Marlin_main.cpp 275 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "watchdog.h"
  43. #include "ConfigurationStore.h"
  44. #include "language.h"
  45. #include "pins_arduino.h"
  46. #include "math.h"
  47. #include "util.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float volumetric_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. #ifdef FILAMENT_SENSOR
  347. //Variables for Filament Sensor input
  348. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  349. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  350. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  351. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  352. int delay_index1=0; //index into ring buffer
  353. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  354. float delay_dist=0; //delay distance counter
  355. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  356. #endif
  357. const char errormagic[] PROGMEM = "Error:";
  358. const char echomagic[] PROGMEM = "echo:";
  359. //===========================================================================
  360. //=============================Private Variables=============================
  361. //===========================================================================
  362. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  363. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  364. static float delta[3] = {0.0, 0.0, 0.0};
  365. // For tracing an arc
  366. static float offset[3] = {0.0, 0.0, 0.0};
  367. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  368. // Determines Absolute or Relative Coordinates.
  369. // Also there is bool axis_relative_modes[] per axis flag.
  370. static bool relative_mode = false;
  371. #ifndef _DISABLE_M42_M226
  372. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  373. #endif //_DISABLE_M42_M226
  374. //static float tt = 0;
  375. //static float bt = 0;
  376. //Inactivity shutdown variables
  377. static unsigned long previous_millis_cmd = 0;
  378. unsigned long max_inactive_time = 0;
  379. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  380. unsigned long starttime=0;
  381. unsigned long stoptime=0;
  382. unsigned long _usb_timer = 0;
  383. static uint8_t tmp_extruder;
  384. bool extruder_under_pressure = true;
  385. bool Stopped=false;
  386. #if NUM_SERVOS > 0
  387. Servo servos[NUM_SERVOS];
  388. #endif
  389. bool CooldownNoWait = true;
  390. bool target_direction;
  391. //Insert variables if CHDK is defined
  392. #ifdef CHDK
  393. unsigned long chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. //===========================================================================
  397. //=============================Routines======================================
  398. //===========================================================================
  399. void get_arc_coordinates();
  400. bool setTargetedHotend(int code);
  401. void serial_echopair_P(const char *s_P, float v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. void serial_echopair_P(const char *s_P, double v)
  404. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  405. void serial_echopair_P(const char *s_P, unsigned long v)
  406. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  407. #ifdef SDSUPPORT
  408. #include "SdFatUtil.h"
  409. int freeMemory() { return SdFatUtil::FreeRam(); }
  410. #else
  411. extern "C" {
  412. extern unsigned int __bss_end;
  413. extern unsigned int __heap_start;
  414. extern void *__brkval;
  415. int freeMemory() {
  416. int free_memory;
  417. if ((int)__brkval == 0)
  418. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  419. else
  420. free_memory = ((int)&free_memory) - ((int)__brkval);
  421. return free_memory;
  422. }
  423. }
  424. #endif //!SDSUPPORT
  425. void setup_killpin()
  426. {
  427. #if defined(KILL_PIN) && KILL_PIN > -1
  428. SET_INPUT(KILL_PIN);
  429. WRITE(KILL_PIN,HIGH);
  430. #endif
  431. }
  432. // Set home pin
  433. void setup_homepin(void)
  434. {
  435. #if defined(HOME_PIN) && HOME_PIN > -1
  436. SET_INPUT(HOME_PIN);
  437. WRITE(HOME_PIN,HIGH);
  438. #endif
  439. }
  440. void setup_photpin()
  441. {
  442. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  443. SET_OUTPUT(PHOTOGRAPH_PIN);
  444. WRITE(PHOTOGRAPH_PIN, LOW);
  445. #endif
  446. }
  447. void setup_powerhold()
  448. {
  449. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  450. SET_OUTPUT(SUICIDE_PIN);
  451. WRITE(SUICIDE_PIN, HIGH);
  452. #endif
  453. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  454. SET_OUTPUT(PS_ON_PIN);
  455. #if defined(PS_DEFAULT_OFF)
  456. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  457. #else
  458. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  459. #endif
  460. #endif
  461. }
  462. void suicide()
  463. {
  464. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  465. SET_OUTPUT(SUICIDE_PIN);
  466. WRITE(SUICIDE_PIN, LOW);
  467. #endif
  468. }
  469. void servo_init()
  470. {
  471. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  472. servos[0].attach(SERVO0_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  475. servos[1].attach(SERVO1_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  478. servos[2].attach(SERVO2_PIN);
  479. #endif
  480. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  481. servos[3].attach(SERVO3_PIN);
  482. #endif
  483. #if (NUM_SERVOS >= 5)
  484. #error "TODO: enter initalisation code for more servos"
  485. #endif
  486. }
  487. static void lcd_language_menu();
  488. void stop_and_save_print_to_ram(float z_move, float e_move);
  489. void restore_print_from_ram_and_continue(float e_move);
  490. bool fans_check_enabled = true;
  491. bool filament_autoload_enabled = true;
  492. #ifdef TMC2130
  493. extern int8_t CrashDetectMenu;
  494. void crashdet_enable()
  495. {
  496. // MYSERIAL.println("crashdet_enable");
  497. tmc2130_sg_stop_on_crash = true;
  498. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  499. CrashDetectMenu = 1;
  500. }
  501. void crashdet_disable()
  502. {
  503. // MYSERIAL.println("crashdet_disable");
  504. tmc2130_sg_stop_on_crash = false;
  505. tmc2130_sg_crash = 0;
  506. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  507. CrashDetectMenu = 0;
  508. }
  509. void crashdet_stop_and_save_print()
  510. {
  511. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  512. }
  513. void crashdet_restore_print_and_continue()
  514. {
  515. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  516. // babystep_apply();
  517. }
  518. void crashdet_stop_and_save_print2()
  519. {
  520. cli();
  521. planner_abort_hard(); //abort printing
  522. cmdqueue_reset(); //empty cmdqueue
  523. card.sdprinting = false;
  524. card.closefile();
  525. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  526. st_reset_timer();
  527. sei();
  528. }
  529. void crashdet_detected(uint8_t mask)
  530. {
  531. // printf("CRASH_DETECTED");
  532. /* while (!is_buffer_empty())
  533. {
  534. process_commands();
  535. cmdqueue_pop_front();
  536. }*/
  537. st_synchronize();
  538. lcd_update_enable(true);
  539. lcd_implementation_clear();
  540. lcd_update(2);
  541. if (mask & X_AXIS_MASK)
  542. {
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  544. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  545. }
  546. if (mask & Y_AXIS_MASK)
  547. {
  548. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  549. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  550. }
  551. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  552. bool yesno = true;
  553. #else
  554. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  555. #endif
  556. lcd_update_enable(true);
  557. lcd_update(2);
  558. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  559. if (yesno)
  560. {
  561. enquecommand_P(PSTR("G28 X Y"));
  562. enquecommand_P(PSTR("CRASH_RECOVER"));
  563. }
  564. else
  565. {
  566. enquecommand_P(PSTR("CRASH_CANCEL"));
  567. }
  568. }
  569. void crashdet_recover()
  570. {
  571. crashdet_restore_print_and_continue();
  572. tmc2130_sg_stop_on_crash = true;
  573. }
  574. void crashdet_cancel()
  575. {
  576. card.sdprinting = false;
  577. card.closefile();
  578. tmc2130_sg_stop_on_crash = true;
  579. }
  580. void failstats_reset_print()
  581. {
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  585. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  586. }
  587. #endif //TMC2130
  588. #ifdef MESH_BED_LEVELING
  589. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  590. #endif
  591. // Factory reset function
  592. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  593. // Level input parameter sets depth of reset
  594. // Quiet parameter masks all waitings for user interact.
  595. int er_progress = 0;
  596. void factory_reset(char level, bool quiet)
  597. {
  598. lcd_implementation_clear();
  599. int cursor_pos = 0;
  600. switch (level) {
  601. // Level 0: Language reset
  602. case 0:
  603. WRITE(BEEPER, HIGH);
  604. _delay_ms(100);
  605. WRITE(BEEPER, LOW);
  606. lcd_force_language_selection();
  607. break;
  608. //Level 1: Reset statistics
  609. case 1:
  610. WRITE(BEEPER, HIGH);
  611. _delay_ms(100);
  612. WRITE(BEEPER, LOW);
  613. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  614. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  617. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  618. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  620. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  621. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  622. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  623. lcd_menu_statistics();
  624. break;
  625. // Level 2: Prepare for shipping
  626. case 2:
  627. //lcd_printPGM(PSTR("Factory RESET"));
  628. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  629. // Force language selection at the next boot up.
  630. lcd_force_language_selection();
  631. // Force the "Follow calibration flow" message at the next boot up.
  632. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  633. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  634. farm_no = 0;
  635. farm_mode == false;
  636. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  637. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  638. WRITE(BEEPER, HIGH);
  639. _delay_ms(100);
  640. WRITE(BEEPER, LOW);
  641. //_delay_ms(2000);
  642. break;
  643. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  644. case 3:
  645. lcd_printPGM(PSTR("Factory RESET"));
  646. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  647. WRITE(BEEPER, HIGH);
  648. _delay_ms(100);
  649. WRITE(BEEPER, LOW);
  650. er_progress = 0;
  651. lcd_print_at_PGM(3, 3, PSTR(" "));
  652. lcd_implementation_print_at(3, 3, er_progress);
  653. // Erase EEPROM
  654. for (int i = 0; i < 4096; i++) {
  655. eeprom_write_byte((uint8_t*)i, 0xFF);
  656. if (i % 41 == 0) {
  657. er_progress++;
  658. lcd_print_at_PGM(3, 3, PSTR(" "));
  659. lcd_implementation_print_at(3, 3, er_progress);
  660. lcd_printPGM(PSTR("%"));
  661. }
  662. }
  663. break;
  664. case 4:
  665. bowden_menu();
  666. break;
  667. default:
  668. break;
  669. }
  670. }
  671. #include "LiquidCrystal.h"
  672. extern LiquidCrystal lcd;
  673. FILE _lcdout = {0};
  674. int lcd_putchar(char c, FILE *stream)
  675. {
  676. lcd.write(c);
  677. return 0;
  678. }
  679. FILE _uartout = {0};
  680. int uart_putchar(char c, FILE *stream)
  681. {
  682. MYSERIAL.write(c);
  683. return 0;
  684. }
  685. void lcd_splash()
  686. {
  687. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  688. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  689. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  690. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  691. }
  692. void factory_reset()
  693. {
  694. KEEPALIVE_STATE(PAUSED_FOR_USER);
  695. if (!READ(BTN_ENC))
  696. {
  697. _delay_ms(1000);
  698. if (!READ(BTN_ENC))
  699. {
  700. lcd_implementation_clear();
  701. lcd_printPGM(PSTR("Factory RESET"));
  702. SET_OUTPUT(BEEPER);
  703. WRITE(BEEPER, HIGH);
  704. while (!READ(BTN_ENC));
  705. WRITE(BEEPER, LOW);
  706. _delay_ms(2000);
  707. char level = reset_menu();
  708. factory_reset(level, false);
  709. switch (level) {
  710. case 0: _delay_ms(0); break;
  711. case 1: _delay_ms(0); break;
  712. case 2: _delay_ms(0); break;
  713. case 3: _delay_ms(0); break;
  714. }
  715. // _delay_ms(100);
  716. /*
  717. #ifdef MESH_BED_LEVELING
  718. _delay_ms(2000);
  719. if (!READ(BTN_ENC))
  720. {
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. _delay_ms(200);
  725. WRITE(BEEPER, HIGH);
  726. _delay_ms(100);
  727. WRITE(BEEPER, LOW);
  728. int _z = 0;
  729. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  730. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  732. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  733. }
  734. else
  735. {
  736. WRITE(BEEPER, HIGH);
  737. _delay_ms(100);
  738. WRITE(BEEPER, LOW);
  739. }
  740. #endif // mesh */
  741. }
  742. }
  743. else
  744. {
  745. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  746. }
  747. KEEPALIVE_STATE(IN_HANDLER);
  748. }
  749. void show_fw_version_warnings() {
  750. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  751. switch (FW_DEV_VERSION) {
  752. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  753. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  754. case(FW_VERSION_DEVEL):
  755. case(FW_VERSION_DEBUG):
  756. lcd_update_enable(false);
  757. lcd_implementation_clear();
  758. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  759. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  760. #else
  761. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  762. #endif
  763. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  764. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  765. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  766. lcd_wait_for_click();
  767. break;
  768. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  769. }
  770. lcd_update_enable(true);
  771. }
  772. uint8_t check_printer_version()
  773. {
  774. uint8_t version_changed = 0;
  775. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  776. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  777. if (printer_type != PRINTER_TYPE) {
  778. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  779. else version_changed |= 0b10;
  780. }
  781. if (motherboard != MOTHERBOARD) {
  782. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  783. else version_changed |= 0b01;
  784. }
  785. return version_changed;
  786. }
  787. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  788. {
  789. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. lcd_init();
  797. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  798. lcd_splash();
  799. setup_killpin();
  800. setup_powerhold();
  801. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  802. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  803. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  804. if (farm_no == 0xFFFF) farm_no = 0;
  805. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  806. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  807. if (farm_mode)
  808. {
  809. prusa_statistics(8);
  810. selectedSerialPort = 1;
  811. }
  812. MYSERIAL.begin(BAUDRATE);
  813. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  814. stdout = uartout;
  815. SERIAL_PROTOCOLLNPGM("start");
  816. SERIAL_ECHO_START;
  817. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  818. #if 0
  819. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  820. for (int i = 0; i < 4096; ++i) {
  821. int b = eeprom_read_byte((unsigned char*)i);
  822. if (b != 255) {
  823. SERIAL_ECHO(i);
  824. SERIAL_ECHO(":");
  825. SERIAL_ECHO(b);
  826. SERIAL_ECHOLN("");
  827. }
  828. }
  829. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  830. #endif
  831. // Check startup - does nothing if bootloader sets MCUSR to 0
  832. byte mcu = MCUSR;
  833. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  834. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  835. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  836. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  837. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  838. if (mcu & 1) puts_P(MSG_POWERUP);
  839. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  840. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  841. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  842. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  843. MCUSR = 0;
  844. //SERIAL_ECHORPGM(MSG_MARLIN);
  845. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  846. #ifdef STRING_VERSION_CONFIG_H
  847. #ifdef STRING_CONFIG_H_AUTHOR
  848. SERIAL_ECHO_START;
  849. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  850. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  851. SERIAL_ECHORPGM(MSG_AUTHOR);
  852. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  853. SERIAL_ECHOPGM("Compiled: ");
  854. SERIAL_ECHOLNPGM(__DATE__);
  855. #endif
  856. #endif
  857. SERIAL_ECHO_START;
  858. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  859. SERIAL_ECHO(freeMemory());
  860. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  861. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  862. //lcd_update_enable(false); // why do we need this?? - andre
  863. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  864. bool previous_settings_retrieved = false;
  865. uint8_t hw_changed = check_printer_version();
  866. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  867. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  868. }
  869. else { //printer version was changed so use default settings
  870. Config_ResetDefault();
  871. }
  872. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  873. tp_init(); // Initialize temperature loop
  874. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  875. plan_init(); // Initialize planner;
  876. watchdog_init();
  877. factory_reset();
  878. #ifdef TMC2130
  879. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  880. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  881. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  882. if (crashdet)
  883. {
  884. crashdet_enable();
  885. MYSERIAL.println("CrashDetect ENABLED!");
  886. }
  887. else
  888. {
  889. crashdet_disable();
  890. MYSERIAL.println("CrashDetect DISABLED");
  891. }
  892. #endif //TMC2130
  893. st_init(); // Initialize stepper, this enables interrupts!
  894. setup_photpin();
  895. servo_init();
  896. // Reset the machine correction matrix.
  897. // It does not make sense to load the correction matrix until the machine is homed.
  898. world2machine_reset();
  899. #ifdef PAT9125
  900. fsensor_init();
  901. #endif //PAT9125
  902. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  903. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  904. #endif
  905. #ifdef DIGIPOT_I2C
  906. digipot_i2c_init();
  907. #endif
  908. setup_homepin();
  909. #ifdef TMC2130
  910. if (1) {
  911. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  912. // try to run to zero phase before powering the Z motor.
  913. // Move in negative direction
  914. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  915. // Round the current micro-micro steps to micro steps.
  916. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  917. // Until the phase counter is reset to zero.
  918. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  919. delay(2);
  920. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  921. delay(2);
  922. }
  923. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  924. }
  925. #endif //TMC2130
  926. #if defined(Z_AXIS_ALWAYS_ON)
  927. enable_z();
  928. #endif
  929. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  930. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  931. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  932. if (farm_no == 0xFFFF) farm_no = 0;
  933. if (farm_mode)
  934. {
  935. prusa_statistics(8);
  936. }
  937. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  938. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  939. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  940. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  941. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  942. // where all the EEPROM entries are set to 0x0ff.
  943. // Once a firmware boots up, it forces at least a language selection, which changes
  944. // EEPROM_LANG to number lower than 0x0ff.
  945. // 1) Set a high power mode.
  946. #ifdef TMC2130
  947. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  948. tmc2130_mode = TMC2130_MODE_NORMAL;
  949. #endif //TMC2130
  950. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  951. }
  952. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  953. // but this times out if a blocking dialog is shown in setup().
  954. card.initsd();
  955. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  956. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  957. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  958. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  959. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  960. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  961. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  962. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  963. #ifdef SNMM
  964. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  965. int _z = BOWDEN_LENGTH;
  966. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  967. }
  968. #endif
  969. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  970. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  971. // is being written into the EEPROM, so the update procedure will be triggered only once.
  972. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  973. if (lang_selected >= LANG_NUM){
  974. lcd_mylang();
  975. }
  976. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  977. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  978. temp_cal_active = false;
  979. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  980. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  981. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  982. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  983. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  984. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  985. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  986. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  987. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  988. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  989. temp_cal_active = true;
  990. }
  991. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  992. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  993. }
  994. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  995. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  996. }
  997. check_babystep(); //checking if Z babystep is in allowed range
  998. #ifdef UVLO_SUPPORT
  999. setup_uvlo_interrupt();
  1000. #endif //UVLO_SUPPORT
  1001. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1002. setup_fan_interrupt();
  1003. #endif //DEBUG_DISABLE_FANCHECK
  1004. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1005. fsensor_setup_interrupt();
  1006. #endif //DEBUG_DISABLE_FSENSORCHECK
  1007. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1008. #ifndef DEBUG_DISABLE_STARTMSGS
  1009. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1010. show_fw_version_warnings();
  1011. switch (hw_changed) {
  1012. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1013. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1014. case(0b01):
  1015. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1016. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1017. break;
  1018. case(0b10):
  1019. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1020. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1021. break;
  1022. case(0b11):
  1023. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1024. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1025. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1026. break;
  1027. default: break; //no change, show no message
  1028. }
  1029. if (!previous_settings_retrieved) {
  1030. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1031. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1032. }
  1033. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1034. lcd_wizard(0);
  1035. }
  1036. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1037. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1038. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1039. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1040. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1041. // Show the message.
  1042. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1043. }
  1044. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1045. // Show the message.
  1046. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1047. lcd_update_enable(true);
  1048. }
  1049. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1050. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1051. lcd_update_enable(true);
  1052. }
  1053. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1054. // Show the message.
  1055. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1056. }
  1057. }
  1058. KEEPALIVE_STATE(IN_PROCESS);
  1059. #endif //DEBUG_DISABLE_STARTMSGS
  1060. lcd_update_enable(true);
  1061. lcd_implementation_clear();
  1062. lcd_update(2);
  1063. // Store the currently running firmware into an eeprom,
  1064. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1065. update_current_firmware_version_to_eeprom();
  1066. #ifdef UVLO_SUPPORT
  1067. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1068. /*
  1069. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1070. else {
  1071. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1072. lcd_update_enable(true);
  1073. lcd_update(2);
  1074. lcd_setstatuspgm(WELCOME_MSG);
  1075. }
  1076. */
  1077. manage_heater(); // Update temperatures
  1078. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1079. MYSERIAL.println("Power panic detected!");
  1080. MYSERIAL.print("Current bed temp:");
  1081. MYSERIAL.println(degBed());
  1082. MYSERIAL.print("Saved bed temp:");
  1083. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1084. #endif
  1085. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1086. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1087. MYSERIAL.println("Automatic recovery!");
  1088. #endif
  1089. recover_print(1);
  1090. }
  1091. else{
  1092. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1093. MYSERIAL.println("Normal recovery!");
  1094. #endif
  1095. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1096. else {
  1097. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1098. lcd_update_enable(true);
  1099. lcd_update(2);
  1100. lcd_setstatuspgm(WELCOME_MSG);
  1101. }
  1102. }
  1103. }
  1104. #endif //UVLO_SUPPORT
  1105. KEEPALIVE_STATE(NOT_BUSY);
  1106. wdt_enable(WDTO_4S);
  1107. }
  1108. #ifdef PAT9125
  1109. void fsensor_init() {
  1110. int pat9125 = pat9125_init();
  1111. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1112. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1113. if (!pat9125)
  1114. {
  1115. fsensor = 0; //disable sensor
  1116. fsensor_not_responding = true;
  1117. }
  1118. else {
  1119. fsensor_not_responding = false;
  1120. }
  1121. puts_P(PSTR("FSensor "));
  1122. if (fsensor)
  1123. {
  1124. puts_P(PSTR("ENABLED\n"));
  1125. fsensor_enable();
  1126. }
  1127. else
  1128. {
  1129. puts_P(PSTR("DISABLED\n"));
  1130. fsensor_disable();
  1131. }
  1132. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1133. filament_autoload_enabled = false;
  1134. fsensor_disable();
  1135. #endif //DEBUG_DISABLE_FSENSORCHECK
  1136. }
  1137. #endif //PAT9125
  1138. void trace();
  1139. #define CHUNK_SIZE 64 // bytes
  1140. #define SAFETY_MARGIN 1
  1141. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1142. int chunkHead = 0;
  1143. int serial_read_stream() {
  1144. setTargetHotend(0, 0);
  1145. setTargetBed(0);
  1146. lcd_implementation_clear();
  1147. lcd_printPGM(PSTR(" Upload in progress"));
  1148. // first wait for how many bytes we will receive
  1149. uint32_t bytesToReceive;
  1150. // receive the four bytes
  1151. char bytesToReceiveBuffer[4];
  1152. for (int i=0; i<4; i++) {
  1153. int data;
  1154. while ((data = MYSERIAL.read()) == -1) {};
  1155. bytesToReceiveBuffer[i] = data;
  1156. }
  1157. // make it a uint32
  1158. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1159. // we're ready, notify the sender
  1160. MYSERIAL.write('+');
  1161. // lock in the routine
  1162. uint32_t receivedBytes = 0;
  1163. while (prusa_sd_card_upload) {
  1164. int i;
  1165. for (i=0; i<CHUNK_SIZE; i++) {
  1166. int data;
  1167. // check if we're not done
  1168. if (receivedBytes == bytesToReceive) {
  1169. break;
  1170. }
  1171. // read the next byte
  1172. while ((data = MYSERIAL.read()) == -1) {};
  1173. receivedBytes++;
  1174. // save it to the chunk
  1175. chunk[i] = data;
  1176. }
  1177. // write the chunk to SD
  1178. card.write_command_no_newline(&chunk[0]);
  1179. // notify the sender we're ready for more data
  1180. MYSERIAL.write('+');
  1181. // for safety
  1182. manage_heater();
  1183. // check if we're done
  1184. if(receivedBytes == bytesToReceive) {
  1185. trace(); // beep
  1186. card.closefile();
  1187. prusa_sd_card_upload = false;
  1188. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1189. return 0;
  1190. }
  1191. }
  1192. }
  1193. #ifdef HOST_KEEPALIVE_FEATURE
  1194. /**
  1195. * Output a "busy" message at regular intervals
  1196. * while the machine is not accepting commands.
