planner.cpp 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. unsigned long minsegmenttime;
  54. // Use M203 to override by software
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long max_acceleration_units_per_sq_second_normal[NUM_AXIS];
  59. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  60. unsigned long* max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_normal;
  61. float minimumfeedrate;
  62. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  63. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  64. // Jerk is a maximum immediate velocity change.
  65. float max_jerk[NUM_AXIS];
  66. float mintravelfeedrate;
  67. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  68. #ifdef ENABLE_AUTO_BED_LEVELING
  69. // this holds the required transform to compensate for bed level
  70. matrix_3x3 plan_bed_level_matrix = {
  71. 1.0, 0.0, 0.0,
  72. 0.0, 1.0, 0.0,
  73. 0.0, 0.0, 1.0,
  74. };
  75. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  76. // The current position of the tool in absolute steps
  77. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  78. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  79. static float previous_nominal_speed; // Nominal speed of previous path line segment
  80. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  81. uint8_t maxlimit_status;
  82. #ifdef AUTOTEMP
  83. float autotemp_max=250;
  84. float autotemp_min=210;
  85. float autotemp_factor=0.1;
  86. bool autotemp_enabled=false;
  87. #endif
  88. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  89. //===========================================================================
  90. //=================semi-private variables, used in inline functions =====
  91. //===========================================================================
  92. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  93. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  94. volatile unsigned char block_buffer_tail; // Index of the block to process now
  95. #ifdef PLANNER_DIAGNOSTICS
  96. // Diagnostic function: Minimum number of planned moves since the last
  97. static uint8_t g_cntr_planner_queue_min = 0;
  98. #endif /* PLANNER_DIAGNOSTICS */
  99. //===========================================================================
  100. //=============================private variables ============================
  101. //===========================================================================
  102. #ifdef PREVENT_DANGEROUS_EXTRUDE
  103. float extrude_min_temp=EXTRUDE_MINTEMP;
  104. #endif
  105. #ifdef LIN_ADVANCE
  106. float extruder_advance_k = LIN_ADVANCE_K,
  107. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  108. position_float[NUM_AXIS] = { 0 };
  109. #endif
  110. // Returns the index of the next block in the ring buffer
  111. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  112. static inline int8_t next_block_index(int8_t block_index) {
  113. if (++ block_index == BLOCK_BUFFER_SIZE)
  114. block_index = 0;
  115. return block_index;
  116. }
  117. // Returns the index of the previous block in the ring buffer
  118. static inline int8_t prev_block_index(int8_t block_index) {
  119. if (block_index == 0)
  120. block_index = BLOCK_BUFFER_SIZE;
  121. -- block_index;
  122. return block_index;
  123. }
  124. //===========================================================================
  125. //=============================functions ============================
  126. //===========================================================================
  127. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  128. // given acceleration:
  129. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  130. {
  131. if (acceleration!=0) {
  132. return((target_rate*target_rate-initial_rate*initial_rate)/
  133. (2.0*acceleration));
  134. }
  135. else {
  136. return 0.0; // acceleration was 0, set acceleration distance to 0
  137. }
  138. }
  139. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  140. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  141. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  142. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  143. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  144. {
  145. if (acceleration!=0) {
  146. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  147. (4.0*acceleration) );
  148. }
  149. else {
  150. return 0.0; // acceleration was 0, set intersection distance to 0
  151. }
  152. }
  153. // Minimum stepper rate 120Hz.
  154. #define MINIMAL_STEP_RATE 120
  155. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  156. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  157. {
  158. // These two lines are the only floating point calculations performed in this routine.
  159. // initial_rate, final_rate in Hz.
  160. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  161. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  162. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  163. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  164. // Limit minimal step rate (Otherwise the timer will overflow.)
  165. if (initial_rate < MINIMAL_STEP_RATE)
  166. initial_rate = MINIMAL_STEP_RATE;
  167. if (initial_rate > block->nominal_rate)
  168. initial_rate = block->nominal_rate;
  169. if (final_rate < MINIMAL_STEP_RATE)
  170. final_rate = MINIMAL_STEP_RATE;
  171. if (final_rate > block->nominal_rate)
  172. final_rate = block->nominal_rate;
  173. uint32_t acceleration = block->acceleration_st;
  174. if (acceleration == 0)
  175. // Don't allow zero acceleration.
  176. acceleration = 1;
  177. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  178. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  179. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  180. //FIXME assert that this result fits a 64bit unsigned int.
  181. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  182. uint32_t final_rate_sqr = final_rate*final_rate;
  183. uint32_t acceleration_x2 = acceleration << 1;
  184. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  185. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  186. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  187. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  188. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  189. // Size of Plateau of Nominal Rate.
