. // Everything good
  8314. default:
  8315. lcd_change_success();
  8316. break;
  8317. }
  8318. }
  8319. }
  8320. //! @brief Wait for user action
  8321. //!
  8322. //! Beep, manage nozzle heater and wait for user to start unload filament
  8323. //! If times out, active extruder temperature is set to 0.
  8324. //!
  8325. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8326. void M600_wait_for_user(float HotendTempBckp) {
  8327. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8328. int counterBeep = 0;
  8329. unsigned long waiting_start_time = _millis();
  8330. uint8_t wait_for_user_state = 0;
  8331. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8332. bool bFirst=true;
  8333. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8334. manage_heater();
  8335. manage_inactivity(true);
  8336. #if BEEPER > 0
  8337. if (counterBeep == 500) {
  8338. counterBeep = 0;
  8339. }
  8340. SET_OUTPUT(BEEPER);
  8341. if (counterBeep == 0) {
  8342. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8343. {
  8344. bFirst=false;
  8345. WRITE(BEEPER, HIGH);
  8346. }
  8347. }
  8348. if (counterBeep == 20) {
  8349. WRITE(BEEPER, LOW);
  8350. }
  8351. counterBeep++;
  8352. #endif //BEEPER > 0
  8353. switch (wait_for_user_state) {
  8354. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8355. delay_keep_alive(4);
  8356. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8357. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8358. wait_for_user_state = 1;
  8359. setAllTargetHotends(0);
  8360. st_synchronize();
  8361. disable_e0();
  8362. disable_e1();
  8363. disable_e2();
  8364. }
  8365. break;
  8366. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8367. delay_keep_alive(4);
  8368. if (lcd_clicked()) {
  8369. setTargetHotend(HotendTempBckp, active_extruder);
  8370. lcd_wait_for_heater();
  8371. wait_for_user_state = 2;
  8372. }
  8373. break;
  8374. case 2: //waiting for nozzle to reach target temperature
  8375. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8376. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8377. waiting_start_time = _millis();
  8378. wait_for_user_state = 0;
  8379. }
  8380. else {
  8381. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8382. lcd_set_cursor(1, 4);
  8383. lcd_print(ftostr3(degHotend(active_extruder)));
  8384. }
  8385. break;
  8386. }
  8387. }
  8388. WRITE(BEEPER, LOW);
  8389. }
  8390. void M600_load_filament_movements()
  8391. {
  8392. #ifdef SNMM
  8393. display_loading();
  8394. do
  8395. {
  8396. current_position[E_AXIS] += 0.002;
  8397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8398. delay_keep_alive(2);
  8399. }
  8400. while (!lcd_clicked());
  8401. st_synchronize();
  8402. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8404. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8406. current_position[E_AXIS] += 40;
  8407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8408. current_position[E_AXIS] += 10;
  8409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8410. #else
  8411. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8413. #endif
  8414. load_filament_final_feed();
  8415. lcd_loading_filament();
  8416. st_synchronize();
  8417. }
  8418. void M600_load_filament() {
  8419. //load filament for single material and SNMM
  8420. lcd_wait_interact();
  8421. //load_filament_time = _millis();
  8422. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8423. #ifdef PAT9125
  8424. fsensor_autoload_check_start();
  8425. #endif //PAT9125
  8426. while(!lcd_clicked())
  8427. {
  8428. manage_heater();
  8429. manage_inactivity(true);
  8430. #ifdef FILAMENT_SENSOR
  8431. if (fsensor_check_autoload())
  8432. {
  8433. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8434. _tone(BEEPER, 1000);
  8435. delay_keep_alive(50);
  8436. _noTone(BEEPER);
  8437. break;
  8438. }
  8439. #endif //FILAMENT_SENSOR
  8440. }
  8441. #ifdef PAT9125
  8442. fsensor_autoload_check_stop();
  8443. #endif //PAT9125
  8444. KEEPALIVE_STATE(IN_HANDLER);
  8445. #ifdef FSENSOR_QUALITY
  8446. fsensor_oq_meassure_start(70);
  8447. #endif //FSENSOR_QUALITY
  8448. M600_load_filament_movements();
  8449. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8450. _tone(BEEPER, 500);
  8451. delay_keep_alive(50);
  8452. _noTone(BEEPER);
  8453. #ifdef FSENSOR_QUALITY
  8454. fsensor_oq_meassure_stop();
  8455. if (!fsensor_oq_result())
  8456. {
  8457. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8458. lcd_update_enable(true);
  8459. lcd_update(2);
  8460. if (disable)
  8461. fsensor_disable();
  8462. }
  8463. #endif //FSENSOR_QUALITY
  8464. lcd_update_enable(false);
  8465. }
  8466. //! @brief Wait for click
  8467. //!
  8468. //! Set
  8469. void marlin_wait_for_click()
  8470. {
  8471. int8_t busy_state_backup = busy_state;
  8472. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8473. lcd_consume_click();
  8474. while(!lcd_clicked())
  8475. {
  8476. manage_heater();
  8477. manage_inactivity(true);
  8478. lcd_update(0);
  8479. }
  8480. KEEPALIVE_STATE(busy_state_backup);
  8481. }
  8482. #define FIL_LOAD_LENGTH 60