  1197. */
  1198. void host_keepalive() {
  1199. if (farm_mode) return;
  1200. long ms = millis();
  1201. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1202. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1203. switch (busy_state) {
  1204. case IN_HANDLER:
  1205. case IN_PROCESS:
  1206. SERIAL_ECHO_START;
  1207. SERIAL_ECHOLNPGM("busy: processing");
  1208. break;
  1209. case PAUSED_FOR_USER:
  1210. SERIAL_ECHO_START;
  1211. SERIAL_ECHOLNPGM("busy: paused for user");
  1212. break;
  1213. case PAUSED_FOR_INPUT:
  1214. SERIAL_ECHO_START;
  1215. SERIAL_ECHOLNPGM("busy: paused for input");
  1216. break;
  1217. default:
  1218. break;
  1219. }
  1220. }
  1221. prev_busy_signal_ms = ms;
  1222. }
  1223. #endif
  1224. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1225. // Before loop(), the setup() function is called by the main() routine.
  1226. void loop()
  1227. {
  1228. KEEPALIVE_STATE(NOT_BUSY);
  1229. bool stack_integrity = true;
  1230. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1231. {
  1232. is_usb_printing = true;
  1233. usb_printing_counter--;
  1234. _usb_timer = millis();
  1235. }
  1236. if (usb_printing_counter == 0)
  1237. {
  1238. is_usb_printing = false;
  1239. }
  1240. if (prusa_sd_card_upload)
  1241. {
  1242. //we read byte-by byte
  1243. serial_read_stream();
  1244. } else
  1245. {
  1246. get_command();
  1247. #ifdef SDSUPPORT
  1248. card.checkautostart(false);
  1249. #endif
  1250. if(buflen)
  1251. {
  1252. cmdbuffer_front_already_processed = false;
  1253. #ifdef SDSUPPORT
  1254. if(card.saving)
  1255. {
  1256. // Saving a G-code file onto an SD-card is in progress.
  1257. // Saving starts with M28, saving until M29 is seen.
  1258. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1259. card.write_command(CMDBUFFER_CURRENT_STRING);
  1260. if(card.logging)
  1261. process_commands();
  1262. else
  1263. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1264. } else {
  1265. card.closefile();
  1266. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1267. }
  1268. } else {
  1269. process_commands();
  1270. }
  1271. #else
  1272. process_commands();
  1273. #endif //SDSUPPORT
  1274. if (! cmdbuffer_front_already_processed && buflen)
  1275. {
  1276. // ptr points to the start of the block currently being processed.
  1277. // The first character in the block is the block type.
  1278. char *ptr = cmdbuffer + bufindr;
  1279. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1280. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1281. union {
  1282. struct {
  1283. char lo;
  1284. char hi;
  1285. } lohi;
  1286. uint16_t value;
  1287. } sdlen;
  1288. sdlen.value = 0;
  1289. {
  1290. // This block locks the interrupts globally for 3.25 us,
  1291. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1292. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1293. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1294. cli();
  1295. // Reset the command to something, which will be ignored by the power panic routine,
  1296. // so this buffer length will not be counted twice.
  1297. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1298. // Extract the current buffer length.
  1299. sdlen.lohi.lo = *ptr ++;
  1300. sdlen.lohi.hi = *ptr;
  1301. // and pass it to the planner queue.
  1302. planner_add_sd_length(sdlen.value);
  1303. sei();
  1304. }
  1305. }
  1306. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1307. // this block's SD card length will not be counted twice as its command type has been replaced
  1308. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1309. cmdqueue_pop_front();
  1310. }
  1311. host_keepalive();
  1312. }
  1313. }
  1314. //check heater every n milliseconds
  1315. manage_heater();
  1316. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1317. checkHitEndstops();
  1318. lcd_update();
  1319. #ifdef PAT9125
  1320. fsensor_update();
  1321. #endif //PAT9125
  1322. #ifdef TMC2130
  1323. tmc2130_check_overtemp();
  1324. if (tmc2130_sg_crash)
  1325. {
  1326. uint8_t crash = tmc2130_sg_crash;
  1327. tmc2130_sg_crash = 0;
  1328. // crashdet_stop_and_save_print();
  1329. switch (crash)
  1330. {
  1331. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1332. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1333. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1334. }
  1335. }
  1336. #endif //TMC2130
  1337. }
  1338. #define DEFINE_PGM_READ_ANY(type, reader) \
  1339. static inline type pgm_read_any(const type *p) \
  1340. { return pgm_read_##reader##_near(p); }
  1341. DEFINE_PGM_READ_ANY(float, float);
  1342. DEFINE_PGM_READ_ANY(signed char, byte);
  1343. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1344. static const PROGMEM type array##_P[3] = \
  1345. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1346. static inline type array(int axis) \
  1347. { return pgm_read_any(&array##_P[axis]); } \
  1348. type array##_ext(int axis) \
  1349. { return pgm_read_any(&array##_P[axis]); }
  1350. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1351. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1352. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1353. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1354. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1355. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1356. static void axis_is_at_home(int axis) {
  1357. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1358. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1359. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1360. }
  1361. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1362. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1363. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1364. saved_feedrate = feedrate;
  1365. saved_feedmultiply = feedmultiply;
  1366. feedmultiply = 100;
  1367. previous_millis_cmd = millis();
  1368. enable_endstops(enable_endstops_now);
  1369. }
  1370. static void clean_up_after_endstop_move() {
  1371. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1372. enable_endstops(false);
  1373. #endif
  1374. feedrate = saved_feedrate;
  1375. feedmultiply = saved_feedmultiply;
  1376. previous_millis_cmd = millis();
  1377. }
  1378. #ifdef ENABLE_AUTO_BED_LEVELING
  1379. #ifdef AUTO_BED_LEVELING_GRID
  1380. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1381. {
  1382. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1383. planeNormal.debug("planeNormal");
  1384. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1385. //bedLevel.debug("bedLevel");
  1386. //plan_bed_level_matrix.debug("bed level before");
  1387. //vector_3 uncorrected_position = plan_get_position_mm();
  1388. //uncorrected_position.debug("position before");
  1389. vector_3 corrected_position = plan_get_position();
  1390. // corrected_position.debug("position after");
  1391. current_position[X_AXIS] = corrected_position.x;
  1392. current_position[Y_AXIS] = corrected_position.y;
  1393. current_position[Z_AXIS] = corrected_position.z;
  1394. // put the bed at 0 so we don't go below it.
  1395. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1397. }
  1398. #else // not AUTO_BED_LEVELING_GRID
  1399. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1400. plan_bed_level_matrix.set_to_identity();
  1401. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1402. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1403. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1404. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1405. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1406. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1407. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1408. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1409. vector_3 corrected_position = plan_get_position();
  1410. current_position[X_AXIS] = corrected_position.x;
  1411. current_position[Y_AXIS] = corrected_position.y;
  1412. current_position[Z_AXIS] = corrected_position.z;
  1413. // put the bed at 0 so we don't go below it.
  1414. current_position[Z_AXIS] = zprobe_zoffset;
  1415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1416. }
  1417. #endif // AUTO_BED_LEVELING_GRID
  1418. static void run_z_probe() {
  1419. plan_bed_level_matrix.set_to_identity();
  1420. feedrate = homing_feedrate[Z_AXIS];
  1421. // move down until you find the bed
  1422. float zPosition = -10;
  1423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1424. st_synchronize();
  1425. // we have to let the planner know where we are right now as it is not where we said to go.
  1426. zPosition = st_get_position_mm(Z_AXIS);
  1427. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1428. // move up the retract distance
  1429. zPosition += home_retract_mm(Z_AXIS);
  1430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1431. st_synchronize();
  1432. // move back down slowly to find bed
  1433. feedrate = homing_feedrate[Z_AXIS]/4;
  1434. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1436. st_synchronize();
  1437. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1438. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1439. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1440. }
  1441. static void do_blocking_move_to(float x, float y, float z) {
  1442. float oldFeedRate = feedrate;
  1443. feedrate = homing_feedrate[Z_AXIS];
  1444. current_position[Z_AXIS] = z;
  1445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1446. st_synchronize();
  1447. feedrate = XY_TRAVEL_SPEED;
  1448. current_position[X_AXIS] = x;
  1449. current_position[Y_AXIS] = y;
  1450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1451. st_synchronize();
  1452. feedrate = oldFeedRate;
  1453. }
  1454. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1455. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1456. }
  1457. /// Probe bed height at position (x,y), returns the measured z value
  1458. static float probe_pt(float x, float y, float z_before) {
  1459. // move to right place
  1460. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1461. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1462. run_z_probe();
  1463. float measured_z = current_position[Z_AXIS];
  1464. SERIAL_PROTOCOLRPGM(MSG_BED);
  1465. SERIAL_PROTOCOLPGM(" x: ");
  1466. SERIAL_PROTOCOL(x);
  1467. SERIAL_PROTOCOLPGM(" y: ");
  1468. SERIAL_PROTOCOL(y);
  1469. SERIAL_PROTOCOLPGM(" z: ");
  1470. SERIAL_PROTOCOL(measured_z);
  1471. SERIAL_PROTOCOLPGM("\n");
  1472. return measured_z;
  1473. }
  1474. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1475. #ifdef LIN_ADVANCE
  1476. /**
  1477. * M900: Set and/or Get advance K factor and WH/D ratio
  1478. *
  1479. * K<factor> Set advance K factor
  1480. * R<ratio> Set ratio directly (overrides WH/D)
  1481. * W<width> H<height> D<diam> Set ratio from WH/D
  1482. */
  1483. inline void gcode_M900() {
  1484. st_synchronize();
  1485. const float newK = code_seen('K') ? code_value_float() : -1;
  1486. if (newK >= 0) extruder_advance_k = newK;
  1487. float newR = code_seen('R') ? code_value_float() : -1;
  1488. if (newR < 0) {
  1489. const float newD = code_seen('D') ? code_value_float() : -1,
  1490. newW = code_seen('W') ? code_value_float() : -1,
  1491. newH = code_seen('H') ? code_value_float() : -1;
  1492. if (newD >= 0 && newW >= 0 && newH >= 0)
  1493. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1494. }
  1495. if (newR >= 0) advance_ed_ratio = newR;
  1496. SERIAL_ECHO_START;
  1497. SERIAL_ECHOPGM("Advance K=");
  1498. SERIAL_ECHOLN(extruder_advance_k);
  1499. SERIAL_ECHOPGM(" E/D=");
  1500. const float ratio = advance_ed_ratio;
  1501. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1502. }
  1503. #endif // LIN_ADVANCE
  1504. bool check_commands() {
  1505. bool end_command_found = false;
  1506. while (buflen)
  1507. {
  1508. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1509. if (!cmdbuffer_front_already_processed)
  1510. cmdqueue_pop_front();
  1511. cmdbuffer_front_already_processed = false;
  1512. }
  1513. return end_command_found;
  1514. }
  1515. #ifdef TMC2130
  1516. bool calibrate_z_auto()
  1517. {
  1518. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1519. lcd_implementation_clear();
  1520. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1521. bool endstops_enabled = enable_endstops(true);
  1522. int axis_up_dir = -home_dir(Z_AXIS);
  1523. tmc2130_home_enter(Z_AXIS_MASK);
  1524. current_position[Z_AXIS] = 0;
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. set_destination_to_current();
  1527. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1528. feedrate = homing_feedrate[Z_AXIS];
  1529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1530. st_synchronize();
  1531. // current_position[axis] = 0;
  1532. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1533. tmc2130_home_exit();
  1534. enable_endstops(false);
  1535. current_position[Z_AXIS] = 0;
  1536. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1537. set_destination_to_current();
  1538. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1539. feedrate = homing_feedrate[Z_AXIS] / 2;
  1540. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1541. st_synchronize();
  1542. enable_endstops(endstops_enabled);
  1543. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1544. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1545. return true;
  1546. }
  1547. #endif //TMC2130
  1548. void homeaxis(int axis)
  1549. {
  1550. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1551. #define HOMEAXIS_DO(LETTER) \
  1552. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1553. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1554. {
  1555. int axis_home_dir = home_dir(axis);
  1556. feedrate = homing_feedrate[axis];
  1557. #ifdef TMC2130
  1558. tmc2130_home_enter(X_AXIS_MASK << axis);
  1559. #endif
  1560. // Move right a bit, so that the print head does not touch the left end position,
  1561. // and the following left movement has a chance to achieve the required velocity
  1562. // for the stall guard to work.
  1563. current_position[axis] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. // destination[axis] = 11.f;
  1566. destination[axis] = 3.f;
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. // Move left away from the possible collision with the collision detection disabled.
  1570. endstops_hit_on_purpose();
  1571. enable_endstops(false);
  1572. current_position[axis] = 0;
  1573. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1574. destination[axis] = - 1.;
  1575. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1576. st_synchronize();
  1577. // Now continue to move up to the left end stop with the collision detection enabled.
  1578. enable_endstops(true);
  1579. destination[axis] = - 1.1 * max_length(axis);
  1580. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1581. st_synchronize();
  1582. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1583. endstops_hit_on_purpose();
  1584. enable_endstops(false);
  1585. current_position[axis] = 0;
  1586. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1587. destination[axis] = 10.f;
  1588. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1589. st_synchronize();
  1590. endstops_hit_on_purpose();
  1591. // Now move left up to the collision, this time with a repeatable velocity.
  1592. enable_endstops(true);
  1593. destination[axis] = - 15.f;
  1594. feedrate = homing_feedrate[axis]/2;
  1595. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1596. st_synchronize();
  1597. axis_is_at_home(axis);
  1598. axis_known_position[axis] = true;
  1599. #ifdef TMC2130
  1600. tmc2130_home_exit();
  1601. #endif
  1602. // Move the X carriage away from the collision.
  1603. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1604. endstops_hit_on_purpose();
  1605. enable_endstops(false);
  1606. {
  1607. // Two full periods (4 full steps).
  1608. float gap = 0.32f * 2.f;
  1609. current_position[axis] -= gap;
  1610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1611. current_position[axis] += gap;
  1612. }
  1613. destination[axis] = current_position[axis];
  1614. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1615. st_synchronize();
  1616. feedrate = 0.0;
  1617. }
  1618. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1619. {
  1620. int axis_home_dir = home_dir(axis);
  1621. current_position[axis] = 0;
  1622. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1623. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1624. feedrate = homing_feedrate[axis];
  1625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1626. st_synchronize();
  1627. current_position[axis] = 0;
  1628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1630. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1631. st_synchronize();
  1632. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1633. feedrate = homing_feedrate[axis]/2 ;
  1634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1635. st_synchronize();
  1636. axis_is_at_home(axis);
  1637. destination[axis] = current_position[axis];
  1638. feedrate = 0.0;
  1639. endstops_hit_on_purpose();
  1640. axis_known_position[axis] = true;
  1641. }
  1642. enable_endstops(endstops_enabled);
  1643. }
  1644. /**/
  1645. void home_xy()
  1646. {
  1647. set_destination_to_current();
  1648. homeaxis(X_AXIS);
  1649. homeaxis(Y_AXIS);
  1650. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1651. endstops_hit_on_purpose();
  1652. }
  1653. void refresh_cmd_timeout(void)
  1654. {
  1655. previous_millis_cmd = millis();
  1656. }
  1657. #ifdef FWRETRACT
  1658. void retract(bool retracting, bool swapretract = false) {
  1659. if(retracting && !retracted[active_extruder]) {
  1660. destination[X_AXIS]=current_position[X_AXIS];
  1661. destination[Y_AXIS]=current_position[Y_AXIS];
  1662. destination[Z_AXIS]=current_position[Z_AXIS];
  1663. destination[E_AXIS]=current_position[E_AXIS];
  1664. if (swapretract) {
  1665. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1666. } else {
  1667. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1668. }
  1669. plan_set_e_position(current_position[E_AXIS]);
  1670. float oldFeedrate = feedrate;
  1671. feedrate=retract_feedrate*60;
  1672. retracted[active_extruder]=true;
  1673. prepare_move();
  1674. current_position[Z_AXIS]-=retract_zlift;
  1675. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1676. prepare_move();
  1677. feedrate = oldFeedrate;
  1678. } else if(!retracting && retracted[active_extruder]) {
  1679. destination[X_AXIS]=current_position[X_AXIS];
  1680. destination[Y_AXIS]=current_position[Y_AXIS];
  1681. destination[Z_AXIS]=current_position[Z_AXIS];
  1682. destination[E_AXIS]=current_position[E_AXIS];
  1683. current_position[Z_AXIS]+=retract_zlift;
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. //prepare_move();
  1686. if (swapretract) {
  1687. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1688. } else {
  1689. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1690. }
  1691. plan_set_e_position(current_position[E_AXIS]);
  1692. float oldFeedrate = feedrate;
  1693. feedrate=retract_recover_feedrate*60;
  1694. retracted[active_extruder]=false;
  1695. prepare_move();
  1696. feedrate = oldFeedrate;
  1697. }
  1698. } //retract
  1699. #endif //FWRETRACT
  1700. void trace() {
  1701. tone(BEEPER, 440);
  1702. delay(25);
  1703. noTone(BEEPER);
  1704. delay(20);
  1705. }
  1706. /*
  1707. void ramming() {
  1708. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1709. if (current_temperature[0] < 230) {
  1710. //PLA
  1711. max_feedrate[E_AXIS] = 50;
  1712. //current_position[E_AXIS] -= 8;
  1713. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1714. //current_position[E_AXIS] += 8;
  1715. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1716. current_position[E_AXIS] += 5.4;
  1717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1718. current_position[E_AXIS] += 3.2;
  1719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1720. current_position[E_AXIS] += 3;
  1721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1722. st_synchronize();
  1723. max_feedrate[E_AXIS] = 80;
  1724. current_position[E_AXIS] -= 82;
  1725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1726. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1727. current_position[E_AXIS] -= 20;
  1728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1729. current_position[E_AXIS] += 5;
  1730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1731. current_position[E_AXIS] += 5;
  1732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1733. current_position[E_AXIS] -= 10;
  1734. st_synchronize();
  1735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1736. current_position[E_AXIS] += 10;
  1737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1738. current_position[E_AXIS] -= 10;
  1739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1740. current_position[E_AXIS] += 10;
  1741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1742. current_position[E_AXIS] -= 10;
  1743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1744. st_synchronize();
  1745. }
  1746. else {
  1747. //ABS
  1748. max_feedrate[E_AXIS] = 50;
  1749. //current_position[E_AXIS] -= 8;
  1750. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1751. //current_position[E_AXIS] += 8;
  1752. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1753. current_position[E_AXIS] += 3.1;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1755. current_position[E_AXIS] += 3.1;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1757. current_position[E_AXIS] += 4;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1759. st_synchronize();
  1760. //current_position[X_AXIS] += 23; //delay
  1761. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1762. //current_position[X_AXIS] -= 23; //delay
  1763. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1764. delay(4700);
  1765. max_feedrate[E_AXIS] = 80;
  1766. current_position[E_AXIS] -= 92;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1768. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1769. current_position[E_AXIS] -= 5;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1771. current_position[E_AXIS] += 5;
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1773. current_position[E_AXIS] -= 5;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1775. st_synchronize();
  1776. current_position[E_AXIS] += 5;
  1777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1778. current_position[E_AXIS] -= 5;
  1779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1780. current_position[E_AXIS] += 5;
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1782. current_position[E_AXIS] -= 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1784. st_synchronize();
  1785. }
  1786. }
  1787. */
  1788. #ifdef TMC2130
  1789. void force_high_power_mode(bool start_high_power_section) {
  1790. uint8_t silent;
  1791. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1792. if (silent == 1) {
  1793. //we are in silent mode, set to normal mode to enable crash detection
  1794. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1795. st_synchronize();
  1796. cli();
  1797. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1798. tmc2130_init();
  1799. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1800. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1801. st_reset_timer();
  1802. sei();
  1803. digipot_init();
  1804. }
  1805. }
  1806. #endif //TMC2130
  1807. bool gcode_M45(bool onlyZ)
  1808. {
  1809. bool final_result = false;
  1810. #ifdef TMC2130
  1811. FORCE_HIGH_POWER_START;
  1812. #endif // TMC2130
  1813. // Only Z calibration?
  1814. if (!onlyZ)
  1815. {
  1816. setTargetBed(0);
  1817. setTargetHotend(0, 0);
  1818. setTargetHotend(0, 1);
  1819. setTargetHotend(0, 2);
  1820. adjust_bed_reset(); //reset bed level correction
  1821. }
  1822. // Disable the default update procedure of the display. We will do a modal dialog.
  1823. lcd_update_enable(false);
  1824. // Let the planner use the uncorrected coordinates.
  1825. mbl.reset();
  1826. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1827. // the planner will not perform any adjustments in the XY plane.
  1828. // Wait for the motors to stop and update the current position with the absolute values.
  1829. world2machine_revert_to_uncorrected();
  1830. // Reset the baby step value applied without moving the axes.
  1831. babystep_reset();
  1832. // Mark all axes as in a need for homing.
  1833. memset(axis_known_position, 0, sizeof(axis_known_position));
  1834. // Home in the XY plane.
  1835. //set_destination_to_current();
  1836. setup_for_endstop_move();
  1837. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1838. home_xy();
  1839. enable_endstops(false);
  1840. current_position[X_AXIS] += 5;
  1841. current_position[Y_AXIS] += 5;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1843. st_synchronize();
  1844. // Let the user move the Z axes up to the end stoppers.
  1845. #ifdef TMC2130
  1846. if (calibrate_z_auto())
  1847. {
  1848. #else //TMC2130
  1849. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1850. {
  1851. #endif //TMC2130
  1852. refresh_cmd_timeout();
  1853. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1854. //{
  1855. // lcd_wait_for_cool_down();
  1856. //}
  1857. if(!onlyZ)
  1858. {
  1859. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1860. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1861. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1862. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1863. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1864. KEEPALIVE_STATE(IN_HANDLER);
  1865. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1866. lcd_implementation_print_at(0, 2, 1);
  1867. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1868. }
  1869. // Move the print head close to the bed.
  1870. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1871. bool endstops_enabled = enable_endstops(true);
  1872. #ifdef TMC2130
  1873. tmc2130_home_enter(Z_AXIS_MASK);
  1874. #endif //TMC2130
  1875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1876. st_synchronize();
  1877. #ifdef TMC2130
  1878. tmc2130_home_exit();
  1879. #endif //TMC2130
  1880. enable_endstops(endstops_enabled);
  1881. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1882. {
  1883. int8_t verbosity_level = 0;
  1884. if (code_seen('V'))
  1885. {
  1886. // Just 'V' without a number counts as V1.
  1887. char c = strchr_pointer[1];
  1888. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1889. }
  1890. if (onlyZ)
  1891. {
  1892. clean_up_after_endstop_move();
  1893. // Z only calibration.
  1894. // Load the machine correction matrix
  1895. world2machine_initialize();
  1896. // and correct the current_position to match the transformed coordinate system.
  1897. world2machine_update_current();
  1898. //FIXME
  1899. bool result = sample_mesh_and_store_reference();
  1900. if (result)
  1901. {
  1902. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1903. // Shipped, the nozzle height has been set already. The user can start printing now.
  1904. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1905. final_result = true;
  1906. // babystep_apply();
  1907. }
  1908. }
  1909. else
  1910. {
  1911. // Reset the baby step value and the baby step applied flag.
  1912. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1913. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1914. // Complete XYZ calibration.
  1915. uint8_t point_too_far_mask = 0;
  1916. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1917. clean_up_after_endstop_move();
  1918. // Print head up.
  1919. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1921. st_synchronize();
  1922. if (result >= 0)
  1923. {
  1924. point_too_far_mask = 0;
  1925. // Second half: The fine adjustment.
  1926. // Let the planner use the uncorrected coordinates.
  1927. mbl.reset();
  1928. world2machine_reset();
  1929. // Home in the XY plane.