  190. uint32_t plateau_steps = 0;
  191. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  192. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  193. // in order to reach the final_rate exactly at the end of this block.
  194. if (accel_decel_steps < block->step_event_count.wide) {
  195. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  196. } else {
  197. uint32_t acceleration_x4 = acceleration << 2;
  198. // Avoid negative numbers
  199. if (final_rate_sqr >= initial_rate_sqr) {
  200. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  201. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  202. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  203. #if 0
  204. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  205. #else
  206. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  207. if (block->step_event_count.wide & 1)
  208. accelerate_steps += acceleration_x2;
  209. accelerate_steps /= acceleration_x4;
  210. accelerate_steps += (block->step_event_count.wide >> 1);
  211. #endif
  212. if (accelerate_steps > block->step_event_count.wide)
  213. accelerate_steps = block->step_event_count.wide;
  214. } else {
  215. #if 0
  216. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  217. #else
  218. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  219. if (block->step_event_count.wide & 1)
  220. decelerate_steps += acceleration_x2;
  221. decelerate_steps /= acceleration_x4;
  222. decelerate_steps += (block->step_event_count.wide >> 1);
  223. #endif
  224. if (decelerate_steps > block->step_event_count.wide)
  225. decelerate_steps = block->step_event_count.wide;
  226. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  227. }
  228. }
  229. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  230. // This block locks the interrupts globally for 4.38 us,
  231. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  232. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  233. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  234. if (! block->busy) { // Don't update variables if block is busy.
  235. block->accelerate_until = accelerate_steps;
  236. block->decelerate_after = accelerate_steps+plateau_steps;
  237. block->initial_rate = initial_rate;
  238. block->final_rate = final_rate;
  239. }
  240. CRITICAL_SECTION_END;
  241. }
  242. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  243. // decceleration within the allotted distance.
  244. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  245. {
  246. // assert(decceleration < 0);
  247. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  248. }
  249. // Recalculates the motion plan according to the following algorithm:
  250. //
  251. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  252. // so that:
  253. // a. The junction jerk is within the set limit
  254. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  255. // acceleration.
  256. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  257. // a. The speed increase within one block would require faster accelleration than the one, true
  258. // constant acceleration.
  259. //
  260. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  261. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  262. // the set limit. Finally it will:
  263. //
  264. // 3. Recalculate trapezoids for all blocks.
  265. //
  266. //FIXME This routine is called 15x every time a new line is added to the planner,
  267. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  268. // if the CPU is found lacking computational power.
  269. //
  270. // Following sources may be used to optimize the 8-bit AVR code:
  271. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  272. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  273. //
  274. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  275. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  276. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  277. //
  278. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  279. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  280. // https://github.com/rekka/avrmultiplication
  281. //
  282. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  283. // https://courses.cit.cornell.edu/ee476/Math/
  284. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  285. //
  286. void planner_recalculate(const float &safe_final_speed)
  287. {
  288. // Reverse pass
  289. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  290. // by consuming the blocks, therefore shortening the queue.
  291. unsigned char tail = block_buffer_tail;
  292. uint8_t block_index;
  293. block_t *prev, *current, *next;
  294. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  295. // At least three blocks are in the queue?
  296. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  297. if (n_blocks >= 3) {
  298. // Initialize the last tripple of blocks.
  299. block_index = prev_block_index(block_buffer_head);
  300. next = block_buffer + block_index;
  301. current = block_buffer + (block_index = prev_block_index(block_index));
  302. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  303. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  304. // 1) it may already be running at the stepper interrupt,
  305. // 2) there is no way to limit it when going in the forward direction.
  306. while (block_index != tail) {
  307. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  308. // Don't modify the entry velocity of the starting block.
  309. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  310. // for the stepper interrupt routine to use them.
  311. tail = block_index;
  312. // Update the number of blocks to process.
  313. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  314. // SERIAL_ECHOLNPGM("START");
  315. break;
  316. }
  317. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  318. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  319. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  320. if (current->entry_speed != current->max_entry_speed) {
  321. // assert(current->entry_speed < current->max_entry_speed);
  322. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  323. // segment and the maximum acceleration allowed for this segment.
  324. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  325. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  326. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  327. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  328. // together with an assembly 32bit->16bit sqrt function.
  329. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  330. current->max_entry_speed :
  331. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  332. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  333. current->flag |= BLOCK_FLAG_RECALCULATE;
  334. }
  335. next = current;
  336. current = block_buffer + (block_index = prev_block_index(block_index));
  337. }
  338. }
  339. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  340. // Forward pass and recalculate the trapezoids.
  341. if (n_blocks >= 2) {
  342. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  343. block_index = tail;
  344. prev = block_buffer + block_index;
  345. current = block_buffer + (block_index = next_block_index(block_index));
  346. do {
  347. // If the previous block is an acceleration block, but it is not long enough to complete the
  348. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  349. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  350. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  351. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  352. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  353. // Check for junction speed change
  354. if (current->entry_speed != entry_speed) {
  355. current->entry_speed = entry_speed;
  356. current->flag |= BLOCK_FLAG_RECALCULATE;
  357. }
  358. }
  359. // Recalculate if current block entry or exit junction speed has changed.
  360. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  361. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  362. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  363. // Reset current only to ensure next trapezoid is computed.
  364. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  365. }
  366. prev = current;
  367. current = block_buffer + (block_index = next_block_index(block_index));
  368. } while (block_index != block_buffer_head);
  369. }
  370. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  371. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  372. current = block_buffer + prev_block_index(block_buffer_head);
  373. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  374. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  375. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  376. }
  377. void plan_init() {
  378. block_buffer_head = 0;
  379. block_buffer_tail = 0;
  380. memset(position, 0, sizeof(position)); // clear position
  381. #ifdef LIN_ADVANCE
  382. memset(position_float, 0, sizeof(position)); // clear position
  383. #endif
  384. previous_speed[0] = 0.0;
  385. previous_speed[1] = 0.0;
  386. previous_speed[2] = 0.0;
  387. previous_speed[3] = 0.0;
  388. previous_nominal_speed = 0.0;
  389. }
  390. #ifdef AUTOTEMP
  391. void getHighESpeed()
  392. {
  393. static float oldt=0;
  394. if(!autotemp_enabled){
  395. return;
  396. }
  397. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  398. return; //do nothing
  399. }
  400. float high=0.0;
  401. uint8_t block_index = block_buffer_tail;
  402. while(block_index != block_buffer_head) {
  403. if((block_buffer[block_index].steps_x.wide != 0) ||
  404. (block_buffer[block_index].steps_y.wide != 0) ||
  405. (block_buffer[block_index].steps_z.wide != 0)) {
  406. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  407. //se; mm/sec;
  408. if(se>high)
  409. {
  410. high=se;
  411. }
  412. }
  413. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  414. }
  415. float g=autotemp_min+high*autotemp_factor;
  416. float t=g;
  417. if(t<autotemp_min)
  418. t=autotemp_min;
  419. if(t>autotemp_max)
  420. t=autotemp_max;
  421. if(oldt>t)
  422. {
  423. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  424. }
  425. oldt=t;
  426. setTargetHotend0(t);
  427. }
  428. #endif
  429. bool e_active()
  430. {
  431. unsigned char e_active = 0;
  432. block_t *block;
  433. if(block_buffer_tail != block_buffer_head)
  434. {
  435. uint8_t block_index = block_buffer_tail;
  436. while(block_index != block_buffer_head)
  437. {
  438. block = &block_buffer[block_index];
  439. if(block->steps_e.wide != 0) e_active++;
  440. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  441. }
  442. }
  443. return (e_active > 0) ? true : false ;
  444. }
  445. void check_axes_activity()
  446. {
  447. unsigned char x_active = 0;
  448. unsigned char y_active = 0;
  449. unsigned char z_active = 0;
  450. unsigned char e_active = 0;
  451. unsigned char tail_fan_speed = fanSpeed;
  452. block_t *block;
  453. if(block_buffer_tail != block_buffer_head)
  454. {
  455. uint8_t block_index = block_buffer_tail;
  456. tail_fan_speed = block_buffer[block_index].fan_speed;
  457. while(block_index != block_buffer_head)
  458. {
  459. block = &block_buffer[block_index];
  460. if(block->steps_x.wide != 0) x_active++;
  461. if(block->steps_y.wide != 0) y_active++;
  462. if(block->steps_z.wide != 0) z_active++;
  463. if(block->steps_e.wide != 0) e_active++;
  464. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  465. }
  466. }
  467. if((DISABLE_X) && (x_active == 0)) disable_x();
  468. if((DISABLE_Y) && (y_active == 0)) disable_y();
  469. if((DISABLE_Z) && (z_active == 0)) disable_z();
  470. if((DISABLE_E) && (e_active == 0))
  471. {
  472. disable_e0();
  473. disable_e1();
  474. disable_e2();
  475. }
  476. #if defined(FAN_PIN) && FAN_PIN > -1
  477. #ifdef FAN_KICKSTART_TIME
  478. static unsigned long fan_kick_end;
  479. if (tail_fan_speed) {
  480. if (fan_kick_end == 0) {
  481. // Just starting up fan - run at full power.
  482. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  483. tail_fan_speed = 255;
  484. } else if (fan_kick_end > millis())
  485. // Fan still spinning up.