  1930. setup_for_endstop_move();
  1931. home_xy();
  1932. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1933. clean_up_after_endstop_move();
  1934. // Print head up.
  1935. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1937. st_synchronize();
  1938. // if (result >= 0) babystep_apply();
  1939. }
  1940. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1941. if (result >= 0)
  1942. {
  1943. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1944. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1945. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1946. final_result = true;
  1947. }
  1948. }
  1949. #ifdef TMC2130
  1950. tmc2130_home_exit();
  1951. #endif
  1952. }
  1953. else
  1954. {
  1955. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1956. final_result = false;
  1957. }
  1958. }
  1959. else
  1960. {
  1961. // Timeouted.
  1962. }
  1963. lcd_update_enable(true);
  1964. #ifdef TMC2130
  1965. FORCE_HIGH_POWER_END;
  1966. #endif // TMC2130
  1967. return final_result;
  1968. }
  1969. void gcode_M701()
  1970. {
  1971. #ifdef SNMM
  1972. extr_adj(snmm_extruder);//loads current extruder
  1973. #else
  1974. enable_z();
  1975. custom_message = true;
  1976. custom_message_type = 2;
  1977. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1978. current_position[E_AXIS] += 70;
  1979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1980. current_position[E_AXIS] += 25;
  1981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1982. st_synchronize();
  1983. tone(BEEPER, 500);
  1984. delay_keep_alive(50);
  1985. noTone(BEEPER);
  1986. if (!farm_mode && loading_flag) {
  1987. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1988. while (!clean) {
  1989. lcd_update_enable(true);
  1990. lcd_update(2);
  1991. current_position[E_AXIS] += 25;
  1992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1993. st_synchronize();
  1994. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1995. }
  1996. }
  1997. lcd_update_enable(true);
  1998. lcd_update(2);
  1999. lcd_setstatuspgm(WELCOME_MSG);
  2000. disable_z();
  2001. loading_flag = false;
  2002. custom_message = false;
  2003. custom_message_type = 0;
  2004. #endif
  2005. }
  2006. void process_commands()
  2007. {
  2008. #ifdef FILAMENT_RUNOUT_SUPPORT
  2009. SET_INPUT(FR_SENS);
  2010. #endif
  2011. #ifdef CMDBUFFER_DEBUG
  2012. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2013. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2014. SERIAL_ECHOLNPGM("");
  2015. SERIAL_ECHOPGM("In cmdqueue: ");
  2016. SERIAL_ECHO(buflen);
  2017. SERIAL_ECHOLNPGM("");
  2018. #endif /* CMDBUFFER_DEBUG */
  2019. unsigned long codenum; //throw away variable
  2020. char *starpos = NULL;
  2021. #ifdef ENABLE_AUTO_BED_LEVELING
  2022. float x_tmp, y_tmp, z_tmp, real_z;
  2023. #endif
  2024. // PRUSA GCODES
  2025. KEEPALIVE_STATE(IN_HANDLER);
  2026. #ifdef SNMM
  2027. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2028. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2029. int8_t SilentMode;
  2030. #endif
  2031. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2032. starpos = (strchr(strchr_pointer + 5, '*'));
  2033. if (starpos != NULL)
  2034. *(starpos) = '\0';
  2035. lcd_setstatus(strchr_pointer + 5);
  2036. }
  2037. #ifdef TMC2130
  2038. else if(code_seen("CRASH_DETECTED"))
  2039. {
  2040. uint8_t mask = 0;
  2041. if (code_seen("X")) mask |= X_AXIS_MASK;
  2042. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2043. crashdet_detected(mask);
  2044. }
  2045. else if(code_seen("CRASH_RECOVER"))
  2046. crashdet_recover();
  2047. else if(code_seen("CRASH_CANCEL"))
  2048. crashdet_cancel();
  2049. #endif //TMC2130
  2050. else if(code_seen("PRUSA")){
  2051. if (code_seen("Ping")) { //PRUSA Ping
  2052. if (farm_mode) {
  2053. PingTime = millis();
  2054. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2055. }
  2056. }
  2057. else if (code_seen("PRN")) {
  2058. MYSERIAL.println(status_number);
  2059. }else if (code_seen("FAN")) {
  2060. MYSERIAL.print("E0:");
  2061. MYSERIAL.print(60*fan_speed[0]);
  2062. MYSERIAL.println(" RPM");
  2063. MYSERIAL.print("PRN0:");
  2064. MYSERIAL.print(60*fan_speed[1]);
  2065. MYSERIAL.println(" RPM");
  2066. }else if (code_seen("fn")) {
  2067. if (farm_mode) {
  2068. MYSERIAL.println(farm_no);
  2069. }
  2070. else {
  2071. MYSERIAL.println("Not in farm mode.");
  2072. }
  2073. }else if (code_seen("fv")) {
  2074. // get file version
  2075. #ifdef SDSUPPORT
  2076. card.openFile(strchr_pointer + 3,true);
  2077. while (true) {
  2078. uint16_t readByte = card.get();
  2079. MYSERIAL.write(readByte);
  2080. if (readByte=='\n') {
  2081. break;
  2082. }
  2083. }
  2084. card.closefile();
  2085. #endif // SDSUPPORT
  2086. } else if (code_seen("M28")) {
  2087. trace();
  2088. prusa_sd_card_upload = true;
  2089. card.openFile(strchr_pointer+4,false);
  2090. } else if (code_seen("SN")) {
  2091. if (farm_mode) {
  2092. selectedSerialPort = 0;
  2093. MSerial.write(";S");
  2094. // S/N is:CZPX0917X003XC13518
  2095. int numbersRead = 0;
  2096. while (numbersRead < 19) {
  2097. while (MSerial.available() > 0) {
  2098. uint8_t serial_char = MSerial.read();
  2099. selectedSerialPort = 1;
  2100. MSerial.write(serial_char);
  2101. numbersRead++;
  2102. selectedSerialPort = 0;
  2103. }
  2104. }
  2105. selectedSerialPort = 1;
  2106. MSerial.write('\n');
  2107. /*for (int b = 0; b < 3; b++) {
  2108. tone(BEEPER, 110);
  2109. delay(50);
  2110. noTone(BEEPER);
  2111. delay(50);
  2112. }*/
  2113. } else {
  2114. MYSERIAL.println("Not in farm mode.");
  2115. }
  2116. } else if(code_seen("Fir")){
  2117. SERIAL_PROTOCOLLN(FW_VERSION);
  2118. } else if(code_seen("Rev")){
  2119. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2120. } else if(code_seen("Lang")) {
  2121. lcd_force_language_selection();
  2122. } else if(code_seen("Lz")) {
  2123. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2124. } else if (code_seen("SERIAL LOW")) {
  2125. MYSERIAL.println("SERIAL LOW");
  2126. MYSERIAL.begin(BAUDRATE);
  2127. return;
  2128. } else if (code_seen("SERIAL HIGH")) {
  2129. MYSERIAL.println("SERIAL HIGH");
  2130. MYSERIAL.begin(1152000);
  2131. return;
  2132. } else if(code_seen("Beat")) {
  2133. // Kick farm link timer
  2134. kicktime = millis();
  2135. } else if(code_seen("FR")) {
  2136. // Factory full reset
  2137. factory_reset(0,true);
  2138. }
  2139. //else if (code_seen('Cal')) {
  2140. // lcd_calibration();
  2141. // }
  2142. }
  2143. else if (code_seen('^')) {
  2144. // nothing, this is a version line
  2145. } else if(code_seen('G'))
  2146. {
  2147. switch((int)code_value())
  2148. {
  2149. case 0: // G0 -> G1
  2150. case 1: // G1
  2151. if(Stopped == false) {
  2152. #ifdef FILAMENT_RUNOUT_SUPPORT
  2153. if(READ(FR_SENS)){
  2154. feedmultiplyBckp=feedmultiply;
  2155. float target[4];
  2156. float lastpos[4];
  2157. target[X_AXIS]=current_position[X_AXIS];
  2158. target[Y_AXIS]=current_position[Y_AXIS];
  2159. target[Z_AXIS]=current_position[Z_AXIS];
  2160. target[E_AXIS]=current_position[E_AXIS];
  2161. lastpos[X_AXIS]=current_position[X_AXIS];
  2162. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2163. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2164. lastpos[E_AXIS]=current_position[E_AXIS];
  2165. //retract by E
  2166. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2168. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2169. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2170. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2171. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2173. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2174. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2175. //finish moves
  2176. st_synchronize();
  2177. //disable extruder steppers so filament can be removed
  2178. disable_e0();
  2179. disable_e1();
  2180. disable_e2();
  2181. delay(100);
  2182. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2183. uint8_t cnt=0;
  2184. int counterBeep = 0;
  2185. lcd_wait_interact();
  2186. while(!lcd_clicked()){
  2187. cnt++;
  2188. manage_heater();
  2189. manage_inactivity(true);
  2190. //lcd_update();
  2191. if(cnt==0)
  2192. {
  2193. #if BEEPER > 0
  2194. if (counterBeep== 500){
  2195. counterBeep = 0;
  2196. }
  2197. SET_OUTPUT(BEEPER);
  2198. if (counterBeep== 0){
  2199. WRITE(BEEPER,HIGH);
  2200. }
  2201. if (counterBeep== 20){
  2202. WRITE(BEEPER,LOW);
  2203. }
  2204. counterBeep++;
  2205. #else
  2206. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2207. lcd_buzz(1000/6,100);
  2208. #else
  2209. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2210. #endif
  2211. #endif
  2212. }
  2213. }
  2214. WRITE(BEEPER,LOW);
  2215. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2216. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2217. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2219. lcd_change_fil_state = 0;
  2220. lcd_loading_filament();
  2221. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2222. lcd_change_fil_state = 0;
  2223. lcd_alright();
  2224. switch(lcd_change_fil_state){
  2225. case 2:
  2226. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2227. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2228. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2229. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2230. lcd_loading_filament();
  2231. break;
  2232. case 3:
  2233. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2234. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2235. lcd_loading_color();
  2236. break;
  2237. default:
  2238. lcd_change_success();
  2239. break;
  2240. }
  2241. }
  2242. target[E_AXIS]+= 5;
  2243. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2244. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2246. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2247. //plan_set_e_position(current_position[E_AXIS]);
  2248. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2249. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2250. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2251. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2252. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2253. plan_set_e_position(lastpos[E_AXIS]);
  2254. feedmultiply=feedmultiplyBckp;
  2255. char cmd[9];
  2256. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2257. enquecommand(cmd);
  2258. }
  2259. #endif
  2260. get_coordinates(); // For X Y Z E F
  2261. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2262. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2263. }
  2264. #ifdef FWRETRACT
  2265. if(autoretract_enabled)
  2266. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2267. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2268. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2269. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2270. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2271. retract(!retracted);
  2272. return;
  2273. }
  2274. }
  2275. #endif //FWRETRACT
  2276. prepare_move();
  2277. //ClearToSend();
  2278. }
  2279. break;
  2280. case 2: // G2 - CW ARC
  2281. if(Stopped == false) {
  2282. get_arc_coordinates();
  2283. prepare_arc_move(true);
  2284. }
  2285. break;
  2286. case 3: // G3 - CCW ARC
  2287. if(Stopped == false) {
  2288. get_arc_coordinates();
  2289. prepare_arc_move(false);
  2290. }
  2291. break;
  2292. case 4: // G4 dwell
  2293. codenum = 0;
  2294. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2295. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2296. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2297. st_synchronize();
  2298. codenum += millis(); // keep track of when we started waiting
  2299. previous_millis_cmd = millis();
  2300. while(millis() < codenum) {
  2301. manage_heater();
  2302. manage_inactivity();
  2303. lcd_update();
  2304. }
  2305. break;
  2306. #ifdef FWRETRACT
  2307. case 10: // G10 retract
  2308. #if EXTRUDERS > 1
  2309. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2310. retract(true,retracted_swap[active_extruder]);
  2311. #else
  2312. retract(true);
  2313. #endif
  2314. break;
  2315. case 11: // G11 retract_recover
  2316. #if EXTRUDERS > 1
  2317. retract(false,retracted_swap[active_extruder]);
  2318. #else
  2319. retract(false);
  2320. #endif
  2321. break;
  2322. #endif //FWRETRACT
  2323. case 28: //G28 Home all Axis one at a time
  2324. {
  2325. st_synchronize();
  2326. #if 0
  2327. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2328. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2329. #endif
  2330. // Flag for the display update routine and to disable the print cancelation during homing.
  2331. homing_flag = true;
  2332. // Which axes should be homed?
  2333. bool home_x = code_seen(axis_codes[X_AXIS]);
  2334. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2335. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2336. // Either all X,Y,Z codes are present, or none of them.
  2337. bool home_all_axes = home_x == home_y && home_x == home_z;
  2338. if (home_all_axes)
  2339. // No X/Y/Z code provided means to home all axes.
  2340. home_x = home_y = home_z = true;
  2341. #ifdef ENABLE_AUTO_BED_LEVELING
  2342. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2343. #endif //ENABLE_AUTO_BED_LEVELING
  2344. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2345. // the planner will not perform any adjustments in the XY plane.
  2346. // Wait for the motors to stop and update the current position with the absolute values.
  2347. world2machine_revert_to_uncorrected();
  2348. // For mesh bed leveling deactivate the matrix temporarily.
  2349. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2350. // in a single axis only.
  2351. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2352. #ifdef MESH_BED_LEVELING
  2353. uint8_t mbl_was_active = mbl.active;
  2354. mbl.active = 0;
  2355. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2356. #endif
  2357. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2358. // consumed during the first movements following this statement.
  2359. if (home_z)
  2360. babystep_undo();
  2361. saved_feedrate = feedrate;
  2362. saved_feedmultiply = feedmultiply;
  2363. feedmultiply = 100;
  2364. previous_millis_cmd = millis();
  2365. enable_endstops(true);
  2366. memcpy(destination, current_position, sizeof(destination));
  2367. feedrate = 0.0;
  2368. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2369. if(home_z)
  2370. homeaxis(Z_AXIS);
  2371. #endif
  2372. #ifdef QUICK_HOME
  2373. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2374. if(home_x && home_y) //first diagonal move
  2375. {
  2376. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2377. int x_axis_home_dir = home_dir(X_AXIS);
  2378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2379. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2380. feedrate = homing_feedrate[X_AXIS];
  2381. if(homing_feedrate[Y_AXIS]<feedrate)
  2382. feedrate = homing_feedrate[Y_AXIS];
  2383. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2384. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2385. } else {
  2386. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2387. }
  2388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2389. st_synchronize();
  2390. axis_is_at_home(X_AXIS);
  2391. axis_is_at_home(Y_AXIS);
  2392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2393. destination[X_AXIS] = current_position[X_AXIS];
  2394. destination[Y_AXIS] = current_position[Y_AXIS];
  2395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2396. feedrate = 0.0;
  2397. st_synchronize();
  2398. endstops_hit_on_purpose();
  2399. current_position[X_AXIS] = destination[X_AXIS];
  2400. current_position[Y_AXIS] = destination[Y_AXIS];
  2401. current_position[Z_AXIS] = destination[Z_AXIS];
  2402. }
  2403. #endif /* QUICK_HOME */
  2404. if(home_x)
  2405. homeaxis(X_AXIS);
  2406. if(home_y)
  2407. homeaxis(Y_AXIS);
  2408. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2409. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2410. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2411. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2412. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2413. #ifndef Z_SAFE_HOMING
  2414. if(home_z) {
  2415. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2416. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2417. feedrate = max_feedrate[Z_AXIS];
  2418. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2419. st_synchronize();
  2420. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2421. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2422. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2423. {
  2424. homeaxis(X_AXIS);
  2425. homeaxis(Y_AXIS);
  2426. }
  2427. // 1st mesh bed leveling measurement point, corrected.
  2428. world2machine_initialize();
  2429. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2430. world2machine_reset();
  2431. if (destination[Y_AXIS] < Y_MIN_POS)
  2432. destination[Y_AXIS] = Y_MIN_POS;
  2433. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2434. feedrate = homing_feedrate[Z_AXIS]/10;
  2435. current_position[Z_AXIS] = 0;
  2436. enable_endstops(false);
  2437. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2438. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2439. st_synchronize();
  2440. current_position[X_AXIS] = destination[X_AXIS];
  2441. current_position[Y_AXIS] = destination[Y_AXIS];
  2442. enable_endstops(true);
  2443. endstops_hit_on_purpose();
  2444. homeaxis(Z_AXIS);
  2445. #else // MESH_BED_LEVELING
  2446. homeaxis(Z_AXIS);
  2447. #endif // MESH_BED_LEVELING
  2448. }
  2449. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2450. if(home_all_axes) {
  2451. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2452. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2453. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2454. feedrate = XY_TRAVEL_SPEED/60;
  2455. current_position[Z_AXIS] = 0;
  2456. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2458. st_synchronize();
  2459. current_position[X_AXIS] = destination[X_AXIS];
  2460. current_position[Y_AXIS] = destination[Y_AXIS];
  2461. homeaxis(Z_AXIS);
  2462. }
  2463. // Let's see if X and Y are homed and probe is inside bed area.
  2464. if(home_z) {
  2465. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2466. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2467. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2468. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2469. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2470. current_position[Z_AXIS] = 0;
  2471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2472. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2473. feedrate = max_feedrate[Z_AXIS];
  2474. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2475. st_synchronize();
  2476. homeaxis(Z_AXIS);
  2477. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2478. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2479. SERIAL_ECHO_START;
  2480. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2481. } else {
  2482. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2483. SERIAL_ECHO_START;
  2484. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2485. }
  2486. }
  2487. #endif // Z_SAFE_HOMING
  2488. #endif // Z_HOME_DIR < 0
  2489. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2490. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2491. #ifdef ENABLE_AUTO_BED_LEVELING
  2492. if(home_z)
  2493. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2494. #endif
  2495. // Set the planner and stepper routine positions.
  2496. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2497. // contains the machine coordinates.
  2498. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2499. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2500. enable_endstops(false);
  2501. #endif
  2502. feedrate = saved_feedrate;
  2503. feedmultiply = saved_feedmultiply;
  2504. previous_millis_cmd = millis();
  2505. endstops_hit_on_purpose();
  2506. #ifndef MESH_BED_LEVELING
  2507. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2508. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2509. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2510. lcd_adjust_z();
  2511. #endif
  2512. // Load the machine correction matrix
  2513. world2machine_initialize();
  2514. // and correct the current_position XY axes to match the transformed coordinate system.
  2515. world2machine_update_current();
  2516. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2517. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2518. {
  2519. if (! home_z && mbl_was_active) {
  2520. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2521. mbl.active = true;
  2522. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2523. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2524. }
  2525. }
  2526. else
  2527. {
  2528. st_synchronize();
  2529. homing_flag = false;
  2530. // Push the commands to the front of the message queue in the reverse order!
  2531. // There shall be always enough space reserved for these commands.
  2532. // enquecommand_front_P((PSTR("G80")));
  2533. goto case_G80;
  2534. }
  2535. #endif
  2536. if (farm_mode) { prusa_statistics(20); };
  2537. homing_flag = false;
  2538. #if 0
  2539. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2540. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2541. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2542. #endif
  2543. break;
  2544. }
  2545. #ifdef ENABLE_AUTO_BED_LEVELING
  2546. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2547. {
  2548. #if Z_MIN_PIN == -1
  2549. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2550. #endif
  2551. // Prevent user from running a G29 without first homing in X and Y
  2552. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2553. {
  2554. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2555. SERIAL_ECHO_START;
  2556. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2557. break; // abort G29, since we don't know where we are
  2558. }
  2559. st_synchronize();
  2560. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2561. //vector_3 corrected_position = plan_get_position_mm();
  2562. //corrected_position.debug("position before G29");
  2563. plan_bed_level_matrix.set_to_identity();
  2564. vector_3 uncorrected_position = plan_get_position();
  2565. //uncorrected_position.debug("position durring G29");
  2566. current_position[X_AXIS] = uncorrected_position.x;
  2567. current_position[Y_AXIS] = uncorrected_position.y;
  2568. current_position[Z_AXIS] = uncorrected_position.z;
  2569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2570. setup_for_endstop_move();
  2571. feedrate = homing_feedrate[Z_AXIS];
  2572. #ifdef AUTO_BED_LEVELING_GRID
  2573. // probe at the points of a lattice grid
  2574. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2575. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2576. // solve the plane equation ax + by + d = z
  2577. // A is the matrix with rows [x y 1] for all the probed points
  2578. // B is the vector of the Z positions
  2579. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2580. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2581. // "A" matrix of the linear system of equations
  2582. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2583. // "B" vector of Z points
  2584. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2585. int probePointCounter = 0;
  2586. bool zig = true;
  2587. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2588. {
  2589. int xProbe, xInc;
  2590. if (zig)
  2591. {
  2592. xProbe = LEFT_PROBE_BED_POSITION;
  2593. //xEnd = RIGHT_PROBE_BED_POSITION;
  2594. xInc = xGridSpacing;
  2595. zig = false;
  2596. } else // zag
  2597. {
  2598. xProbe = RIGHT_PROBE_BED_POSITION;
  2599. //xEnd = LEFT_PROBE_BED_POSITION;
  2600. xInc = -xGridSpacing;
  2601. zig = true;
  2602. }
  2603. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2604. {
  2605. float z_before;
  2606. if (probePointCounter == 0)
  2607. {
  2608. // raise before probing
  2609. z_before = Z_RAISE_BEFORE_PROBING;
  2610. } else
  2611. {
  2612. // raise extruder
  2613. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2614. }
  2615. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2616. eqnBVector[probePointCounter] = measured_z;
  2617. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2618. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2619. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2620. probePointCounter++;
  2621. xProbe += xInc;
  2622. }
  2623. }
  2624. clean_up_after_endstop_move();
  2625. // solve lsq problem
  2626. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2627. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2628. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2629. SERIAL_PROTOCOLPGM(" b: ");
  2630. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2631. SERIAL_PROTOCOLPGM(" d: ");
  2632. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2633. set_bed_level_equation_lsq(plane_equation_coefficients);
  2634. free(plane_equation_coefficients);
  2635. #else // AUTO_BED_LEVELING_GRID not defined
  2636. // Probe at 3 arbitrary points
  2637. // probe 1
  2638. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2639. // probe 2
  2640. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2641. // probe 3
  2642. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2643. clean_up_after_endstop_move();
  2644. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2645. #endif // AUTO_BED_LEVELING_GRID
  2646. st_synchronize();
  2647. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2648. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2649. // When the bed is uneven, this height must be corrected.
  2650. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2651. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2652. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2653. z_tmp = current_position[Z_AXIS];
  2654. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2655. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2656. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2657. }
  2658. break;
  2659. #ifndef Z_PROBE_SLED
  2660. case 30: // G30 Single Z Probe
  2661. {
  2662. st_synchronize();
  2663. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2664. setup_for_endstop_move();
  2665. feedrate = homing_feedrate[Z_AXIS];
  2666. run_z_probe();
  2667. SERIAL_PROTOCOLPGM(MSG_BED);
  2668. SERIAL_PROTOCOLPGM(" X: ");
  2669. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2670. SERIAL_PROTOCOLPGM(" Y: ");
  2671. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2672. SERIAL_PROTOCOLPGM(" Z: ");
  2673. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2674. SERIAL_PROTOCOLPGM("\n");
  2675. clean_up_after_endstop_move();
  2676. }
  2677. break;
  2678. #else
  2679. case 31: // dock the sled
  2680. dock_sled(true);
  2681. break;
  2682. case 32: // undock the sled
  2683. dock_sled(false);
  2684. break;
  2685. #endif // Z_PROBE_SLED
  2686. #endif // ENABLE_AUTO_BED_LEVELING
  2687. #ifdef MESH_BED_LEVELING
  2688. case 30: // G30 Single Z Probe
  2689. {
  2690. st_synchronize();
  2691. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2692. setup_for_endstop_move();
  2693. feedrate = homing_feedrate[Z_AXIS];
  2694. find_bed_induction_sensor_point_z(-10.f, 3);
  2695. SERIAL_PROTOCOLRPGM(MSG_BED);
  2696. SERIAL_PROTOCOLPGM(" X: ");
  2697. MYSERIAL.print(current_position[X_AXIS], 5);
  2698. SERIAL_PROTOCOLPGM(" Y: ");
  2699. MYSERIAL.print(current_position[Y_AXIS], 5);
  2700. SERIAL_PROTOCOLPGM(" Z: ");
  2701. MYSERIAL.print(current_position[Z_AXIS], 5);
  2702. SERIAL_PROTOCOLPGM("\n");
  2703. clean_up_after_endstop_move();
  2704. }
  2705. break;
  2706. case 75:
  2707. {
  2708. for (int i = 40; i <= 110; i++) {
  2709. MYSERIAL.print(i);
  2710. MYSERIAL.print(" ");
  2711. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2712. }
  2713. }
  2714. break;
  2715. case 76: //PINDA probe temperature calibration
  2716. {
  2717. #ifdef PINDA_THERMISTOR
  2718. if (true)
  2719. {
  2720. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2721. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2722. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2723. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2724. // We don't know where we are! HOME!
  2725. // Push the commands to the front of the message queue in the reverse order!
  2726. // There shall be always enough space reserved for these commands.
  2727. repeatcommand_front(); // repeat G76 with all its parameters
  2728. enquecommand_front_P((PSTR("G28 W0")));
  2729. break;
  2730. }
  2731. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2732. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2733. float zero_z;
  2734. int z_shift = 0; //unit: steps
  2735. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2736. if (start_temp < 35) start_temp = 35;
  2737. if (start_temp < current_temperature_pinda) start_temp += 5;
  2738. SERIAL_ECHOPGM("start temperature: ");
  2739. MYSERIAL.println(start_temp);
  2740. // setTargetHotend(200, 0);
  2741. setTargetBed(70 + (start_temp - 30));
  2742. custom_message = true;
  2743. custom_message_type = 4;
  2744. custom_message_state = 1;
  2745. custom_message = MSG_TEMP_CALIBRATION;
  2746. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2747. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2748. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2750. st_synchronize();
  2751. while (current_temperature_pinda < start_temp)
  2752. {
  2753. delay_keep_alive(1000);
  2754. serialecho_temperatures();
  2755. }
  2756. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2757. current_position[Z_AXIS] = 5;
  2758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2759. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2760. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2762. st_synchronize();
  2763. find_bed_induction_sensor_point_z(-1.f);
  2764. zero_z = current_position[Z_AXIS];
  2765. //current_position[Z_AXIS]
  2766. SERIAL_ECHOLNPGM("");
  2767. SERIAL_ECHOPGM("ZERO: ");
  2768. MYSERIAL.print(current_position[Z_AXIS]);
  2769. SERIAL_ECHOLNPGM("");
  2770. int i = -1; for (; i < 5; i++)
  2771. {
  2772. float temp = (40 + i * 5);
  2773. SERIAL_ECHOPGM("Step: ");
  2774. MYSERIAL.print(i + 2);
  2775. SERIAL_ECHOLNPGM("/6 (skipped)");
  2776. SERIAL_ECHOPGM("PINDA temperature: ");
  2777. MYSERIAL.print((40 + i*5));
  2778. SERIAL_ECHOPGM(" Z shift (mm):");
  2779. MYSERIAL.print(0);
  2780. SERIAL_ECHOLNPGM("");
  2781. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2782. if (start_temp <= temp) break;
  2783. }
  2784. for (i++; i < 5; i++)
  2785. {
  2786. float temp = (40 + i * 5);
  2787. SERIAL_ECHOPGM("Step: ");
  2788. MYSERIAL.print(i + 2);
  2789. SERIAL_ECHOLNPGM("/6");
  2790. custom_message_state = i + 2;
  2791. setTargetBed(50 + 10 * (temp - 30) / 5);
  2792. // setTargetHotend(255, 0);
  2793. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2794. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2795. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2797. st_synchronize();
  2798. while (current_temperature_pinda < temp)
  2799. {
  2800. delay_keep_alive(1000);
  2801. serialecho_temperatures();
  2802. }
  2803. current_position[Z_AXIS] = 5;
  2804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2805. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2806. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2808. st_synchronize();
  2809. find_bed_induction_sensor_point_z(-1.f);
  2810. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2811. SERIAL_ECHOLNPGM("");
  2812. SERIAL_ECHOPGM("PINDA temperature: ");
  2813. MYSERIAL.print(current_temperature_pinda);
  2814. SERIAL_ECHOPGM(" Z shift (mm):");
  2815. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2816. SERIAL_ECHOLNPGM("");
  2817. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2818. }
  2819. custom_message_type = 0;
  2820. custom_message = false;
  2821. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2822. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2823. disable_x();
  2824. disable_y();
  2825. disable_z();
  2826. disable_e0();
  2827. disable_e1();
  2828. disable_e2();
  2829. setTargetBed(0); //set bed target temperature back to 0
  2830. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2831. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2832. lcd_update_enable(true);
  2833. lcd_update(2);
  2834. break;
  2835. }
  2836. #endif //PINDA_THERMISTOR
  2837. setTargetBed(PINDA_MIN_T);
  2838. float zero_z;
  2839. int z_shift = 0; //unit: steps
  2840. int t_c; // temperature
  2841. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2842. // We don't know where we are! HOME!
  2843. // Push the commands to the front of the message queue in the reverse order!
  2844. // There shall be always enough space reserved for these commands.
  2845. repeatcommand_front(); // repeat G76 with all its parameters
  2846. enquecommand_front_P((PSTR("G28 W0")));
  2847. break;
  2848. }
  2849. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2850. custom_message = true;
  2851. custom_message_type = 4;
  2852. custom_message_state = 1;
  2853. custom_message = MSG_TEMP_CALIBRATION;
  2854. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2855. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2856. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2858. st_synchronize();
  2859. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2860. delay_keep_alive(1000);
  2861. serialecho_temperatures();
  2862. }
  2863. //enquecommand_P(PSTR("M190 S50"));
  2864. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2865. delay_keep_alive(1000);
  2866. serialecho_temperatures();
  2867. }
  2868. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2869. current_position[Z_AXIS] = 5;
  2870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2871. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2872. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2874. st_synchronize();
  2875. find_bed_induction_sensor_point_z(-1.f);
  2876. zero_z = current_position[Z_AXIS];
  2877. //current_position[Z_AXIS]
  2878. SERIAL_ECHOLNPGM("");
  2879. SERIAL_ECHOPGM("ZERO: ");
  2880. MYSERIAL.print(current_position[Z_AXIS]);
  2881. SERIAL_ECHOLNPGM("");
  2882. for (int i = 0; i<5; i++) {
  2883. SERIAL_ECHOPGM("Step: ");
  2884. MYSERIAL.print(i+2);
  2885. SERIAL_ECHOLNPGM("/6");
  2886. custom_message_state = i + 2;
  2887. t_c = 60 + i * 10;
  2888. setTargetBed(t_c);
  2889. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2890. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2891. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2893. st_synchronize();
  2894. while (degBed() < t_c) {
  2895. delay_keep_alive(1000);
  2896. serialecho_temperatures();
  2897. }
  2898. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2899. delay_keep_alive(1000);
  2900. serialecho_temperatures();
  2901. }
  2902. current_position[Z_AXIS] = 5;
  2903. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2904. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2905. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2907. st_synchronize();
  2908. find_bed_induction_sensor_point_z(-1.f);
  2909. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2910. SERIAL_ECHOLNPGM("");
  2911. SERIAL_ECHOPGM("Temperature: ");
  2912. MYSERIAL.print(t_c);
  2913. SERIAL_ECHOPGM(" Z shift (mm):");
  2914. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2915. SERIAL_ECHOLNPGM("");
  2916. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2917. }
  2918. custom_message_type = 0;
  2919. custom_message = false;
  2920. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2921. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2922. disable_x();
  2923. disable_y();
  2924. disable_z();
  2925. disable_e0();
  2926. disable_e1();
  2927. disable_e2();
  2928. setTargetBed(0); //set bed target temperature back to 0
  2929. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2930. lcd_update_enable(true);
  2931. lcd_update(2);
  2932. }
  2933. break;
  2934. #ifdef DIS
  2935. case 77:
  2936. {
  2937. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2938. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2939. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2940. float dimension_x = 40;
  2941. float dimension_y = 40;
  2942. int points_x = 40;
  2943. int points_y = 40;
  2944. float offset_x = 74;
  2945. float offset_y = 33;
  2946. if (code_seen('X')) dimension_x = code_value();
  2947. if (code_seen('Y')) dimension_y = code_value();
  2948. if (code_seen('XP')) points_x = code_value();
  2949. if (code_seen('YP')) points_y = code_value();
  2950. if (code_seen('XO')) offset_x = code_value();
  2951. if (code_seen('YO')) offset_y = code_value();
  2952. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2953. } break;
  2954. #endif
  2955. case 79: {
  2956. for (int i = 255; i > 0; i = i - 5) {
  2957. fanSpeed = i;
  2958. //delay_keep_alive(2000);
  2959. for (int j = 0; j < 100; j++) {
  2960. delay_keep_alive(100);
  2961. }
  2962. fan_speed[1];
  2963. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2964. }
  2965. }break;
  2966. /**
  2967. * G80: Mesh-based Z probe, probes a grid and produces a
  2968. * mesh to compensate for variable bed height
  2969. *
  2970. * The S0 report the points as below
  2971. *
  2972. * +----> X-axis
  2973. * |
  2974. * |
  2975. * v Y-axis
  2976. *
  2977. */
  2978. case 80:
  2979. #ifdef MK1BP
  2980. break;
  2981. #endif //MK1BP
  2982. case_G80:
  2983. {
  2984. mesh_bed_leveling_flag = true;
  2985. int8_t verbosity_level = 0;
  2986. static bool run = false;
  2987. if (code_seen('V')) {
  2988. // Just 'V' without a number counts as V1.
  2989. char c = strchr_pointer[1];
  2990. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2991. }
  2992. // Firstly check if we know where we are
  2993. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2994. // We don't know where we are! HOME!
  2995. // Push the commands to the front of the message queue in the reverse order!
  2996. // There shall be always enough space reserved for these commands.
  2997. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2998. repeatcommand_front(); // repeat G80 with all its parameters
  2999. enquecommand_front_P((PSTR("G28 W0")));
  3000. }
  3001. else {
  3002. mesh_bed_leveling_flag = false;
  3003. }
  3004. break;
  3005. }
  3006. bool temp_comp_start = true;
  3007. #ifdef PINDA_THERMISTOR
  3008. temp_comp_start = false;
  3009. #endif //PINDA_THERMISTOR
  3010. if (temp_comp_start)
  3011. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3012. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3013. temp_compensation_start();
  3014. run = true;
  3015. repeatcommand_front(); // repeat G80 with all its parameters
  3016. enquecommand_front_P((PSTR("G28 W0")));
  3017. }
  3018. else {
  3019. mesh_bed_leveling_flag = false;
  3020. }
  3021. break;
  3022. }
  3023. run = false;
  3024. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3025. mesh_bed_leveling_flag = false;
  3026. break;
  3027. }
  3028. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3029. bool custom_message_old = custom_message;
  3030. unsigned int custom_message_type_old = custom_message_type;
  3031. unsigned int custom_message_state_old = custom_message_state;
  3032. custom_message = true;
  3033. custom_message_type = 1;
  3034. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3035. lcd_update(1);
  3036. mbl.reset(); //reset mesh bed leveling
  3037. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3038. // consumed during the first movements following this statement.
  3039. babystep_undo();
  3040. // Cycle through all points and probe them
  3041. // First move up. During this first movement, the babystepping will be reverted.
  3042. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3044. // The move to the first calibration point.
  3045. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3046. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3047. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3048. #ifdef SUPPORT_VERBOSITY
  3049. if (verbosity_level >= 1) {
  3050. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3051. }
  3052. #endif //SUPPORT_VERBOSITY
  3053. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3055. // Wait until the move is finished.
  3056. st_synchronize();
  3057. int mesh_point = 0; //index number of calibration point
  3058. int ix = 0;
  3059. int iy = 0;
  3060. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3061. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3062. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3063. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3064. #ifdef SUPPORT_VERBOSITY
  3065. if (verbosity_level >= 1) {
  3066. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3067. }
  3068. #endif // SUPPORT_VERBOSITY
  3069. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3070. const char *kill_message = NULL;
  3071. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3072. // Get coords of a measuring point.
  3073. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3074. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3075. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3076. float z0 = 0.f;
  3077. if (has_z && mesh_point > 0) {
  3078. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3079. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3080. //#if 0
  3081. #ifdef SUPPORT_VERBOSITY
  3082. if (verbosity_level >= 1) {
  3083. SERIAL_ECHOLNPGM("");
  3084. SERIAL_ECHOPGM("Bed leveling, point: ");
  3085. MYSERIAL.print(mesh_point);
  3086. SERIAL_ECHOPGM(", calibration z: ");
  3087. MYSERIAL.print(z0, 5);
  3088. SERIAL_ECHOLNPGM("");
  3089. }
  3090. #endif // SUPPORT_VERBOSITY
  3091. //#endif
  3092. }
  3093. // Move Z up to MESH_HOME_Z_SEARCH.
  3094. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3096. st_synchronize();
  3097. // Move to XY position of the sensor point.
  3098. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3099. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3100. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3101. #ifdef SUPPORT_VERBOSITY
  3102. if (verbosity_level >= 1) {
  3103. SERIAL_PROTOCOL(mesh_point);
  3104. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3105. }
  3106. #endif // SUPPORT_VERBOSITY
  3107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3108. st_synchronize();
  3109. // Go down until endstop is hit
  3110. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3111. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3112. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3113. break;
  3114. }
  3115. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3116. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3117. break;
  3118. }
  3119. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3120. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3121. break;
  3122. }
  3123. #ifdef SUPPORT_VERBOSITY
  3124. if (verbosity_level >= 10) {
  3125. SERIAL_ECHOPGM("X: ");
  3126. MYSERIAL.print(current_position[X_AXIS], 5);
  3127. SERIAL_ECHOLNPGM("");
  3128. SERIAL_ECHOPGM("Y: ");
  3129. MYSERIAL.print(current_position[Y_AXIS], 5);
  3130. SERIAL_PROTOCOLPGM("\n");
  3131. }
  3132. #endif // SUPPORT_VERBOSITY
  3133. float offset_z = 0;
  3134. #ifdef PINDA_THERMISTOR
  3135. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3136. #endif //PINDA_THERMISTOR
  3137. // #ifdef SUPPORT_VERBOSITY
  3138. /* if (verbosity_level >= 1)
  3139. {
  3140. SERIAL_ECHOPGM("mesh bed leveling: ");
  3141. MYSERIAL.print(current_position[Z_AXIS], 5);
  3142. SERIAL_ECHOPGM(" offset: ");
  3143. MYSERIAL.print(offset_z, 5);
  3144. SERIAL_ECHOLNPGM("");
  3145. }*/
  3146. // #endif // SUPPORT_VERBOSITY
  3147. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3148. custom_message_state--;
  3149. mesh_point++;
  3150. lcd_update(1);
  3151. }
  3152. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3153. #ifdef SUPPORT_VERBOSITY
  3154. if (verbosity_level >= 20) {
  3155. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3156. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3157. MYSERIAL.print(current_position[Z_AXIS], 5);
  3158. }
  3159. #endif // SUPPORT_VERBOSITY
  3160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3161. st_synchronize();
  3162. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3163. kill(kill_message);
  3164. SERIAL_ECHOLNPGM("killed");
  3165. }
  3166. clean_up_after_endstop_move();
  3167. // SERIAL_ECHOLNPGM("clean up finished ");
  3168. bool apply_temp_comp = true;
  3169. #ifdef PINDA_THERMISTOR
  3170. apply_temp_comp = false;
  3171. #endif
  3172. if (apply_temp_comp)
  3173. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3174. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3175. // SERIAL_ECHOLNPGM("babystep applied");
  3176. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3177. #ifdef SUPPORT_VERBOSITY
  3178. if (verbosity_level >= 1) {
  3179. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3180. }
  3181. #endif // SUPPORT_VERBOSITY
  3182. for (uint8_t i = 0; i < 4; ++i) {
  3183. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3184. long correction = 0;
  3185. if (code_seen(codes[i]))
  3186. correction = code_value_long();
  3187. else if (eeprom_bed_correction_valid) {
  3188. unsigned char *addr = (i < 2) ?
  3189. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3190. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3191. correction = eeprom_read_int8(addr);
  3192. }
  3193. if (correction == 0)
  3194. continue;
  3195. float offset = float(correction) * 0.001f;
  3196. if (fabs(offset) > 0.101f) {
  3197. SERIAL_ERROR_START;
  3198. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3199. SERIAL_ECHO(offset);
  3200. SERIAL_ECHOLNPGM(" microns");
  3201. }
  3202. else {
  3203. switch (i) {
  3204. case 0:
  3205. for (uint8_t row = 0; row < 3; ++row) {
  3206. mbl.z_values[row][1] += 0.5f * offset;
  3207. mbl.z_values[row][0] += offset;
  3208. }
  3209. break;
  3210. case 1:
  3211. for (uint8_t row = 0; row < 3; ++row) {
  3212. mbl.z_values[row][1] += 0.5f * offset;
  3213. mbl.z_values[row][2] += offset;
  3214. }
  3215. break;
  3216. case 2:
  3217. for (uint8_t col = 0; col < 3; ++col) {
  3218. mbl.z_values[1][col] += 0.5f * offset;
  3219. mbl.z_values[0][col] += offset;
  3220. }
  3221. break;
  3222. case 3:
  3223. for (uint8_t col = 0; col < 3; ++col) {
  3224. mbl.z_values[1][col] += 0.5f * offset;
  3225. mbl.z_values[2][col] += offset;
  3226. }
  3227. break;
  3228. }
  3229. }
  3230. }
  3231. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3232. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3233. // SERIAL_ECHOLNPGM("Upsample finished");
  3234. mbl.active = 1; //activate mesh bed leveling
  3235. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3236. go_home_with_z_lift();
  3237. // SERIAL_ECHOLNPGM("Go home finished");
  3238. //unretract (after PINDA preheat retraction)
  3239. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3240. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3241. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3242. }
  3243. KEEPALIVE_STATE(NOT_BUSY);
  3244. // Restore custom message state
  3245. custom_message = custom_message_old;
  3246. custom_message_type = custom_message_type_old;
  3247. custom_message_state = custom_message_state_old;
  3248. mesh_bed_leveling_flag = false;
  3249. mesh_bed_run_from_menu = false;
  3250. lcd_update(2);
  3251. }
  3252. break;
  3253. /**
  3254. * G81: Print mesh bed leveling status and bed profile if activated
  3255. */
  3256. case 81:
  3257. if (mbl.active) {
  3258. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3259. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3260. SERIAL_PROTOCOLPGM(",");
  3261. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3262. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3263. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3264. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3265. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3266. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3267. SERIAL_PROTOCOLPGM(" ");
  3268. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3269. }
  3270. SERIAL_PROTOCOLPGM("\n");
  3271. }
  3272. }
  3273. else
  3274. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3275. break;
  3276. #if 0
  3277. /**
  3278. * G82: Single Z probe at current location
  3279. *
  3280. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3281. *
  3282. */
  3283. case 82:
  3284. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3285. setup_for_endstop_move();
  3286. find_bed_induction_sensor_point_z();
  3287. clean_up_after_endstop_move();
  3288. SERIAL_PROTOCOLPGM("Bed found at: ");
  3289. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3290. SERIAL_PROTOCOLPGM("\n");
  3291. break;
  3292. /**
  3293. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3294. */
  3295. case 83:
  3296. {
  3297. int babystepz = code_seen('S') ? code_value() : 0;
  3298. int BabyPosition = code_seen('P') ? code_value() : 0;
  3299. if (babystepz != 0) {
  3300. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3301. // Is the axis indexed starting with zero or one?
  3302. if (BabyPosition > 4) {
  3303. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3304. }else{
  3305. // Save it to the eeprom
  3306. babystepLoadZ = babystepz;
  3307. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3308. // adjust the Z
  3309. babystepsTodoZadd(babystepLoadZ);
  3310. }
  3311. }
  3312. }
  3313. break;
  3314. /**
  3315. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3316. */
  3317. case 84:
  3318. babystepsTodoZsubtract(babystepLoadZ);
  3319. // babystepLoadZ = 0;
  3320. break;
  3321. /**
  3322. * G85: Prusa3D specific: Pick best babystep
  3323. */
  3324. case 85:
  3325. lcd_pick_babystep();
  3326. break;
  3327. #endif
  3328. /**
  3329. * G86: Prusa3D specific: Disable babystep correction after home.
  3330. * This G-code will be performed at the start of a calibration script.
  3331. */
  3332. case 86:
  3333. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3334. break;
  3335. /**
  3336. * G87: Prusa3D specific: Enable babystep correction after home
  3337. * This G-code will be performed at the end of a calibration script.