  486. tail_fan_speed = 255;
  487. } else {
  488. fan_kick_end = 0;
  489. }
  490. #endif//FAN_KICKSTART_TIME
  491. #ifdef FAN_SOFT_PWM
  492. fanSpeedSoftPwm = tail_fan_speed;
  493. #else
  494. analogWrite(FAN_PIN,tail_fan_speed);
  495. #endif//!FAN_SOFT_PWM
  496. #endif//FAN_PIN > -1
  497. #ifdef AUTOTEMP
  498. getHighESpeed();
  499. #endif
  500. }
  501. bool waiting_inside_plan_buffer_line_print_aborted = false;
  502. /*
  503. void planner_abort_soft()
  504. {
  505. // Empty the queue.
  506. while (blocks_queued()) plan_discard_current_block();
  507. // Relay to planner wait routine, that the current line shall be canceled.
  508. waiting_inside_plan_buffer_line_print_aborted = true;
  509. //current_position[i]
  510. }
  511. */
  512. #ifdef PLANNER_DIAGNOSTICS
  513. static inline void planner_update_queue_min_counter()
  514. {
  515. uint8_t new_counter = moves_planned();
  516. if (new_counter < g_cntr_planner_queue_min)
  517. g_cntr_planner_queue_min = new_counter;
  518. }
  519. #endif /* PLANNER_DIAGNOSTICS */
  520. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  521. void planner_abort_hard()
  522. {
  523. // Abort the stepper routine and flush the planner queue.
  524. DISABLE_STEPPER_DRIVER_INTERRUPT();
  525. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  526. // First update the planner's current position in the physical motor steps.
  527. position[X_AXIS] = st_get_position(X_AXIS);
  528. position[Y_AXIS] = st_get_position(Y_AXIS);
  529. position[Z_AXIS] = st_get_position(Z_AXIS);
  530. position[E_AXIS] = st_get_position(E_AXIS);
  531. // Second update the current position of the front end.
  532. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  533. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  534. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  535. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  536. // Apply the mesh bed leveling correction to the Z axis.
  537. #ifdef MESH_BED_LEVELING
  538. if (mbl.active) {
  539. #if 1
  540. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  541. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  542. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  543. #else
  544. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  545. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  546. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  547. else {
  548. float t = float(step_events_completed) / float(current_block->step_event_count);
  549. float vec[3] = {
  550. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  551. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  552. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  553. };
  554. float pos1[3], pos2[3];
  555. for (int8_t i = 0; i < 3; ++ i) {
  556. if (current_block->direction_bits & (1<<i))
  557. vec[i] = - vec[i];
  558. pos1[i] = current_position[i] - vec[i] * t;
  559. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  560. }
  561. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  562. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  563. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  564. }
  565. #endif
  566. }
  567. #endif
  568. // Clear the planner queue, reset and re-enable the stepper timer.
  569. quickStop();
  570. // Apply inverse world correction matrix.
  571. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  572. memcpy(destination, current_position, sizeof(destination));
  573. // Resets planner junction speeds. Assumes start from rest.
  574. previous_nominal_speed = 0.0;
  575. previous_speed[0] = 0.0;
  576. previous_speed[1] = 0.0;
  577. previous_speed[2] = 0.0;
  578. previous_speed[3] = 0.0;
  579. // Relay to planner wait routine, that the current line shall be canceled.
  580. waiting_inside_plan_buffer_line_print_aborted = true;
  581. }
  582. float junction_deviation = 0.1;
  583. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  584. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  585. // calculation the caller must also provide the physical length of the line in millimeters.
  586. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  587. {
  588. // Calculate the buffer head after we push this byte
  589. int next_buffer_head = next_block_index(block_buffer_head);
  590. // If the buffer is full: good! That means we are well ahead of the robot.
  591. // Rest here until there is room in the buffer.
  592. if (block_buffer_tail == next_buffer_head) {
  593. waiting_inside_plan_buffer_line_print_aborted = false;
  594. do {
  595. manage_heater();
  596. // Vojtech: Don't disable motors inside the planner!
  597. manage_inactivity(false);
  598. lcd_update(0);
  599. } while (block_buffer_tail == next_buffer_head);
  600. if (waiting_inside_plan_buffer_line_print_aborted) {
  601. // Inside the lcd_update(0) routine the print has been aborted.
  602. // Cancel the print, do not plan the current line this routine is waiting on.
  603. #ifdef PLANNER_DIAGNOSTICS
  604. planner_update_queue_min_counter();
  605. #endif /* PLANNER_DIAGNOSTICS */
  606. return;
  607. }
  608. }
  609. #ifdef PLANNER_DIAGNOSTICS
  610. planner_update_queue_min_counter();
  611. #endif /* PLANNER_DIAGNOSTICS */
  612. #ifdef ENABLE_AUTO_BED_LEVELING
  613. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  614. #endif // ENABLE_AUTO_BED_LEVELING
  615. // Apply the machine correction matrix.
  616. {
  617. #if 0
  618. SERIAL_ECHOPGM("Planner, current position - servos: ");
  619. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  620. SERIAL_ECHOPGM(", ");
  621. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  622. SERIAL_ECHOPGM(", ");
  623. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  624. SERIAL_ECHOLNPGM("");
  625. SERIAL_ECHOPGM("Planner, target position, initial: ");
  626. MYSERIAL.print(x, 5);
  627. SERIAL_ECHOPGM(", ");
  628. MYSERIAL.print(y, 5);
  629. SERIAL_ECHOLNPGM("");
  630. SERIAL_ECHOPGM("Planner, world2machine: ");
  631. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  632. SERIAL_ECHOPGM(", ");
  633. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  634. SERIAL_ECHOPGM(", ");
  635. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  636. SERIAL_ECHOPGM(", ");
  637. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  638. SERIAL_ECHOLNPGM("");
  639. SERIAL_ECHOPGM("Planner, offset: ");
  640. MYSERIAL.print(world2machine_shift[0], 5);
  641. SERIAL_ECHOPGM(", ");
  642. MYSERIAL.print(world2machine_shift[1], 5);
  643. SERIAL_ECHOLNPGM("");
  644. #endif
  645. world2machine(x, y);
  646. #if 0
  647. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  648. MYSERIAL.print(x, 5);
  649. SERIAL_ECHOPGM(", ");
  650. MYSERIAL.print(y, 5);
  651. SERIAL_ECHOLNPGM("");
  652. #endif
  653. }
  654. // The target position of the tool in absolute steps
  655. // Calculate target position in absolute steps
  656. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  657. long target[4];
  658. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  659. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  660. #ifdef MESH_BED_LEVELING
  661. if (mbl.active){
  662. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  663. }else{
  664. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  665. }
  666. #else
  667. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  668. #endif // ENABLE_MESH_BED_LEVELING
  669. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  670. #ifdef LIN_ADVANCE
  671. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  672. float de_float = e - position_float[E_AXIS];
  673. #endif
  674. #ifdef PREVENT_DANGEROUS_EXTRUDE
  675. if(target[E_AXIS]!=position[E_AXIS])
  676. {
  677. if(degHotend(active_extruder)<extrude_min_temp)
  678. {
  679. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  680. #ifdef LIN_ADVANCE
  681. position_float[E_AXIS] = e;
  682. de_float = 0;
  683. #endif
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  686. }
  687. #ifdef PREVENT_LENGTHY_EXTRUDE
  688. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  689. {
  690. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  691. #ifdef LIN_ADVANCE
  692. position_float[E_AXIS] = e;
  693. de_float = 0;
  694. #endif
  695. SERIAL_ECHO_START;
  696. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  697. }
  698. #endif
  699. }
  700. #endif
  701. // Prepare to set up new block
  702. block_t *block = &block_buffer[block_buffer_head];
  703. // Set sdlen for calculating sd position
  704. block->sdlen = 0;
  705. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  706. block->busy = false;
  707. // Number of steps for each axis
  708. #ifndef COREXY
  709. // default non-h-bot planning
  710. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  711. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  712. #else
  713. // corexy planning
  714. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  715. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  716. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  717. #endif
  718. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  719. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  720. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  721. // Bail if this is a zero-length block
  722. if (block->step_event_count.wide <= dropsegments)
  723. {
  724. #ifdef PLANNER_DIAGNOSTICS
  725. planner_update_queue_min_counter();
  726. #endif /* PLANNER_DIAGNOSTICS */
  727. return;
  728. }
  729. block->fan_speed = fanSpeed;
  730. // Compute direction bits for this block
  731. block->direction_bits = 0;
  732. #ifndef COREXY
  733. if (target[X_AXIS] < position[X_AXIS])
  734. {
  735. block->direction_bits |= (1<<X_AXIS);
  736. }
  737. if (target[Y_AXIS] < position[Y_AXIS])
  738. {
  739. block->direction_bits |= (1<<Y_AXIS);
  740. }
  741. #else
  742. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  743. {
  744. block->direction_bits |= (1<<X_AXIS);
  745. }
  746. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  747. {
  748. block->direction_bits |= (1<<Y_AXIS);
  749. }
  750. #endif
  751. if (target[Z_AXIS] < position[Z_AXIS])
  752. {
  753. block->direction_bits |= (1<<Z_AXIS);
  754. }
  755. if (target[E_AXIS] < position[E_AXIS])
  756. {
  757. block->direction_bits |= (1<<E_AXIS);
  758. }
  759. block->active_extruder = extruder;
  760. //enable active axes
  761. #ifdef COREXY
  762. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  763. {
  764. enable_x();
  765. enable_y();
  766. }
  767. #else
  768. if(block->steps_x.wide != 0) enable_x();
  769. if(block->steps_y.wide != 0) enable_y();
  770. #endif
  771. if(block->steps_z.wide != 0) enable_z();
  772. // Enable extruder(s)
  773. if(block->steps_e.wide != 0)
  774. {
  775. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  776. {
  777. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  778. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  779. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  780. switch(extruder)
  781. {
  782. case 0:
  783. enable_e0();
  784. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  785. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  786. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  787. break;
  788. case 1:
  789. enable_e1();
  790. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  791. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  792. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  793. break;
  794. case 2:
  795. enable_e2();
  796. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  797. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  798. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  799. break;
  800. }
  801. }
  802. else //enable all
  803. {
  804. enable_e0();
  805. enable_e1();
  806. enable_e2();
  807. }
  808. }
  809. if (block->steps_e.wide == 0)
  810. {
  811. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  812. }
  813. else
  814. {
  815. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  816. }
  817. /* This part of the code calculates the total length of the movement.