  3338. */
  3339. case 87:
  3340. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3341. break;
  3342. /**
  3343. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3344. */
  3345. case 88:
  3346. break;
  3347. #endif // ENABLE_MESH_BED_LEVELING
  3348. case 90: // G90
  3349. relative_mode = false;
  3350. break;
  3351. case 91: // G91
  3352. relative_mode = true;
  3353. break;
  3354. case 92: // G92
  3355. if(!code_seen(axis_codes[E_AXIS]))
  3356. st_synchronize();
  3357. for(int8_t i=0; i < NUM_AXIS; i++) {
  3358. if(code_seen(axis_codes[i])) {
  3359. if(i == E_AXIS) {
  3360. current_position[i] = code_value();
  3361. plan_set_e_position(current_position[E_AXIS]);
  3362. }
  3363. else {
  3364. current_position[i] = code_value()+add_homing[i];
  3365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3366. }
  3367. }
  3368. }
  3369. break;
  3370. case 98: //activate farm mode
  3371. farm_mode = 1;
  3372. PingTime = millis();
  3373. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3374. break;
  3375. case 99: //deactivate farm mode
  3376. farm_mode = 0;
  3377. lcd_printer_connected();
  3378. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3379. lcd_update(2);
  3380. break;
  3381. default:
  3382. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3383. }
  3384. } // end if(code_seen('G'))
  3385. else if(code_seen('M'))
  3386. {
  3387. int index;
  3388. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3389. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3390. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3391. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3392. } else
  3393. switch((int)code_value())
  3394. {
  3395. #ifdef ULTIPANEL
  3396. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3397. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3398. {
  3399. char *src = strchr_pointer + 2;
  3400. codenum = 0;
  3401. bool hasP = false, hasS = false;
  3402. if (code_seen('P')) {
  3403. codenum = code_value(); // milliseconds to wait
  3404. hasP = codenum > 0;
  3405. }
  3406. if (code_seen('S')) {
  3407. codenum = code_value() * 1000; // seconds to wait
  3408. hasS = codenum > 0;
  3409. }
  3410. starpos = strchr(src, '*');
  3411. if (starpos != NULL) *(starpos) = '\0';
  3412. while (*src == ' ') ++src;
  3413. if (!hasP && !hasS && *src != '\0') {
  3414. lcd_setstatus(src);
  3415. } else {
  3416. LCD_MESSAGERPGM(MSG_USERWAIT);
  3417. }
  3418. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3419. st_synchronize();
  3420. previous_millis_cmd = millis();
  3421. if (codenum > 0){
  3422. codenum += millis(); // keep track of when we started waiting
  3423. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3424. while(millis() < codenum && !lcd_clicked()){
  3425. manage_heater();
  3426. manage_inactivity(true);
  3427. lcd_update();
  3428. }
  3429. KEEPALIVE_STATE(IN_HANDLER);
  3430. lcd_ignore_click(false);
  3431. }else{
  3432. if (!lcd_detected())
  3433. break;
  3434. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3435. while(!lcd_clicked()){
  3436. manage_heater();
  3437. manage_inactivity(true);
  3438. lcd_update();
  3439. }
  3440. KEEPALIVE_STATE(IN_HANDLER);
  3441. }
  3442. if (IS_SD_PRINTING)
  3443. LCD_MESSAGERPGM(MSG_RESUMING);
  3444. else
  3445. LCD_MESSAGERPGM(WELCOME_MSG);
  3446. }
  3447. break;
  3448. #endif
  3449. case 17:
  3450. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3451. enable_x();
  3452. enable_y();
  3453. enable_z();
  3454. enable_e0();
  3455. enable_e1();
  3456. enable_e2();
  3457. break;
  3458. #ifdef SDSUPPORT
  3459. case 20: // M20 - list SD card
  3460. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3461. card.ls();
  3462. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3463. break;
  3464. case 21: // M21 - init SD card
  3465. card.initsd();
  3466. break;
  3467. case 22: //M22 - release SD card
  3468. card.release();
  3469. break;
  3470. case 23: //M23 - Select file
  3471. starpos = (strchr(strchr_pointer + 4,'*'));
  3472. if(starpos!=NULL)
  3473. *(starpos)='\0';
  3474. card.openFile(strchr_pointer + 4,true);
  3475. break;
  3476. case 24: //M24 - Start SD print
  3477. #ifdef TMC2130
  3478. if (!card.paused)
  3479. failstats_reset_print();
  3480. #endif //TMC2130
  3481. card.startFileprint();
  3482. starttime=millis();
  3483. break;
  3484. case 25: //M25 - Pause SD print
  3485. card.pauseSDPrint();
  3486. break;
  3487. case 26: //M26 - Set SD index
  3488. if(card.cardOK && code_seen('S')) {
  3489. card.setIndex(code_value_long());
  3490. }
  3491. break;
  3492. case 27: //M27 - Get SD status
  3493. card.getStatus();
  3494. break;
  3495. case 28: //M28 - Start SD write
  3496. starpos = (strchr(strchr_pointer + 4,'*'));
  3497. if(starpos != NULL){
  3498. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3499. strchr_pointer = strchr(npos,' ') + 1;
  3500. *(starpos) = '\0';
  3501. }
  3502. card.openFile(strchr_pointer+4,false);
  3503. break;
  3504. case 29: //M29 - Stop SD write
  3505. //processed in write to file routine above
  3506. //card,saving = false;
  3507. break;
  3508. case 30: //M30 <filename> Delete File
  3509. if (card.cardOK){
  3510. card.closefile();
  3511. starpos = (strchr(strchr_pointer + 4,'*'));
  3512. if(starpos != NULL){
  3513. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3514. strchr_pointer = strchr(npos,' ') + 1;
  3515. *(starpos) = '\0';
  3516. }
  3517. card.removeFile(strchr_pointer + 4);
  3518. }
  3519. break;
  3520. case 32: //M32 - Select file and start SD print
  3521. {
  3522. if(card.sdprinting) {
  3523. st_synchronize();
  3524. }
  3525. starpos = (strchr(strchr_pointer + 4,'*'));
  3526. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3527. if(namestartpos==NULL)
  3528. {
  3529. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3530. }
  3531. else
  3532. namestartpos++; //to skip the '!'
  3533. if(starpos!=NULL)
  3534. *(starpos)='\0';
  3535. bool call_procedure=(code_seen('P'));
  3536. if(strchr_pointer>namestartpos)
  3537. call_procedure=false; //false alert, 'P' found within filename
  3538. if( card.cardOK )
  3539. {
  3540. card.openFile(namestartpos,true,!call_procedure);
  3541. if(code_seen('S'))
  3542. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3543. card.setIndex(code_value_long());
  3544. card.startFileprint();
  3545. if(!call_procedure)
  3546. starttime=millis(); //procedure calls count as normal print time.
  3547. }
  3548. } break;
  3549. case 928: //M928 - Start SD write
  3550. starpos = (strchr(strchr_pointer + 5,'*'));
  3551. if(starpos != NULL){
  3552. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3553. strchr_pointer = strchr(npos,' ') + 1;
  3554. *(starpos) = '\0';
  3555. }
  3556. card.openLogFile(strchr_pointer+5);
  3557. break;
  3558. #endif //SDSUPPORT
  3559. case 31: //M31 take time since the start of the SD print or an M109 command
  3560. {
  3561. stoptime=millis();
  3562. char time[30];
  3563. unsigned long t=(stoptime-starttime)/1000;
  3564. int sec,min;
  3565. min=t/60;
  3566. sec=t%60;
  3567. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3568. SERIAL_ECHO_START;
  3569. SERIAL_ECHOLN(time);
  3570. lcd_setstatus(time);
  3571. autotempShutdown();
  3572. }
  3573. break;
  3574. #ifndef _DISABLE_M42_M226
  3575. case 42: //M42 -Change pin status via gcode
  3576. if (code_seen('S'))
  3577. {
  3578. int pin_status = code_value();
  3579. int pin_number = LED_PIN;
  3580. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3581. pin_number = code_value();
  3582. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3583. {
  3584. if (sensitive_pins[i] == pin_number)
  3585. {
  3586. pin_number = -1;
  3587. break;
  3588. }
  3589. }
  3590. #if defined(FAN_PIN) && FAN_PIN > -1
  3591. if (pin_number == FAN_PIN)
  3592. fanSpeed = pin_status;
  3593. #endif
  3594. if (pin_number > -1)
  3595. {
  3596. pinMode(pin_number, OUTPUT);
  3597. digitalWrite(pin_number, pin_status);
  3598. analogWrite(pin_number, pin_status);
  3599. }
  3600. }
  3601. break;
  3602. #endif //_DISABLE_M42_M226
  3603. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3604. // Reset the baby step value and the baby step applied flag.
  3605. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3606. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3607. // Reset the skew and offset in both RAM and EEPROM.
  3608. reset_bed_offset_and_skew();
  3609. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3610. // the planner will not perform any adjustments in the XY plane.
  3611. // Wait for the motors to stop and update the current position with the absolute values.
  3612. world2machine_revert_to_uncorrected();
  3613. break;
  3614. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3615. {
  3616. bool only_Z = code_seen('Z');
  3617. gcode_M45(only_Z);
  3618. }
  3619. break;
  3620. /*
  3621. case 46:
  3622. {
  3623. // M46: Prusa3D: Show the assigned IP address.
  3624. uint8_t ip[4];
  3625. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3626. if (hasIP) {
  3627. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3628. SERIAL_ECHO(int(ip[0]));
  3629. SERIAL_ECHOPGM(".");
  3630. SERIAL_ECHO(int(ip[1]));
  3631. SERIAL_ECHOPGM(".");
  3632. SERIAL_ECHO(int(ip[2]));
  3633. SERIAL_ECHOPGM(".");
  3634. SERIAL_ECHO(int(ip[3]));
  3635. SERIAL_ECHOLNPGM("");
  3636. } else {
  3637. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3638. }
  3639. break;
  3640. }
  3641. */
  3642. case 47:
  3643. // M47: Prusa3D: Show end stops dialog on the display.
  3644. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3645. lcd_diag_show_end_stops();
  3646. KEEPALIVE_STATE(IN_HANDLER);
  3647. break;
  3648. #if 0
  3649. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3650. {
  3651. // Disable the default update procedure of the display. We will do a modal dialog.
  3652. lcd_update_enable(false);
  3653. // Let the planner use the uncorrected coordinates.
  3654. mbl.reset();
  3655. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3656. // the planner will not perform any adjustments in the XY plane.
  3657. // Wait for the motors to stop and update the current position with the absolute values.
  3658. world2machine_revert_to_uncorrected();
  3659. // Move the print head close to the bed.
  3660. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3662. st_synchronize();
  3663. // Home in the XY plane.
  3664. set_destination_to_current();
  3665. setup_for_endstop_move();
  3666. home_xy();
  3667. int8_t verbosity_level = 0;
  3668. if (code_seen('V')) {
  3669. // Just 'V' without a number counts as V1.
  3670. char c = strchr_pointer[1];
  3671. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3672. }
  3673. bool success = scan_bed_induction_points(verbosity_level);
  3674. clean_up_after_endstop_move();
  3675. // Print head up.
  3676. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3678. st_synchronize();
  3679. lcd_update_enable(true);
  3680. break;
  3681. }
  3682. #endif
  3683. // M48 Z-Probe repeatability measurement function.
  3684. //
  3685. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3686. //
  3687. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3688. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3689. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3690. // regenerated.
  3691. //
  3692. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3693. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3694. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3695. //
  3696. #ifdef ENABLE_AUTO_BED_LEVELING
  3697. #ifdef Z_PROBE_REPEATABILITY_TEST
  3698. case 48: // M48 Z-Probe repeatability
  3699. {
  3700. #if Z_MIN_PIN == -1
  3701. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3702. #endif
  3703. double sum=0.0;
  3704. double mean=0.0;
  3705. double sigma=0.0;
  3706. double sample_set[50];
  3707. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3708. double X_current, Y_current, Z_current;
  3709. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3710. if (code_seen('V') || code_seen('v')) {
  3711. verbose_level = code_value();
  3712. if (verbose_level<0 || verbose_level>4 ) {
  3713. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3714. goto Sigma_Exit;
  3715. }
  3716. }
  3717. if (verbose_level > 0) {
  3718. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3719. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3720. }
  3721. if (code_seen('n')) {
  3722. n_samples = code_value();
  3723. if (n_samples<4 || n_samples>50 ) {
  3724. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3725. goto Sigma_Exit;
  3726. }
  3727. }
  3728. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3729. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3730. Z_current = st_get_position_mm(Z_AXIS);
  3731. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3732. ext_position = st_get_position_mm(E_AXIS);
  3733. if (code_seen('X') || code_seen('x') ) {
  3734. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3735. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3736. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3737. goto Sigma_Exit;
  3738. }
  3739. }
  3740. if (code_seen('Y') || code_seen('y') ) {
  3741. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3742. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3743. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3744. goto Sigma_Exit;
  3745. }
  3746. }
  3747. if (code_seen('L') || code_seen('l') ) {
  3748. n_legs = code_value();
  3749. if ( n_legs==1 )
  3750. n_legs = 2;
  3751. if ( n_legs<0 || n_legs>15 ) {
  3752. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3753. goto Sigma_Exit;
  3754. }
  3755. }
  3756. //
  3757. // Do all the preliminary setup work. First raise the probe.
  3758. //
  3759. st_synchronize();
  3760. plan_bed_level_matrix.set_to_identity();
  3761. plan_buffer_line( X_current, Y_current, Z_start_location,
  3762. ext_position,
  3763. homing_feedrate[Z_AXIS]/60,
  3764. active_extruder);
  3765. st_synchronize();
  3766. //
  3767. // Now get everything to the specified probe point So we can safely do a probe to
  3768. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3769. // use that as a starting point for each probe.
  3770. //
  3771. if (verbose_level > 2)
  3772. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3773. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3774. ext_position,
  3775. homing_feedrate[X_AXIS]/60,
  3776. active_extruder);
  3777. st_synchronize();
  3778. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3779. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3780. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3781. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3782. //
  3783. // OK, do the inital probe to get us close to the bed.
  3784. // Then retrace the right amount and use that in subsequent probes
  3785. //
  3786. setup_for_endstop_move();
  3787. run_z_probe();
  3788. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3789. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3790. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3791. ext_position,
  3792. homing_feedrate[X_AXIS]/60,
  3793. active_extruder);
  3794. st_synchronize();
  3795. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3796. for( n=0; n<n_samples; n++) {
  3797. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3798. if ( n_legs) {
  3799. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3800. int rotational_direction, l;
  3801. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3802. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3803. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3804. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3805. //SERIAL_ECHOPAIR(" theta: ",theta);
  3806. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3807. //SERIAL_PROTOCOLLNPGM("");
  3808. for( l=0; l<n_legs-1; l++) {
  3809. if (rotational_direction==1)
  3810. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3811. else
  3812. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3813. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3814. if ( radius<0.0 )
  3815. radius = -radius;
  3816. X_current = X_probe_location + cos(theta) * radius;
  3817. Y_current = Y_probe_location + sin(theta) * radius;
  3818. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3819. X_current = X_MIN_POS;
  3820. if ( X_current>X_MAX_POS)
  3821. X_current = X_MAX_POS;
  3822. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3823. Y_current = Y_MIN_POS;
  3824. if ( Y_current>Y_MAX_POS)
  3825. Y_current = Y_MAX_POS;
  3826. if (verbose_level>3 ) {
  3827. SERIAL_ECHOPAIR("x: ", X_current);
  3828. SERIAL_ECHOPAIR("y: ", Y_current);
  3829. SERIAL_PROTOCOLLNPGM("");
  3830. }
  3831. do_blocking_move_to( X_current, Y_current, Z_current );
  3832. }
  3833. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3834. }
  3835. setup_for_endstop_move();
  3836. run_z_probe();
  3837. sample_set[n] = current_position[Z_AXIS];
  3838. //
  3839. // Get the current mean for the data points we have so far
  3840. //
  3841. sum=0.0;
  3842. for( j=0; j<=n; j++) {
  3843. sum = sum + sample_set[j];
  3844. }
  3845. mean = sum / (double (n+1));
  3846. //
  3847. // Now, use that mean to calculate the standard deviation for the
  3848. // data points we have so far
  3849. //
  3850. sum=0.0;
  3851. for( j=0; j<=n; j++) {
  3852. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3853. }
  3854. sigma = sqrt( sum / (double (n+1)) );
  3855. if (verbose_level > 1) {
  3856. SERIAL_PROTOCOL(n+1);
  3857. SERIAL_PROTOCOL(" of ");
  3858. SERIAL_PROTOCOL(n_samples);
  3859. SERIAL_PROTOCOLPGM(" z: ");
  3860. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3861. }
  3862. if (verbose_level > 2) {
  3863. SERIAL_PROTOCOL(" mean: ");
  3864. SERIAL_PROTOCOL_F(mean,6);
  3865. SERIAL_PROTOCOL(" sigma: ");
  3866. SERIAL_PROTOCOL_F(sigma,6);
  3867. }
  3868. if (verbose_level > 0)
  3869. SERIAL_PROTOCOLPGM("\n");
  3870. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3871. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3872. st_synchronize();
  3873. }
  3874. delay(1000);
  3875. clean_up_after_endstop_move();
  3876. // enable_endstops(true);
  3877. if (verbose_level > 0) {
  3878. SERIAL_PROTOCOLPGM("Mean: ");
  3879. SERIAL_PROTOCOL_F(mean, 6);
  3880. SERIAL_PROTOCOLPGM("\n");
  3881. }
  3882. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3883. SERIAL_PROTOCOL_F(sigma, 6);
  3884. SERIAL_PROTOCOLPGM("\n\n");
  3885. Sigma_Exit:
  3886. break;
  3887. }
  3888. #endif // Z_PROBE_REPEATABILITY_TEST
  3889. #endif // ENABLE_AUTO_BED_LEVELING
  3890. case 104: // M104
  3891. if(setTargetedHotend(104)){
  3892. break;
  3893. }
  3894. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3895. setWatch();
  3896. break;
  3897. case 112: // M112 -Emergency Stop
  3898. kill("", 3);
  3899. break;
  3900. case 140: // M140 set bed temp
  3901. if (code_seen('S')) setTargetBed(code_value());
  3902. break;
  3903. case 105 : // M105
  3904. if(setTargetedHotend(105)){
  3905. break;
  3906. }
  3907. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3908. SERIAL_PROTOCOLPGM("ok T:");
  3909. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3910. SERIAL_PROTOCOLPGM(" /");
  3911. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3912. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3913. SERIAL_PROTOCOLPGM(" B:");
  3914. SERIAL_PROTOCOL_F(degBed(),1);
  3915. SERIAL_PROTOCOLPGM(" /");
  3916. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3917. #endif //TEMP_BED_PIN
  3918. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3919. SERIAL_PROTOCOLPGM(" T");
  3920. SERIAL_PROTOCOL(cur_extruder);
  3921. SERIAL_PROTOCOLPGM(":");
  3922. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3923. SERIAL_PROTOCOLPGM(" /");
  3924. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3925. }
  3926. #else
  3927. SERIAL_ERROR_START;
  3928. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3929. #endif
  3930. SERIAL_PROTOCOLPGM(" @:");
  3931. #ifdef EXTRUDER_WATTS
  3932. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3933. SERIAL_PROTOCOLPGM("W");
  3934. #else
  3935. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3936. #endif
  3937. SERIAL_PROTOCOLPGM(" B@:");
  3938. #ifdef BED_WATTS
  3939. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3940. SERIAL_PROTOCOLPGM("W");
  3941. #else
  3942. SERIAL_PROTOCOL(getHeaterPower(-1));
  3943. #endif
  3944. #ifdef PINDA_THERMISTOR
  3945. SERIAL_PROTOCOLPGM(" P:");
  3946. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3947. #endif //PINDA_THERMISTOR
  3948. #ifdef AMBIENT_THERMISTOR
  3949. SERIAL_PROTOCOLPGM(" A:");
  3950. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3951. #endif //AMBIENT_THERMISTOR
  3952. #ifdef SHOW_TEMP_ADC_VALUES
  3953. {float raw = 0.0;
  3954. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3955. SERIAL_PROTOCOLPGM(" ADC B:");
  3956. SERIAL_PROTOCOL_F(degBed(),1);
  3957. SERIAL_PROTOCOLPGM("C->");
  3958. raw = rawBedTemp();
  3959. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3960. SERIAL_PROTOCOLPGM(" Rb->");
  3961. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3962. SERIAL_PROTOCOLPGM(" Rxb->");
  3963. SERIAL_PROTOCOL_F(raw, 5);
  3964. #endif
  3965. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3966. SERIAL_PROTOCOLPGM(" T");
  3967. SERIAL_PROTOCOL(cur_extruder);
  3968. SERIAL_PROTOCOLPGM(":");
  3969. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3970. SERIAL_PROTOCOLPGM("C->");
  3971. raw = rawHotendTemp(cur_extruder);
  3972. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3973. SERIAL_PROTOCOLPGM(" Rt");
  3974. SERIAL_PROTOCOL(cur_extruder);
  3975. SERIAL_PROTOCOLPGM("->");
  3976. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3977. SERIAL_PROTOCOLPGM(" Rx");
  3978. SERIAL_PROTOCOL(cur_extruder);
  3979. SERIAL_PROTOCOLPGM("->");
  3980. SERIAL_PROTOCOL_F(raw, 5);
  3981. }}
  3982. #endif
  3983. SERIAL_PROTOCOLLN("");
  3984. KEEPALIVE_STATE(NOT_BUSY);
  3985. return;
  3986. break;
  3987. case 109:
  3988. {// M109 - Wait for extruder heater to reach target.
  3989. if(setTargetedHotend(109)){
  3990. break;
  3991. }
  3992. LCD_MESSAGERPGM(MSG_HEATING);
  3993. heating_status = 1;
  3994. if (farm_mode) { prusa_statistics(1); };
  3995. #ifdef AUTOTEMP
  3996. autotemp_enabled=false;
  3997. #endif
  3998. if (code_seen('S')) {
  3999. setTargetHotend(code_value(), tmp_extruder);
  4000. CooldownNoWait = true;
  4001. } else if (code_seen('R')) {
  4002. setTargetHotend(code_value(), tmp_extruder);
  4003. CooldownNoWait = false;
  4004. }
  4005. #ifdef AUTOTEMP
  4006. if (code_seen('S')) autotemp_min=code_value();
  4007. if (code_seen('B')) autotemp_max=code_value();
  4008. if (code_seen('F'))
  4009. {
  4010. autotemp_factor=code_value();
  4011. autotemp_enabled=true;
  4012. }
  4013. #endif
  4014. setWatch();
  4015. codenum = millis();
  4016. /* See if we are heating up or cooling down */
  4017. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4018. KEEPALIVE_STATE(NOT_BUSY);
  4019. cancel_heatup = false;
  4020. wait_for_heater(codenum); //loops until target temperature is reached
  4021. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4022. KEEPALIVE_STATE(IN_HANDLER);
  4023. heating_status = 2;
  4024. if (farm_mode) { prusa_statistics(2); };
  4025. //starttime=millis();
  4026. previous_millis_cmd = millis();
  4027. }
  4028. break;
  4029. case 190: // M190 - Wait for bed heater to reach target.
  4030. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4031. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4032. heating_status = 3;
  4033. if (farm_mode) { prusa_statistics(1); };
  4034. if (code_seen('S'))
  4035. {
  4036. setTargetBed(code_value());
  4037. CooldownNoWait = true;
  4038. }
  4039. else if (code_seen('R'))
  4040. {
  4041. setTargetBed(code_value());
  4042. CooldownNoWait = false;
  4043. }
  4044. codenum = millis();
  4045. cancel_heatup = false;
  4046. target_direction = isHeatingBed(); // true if heating, false if cooling
  4047. KEEPALIVE_STATE(NOT_BUSY);
  4048. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4049. {
  4050. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4051. {
  4052. if (!farm_mode) {
  4053. float tt = degHotend(active_extruder);
  4054. SERIAL_PROTOCOLPGM("T:");
  4055. SERIAL_PROTOCOL(tt);
  4056. SERIAL_PROTOCOLPGM(" E:");
  4057. SERIAL_PROTOCOL((int)active_extruder);
  4058. SERIAL_PROTOCOLPGM(" B:");
  4059. SERIAL_PROTOCOL_F(degBed(), 1);
  4060. SERIAL_PROTOCOLLN("");
  4061. }
  4062. codenum = millis();
  4063. }
  4064. manage_heater();
  4065. manage_inactivity();
  4066. lcd_update();
  4067. }
  4068. LCD_MESSAGERPGM(MSG_BED_DONE);
  4069. KEEPALIVE_STATE(IN_HANDLER);
  4070. heating_status = 4;
  4071. previous_millis_cmd = millis();
  4072. #endif
  4073. break;
  4074. #if defined(FAN_PIN) && FAN_PIN > -1
  4075. case 106: //M106 Fan On
  4076. if (code_seen('S')){
  4077. fanSpeed=constrain(code_value(),0,255);
  4078. }
  4079. else {
  4080. fanSpeed=255;
  4081. }
  4082. break;
  4083. case 107: //M107 Fan Off
  4084. fanSpeed = 0;
  4085. break;
  4086. #endif //FAN_PIN
  4087. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4088. case 80: // M80 - Turn on Power Supply
  4089. SET_OUTPUT(PS_ON_PIN); //GND
  4090. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4091. // If you have a switch on suicide pin, this is useful
  4092. // if you want to start another print with suicide feature after
  4093. // a print without suicide...
  4094. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4095. SET_OUTPUT(SUICIDE_PIN);
  4096. WRITE(SUICIDE_PIN, HIGH);
  4097. #endif
  4098. #ifdef ULTIPANEL
  4099. powersupply = true;
  4100. LCD_MESSAGERPGM(WELCOME_MSG);
  4101. lcd_update();
  4102. #endif
  4103. break;
  4104. #endif
  4105. case 81: // M81 - Turn off Power Supply
  4106. disable_heater();
  4107. st_synchronize();
  4108. disable_e0();
  4109. disable_e1();
  4110. disable_e2();
  4111. finishAndDisableSteppers();
  4112. fanSpeed = 0;
  4113. delay(1000); // Wait a little before to switch off
  4114. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4115. st_synchronize();
  4116. suicide();
  4117. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4118. SET_OUTPUT(PS_ON_PIN);
  4119. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4120. #endif
  4121. #ifdef ULTIPANEL
  4122. powersupply = false;
  4123. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4124. /*
  4125. MACHNAME = "Prusa i3"
  4126. MSGOFF = "Vypnuto"
  4127. "Prusai3"" ""vypnuto""."