  818. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  819. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  820. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  821. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  822. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  823. */
  824. #ifndef COREXY
  825. float delta_mm[4];
  826. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  827. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  828. #else
  829. float delta_mm[6];
  830. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  831. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  832. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  833. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  834. #endif
  835. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  836. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  837. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  838. {
  839. block->millimeters = fabs(delta_mm[E_AXIS]);
  840. }
  841. else
  842. {
  843. #ifndef COREXY
  844. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  845. #else
  846. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  847. #endif
  848. }
  849. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  850. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  851. float inverse_second = feed_rate * inverse_millimeters;
  852. int moves_queued = moves_planned();
  853. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  854. #ifdef SLOWDOWN
  855. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  856. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  857. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  858. // segment time in micro seconds
  859. unsigned long segment_time = lround(1000000.0/inverse_second);
  860. if (segment_time < minsegmenttime)
  861. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  862. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  863. }
  864. #endif // SLOWDOWN
  865. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  866. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  867. // Calculate and limit speed in mm/sec for each axis
  868. float current_speed[4];
  869. float speed_factor = 1.0; //factor <=1 do decrease speed
  870. // maxlimit_status &= ~0xf;
  871. for(int i=0; i < 4; i++)
  872. {
  873. current_speed[i] = delta_mm[i] * inverse_second;
  874. if(fabs(current_speed[i]) > max_feedrate[i])
  875. {
  876. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  877. maxlimit_status |= (1 << i);
  878. }
  879. }
  880. // Correct the speed
  881. if( speed_factor < 1.0)
  882. {
  883. for(unsigned char i=0; i < 4; i++)
  884. {
  885. current_speed[i] *= speed_factor;
  886. }
  887. block->nominal_speed *= speed_factor;
  888. block->nominal_rate *= speed_factor;
  889. }
  890. // Compute and limit the acceleration rate for the trapezoid generator.
  891. // block->step_event_count ... event count of the fastest axis
  892. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  893. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  894. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  895. {
  896. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  897. }
  898. else
  899. {
  900. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  901. // Limit acceleration per axis
  902. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  903. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  904. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  905. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  906. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  907. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  908. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  909. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  910. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  911. }
  912. // Acceleration of the segment, in mm/sec^2
  913. block->acceleration = block->acceleration_st / steps_per_mm;
  914. #if 0
  915. // Oversample diagonal movements by a power of 2 up to 8x
  916. // to achieve more accurate diagonal movements.
  917. uint8_t bresenham_oversample = 1;
  918. for (uint8_t i = 0; i < 3; ++ i) {
  919. if (block->nominal_rate >= 5000) // 5kHz
  920. break;
  921. block->nominal_rate << 1;
  922. bresenham_oversample << 1;
  923. block->step_event_count << 1;
  924. }
  925. if (bresenham_oversample > 1)
  926. // Lower the acceleration steps/sec^2 to account for the oversampling.
  927. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  928. #endif
  929. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  930. // Start with a safe speed.
  931. // Safe speed is the speed, from which the machine may halt to stop immediately.
  932. float safe_speed = block->nominal_speed;
  933. bool limited = false;
  934. for (uint8_t axis = 0; axis < 4; ++ axis) {
  935. float jerk = fabs(current_speed[axis]);
  936. if (jerk > max_jerk[axis]) {
  937. // The actual jerk is lower, if it has been limited by the XY jerk.
  938. if (limited) {
  939. // Spare one division by a following gymnastics:
  940. // Instead of jerk *= safe_speed / block->nominal_speed,
  941. // multiply max_jerk[axis] by the divisor.