  4128. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4129. */
  4130. lcd_update();
  4131. #endif
  4132. break;
  4133. case 82:
  4134. axis_relative_modes[3] = false;
  4135. break;
  4136. case 83:
  4137. axis_relative_modes[3] = true;
  4138. break;
  4139. case 18: //compatibility
  4140. case 84: // M84
  4141. if(code_seen('S')){
  4142. stepper_inactive_time = code_value() * 1000;
  4143. }
  4144. else
  4145. {
  4146. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4147. if(all_axis)
  4148. {
  4149. st_synchronize();
  4150. disable_e0();
  4151. disable_e1();
  4152. disable_e2();
  4153. finishAndDisableSteppers();
  4154. }
  4155. else
  4156. {
  4157. st_synchronize();
  4158. if (code_seen('X')) disable_x();
  4159. if (code_seen('Y')) disable_y();
  4160. if (code_seen('Z')) disable_z();
  4161. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4162. if (code_seen('E')) {
  4163. disable_e0();
  4164. disable_e1();
  4165. disable_e2();
  4166. }
  4167. #endif
  4168. }
  4169. }
  4170. snmm_filaments_used = 0;
  4171. break;
  4172. case 85: // M85
  4173. if(code_seen('S')) {
  4174. max_inactive_time = code_value() * 1000;
  4175. }
  4176. break;
  4177. case 92: // M92
  4178. for(int8_t i=0; i < NUM_AXIS; i++)
  4179. {
  4180. if(code_seen(axis_codes[i]))
  4181. {
  4182. if(i == 3) { // E
  4183. float value = code_value();
  4184. if(value < 20.0) {
  4185. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4186. max_jerk[E_AXIS] *= factor;
  4187. max_feedrate[i] *= factor;
  4188. axis_steps_per_sqr_second[i] *= factor;
  4189. }
  4190. axis_steps_per_unit[i] = value;
  4191. }
  4192. else {
  4193. axis_steps_per_unit[i] = code_value();
  4194. }
  4195. }
  4196. }
  4197. break;
  4198. case 110: // M110 - reset line pos
  4199. if (code_seen('N'))
  4200. gcode_LastN = code_value_long();
  4201. break;
  4202. #ifdef HOST_KEEPALIVE_FEATURE
  4203. case 113: // M113 - Get or set Host Keepalive interval
  4204. if (code_seen('S')) {
  4205. host_keepalive_interval = (uint8_t)code_value_short();
  4206. // NOMORE(host_keepalive_interval, 60);
  4207. }
  4208. else {
  4209. SERIAL_ECHO_START;
  4210. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4211. SERIAL_PROTOCOLLN("");
  4212. }
  4213. break;
  4214. #endif
  4215. case 115: // M115
  4216. if (code_seen('V')) {
  4217. // Report the Prusa version number.
  4218. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4219. } else if (code_seen('U')) {
  4220. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4221. // pause the print and ask the user to upgrade the firmware.
  4222. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4223. } else {
  4224. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4225. }
  4226. break;
  4227. /* case 117: // M117 display message
  4228. starpos = (strchr(strchr_pointer + 5,'*'));
  4229. if(starpos!=NULL)
  4230. *(starpos)='\0';
  4231. lcd_setstatus(strchr_pointer + 5);
  4232. break;*/
  4233. case 114: // M114
  4234. SERIAL_PROTOCOLPGM("X:");
  4235. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4236. SERIAL_PROTOCOLPGM(" Y:");
  4237. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4238. SERIAL_PROTOCOLPGM(" Z:");
  4239. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4240. SERIAL_PROTOCOLPGM(" E:");
  4241. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4242. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4243. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4244. SERIAL_PROTOCOLPGM(" Y:");
  4245. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4246. SERIAL_PROTOCOLPGM(" Z:");
  4247. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4248. SERIAL_PROTOCOLPGM(" E:");
  4249. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4250. SERIAL_PROTOCOLLN("");
  4251. break;
  4252. case 120: // M120
  4253. enable_endstops(false) ;
  4254. break;
  4255. case 121: // M121
  4256. enable_endstops(true) ;
  4257. break;
  4258. case 119: // M119
  4259. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4260. SERIAL_PROTOCOLLN("");
  4261. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4262. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4263. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4264. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4265. }else{
  4266. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4267. }
  4268. SERIAL_PROTOCOLLN("");
  4269. #endif
  4270. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4271. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4272. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4273. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4274. }else{
  4275. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4276. }
  4277. SERIAL_PROTOCOLLN("");
  4278. #endif
  4279. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4280. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4281. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4282. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4283. }else{
  4284. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4285. }
  4286. SERIAL_PROTOCOLLN("");
  4287. #endif
  4288. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4289. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4290. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4291. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4292. }else{
  4293. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4294. }
  4295. SERIAL_PROTOCOLLN("");
  4296. #endif
  4297. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4298. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4299. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4300. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4301. }else{
  4302. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4303. }
  4304. SERIAL_PROTOCOLLN("");
  4305. #endif
  4306. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4307. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4308. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4309. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4310. }else{
  4311. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4312. }
  4313. SERIAL_PROTOCOLLN("");
  4314. #endif
  4315. break;
  4316. //TODO: update for all axis, use for loop
  4317. #ifdef BLINKM
  4318. case 150: // M150
  4319. {
  4320. byte red;
  4321. byte grn;
  4322. byte blu;
  4323. if(code_seen('R')) red = code_value();
  4324. if(code_seen('U')) grn = code_value();
  4325. if(code_seen('B')) blu = code_value();
  4326. SendColors(red,grn,blu);
  4327. }
  4328. break;
  4329. #endif //BLINKM
  4330. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4331. {
  4332. tmp_extruder = active_extruder;
  4333. if(code_seen('T')) {
  4334. tmp_extruder = code_value();
  4335. if(tmp_extruder >= EXTRUDERS) {
  4336. SERIAL_ECHO_START;
  4337. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4338. break;
  4339. }
  4340. }
  4341. float area = .0;
  4342. if(code_seen('D')) {
  4343. float diameter = (float)code_value();
  4344. if (diameter == 0.0) {
  4345. // setting any extruder filament size disables volumetric on the assumption that
  4346. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4347. // for all extruders
  4348. volumetric_enabled = false;
  4349. } else {
  4350. filament_size[tmp_extruder] = (float)code_value();
  4351. // make sure all extruders have some sane value for the filament size
  4352. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4353. #if EXTRUDERS > 1
  4354. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4355. #if EXTRUDERS > 2
  4356. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4357. #endif
  4358. #endif
  4359. volumetric_enabled = true;
  4360. }
  4361. } else {
  4362. //reserved for setting filament diameter via UFID or filament measuring device
  4363. break;
  4364. }
  4365. calculate_volumetric_multipliers();
  4366. }
  4367. break;
  4368. case 201: // M201
  4369. for(int8_t i=0; i < NUM_AXIS; i++)
  4370. {
  4371. if(code_seen(axis_codes[i]))
  4372. {
  4373. max_acceleration_units_per_sq_second[i] = code_value();
  4374. }
  4375. }
  4376. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4377. reset_acceleration_rates();
  4378. break;
  4379. #if 0 // Not used for Sprinter/grbl gen6
  4380. case 202: // M202
  4381. for(int8_t i=0; i < NUM_AXIS; i++) {
  4382. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4383. }
  4384. break;
  4385. #endif
  4386. case 203: // M203 max feedrate mm/sec
  4387. for(int8_t i=0; i < NUM_AXIS; i++) {
  4388. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4389. }
  4390. break;
  4391. case 204: // M204 acclereration S normal moves T filmanent only moves
  4392. {
  4393. if(code_seen('S')) acceleration = code_value() ;
  4394. if(code_seen('T')) retract_acceleration = code_value() ;
  4395. }
  4396. break;
  4397. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4398. {
  4399. if(code_seen('S')) minimumfeedrate = code_value();
  4400. if(code_seen('T')) mintravelfeedrate = code_value();
  4401. if(code_seen('B')) minsegmenttime = code_value() ;
  4402. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4403. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4404. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4405. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4406. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4407. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4408. }
  4409. break;
  4410. case 206: // M206 additional homing offset
  4411. for(int8_t i=0; i < 3; i++)
  4412. {
  4413. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4414. }
  4415. break;
  4416. #ifdef FWRETRACT
  4417. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4418. {
  4419. if(code_seen('S'))
  4420. {
  4421. retract_length = code_value() ;
  4422. }
  4423. if(code_seen('F'))
  4424. {
  4425. retract_feedrate = code_value()/60 ;
  4426. }
  4427. if(code_seen('Z'))
  4428. {
  4429. retract_zlift = code_value() ;
  4430. }
  4431. }break;
  4432. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4433. {
  4434. if(code_seen('S'))
  4435. {
  4436. retract_recover_length = code_value() ;
  4437. }
  4438. if(code_seen('F'))
  4439. {
  4440. retract_recover_feedrate = code_value()/60 ;
  4441. }
  4442. }break;
  4443. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4444. {
  4445. if(code_seen('S'))
  4446. {
  4447. int t= code_value() ;
  4448. switch(t)
  4449. {
  4450. case 0:
  4451. {
  4452. autoretract_enabled=false;
  4453. retracted[0]=false;
  4454. #if EXTRUDERS > 1
  4455. retracted[1]=false;
  4456. #endif
  4457. #if EXTRUDERS > 2
  4458. retracted[2]=false;
  4459. #endif
  4460. }break;
  4461. case 1:
  4462. {
  4463. autoretract_enabled=true;
  4464. retracted[0]=false;
  4465. #if EXTRUDERS > 1
  4466. retracted[1]=false;
  4467. #endif
  4468. #if EXTRUDERS > 2
  4469. retracted[2]=false;
  4470. #endif
  4471. }break;
  4472. default:
  4473. SERIAL_ECHO_START;
  4474. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4475. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4476. SERIAL_ECHOLNPGM("\"(1)");
  4477. }
  4478. }
  4479. }break;
  4480. #endif // FWRETRACT
  4481. #if EXTRUDERS > 1
  4482. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4483. {
  4484. if(setTargetedHotend(218)){
  4485. break;
  4486. }
  4487. if(code_seen('X'))
  4488. {
  4489. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4490. }
  4491. if(code_seen('Y'))
  4492. {
  4493. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4494. }
  4495. SERIAL_ECHO_START;
  4496. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4497. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4498. {
  4499. SERIAL_ECHO(" ");
  4500. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4501. SERIAL_ECHO(",");
  4502. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4503. }
  4504. SERIAL_ECHOLN("");
  4505. }break;
  4506. #endif
  4507. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4508. {
  4509. if(code_seen('S'))
  4510. {
  4511. feedmultiply = code_value() ;
  4512. }
  4513. }
  4514. break;
  4515. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4516. {
  4517. if(code_seen('S'))
  4518. {
  4519. int tmp_code = code_value();
  4520. if (code_seen('T'))
  4521. {
  4522. if(setTargetedHotend(221)){
  4523. break;
  4524. }
  4525. extruder_multiply[tmp_extruder] = tmp_code;
  4526. }
  4527. else
  4528. {
  4529. extrudemultiply = tmp_code ;
  4530. }
  4531. }
  4532. }
  4533. break;
  4534. #ifndef _DISABLE_M42_M226
  4535. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4536. {
  4537. if(code_seen('P')){
  4538. int pin_number = code_value(); // pin number
  4539. int pin_state = -1; // required pin state - default is inverted
  4540. if(code_seen('S')) pin_state = code_value(); // required pin state
  4541. if(pin_state >= -1 && pin_state <= 1){
  4542. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4543. {
  4544. if (sensitive_pins[i] == pin_number)
  4545. {
  4546. pin_number = -1;
  4547. break;
  4548. }
  4549. }
  4550. if (pin_number > -1)
  4551. {
  4552. int target = LOW;
  4553. st_synchronize();
  4554. pinMode(pin_number, INPUT);
  4555. switch(pin_state){
  4556. case 1:
  4557. target = HIGH;
  4558. break;
  4559. case 0:
  4560. target = LOW;
  4561. break;
  4562. case -1:
  4563. target = !digitalRead(pin_number);
  4564. break;
  4565. }
  4566. while(digitalRead(pin_number) != target){
  4567. manage_heater();
  4568. manage_inactivity();
  4569. lcd_update();
  4570. }
  4571. }
  4572. }
  4573. }
  4574. }
  4575. break;
  4576. #endif //_DISABLE_M42_M226
  4577. #if NUM_SERVOS > 0
  4578. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4579. {
  4580. int servo_index = -1;
  4581. int servo_position = 0;
  4582. if (code_seen('P'))
  4583. servo_index = code_value();
  4584. if (code_seen('S')) {
  4585. servo_position = code_value();
  4586. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4587. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4588. servos[servo_index].attach(0);
  4589. #endif
  4590. servos[servo_index].write(servo_position);
  4591. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4592. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4593. servos[servo_index].detach();
  4594. #endif
  4595. }
  4596. else {
  4597. SERIAL_ECHO_START;
  4598. SERIAL_ECHO("Servo ");
  4599. SERIAL_ECHO(servo_index);
  4600. SERIAL_ECHOLN(" out of range");
  4601. }
  4602. }
  4603. else if (servo_index >= 0) {
  4604. SERIAL_PROTOCOL(MSG_OK);
  4605. SERIAL_PROTOCOL(" Servo ");
  4606. SERIAL_PROTOCOL(servo_index);
  4607. SERIAL_PROTOCOL(": ");
  4608. SERIAL_PROTOCOL(servos[servo_index].read());
  4609. SERIAL_PROTOCOLLN("");
  4610. }
  4611. }
  4612. break;
  4613. #endif // NUM_SERVOS > 0
  4614. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4615. case 300: // M300
  4616. {
  4617. int beepS = code_seen('S') ? code_value() : 110;
  4618. int beepP = code_seen('P') ? code_value() : 1000;
  4619. if (beepS > 0)
  4620. {
  4621. #if BEEPER > 0
  4622. tone(BEEPER, beepS);
  4623. delay(beepP);
  4624. noTone(BEEPER);
  4625. #elif defined(ULTRALCD)
  4626. lcd_buzz(beepS, beepP);
  4627. #elif defined(LCD_USE_I2C_BUZZER)
  4628. lcd_buzz(beepP, beepS);
  4629. #endif
  4630. }
  4631. else
  4632. {
  4633. delay(beepP);
  4634. }
  4635. }
  4636. break;
  4637. #endif // M300
  4638. #ifdef PIDTEMP
  4639. case 301: // M301
  4640. {
  4641. if(code_seen('P')) Kp = code_value();
  4642. if(code_seen('I')) Ki = scalePID_i(code_value());
  4643. if(code_seen('D')) Kd = scalePID_d(code_value());
  4644. #ifdef PID_ADD_EXTRUSION_RATE
  4645. if(code_seen('C')) Kc = code_value();
  4646. #endif
  4647. updatePID();
  4648. SERIAL_PROTOCOLRPGM(MSG_OK);
  4649. SERIAL_PROTOCOL(" p:");
  4650. SERIAL_PROTOCOL(Kp);
  4651. SERIAL_PROTOCOL(" i:");
  4652. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4653. SERIAL_PROTOCOL(" d:");
  4654. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4655. #ifdef PID_ADD_EXTRUSION_RATE
  4656. SERIAL_PROTOCOL(" c:");
  4657. //Kc does not have scaling applied above, or in resetting defaults
  4658. SERIAL_PROTOCOL(Kc);
  4659. #endif
  4660. SERIAL_PROTOCOLLN("");
  4661. }
  4662. break;
  4663. #endif //PIDTEMP
  4664. #ifdef PIDTEMPBED
  4665. case 304: // M304
  4666. {
  4667. if(code_seen('P')) bedKp = code_value();
  4668. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4669. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4670. updatePID();
  4671. SERIAL_PROTOCOLRPGM(MSG_OK);
  4672. SERIAL_PROTOCOL(" p:");
  4673. SERIAL_PROTOCOL(bedKp);
  4674. SERIAL_PROTOCOL(" i:");
  4675. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4676. SERIAL_PROTOCOL(" d:");
  4677. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4678. SERIAL_PROTOCOLLN("");
  4679. }
  4680. break;
  4681. #endif //PIDTEMP
  4682. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4683. {
  4684. #ifdef CHDK
  4685. SET_OUTPUT(CHDK);
  4686. WRITE(CHDK, HIGH);
  4687. chdkHigh = millis();
  4688. chdkActive = true;
  4689. #else
  4690. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4691. const uint8_t NUM_PULSES=16;
  4692. const float PULSE_LENGTH=0.01524;
  4693. for(int i=0; i < NUM_PULSES; i++) {
  4694. WRITE(PHOTOGRAPH_PIN, HIGH);
  4695. _delay_ms(PULSE_LENGTH);
  4696. WRITE(PHOTOGRAPH_PIN, LOW);
  4697. _delay_ms(PULSE_LENGTH);
  4698. }
  4699. delay(7.33);
  4700. for(int i=0; i < NUM_PULSES; i++) {
  4701. WRITE(PHOTOGRAPH_PIN, HIGH);
  4702. _delay_ms(PULSE_LENGTH);
  4703. WRITE(PHOTOGRAPH_PIN, LOW);
  4704. _delay_ms(PULSE_LENGTH);
  4705. }
  4706. #endif
  4707. #endif //chdk end if
  4708. }
  4709. break;
  4710. #ifdef DOGLCD
  4711. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4712. {
  4713. if (code_seen('C')) {
  4714. lcd_setcontrast( ((int)code_value())&63 );
  4715. }
  4716. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4717. SERIAL_PROTOCOL(lcd_contrast);
  4718. SERIAL_PROTOCOLLN("");
  4719. }
  4720. break;
  4721. #endif
  4722. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4723. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4724. {
  4725. float temp = .0;
  4726. if (code_seen('S')) temp=code_value();
  4727. set_extrude_min_temp(temp);
  4728. }
  4729. break;
  4730. #endif
  4731. case 303: // M303 PID autotune
  4732. {
  4733. float temp = 150.0;
  4734. int e=0;
  4735. int c=5;
  4736. if (code_seen('E')) e=code_value();
  4737. if (e<0)
  4738. temp=70;
  4739. if (code_seen('S')) temp=code_value();
  4740. if (code_seen('C')) c=code_value();
  4741. PID_autotune(temp, e, c);
  4742. }
  4743. break;
  4744. case 400: // M400 finish all moves
  4745. {
  4746. st_synchronize();
  4747. }
  4748. break;
  4749. #ifdef FILAMENT_SENSOR
  4750. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4751. {
  4752. #if (FILWIDTH_PIN > -1)
  4753. if(code_seen('N')) filament_width_nominal=code_value();
  4754. else{
  4755. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4756. SERIAL_PROTOCOLLN(filament_width_nominal);
  4757. }
  4758. #endif
  4759. }
  4760. break;
  4761. case 405: //M405 Turn on filament sensor for control
  4762. {
  4763. if(code_seen('D')) meas_delay_cm=code_value();
  4764. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4765. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4766. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4767. {
  4768. int temp_ratio = widthFil_to_size_ratio();
  4769. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4770. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4771. }
  4772. delay_index1=0;
  4773. delay_index2=0;
  4774. }
  4775. filament_sensor = true ;
  4776. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4777. //SERIAL_PROTOCOL(filament_width_meas);
  4778. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4779. //SERIAL_PROTOCOL(extrudemultiply);
  4780. }
  4781. break;
  4782. case 406: //M406 Turn off filament sensor for control
  4783. {
  4784. filament_sensor = false ;
  4785. }
  4786. break;
  4787. case 407: //M407 Display measured filament diameter
  4788. {
  4789. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4790. SERIAL_PROTOCOLLN(filament_width_meas);
  4791. }
  4792. break;
  4793. #endif
  4794. case 500: // M500 Store settings in EEPROM
  4795. {
  4796. Config_StoreSettings(EEPROM_OFFSET);
  4797. }
  4798. break;
  4799. case 501: // M501 Read settings from EEPROM
  4800. {
  4801. Config_RetrieveSettings(EEPROM_OFFSET);
  4802. }
  4803. break;
  4804. case 502: // M502 Revert to default settings
  4805. {
  4806. Config_ResetDefault();
  4807. }
  4808. break;
  4809. case 503: // M503 print settings currently in memory
  4810. {
  4811. Config_PrintSettings();
  4812. }
  4813. break;
  4814. case 509: //M509 Force language selection
  4815. {
  4816. lcd_force_language_selection();
  4817. SERIAL_ECHO_START;
  4818. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4819. }
  4820. break;
  4821. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4822. case 540:
  4823. {
  4824. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4825. }
  4826. break;
  4827. #endif
  4828. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4829. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4830. {
  4831. float value;
  4832. if (code_seen('Z'))
  4833. {
  4834. value = code_value();
  4835. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4836. {
  4837. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4838. SERIAL_ECHO_START;
  4839. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4840. SERIAL_PROTOCOLLN("");
  4841. }
  4842. else
  4843. {
  4844. SERIAL_ECHO_START;
  4845. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4846. SERIAL_ECHORPGM(MSG_Z_MIN);
  4847. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4848. SERIAL_ECHORPGM(MSG_Z_MAX);
  4849. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4850. SERIAL_PROTOCOLLN("");
  4851. }
  4852. }
  4853. else
  4854. {
  4855. SERIAL_ECHO_START;
  4856. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4857. SERIAL_ECHO(-zprobe_zoffset);
  4858. SERIAL_PROTOCOLLN("");
  4859. }
  4860. break;
  4861. }
  4862. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4863. #ifdef FILAMENTCHANGEENABLE
  4864. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4865. {
  4866. bool old_fsensor_enabled = fsensor_enabled;
  4867. fsensor_enabled = false; //temporary solution for unexpected restarting
  4868. st_synchronize();
  4869. float target[4];
  4870. float lastpos[4];
  4871. if (farm_mode)
  4872. {
  4873. prusa_statistics(22);
  4874. }
  4875. feedmultiplyBckp=feedmultiply;
  4876. int8_t TooLowZ = 0;
  4877. float HotendTempBckp = degTargetHotend(active_extruder);
  4878. int fanSpeedBckp = fanSpeed;
  4879. target[X_AXIS]=current_position[X_AXIS];
  4880. target[Y_AXIS]=current_position[Y_AXIS];
  4881. target[Z_AXIS]=current_position[Z_AXIS];
  4882. target[E_AXIS]=current_position[E_AXIS];
  4883. lastpos[X_AXIS]=current_position[X_AXIS];
  4884. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4885. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4886. lastpos[E_AXIS]=current_position[E_AXIS];
  4887. //Restract extruder
  4888. if(code_seen('E'))
  4889. {
  4890. target[E_AXIS]+= code_value();
  4891. }
  4892. else
  4893. {
  4894. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4895. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4896. #endif
  4897. }
  4898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4899. //Lift Z
  4900. if(code_seen('Z'))
  4901. {
  4902. target[Z_AXIS]+= code_value();
  4903. }
  4904. else
  4905. {
  4906. #ifdef FILAMENTCHANGE_ZADD
  4907. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4908. if(target[Z_AXIS] < 10){
  4909. target[Z_AXIS]+= 10 ;
  4910. TooLowZ = 1;
  4911. }else{
  4912. TooLowZ = 0;
  4913. }
  4914. #endif
  4915. }
  4916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4917. //Move XY to side
  4918. if(code_seen('X'))
  4919. {
  4920. target[X_AXIS]+= code_value();
  4921. }
  4922. else
  4923. {
  4924. #ifdef FILAMENTCHANGE_XPOS
  4925. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4926. #endif
  4927. }
  4928. if(code_seen('Y'))
  4929. {
  4930. target[Y_AXIS]= code_value();
  4931. }
  4932. else
  4933. {
  4934. #ifdef FILAMENTCHANGE_YPOS
  4935. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4936. #endif
  4937. }
  4938. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4939. st_synchronize();
  4940. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4941. uint8_t cnt = 0;
  4942. int counterBeep = 0;
  4943. fanSpeed = 0;
  4944. unsigned long waiting_start_time = millis();
  4945. uint8_t wait_for_user_state = 0;
  4946. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4947. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4948. //cnt++;
  4949. manage_heater();
  4950. manage_inactivity(true);
  4951. /*#ifdef SNMM
  4952. target[E_AXIS] += 0.002;
  4953. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4954. #endif // SNMM*/
  4955. //if (cnt == 0)
  4956. {
  4957. #if BEEPER > 0
  4958. if (counterBeep == 500) {
  4959. counterBeep = 0;
  4960. }
  4961. SET_OUTPUT(BEEPER);
  4962. if (counterBeep == 0) {
  4963. WRITE(BEEPER, HIGH);
  4964. }
  4965. if (counterBeep == 20) {
  4966. WRITE(BEEPER, LOW);
  4967. }
  4968. counterBeep++;
  4969. #else
  4970. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4971. lcd_buzz(1000 / 6, 100);
  4972. #else
  4973. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4974. #endif
  4975. #endif
  4976. }
  4977. switch (wait_for_user_state) {
  4978. case 0:
  4979. delay_keep_alive(4);
  4980. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4981. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4982. wait_for_user_state = 1;
  4983. setTargetHotend(0, 0);
  4984. setTargetHotend(0, 1);
  4985. setTargetHotend(0, 2);
  4986. st_synchronize();
  4987. disable_e0();
  4988. disable_e1();
  4989. disable_e2();
  4990. }
  4991. break;
  4992. case 1:
  4993. delay_keep_alive(4);
  4994. if (lcd_clicked()) {
  4995. setTargetHotend(HotendTempBckp, active_extruder);
  4996. lcd_wait_for_heater();
  4997. wait_for_user_state = 2;
  4998. }
  4999. break;
  5000. case 2:
  5001. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5002. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5003. waiting_start_time = millis();
  5004. wait_for_user_state = 0;
  5005. }
  5006. else {
  5007. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5008. lcd.setCursor(1, 4);
  5009. lcd.print(ftostr3(degHotend(active_extruder)));
  5010. }
  5011. break;
  5012. }
  5013. }
  5014. WRITE(BEEPER, LOW);
  5015. lcd_change_fil_state = 0;
  5016. // Unload filament
  5017. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5018. KEEPALIVE_STATE(IN_HANDLER);
  5019. custom_message = true;
  5020. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5021. if (code_seen('L'))
  5022. {
  5023. target[E_AXIS] += code_value();
  5024. }
  5025. else
  5026. {
  5027. #ifdef SNMM
  5028. #else
  5029. #ifdef FILAMENTCHANGE_FINALRETRACT
  5030. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5031. #endif
  5032. #endif // SNMM
  5033. }
  5034. #ifdef SNMM
  5035. target[E_AXIS] += 12;
  5036. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5037. target[E_AXIS] += 6;
  5038. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5039. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5040. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5041. st_synchronize();
  5042. target[E_AXIS] += (FIL_COOLING);
  5043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5044. target[E_AXIS] += (FIL_COOLING*-1);
  5045. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5046. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5048. st_synchronize();
  5049. #else
  5050. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5051. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5052. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5053. st_synchronize();
  5054. #ifdef TMC2130
  5055. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5056. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5057. #else
  5058. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5059. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5060. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5061. #endif //TMC2130
  5062. target[E_AXIS] -= 45;
  5063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5064. st_synchronize();
  5065. target[E_AXIS] -= 15;
  5066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5067. st_synchronize();
  5068. target[E_AXIS] -= 20;
  5069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5070. st_synchronize();
  5071. #ifdef TMC2130
  5072. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5073. #else
  5074. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5075. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5076. else digipot_current(2, tmp_motor_loud[2]);
  5077. #endif //TMC2130
  5078. #endif // SNMM
  5079. //finish moves
  5080. st_synchronize();
  5081. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5082. //disable extruder steppers so filament can be removed
  5083. disable_e0();
  5084. disable_e1();
  5085. disable_e2();
  5086. delay(100);
  5087. WRITE(BEEPER, HIGH);
  5088. counterBeep = 0;
  5089. while(!lcd_clicked() && (counterBeep < 50)) {
  5090. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5091. delay_keep_alive(100);
  5092. counterBeep++;
  5093. }
  5094. WRITE(BEEPER, LOW);
  5095. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5096. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5097. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5098. //lcd_return_to_status();
  5099. lcd_update_enable(true);
  5100. //Wait for user to insert filament
  5101. lcd_wait_interact();
  5102. //load_filament_time = millis();
  5103. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5104. #ifdef PAT9125
  5105. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5106. #endif //PAT9125
  5107. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5108. while(!lcd_clicked())
  5109. {
  5110. manage_heater();
  5111. manage_inactivity(true);
  5112. #ifdef PAT9125
  5113. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5114. {
  5115. tone(BEEPER, 1000);
  5116. delay_keep_alive(50);
  5117. noTone(BEEPER);
  5118. break;
  5119. }
  5120. #endif //PAT9125
  5121. /*#ifdef SNMM
  5122. target[E_AXIS] += 0.002;
  5123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5124. #endif // SNMM*/
  5125. }
  5126. #ifdef PAT9125
  5127. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5128. #endif //PAT9125
  5129. //WRITE(BEEPER, LOW);
  5130. KEEPALIVE_STATE(IN_HANDLER);
  5131. #ifdef SNMM
  5132. display_loading();
  5133. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5134. do {
  5135. target[E_AXIS] += 0.002;
  5136. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5137. delay_keep_alive(2);
  5138. } while (!lcd_clicked());
  5139. KEEPALIVE_STATE(IN_HANDLER);
  5140. /*if (millis() - load_filament_time > 2) {
  5141. load_filament_time = millis();
  5142. target[E_AXIS] += 0.001;
  5143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5144. }*/
  5145. //Filament inserted
  5146. //Feed the filament to the end of nozzle quickly
  5147. st_synchronize();
  5148. target[E_AXIS] += bowden_length[snmm_extruder];
  5149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5150. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5151. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5152. target[E_AXIS] += 40;
  5153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5154. target[E_AXIS] += 10;
  5155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5156. #else
  5157. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5159. #endif // SNMM
  5160. //Extrude some filament
  5161. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5163. //Wait for user to check the state
  5164. lcd_change_fil_state = 0;
  5165. lcd_loading_filament();
  5166. tone(BEEPER, 500);
  5167. delay_keep_alive(50);
  5168. noTone(BEEPER);
  5169. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5170. lcd_change_fil_state = 0;
  5171. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5172. lcd_alright();
  5173. KEEPALIVE_STATE(IN_HANDLER);
  5174. switch(lcd_change_fil_state){
  5175. // Filament failed to load so load it again
  5176. case 2:
  5177. #ifdef SNMM
  5178. display_loading();
  5179. do {
  5180. target[E_AXIS] += 0.002;
  5181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5182. delay_keep_alive(2);
  5183. } while (!lcd_clicked());
  5184. st_synchronize();
  5185. target[E_AXIS] += bowden_length[snmm_extruder];
  5186. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5187. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5188. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5189. target[E_AXIS] += 40;
  5190. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5191. target[E_AXIS] += 10;
  5192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5193. #else
  5194. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5195. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5196. #endif
  5197. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5199. lcd_loading_filament();
  5200. break;
  5201. // Filament loaded properly but color is not clear
  5202. case 3:
  5203. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5204. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5205. lcd_loading_color();
  5206. break;
  5207. // Everything good
  5208. default:
  5209. lcd_change_success();
  5210. lcd_update_enable(true);
  5211. break;
  5212. }
  5213. }
  5214. //Not let's go back to print
  5215. fanSpeed = fanSpeedBckp;
  5216. //Feed a little of filament to stabilize pressure
  5217. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5219. //Retract
  5220. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5222. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5223. //Move XY back
  5224. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5225. //Move Z back
  5226. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5227. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5228. //Unretract
  5229. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5230. //Set E position to original
  5231. plan_set_e_position(lastpos[E_AXIS]);
  5232. //Recover feed rate
  5233. feedmultiply=feedmultiplyBckp;
  5234. char cmd[9];
  5235. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5236. enquecommand(cmd);
  5237. lcd_setstatuspgm(WELCOME_MSG);
  5238. custom_message = false;
  5239. custom_message_type = 0;
  5240. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5241. #ifdef PAT9125
  5242. if (fsensor_M600)
  5243. {
  5244. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5245. st_synchronize();
  5246. while (!is_buffer_empty())
  5247. {
  5248. process_commands();
  5249. cmdqueue_pop_front();
  5250. }
  5251. fsensor_enable();
  5252. fsensor_restore_print_and_continue();
  5253. }
  5254. #endif //PAT9125
  5255. }
  5256. break;
  5257. #endif //FILAMENTCHANGEENABLE
  5258. case 601: {
  5259. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5260. }
  5261. break;
  5262. case 602: {
  5263. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5264. }
  5265. break;
  5266. #ifdef LIN_ADVANCE
  5267. case 900: // M900: Set LIN_ADVANCE options.
  5268. gcode_M900();
  5269. break;
  5270. #endif
  5271. case 907: // M907 Set digital trimpot motor current using axis codes.
  5272. {
  5273. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5274. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5275. if(code_seen('B')) digipot_current(4,code_value());
  5276. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5277. #endif
  5278. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5279. if(code_seen('X')) digipot_current(0, code_value());
  5280. #endif
  5281. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5282. if(code_seen('Z')) digipot_current(1, code_value());
  5283. #endif
  5284. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5285. if(code_seen('E')) digipot_current(2, code_value());
  5286. #endif
  5287. #ifdef DIGIPOT_I2C
  5288. // this one uses actual amps in floating point
  5289. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5290. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5291. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5292. #endif
  5293. }
  5294. break;
  5295. case 908: // M908 Control digital trimpot directly.
  5296. {
  5297. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5298. uint8_t channel,current;
  5299. if(code_seen('P')) channel=code_value();
  5300. if(code_seen('S')) current=code_value();
  5301. digitalPotWrite(channel, current);
  5302. #endif
  5303. }
  5304. break;
  5305. #ifdef TMC2130
  5306. case 910: // M910 TMC2130 init
  5307. {
  5308. tmc2130_init();
  5309. }
  5310. break;
  5311. case 911: // M911 Set TMC2130 holding currents
  5312. {
  5313. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5314. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5315. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5316. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5317. }
  5318. break;
  5319. case 912: // M912 Set TMC2130 running currents
  5320. {
  5321. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5322. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5323. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5324. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5325. }
  5326. break;
  5327. case 913: // M913 Print TMC2130 currents
  5328. {
  5329. tmc2130_print_currents();
  5330. }
  5331. break;
  5332. case 914: // M914 Set normal mode
  5333. {
  5334. tmc2130_mode = TMC2130_MODE_NORMAL;
  5335. tmc2130_init();
  5336. }
  5337. break;
  5338. case 915: // M915 Set silent mode
  5339. {
  5340. tmc2130_mode = TMC2130_MODE_SILENT;
  5341. tmc2130_init();
  5342. }
  5343. break;
  5344. case 916: // M916 Set sg_thrs
  5345. {
  5346. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5347. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5348. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5349. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5350. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5351. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5352. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5353. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5354. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5355. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5356. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5357. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5358. }
  5359. break;
  5360. case 917: // M917 Set TMC2130 pwm_ampl
  5361. {
  5362. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5363. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5364. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5365. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5366. }
  5367. break;
  5368. case 918: // M918 Set TMC2130 pwm_grad
  5369. {
  5370. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5371. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5372. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5373. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5374. }
  5375. break;
  5376. #endif //TMC2130
  5377. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5378. {
  5379. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5380. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5381. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5382. if(code_seen('B')) microstep_mode(4,code_value());
  5383. microstep_readings();
  5384. #endif
  5385. }
  5386. break;
  5387. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5388. {
  5389. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5390. if(code_seen('S')) switch((int)code_value())
  5391. {
  5392. case 1:
  5393. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5394. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5395. break;
  5396. case 2:
  5397. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5398. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5399. break;
  5400. }
  5401. microstep_readings();
  5402. #endif
  5403. }
  5404. break;
  5405. case 701: //M701: load filament
  5406. {
  5407. gcode_M701();
  5408. }
  5409. break;
  5410. case 702:
  5411. {
  5412. #ifdef SNMM
  5413. if (code_seen('U')) {
  5414. extr_unload_used(); //unload all filaments which were used in current print
  5415. }
  5416. else if (code_seen('C')) {
  5417. extr_unload(); //unload just current filament
  5418. }
  5419. else {
  5420. extr_unload_all(); //unload all filaments
  5421. }
  5422. #else
  5423. bool old_fsensor_enabled = fsensor_enabled;
  5424. fsensor_enabled = false;
  5425. custom_message = true;
  5426. custom_message_type = 2;
  5427. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5428. // extr_unload2();
  5429. current_position[E_AXIS] -= 45;
  5430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5431. st_synchronize();
  5432. current_position[E_AXIS] -= 15;
  5433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5434. st_synchronize();
  5435. current_position[E_AXIS] -= 20;
  5436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5437. st_synchronize();
  5438. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5439. //disable extruder steppers so filament can be removed
  5440. disable_e0();
  5441. disable_e1();
  5442. disable_e2();
  5443. delay(100);
  5444. WRITE(BEEPER, HIGH);
  5445. uint8_t counterBeep = 0;
  5446. while (!lcd_clicked() && (counterBeep < 50)) {
  5447. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5448. delay_keep_alive(100);
  5449. counterBeep++;
  5450. }
  5451. WRITE(BEEPER, LOW);
  5452. st_synchronize();
  5453. while (lcd_clicked()) delay_keep_alive(100);
  5454. lcd_update_enable(true);
  5455. lcd_setstatuspgm(WELCOME_MSG);
  5456. custom_message = false;
  5457. custom_message_type = 0;
  5458. fsensor_enabled = old_fsensor_enabled;
  5459. #endif
  5460. }
  5461. break;
  5462. case 999: // M999: Restart after being stopped
  5463. Stopped = false;
  5464. lcd_reset_alert_level();
  5465. gcode_LastN = Stopped_gcode_LastN;
  5466. FlushSerialRequestResend();
  5467. break;
  5468. default:
  5469. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5470. }
  5471. } // end if(code_seen('M')) (end of M codes)
  5472. else if(code_seen('T'))
  5473. {
  5474. int index;
  5475. st_synchronize();
  5476. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5477. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5478. SERIAL_ECHOLNPGM("Invalid T code.");
  5479. }
  5480. else {
  5481. if (*(strchr_pointer + index) == '?') {
  5482. tmp_extruder = choose_extruder_menu();
  5483. }
  5484. else {
  5485. tmp_extruder = code_value();
  5486. }
  5487. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5488. #ifdef SNMM
  5489. #ifdef LIN_ADVANCE
  5490. if (snmm_extruder != tmp_extruder)
  5491. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5492. #endif
  5493. snmm_extruder = tmp_extruder;
  5494. delay(100);
  5495. disable_e0();
  5496. disable_e1();
  5497. disable_e2();
  5498. pinMode(E_MUX0_PIN, OUTPUT);
  5499. pinMode(E_MUX1_PIN, OUTPUT);
  5500. pinMode(E_MUX2_PIN, OUTPUT);
  5501. delay(100);
  5502. SERIAL_ECHO_START;
  5503. SERIAL_ECHO("T:");
  5504. SERIAL_ECHOLN((int)tmp_extruder);
  5505. switch (tmp_extruder) {
  5506. case 1:
  5507. WRITE(E_MUX0_PIN, HIGH);
  5508. WRITE(E_MUX1_PIN, LOW);
  5509. WRITE(E_MUX2_PIN, LOW);
  5510. break;
  5511. case 2:
  5512. WRITE(E_MUX0_PIN, LOW);
  5513. WRITE(E_MUX1_PIN, HIGH);
  5514. WRITE(E_MUX2_PIN, LOW);
  5515. break;
  5516. case 3:
  5517. WRITE(E_MUX0_PIN, HIGH);
  5518. WRITE(E_MUX1_PIN, HIGH);
  5519. WRITE(E_MUX2_PIN, LOW);
  5520. break;
  5521. default:
  5522. WRITE(E_MUX0_PIN, LOW);
  5523. WRITE(E_MUX1_PIN, LOW);
  5524. WRITE(E_MUX2_PIN, LOW);
  5525. break;
  5526. }
  5527. delay(100);
  5528. #else
  5529. if (tmp_extruder >= EXTRUDERS) {
  5530. SERIAL_ECHO_START;
  5531. SERIAL_ECHOPGM("T");
  5532. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5533. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5534. }
  5535. else {
  5536. boolean make_move = false;
  5537. if (code_seen('F')) {
  5538. make_move = true;
  5539. next_feedrate = code_value();
  5540. if (next_feedrate > 0.0) {
  5541. feedrate = next_feedrate;
  5542. }
  5543. }
  5544. #if EXTRUDERS > 1
  5545. if (tmp_extruder != active_extruder) {
  5546. // Save current position to return to after applying extruder offset
  5547. memcpy(destination, current_position, sizeof(destination));
  5548. // Offset extruder (only by XY)
  5549. int i;
  5550. for (i = 0; i < 2; i++) {
  5551. current_position[i] = current_position[i] -
  5552. extruder_offset[i][active_extruder] +
  5553. extruder_offset[i][tmp_extruder];
  5554. }
  5555. // Set the new active extruder and position
  5556. active_extruder = tmp_extruder;
  5557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5558. // Move to the old position if 'F' was in the parameters
  5559. if (make_move && Stopped == false) {
  5560. prepare_move();
  5561. }
  5562. }
  5563. #endif
  5564. SERIAL_ECHO_START;
  5565. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5566. SERIAL_PROTOCOLLN((int)active_extruder);
  5567. }
  5568. #endif
  5569. }
  5570. } // end if(code_seen('T')) (end of T codes)
  5571. #ifdef DEBUG_DCODES
  5572. else if (code_seen('D')) // D codes (debug)
  5573. {
  5574. switch((int)code_value())
  5575. {
  5576. case -1: // D-1 - Endless loop
  5577. dcode__1(); break;
  5578. case 0: // D0 - Reset
  5579. dcode_0(); break;
  5580. case 1: // D1 - Clear EEPROM
  5581. dcode_1(); break;
  5582. case 2: // D2 - Read/Write RAM
  5583. dcode_2(); break;
  5584. case 3: // D3 - Read/Write EEPROM
  5585. dcode_3(); break;
  5586. case 4: // D4 - Read/Write PIN
  5587. dcode_4(); break;
  5588. case 5: // D5 - Read/Write FLASH
  5589. // dcode_5(); break;
  5590. break;
  5591. case 6: // D6 - Read/Write external FLASH
  5592. dcode_6(); break;
  5593. case 7: // D7 - Read/Write Bootloader
  5594. dcode_7(); break;
  5595. case 8: // D8 - Read/Write PINDA
  5596. dcode_8(); break;
  5597. case 9: // D9 - Read/Write ADC
  5598. dcode_9(); break;
  5599. case 10: // D10 - XYZ calibration = OK
  5600. dcode_10(); break;
  5601. case 12: //D12 - Reset failstat counters
  5602. dcode_12(); break;
  5603. #ifdef TMC2130
  5604. case 2130: // D9125 - TMC2130
  5605. dcode_2130(); break;
  5606. #endif //TMC2130
  5607. #ifdef PAT9125
  5608. case 9125: // D9125 - PAT9125
  5609. dcode_9125(); break;
  5610. #endif //PAT9125
  5611. }
  5612. }
  5613. #endif //DEBUG_DCODES
  5614. else
  5615. {
  5616. SERIAL_ECHO_START;
  5617. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5618. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5619. SERIAL_ECHOLNPGM("\"(2)");
  5620. }
  5621. KEEPALIVE_STATE(NOT_BUSY);
  5622. ClearToSend();
  5623. }
  5624. void FlushSerialRequestResend()
  5625. {
  5626. //char cmdbuffer[bufindr][100]="Resend:";
  5627. MYSERIAL.flush();
  5628. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5629. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5630. previous_millis_cmd = millis();
  5631. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5632. }
  5633. // Confirm the execution of a command, if sent from a serial line.
  5634. // Execution of a command from a SD card will not be confirmed.
  5635. void ClearToSend()
  5636. {
  5637. previous_millis_cmd = millis();
  5638. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5639. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5640. }
  5641. void get_coordinates()
  5642. {
  5643. bool seen[4]={false,false,false,false};
  5644. for(int8_t i=0; i < NUM_AXIS; i++) {
  5645. if(code_seen(axis_codes[i]))
  5646. {
  5647. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5648. seen[i]=true;
  5649. }
  5650. else destination[i] = current_position[i]; //Are these else lines really needed?
  5651. }
  5652. if(code_seen('F')) {
  5653. next_feedrate = code_value();
  5654. #ifdef MAX_SILENT_FEEDRATE
  5655. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5656. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5657. #endif //MAX_SILENT_FEEDRATE
  5658. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5659. }
  5660. }
  5661. void get_arc_coordinates()
  5662. {
  5663. #ifdef SF_ARC_FIX
  5664. bool relative_mode_backup = relative_mode;
  5665. relative_mode = true;
  5666. #endif
  5667. get_coordinates();
  5668. #ifdef SF_ARC_FIX
  5669. relative_mode=relative_mode_backup;
  5670. #endif
  5671. if(code_seen('I')) {
  5672. offset[0] = code_value();
  5673. }
  5674. else {
  5675. offset[0] = 0.0;
  5676. }
  5677. if(code_seen('J')) {
  5678. offset[1] = code_value();
  5679. }
  5680. else {
  5681. offset[1] = 0.0;
  5682. }
  5683. }
  5684. void clamp_to_software_endstops(float target[3])
  5685. {
  5686. #ifdef DEBUG_DISABLE_SWLIMITS
  5687. return;
  5688. #endif //DEBUG_DISABLE_SWLIMITS
  5689. world2machine_clamp(target[0], target[1]);
  5690. // Clamp the Z coordinate.
  5691. if (min_software_endstops) {
  5692. float negative_z_offset = 0;
  5693. #ifdef ENABLE_AUTO_BED_LEVELING
  5694. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5695. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5696. #endif
  5697. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5698. }
  5699. if (max_software_endstops) {
  5700. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5701. }
  5702. }
  5703. #ifdef MESH_BED_LEVELING
  5704. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5705. float dx = x - current_position[X_AXIS];
  5706. float dy = y - current_position[Y_AXIS];
  5707. float dz = z - current_position[Z_AXIS];
  5708. int n_segments = 0;
  5709. if (mbl.active) {
  5710. float len = abs(dx) + abs(dy);
  5711. if (len > 0)
  5712. // Split to 3cm segments or shorter.
  5713. n_segments = int(ceil(len / 30.f));
  5714. }
  5715. if (n_segments > 1) {
  5716. float de = e - current_position[E_AXIS];
  5717. for (int i = 1; i < n_segments; ++ i) {
  5718. float t = float(i) / float(n_segments);
  5719. plan_buffer_line(
  5720. current_position[X_AXIS] + t * dx,
  5721. current_position[Y_AXIS] + t * dy,
  5722. current_position[Z_AXIS] + t * dz,
  5723. current_position[E_AXIS] + t * de,
  5724. feed_rate, extruder);
  5725. }
  5726. }
  5727. // The rest of the path.