  942. jerk *= safe_speed;
  943. float mjerk = max_jerk[axis] * block->nominal_speed;
  944. if (jerk > mjerk) {
  945. safe_speed *= mjerk / jerk;
  946. limited = true;
  947. }
  948. } else {
  949. safe_speed = max_jerk[axis];
  950. limited = true;
  951. }
  952. }
  953. }
  954. // Reset the block flag.
  955. block->flag = 0;
  956. // Initial limit on the segment entry velocity.
  957. float vmax_junction;
  958. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  959. // Is it because we don't want to tinker with the first buffer line, which
  960. // is likely to be executed by the stepper interrupt routine soon?
  961. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  962. // Estimate a maximum velocity allowed at a joint of two successive segments.
  963. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  964. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  965. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  966. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  967. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  968. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  969. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  970. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  971. float v_factor = 1.f;
  972. limited = false;
  973. // Now limit the jerk in all axes.
  974. for (uint8_t axis = 0; axis < 4; ++ axis) {
  975. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  976. float v_exit = previous_speed[axis];
  977. float v_entry = current_speed [axis];
  978. if (prev_speed_larger)
  979. v_exit *= smaller_speed_factor;
  980. if (limited) {
  981. v_exit *= v_factor;
  982. v_entry *= v_factor;
  983. }
  984. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  985. float jerk =
  986. (v_exit > v_entry) ?
  987. ((v_entry > 0.f || v_exit < 0.f) ?
  988. // coasting
  989. (v_exit - v_entry) :
  990. // axis reversal
  991. max(v_exit, - v_entry)) :
  992. // v_exit <= v_entry
  993. ((v_entry < 0.f || v_exit > 0.f) ?
  994. // coasting
  995. (v_entry - v_exit) :
  996. // axis reversal
  997. max(- v_exit, v_entry));
  998. if (jerk > max_jerk[axis]) {
  999. v_factor *= max_jerk[axis] / jerk;
  1000. limited = true;
  1001. }
  1002. }
  1003. if (limited)
  1004. vmax_junction *= v_factor;
  1005. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1006. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1007. float vmax_junction_threshold = vmax_junction * 0.99f;
  1008. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1009. // Not coasting. The machine will stop and start the movements anyway,
  1010. // better to start the segment from start.
  1011. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1012. vmax_junction = safe_speed;
  1013. }
  1014. } else {
  1015. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1016. vmax_junction = safe_speed;
  1017. }
  1018. // Max entry speed of this block equals the max exit speed of the previous block.
  1019. block->max_entry_speed = vmax_junction;
  1020. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1021. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1022. block->entry_speed = min(vmax_junction, v_allowable);
  1023. // Initialize planner efficiency flags
  1024. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1025. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1026. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1027. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1028. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1029. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1030. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1031. // Always calculate trapezoid for new block
  1032. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1033. // Update previous path unit_vector and nominal speed
  1034. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1035. previous_nominal_speed = block->nominal_speed;
  1036. previous_safe_speed = safe_speed;
  1037. #ifdef LIN_ADVANCE
  1038. //
  1039. // Use LIN_ADVANCE for blocks if all these are true:
  1040. //
  1041. // esteps : We have E steps todo (a printing move)
  1042. //
  1043. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1044. //
  1045. // extruder_advance_k : There is an advance factor set.
  1046. //
  1047. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1048. // In that case, the retract and move will be executed together.
  1049. // This leads to too many advance steps due to a huge e_acceleration.
  1050. // The math is good, but we must avoid retract moves with advance!
  1051. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1052. //
  1053. block->use_advance_lead = block->steps_e.wide
  1054. && (block->steps_x.wide || block->steps_y.wide)
  1055. && extruder_advance_k
  1056. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1057. && de_float > 0.0;
  1058. if (block->use_advance_lead)
  1059. block->abs_adv_steps_multiplier8 = lround(
  1060. extruder_advance_k
  1061. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1062. * (block->nominal_speed / (float)block->nominal_rate)
  1063. * cs.axis_steps_per_unit[E_AXIS] * 256.0
  1064. );
  1065. #endif
  1066. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1067. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1068. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1069. if (block->step_event_count.wide <= 32767)
  1070. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1071. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1072. block_buffer_head = next_buffer_head;
  1073. // Update position
  1074. memcpy(position, target, sizeof(target)); // position[] = target[]
  1075. #ifdef LIN_ADVANCE
  1076. position_float[X_AXIS] = x;
  1077. position_float[Y_AXIS] = y;
  1078. position_float[Z_AXIS] = z;
  1079. position_float[E_AXIS] = e;
  1080. #endif
  1081. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1082. // the machine limits (maximum acceleration and maximum jerk).
  1083. // This runs asynchronously with the stepper interrupt controller, which may
  1084. // interfere with the process.
  1085. planner_recalculate(safe_speed);
  1086. // SERIAL_ECHOPGM("Q");
  1087. // SERIAL_ECHO(int(moves_planned()));
  1088. // SERIAL_ECHOLNPGM("");
  1089. #ifdef PLANNER_DIAGNOSTICS
  1090. planner_update_queue_min_counter();
  1091. #endif /* PLANNER_DIAGNOSTIC */
  1092. // The stepper timer interrupt will run continuously from now on.
  1093. // If there are no planner blocks to be executed by the stepper routine,
  1094. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1095. // from the planner queue if available.
  1096. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1097. }
  1098. #ifdef ENABLE_AUTO_BED_LEVELING
  1099. vector_3 plan_get_position() {
  1100. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1101. //position.debug("in plan_get position");
  1102. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1103. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1104. //inverse.debug("in plan_get inverse");
  1105. position.apply_rotation(inverse);
  1106. //position.debug("after rotation");
  1107. return position;
  1108. }
  1109. #endif // ENABLE_AUTO_BED_LEVELING
  1110. void plan_set_position(float x, float y, float z, const float &e)
  1111. {
  1112. #ifdef ENABLE_AUTO_BED_LEVELING
  1113. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1114. #endif // ENABLE_AUTO_BED_LEVELING
  1115. // Apply the machine correction matrix.
  1116. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1117. {
  1118. float tmpx = x;
  1119. float tmpy = y;
  1120. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1121. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1122. }
  1123. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1124. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1125. #ifdef MESH_BED_LEVELING
  1126. position[Z_AXIS] = mbl.active ?
  1127. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1128. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1129. #else
  1130. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1131. #endif // ENABLE_MESH_BED_LEVELING
  1132. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1133. #ifdef LIN_ADVANCE
  1134. position_float[X_AXIS] = x;
  1135. position_float[Y_AXIS] = y;
  1136. position_float[Z_AXIS] = z;
  1137. position_float[E_AXIS] = e;
  1138. #endif
  1139. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1140. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1141. previous_speed[0] = 0.0;
  1142. previous_speed[1] = 0.0;
  1143. previous_speed[2] = 0.0;
  1144. previous_speed[3] = 0.0;
  1145. }
  1146. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1147. void plan_set_z_position(const float &z)
  1148. {
  1149. #ifdef LIN_ADVANCE
  1150. position_float[Z_AXIS] = z;
  1151. #endif
  1152. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1153. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1154. }
  1155. void plan_set_e_position(const float &e)
  1156. {
  1157. #ifdef LIN_ADVANCE
  1158. position_float[E_AXIS] = e;
  1159. #endif
  1160. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1161. st_set_e_position(position[E_AXIS]);
  1162. }
  1163. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1164. void set_extrude_min_temp(float temp)
  1165. {
  1166. extrude_min_temp=temp;
  1167. }
  1168. #endif
  1169. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1170. void reset_acceleration_rates()
  1171. {
  1172. for(int8_t i=0; i < NUM_AXIS; i++)
  1173. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1174. }
  1175. #ifdef TMC2130
  1176. void update_mode_profile()
  1177. {
  1178. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1179. {
  1180. max_feedrate = cs.max_feedrate_normal;
  1181. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_normal;
  1182. }
  1183. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1184. {
  1185. max_feedrate = max_feedrate_silent;
  1186. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1187. }
  1188. reset_acceleration_rates();
  1189. }
  1190. #endif //TMC2130
  1191. unsigned char number_of_blocks()
  1192. {
  1193. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1194. }
  1195. #ifdef PLANNER_DIAGNOSTICS
  1196. uint8_t planner_queue_min()
  1197. {
  1198. return g_cntr_planner_queue_min;
  1199. }
  1200. void planner_queue_min_reset()
  1201. {
  1202. g_cntr_planner_queue_min = moves_planned();
  1203. }
  1204. #endif /* PLANNER_DIAGNOSTICS */
  1205. void planner_add_sd_length(uint16_t sdlen)
  1206. {
  1207. if (block_buffer_head != block_buffer_tail) {
  1208. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1209. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1210. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1211. } else {
  1212. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1213. // at a power panic, so the length of this command may be forgotten.
  1214. }
  1215. }
  1216. uint16_t planner_calc_sd_length()
  1217. {
  1218. unsigned char _block_buffer_head = block_buffer_head;
  1219. unsigned char _block_buffer_tail = block_buffer_tail;
  1220. uint16_t sdlen = 0;
  1221. while (_block_buffer_head != _block_buffer_tail)
  1222. {
  1223. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1224. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1225. }
  1226. return sdlen;
  1227. }