  5728. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5729. current_position[X_AXIS] = x;
  5730. current_position[Y_AXIS] = y;
  5731. current_position[Z_AXIS] = z;
  5732. current_position[E_AXIS] = e;
  5733. }
  5734. #endif // MESH_BED_LEVELING
  5735. void prepare_move()
  5736. {
  5737. clamp_to_software_endstops(destination);
  5738. previous_millis_cmd = millis();
  5739. // Do not use feedmultiply for E or Z only moves
  5740. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5741. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5742. }
  5743. else {
  5744. #ifdef MESH_BED_LEVELING
  5745. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5746. #else
  5747. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5748. #endif
  5749. }
  5750. for(int8_t i=0; i < NUM_AXIS; i++) {
  5751. current_position[i] = destination[i];
  5752. }
  5753. }
  5754. void prepare_arc_move(char isclockwise) {
  5755. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5756. // Trace the arc
  5757. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5758. // As far as the parser is concerned, the position is now == target. In reality the
  5759. // motion control system might still be processing the action and the real tool position
  5760. // in any intermediate location.
  5761. for(int8_t i=0; i < NUM_AXIS; i++) {
  5762. current_position[i] = destination[i];
  5763. }
  5764. previous_millis_cmd = millis();
  5765. }
  5766. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5767. #if defined(FAN_PIN)
  5768. #if CONTROLLERFAN_PIN == FAN_PIN
  5769. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5770. #endif
  5771. #endif
  5772. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5773. unsigned long lastMotorCheck = 0;
  5774. void controllerFan()
  5775. {
  5776. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5777. {
  5778. lastMotorCheck = millis();
  5779. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5780. #if EXTRUDERS > 2
  5781. || !READ(E2_ENABLE_PIN)
  5782. #endif
  5783. #if EXTRUDER > 1
  5784. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5785. || !READ(X2_ENABLE_PIN)
  5786. #endif
  5787. || !READ(E1_ENABLE_PIN)
  5788. #endif
  5789. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5790. {
  5791. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5792. }
  5793. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5794. {
  5795. digitalWrite(CONTROLLERFAN_PIN, 0);
  5796. analogWrite(CONTROLLERFAN_PIN, 0);
  5797. }
  5798. else
  5799. {
  5800. // allows digital or PWM fan output to be used (see M42 handling)
  5801. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5802. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5803. }
  5804. }
  5805. }
  5806. #endif
  5807. #ifdef TEMP_STAT_LEDS
  5808. static bool blue_led = false;
  5809. static bool red_led = false;
  5810. static uint32_t stat_update = 0;
  5811. void handle_status_leds(void) {
  5812. float max_temp = 0.0;
  5813. if(millis() > stat_update) {
  5814. stat_update += 500; // Update every 0.5s
  5815. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5816. max_temp = max(max_temp, degHotend(cur_extruder));
  5817. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5818. }
  5819. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5820. max_temp = max(max_temp, degTargetBed());
  5821. max_temp = max(max_temp, degBed());
  5822. #endif
  5823. if((max_temp > 55.0) && (red_led == false)) {
  5824. digitalWrite(STAT_LED_RED, 1);
  5825. digitalWrite(STAT_LED_BLUE, 0);
  5826. red_led = true;
  5827. blue_led = false;
  5828. }
  5829. if((max_temp < 54.0) && (blue_led == false)) {
  5830. digitalWrite(STAT_LED_RED, 0);
  5831. digitalWrite(STAT_LED_BLUE, 1);
  5832. red_led = false;
  5833. blue_led = true;
  5834. }
  5835. }
  5836. }
  5837. #endif
  5838. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5839. {
  5840. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5841. {
  5842. if (fsensor_autoload_enabled)
  5843. {
  5844. if (fsensor_check_autoload())
  5845. {
  5846. if (degHotend0() > EXTRUDE_MINTEMP)
  5847. {
  5848. fsensor_autoload_check_stop();
  5849. tone(BEEPER, 1000);
  5850. delay_keep_alive(50);
  5851. noTone(BEEPER);
  5852. loading_flag = true;
  5853. enquecommand_front_P((PSTR("M701")));
  5854. }
  5855. else
  5856. {
  5857. lcd_update_enable(false);
  5858. lcd_implementation_clear();
  5859. lcd.setCursor(0, 0);
  5860. lcd_printPGM(MSG_ERROR);
  5861. lcd.setCursor(0, 2);
  5862. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5863. delay(2000);
  5864. lcd_implementation_clear();
  5865. lcd_update_enable(true);
  5866. }
  5867. }
  5868. }
  5869. else
  5870. fsensor_autoload_check_start();
  5871. }
  5872. else
  5873. if (fsensor_autoload_enabled)
  5874. fsensor_autoload_check_stop();
  5875. #if defined(KILL_PIN) && KILL_PIN > -1
  5876. static int killCount = 0; // make the inactivity button a bit less responsive
  5877. const int KILL_DELAY = 10000;
  5878. #endif
  5879. if(buflen < (BUFSIZE-1)){
  5880. get_command();
  5881. }
  5882. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5883. if(max_inactive_time)
  5884. kill("", 4);
  5885. if(stepper_inactive_time) {
  5886. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5887. {
  5888. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5889. disable_x();
  5890. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5891. disable_y();
  5892. disable_z();
  5893. disable_e0();
  5894. disable_e1();
  5895. disable_e2();
  5896. }
  5897. }
  5898. }
  5899. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5900. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5901. {
  5902. chdkActive = false;
  5903. WRITE(CHDK, LOW);
  5904. }
  5905. #endif
  5906. #if defined(KILL_PIN) && KILL_PIN > -1
  5907. // Check if the kill button was pressed and wait just in case it was an accidental
  5908. // key kill key press
  5909. // -------------------------------------------------------------------------------
  5910. if( 0 == READ(KILL_PIN) )
  5911. {
  5912. killCount++;
  5913. }
  5914. else if (killCount > 0)
  5915. {
  5916. killCount--;
  5917. }
  5918. // Exceeded threshold and we can confirm that it was not accidental
  5919. // KILL the machine
  5920. // ----------------------------------------------------------------
  5921. if ( killCount >= KILL_DELAY)
  5922. {
  5923. kill("", 5);
  5924. }
  5925. #endif
  5926. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5927. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5928. #endif
  5929. #ifdef EXTRUDER_RUNOUT_PREVENT
  5930. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5931. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5932. {
  5933. bool oldstatus=READ(E0_ENABLE_PIN);
  5934. enable_e0();
  5935. float oldepos=current_position[E_AXIS];
  5936. float oldedes=destination[E_AXIS];
  5937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5938. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5939. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5940. current_position[E_AXIS]=oldepos;
  5941. destination[E_AXIS]=oldedes;
  5942. plan_set_e_position(oldepos);
  5943. previous_millis_cmd=millis();
  5944. st_synchronize();
  5945. WRITE(E0_ENABLE_PIN,oldstatus);
  5946. }
  5947. #endif
  5948. #ifdef TEMP_STAT_LEDS
  5949. handle_status_leds();
  5950. #endif
  5951. check_axes_activity();
  5952. }
  5953. void kill(const char *full_screen_message, unsigned char id)
  5954. {
  5955. SERIAL_ECHOPGM("KILL: ");
  5956. MYSERIAL.println(int(id));
  5957. //return;
  5958. cli(); // Stop interrupts
  5959. disable_heater();
  5960. disable_x();
  5961. // SERIAL_ECHOLNPGM("kill - disable Y");
  5962. disable_y();
  5963. disable_z();
  5964. disable_e0();
  5965. disable_e1();
  5966. disable_e2();
  5967. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5968. pinMode(PS_ON_PIN,INPUT);
  5969. #endif
  5970. SERIAL_ERROR_START;
  5971. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5972. if (full_screen_message != NULL) {
  5973. SERIAL_ERRORLNRPGM(full_screen_message);
  5974. lcd_display_message_fullscreen_P(full_screen_message);
  5975. } else {
  5976. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5977. }
  5978. // FMC small patch to update the LCD before ending
  5979. sei(); // enable interrupts
  5980. for ( int i=5; i--; lcd_update())
  5981. {
  5982. delay(200);
  5983. }
  5984. cli(); // disable interrupts
  5985. suicide();
  5986. while(1)
  5987. {
  5988. wdt_reset();
  5989. /* Intentionally left empty */
  5990. } // Wait for reset
  5991. }
  5992. void Stop()
  5993. {
  5994. disable_heater();
  5995. if(Stopped == false) {
  5996. Stopped = true;
  5997. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5998. SERIAL_ERROR_START;
  5999. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6000. LCD_MESSAGERPGM(MSG_STOPPED);
  6001. }
  6002. }
  6003. bool IsStopped() { return Stopped; };
  6004. #ifdef FAST_PWM_FAN
  6005. void setPwmFrequency(uint8_t pin, int val)
  6006. {
  6007. val &= 0x07;
  6008. switch(digitalPinToTimer(pin))
  6009. {
  6010. #if defined(TCCR0A)
  6011. case TIMER0A:
  6012. case TIMER0B:
  6013. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6014. // TCCR0B |= val;
  6015. break;
  6016. #endif
  6017. #if defined(TCCR1A)
  6018. case TIMER1A:
  6019. case TIMER1B:
  6020. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6021. // TCCR1B |= val;
  6022. break;
  6023. #endif
  6024. #if defined(TCCR2)
  6025. case TIMER2:
  6026. case TIMER2:
  6027. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6028. TCCR2 |= val;
  6029. break;
  6030. #endif
  6031. #if defined(TCCR2A)
  6032. case TIMER2A:
  6033. case TIMER2B:
  6034. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6035. TCCR2B |= val;
  6036. break;
  6037. #endif
  6038. #if defined(TCCR3A)
  6039. case TIMER3A:
  6040. case TIMER3B:
  6041. case TIMER3C:
  6042. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6043. TCCR3B |= val;
  6044. break;
  6045. #endif
  6046. #if defined(TCCR4A)
  6047. case TIMER4A:
  6048. case TIMER4B:
  6049. case TIMER4C:
  6050. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6051. TCCR4B |= val;
  6052. break;
  6053. #endif
  6054. #if defined(TCCR5A)
  6055. case TIMER5A:
  6056. case TIMER5B:
  6057. case TIMER5C:
  6058. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6059. TCCR5B |= val;
  6060. break;
  6061. #endif
  6062. }
  6063. }
  6064. #endif //FAST_PWM_FAN
  6065. bool setTargetedHotend(int code){
  6066. tmp_extruder = active_extruder;
  6067. if(code_seen('T')) {
  6068. tmp_extruder = code_value();
  6069. if(tmp_extruder >= EXTRUDERS) {
  6070. SERIAL_ECHO_START;
  6071. switch(code){
  6072. case 104:
  6073. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6074. break;
  6075. case 105:
  6076. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6077. break;
  6078. case 109:
  6079. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6080. break;
  6081. case 218:
  6082. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6083. break;
  6084. case 221:
  6085. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6086. break;
  6087. }
  6088. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6089. return true;
  6090. }
  6091. }
  6092. return false;
  6093. }
  6094. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6095. {
  6096. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6097. {
  6098. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6099. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6100. }
  6101. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6102. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6103. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6104. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6105. total_filament_used = 0;
  6106. }
  6107. float calculate_volumetric_multiplier(float diameter) {
  6108. float area = .0;
  6109. float radius = .0;
  6110. radius = diameter * .5;
  6111. if (! volumetric_enabled || radius == 0) {
  6112. area = 1;
  6113. }
  6114. else {
  6115. area = M_PI * pow(radius, 2);
  6116. }
  6117. return 1.0 / area;
  6118. }
  6119. void calculate_volumetric_multipliers() {
  6120. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6121. #if EXTRUDERS > 1
  6122. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6123. #if EXTRUDERS > 2
  6124. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6125. #endif
  6126. #endif
  6127. }
  6128. void delay_keep_alive(unsigned int ms)
  6129. {
  6130. for (;;) {
  6131. manage_heater();
  6132. // Manage inactivity, but don't disable steppers on timeout.
  6133. manage_inactivity(true);
  6134. lcd_update();
  6135. if (ms == 0)
  6136. break;
  6137. else if (ms >= 50) {
  6138. delay(50);
  6139. ms -= 50;
  6140. } else {
  6141. delay(ms);
  6142. ms = 0;
  6143. }
  6144. }
  6145. }
  6146. void wait_for_heater(long codenum) {
  6147. #ifdef TEMP_RESIDENCY_TIME
  6148. long residencyStart;
  6149. residencyStart = -1;
  6150. /* continue to loop until we have reached the target temp
  6151. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6152. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6153. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6154. #else
  6155. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6156. #endif //TEMP_RESIDENCY_TIME
  6157. if ((millis() - codenum) > 1000UL)
  6158. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6159. if (!farm_mode) {
  6160. SERIAL_PROTOCOLPGM("T:");
  6161. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6162. SERIAL_PROTOCOLPGM(" E:");
  6163. SERIAL_PROTOCOL((int)tmp_extruder);
  6164. #ifdef TEMP_RESIDENCY_TIME
  6165. SERIAL_PROTOCOLPGM(" W:");
  6166. if (residencyStart > -1)
  6167. {
  6168. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6169. SERIAL_PROTOCOLLN(codenum);
  6170. }
  6171. else
  6172. {
  6173. SERIAL_PROTOCOLLN("?");
  6174. }
  6175. }
  6176. #else
  6177. SERIAL_PROTOCOLLN("");
  6178. #endif
  6179. codenum = millis();
  6180. }
  6181. manage_heater();
  6182. manage_inactivity();
  6183. lcd_update();
  6184. #ifdef TEMP_RESIDENCY_TIME
  6185. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6186. or when current temp falls outside the hysteresis after target temp was reached */
  6187. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6188. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6189. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6190. {
  6191. residencyStart = millis();
  6192. }
  6193. #endif //TEMP_RESIDENCY_TIME
  6194. }
  6195. }
  6196. void check_babystep() {
  6197. int babystep_z;
  6198. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6199. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6200. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6201. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6202. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6203. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6204. lcd_update_enable(true);
  6205. }
  6206. }
  6207. #ifdef DIS
  6208. void d_setup()
  6209. {
  6210. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6211. pinMode(D_DATA, INPUT_PULLUP);
  6212. pinMode(D_REQUIRE, OUTPUT);
  6213. digitalWrite(D_REQUIRE, HIGH);
  6214. }
  6215. float d_ReadData()
  6216. {
  6217. int digit[13];
  6218. String mergeOutput;
  6219. float output;
  6220. digitalWrite(D_REQUIRE, HIGH);
  6221. for (int i = 0; i<13; i++)
  6222. {
  6223. for (int j = 0; j < 4; j++)
  6224. {
  6225. while (digitalRead(D_DATACLOCK) == LOW) {}
  6226. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6227. bitWrite(digit[i], j, digitalRead(D_DATA));
  6228. }
  6229. }
  6230. digitalWrite(D_REQUIRE, LOW);
  6231. mergeOutput = "";
  6232. output = 0;
  6233. for (int r = 5; r <= 10; r++) //Merge digits
  6234. {
  6235. mergeOutput += digit[r];
  6236. }
  6237. output = mergeOutput.toFloat();
  6238. if (digit[4] == 8) //Handle sign
  6239. {
  6240. output *= -1;
  6241. }
  6242. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6243. {
  6244. output /= 10;
  6245. }
  6246. return output;
  6247. }
  6248. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6249. int t1 = 0;
  6250. int t_delay = 0;
  6251. int digit[13];
  6252. int m;
  6253. char str[3];
  6254. //String mergeOutput;
  6255. char mergeOutput[15];
  6256. float output;
  6257. int mesh_point = 0; //index number of calibration point
  6258. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6259. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6260. float mesh_home_z_search = 4;
  6261. float row[x_points_num];
  6262. int ix = 0;
  6263. int iy = 0;
  6264. char* filename_wldsd = "wldsd.txt";
  6265. char data_wldsd[70];
  6266. char numb_wldsd[10];
  6267. d_setup();
  6268. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6269. // We don't know where we are! HOME!
  6270. // Push the commands to the front of the message queue in the reverse order!
  6271. // There shall be always enough space reserved for these commands.
  6272. repeatcommand_front(); // repeat G80 with all its parameters
  6273. enquecommand_front_P((PSTR("G28 W0")));
  6274. enquecommand_front_P((PSTR("G1 Z5")));
  6275. return;
  6276. }
  6277. bool custom_message_old = custom_message;
  6278. unsigned int custom_message_type_old = custom_message_type;
  6279. unsigned int custom_message_state_old = custom_message_state;
  6280. custom_message = true;
  6281. custom_message_type = 1;
  6282. custom_message_state = (x_points_num * y_points_num) + 10;
  6283. lcd_update(1);
  6284. mbl.reset();
  6285. babystep_undo();
  6286. card.openFile(filename_wldsd, false);
  6287. current_position[Z_AXIS] = mesh_home_z_search;
  6288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6289. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6290. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6291. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6292. setup_for_endstop_move(false);
  6293. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6294. SERIAL_PROTOCOL(x_points_num);
  6295. SERIAL_PROTOCOLPGM(",");
  6296. SERIAL_PROTOCOL(y_points_num);
  6297. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6298. SERIAL_PROTOCOL(mesh_home_z_search);
  6299. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6300. SERIAL_PROTOCOL(x_dimension);
  6301. SERIAL_PROTOCOLPGM(",");
  6302. SERIAL_PROTOCOL(y_dimension);
  6303. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6304. while (mesh_point != x_points_num * y_points_num) {
  6305. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6306. iy = mesh_point / x_points_num;
  6307. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6308. float z0 = 0.f;
  6309. current_position[Z_AXIS] = mesh_home_z_search;
  6310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6311. st_synchronize();
  6312. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6313. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6315. st_synchronize();
  6316. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6317. break;
  6318. card.closefile();
  6319. }
  6320. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6321. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6322. //strcat(data_wldsd, numb_wldsd);
  6323. //MYSERIAL.println(data_wldsd);
  6324. //delay(1000);
  6325. //delay(3000);
  6326. //t1 = millis();
  6327. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6328. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6329. memset(digit, 0, sizeof(digit));
  6330. //cli();
  6331. digitalWrite(D_REQUIRE, LOW);
  6332. for (int i = 0; i<13; i++)
  6333. {
  6334. //t1 = millis();
  6335. for (int j = 0; j < 4; j++)
  6336. {
  6337. while (digitalRead(D_DATACLOCK) == LOW) {}
  6338. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6339. bitWrite(digit[i], j, digitalRead(D_DATA));
  6340. }
  6341. //t_delay = (millis() - t1);
  6342. //SERIAL_PROTOCOLPGM(" ");
  6343. //SERIAL_PROTOCOL_F(t_delay, 5);
  6344. //SERIAL_PROTOCOLPGM(" ");
  6345. }
  6346. //sei();
  6347. digitalWrite(D_REQUIRE, HIGH);
  6348. mergeOutput[0] = '\0';
  6349. output = 0;
  6350. for (int r = 5; r <= 10; r++) //Merge digits
  6351. {
  6352. sprintf(str, "%d", digit[r]);
  6353. strcat(mergeOutput, str);
  6354. }
  6355. output = atof(mergeOutput);
  6356. if (digit[4] == 8) //Handle sign
  6357. {
  6358. output *= -1;
  6359. }
  6360. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6361. {
  6362. output *= 0.1;
  6363. }
  6364. //output = d_ReadData();
  6365. //row[ix] = current_position[Z_AXIS];
  6366. memset(data_wldsd, 0, sizeof(data_wldsd));
  6367. for (int i = 0; i <3; i++) {
  6368. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6369. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6370. strcat(data_wldsd, numb_wldsd);
  6371. strcat(data_wldsd, ";");
  6372. }
  6373. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6374. dtostrf(output, 8, 5, numb_wldsd);
  6375. strcat(data_wldsd, numb_wldsd);
  6376. //strcat(data_wldsd, ";");
  6377. card.write_command(data_wldsd);
  6378. //row[ix] = d_ReadData();
  6379. row[ix] = output; // current_position[Z_AXIS];
  6380. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6381. for (int i = 0; i < x_points_num; i++) {
  6382. SERIAL_PROTOCOLPGM(" ");
  6383. SERIAL_PROTOCOL_F(row[i], 5);
  6384. }
  6385. SERIAL_PROTOCOLPGM("\n");
  6386. }
  6387. custom_message_state--;
  6388. mesh_point++;
  6389. lcd_update(1);
  6390. }
  6391. card.closefile();
  6392. }
  6393. #endif
  6394. void temp_compensation_start() {
  6395. custom_message = true;
  6396. custom_message_type = 5;
  6397. custom_message_state = PINDA_HEAT_T + 1;
  6398. lcd_update(2);
  6399. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6400. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6401. }
  6402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6403. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6404. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6405. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6407. st_synchronize();
  6408. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6409. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6410. delay_keep_alive(1000);
  6411. custom_message_state = PINDA_HEAT_T - i;
  6412. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6413. else lcd_update(1);
  6414. }
  6415. custom_message_type = 0;
  6416. custom_message_state = 0;
  6417. custom_message = false;
  6418. }
  6419. void temp_compensation_apply() {
  6420. int i_add;
  6421. int compensation_value;
  6422. int z_shift = 0;
  6423. float z_shift_mm;
  6424. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6425. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6426. i_add = (target_temperature_bed - 60) / 10;
  6427. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6428. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6429. }else {
  6430. //interpolation
  6431. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6432. }
  6433. SERIAL_PROTOCOLPGM("\n");
  6434. SERIAL_PROTOCOLPGM("Z shift applied:");
  6435. MYSERIAL.print(z_shift_mm);
  6436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6437. st_synchronize();
  6438. plan_set_z_position(current_position[Z_AXIS]);
  6439. }
  6440. else {
  6441. //we have no temp compensation data
  6442. }
  6443. }
  6444. float temp_comp_interpolation(float inp_temperature) {
  6445. //cubic spline interpolation
  6446. int n, i, j, k;
  6447. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6448. int shift[10];
  6449. int temp_C[10];
  6450. n = 6; //number of measured points
  6451. shift[0] = 0;
  6452. for (i = 0; i < n; i++) {
  6453. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6454. temp_C[i] = 50 + i * 10; //temperature in C
  6455. #ifdef PINDA_THERMISTOR
  6456. temp_C[i] = 35 + i * 5; //temperature in C
  6457. #else
  6458. temp_C[i] = 50 + i * 10; //temperature in C
  6459. #endif
  6460. x[i] = (float)temp_C[i];
  6461. f[i] = (float)shift[i];
  6462. }
  6463. if (inp_temperature < x[0]) return 0;
  6464. for (i = n - 1; i>0; i--) {
  6465. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6466. h[i - 1] = x[i] - x[i - 1];
  6467. }
  6468. //*********** formation of h, s , f matrix **************
  6469. for (i = 1; i<n - 1; i++) {
  6470. m[i][i] = 2 * (h[i - 1] + h[i]);
  6471. if (i != 1) {
  6472. m[i][i - 1] = h[i - 1];
  6473. m[i - 1][i] = h[i - 1];
  6474. }
  6475. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6476. }
  6477. //*********** forward elimination **************
  6478. for (i = 1; i<n - 2; i++) {
  6479. temp = (m[i + 1][i] / m[i][i]);
  6480. for (j = 1; j <= n - 1; j++)
  6481. m[i + 1][j] -= temp*m[i][j];
  6482. }
  6483. //*********** backward substitution *********
  6484. for (i = n - 2; i>0; i--) {
  6485. sum = 0;
  6486. for (j = i; j <= n - 2; j++)
  6487. sum += m[i][j] * s[j];
  6488. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6489. }
  6490. for (i = 0; i<n - 1; i++)
  6491. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6492. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6493. b = s[i] / 2;
  6494. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6495. d = f[i];
  6496. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6497. }
  6498. return sum;
  6499. }
  6500. #ifdef PINDA_THERMISTOR
  6501. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6502. {
  6503. if (!temp_cal_active) return 0;
  6504. if (!calibration_status_pinda()) return 0;
  6505. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6506. }
  6507. #endif //PINDA_THERMISTOR
  6508. void long_pause() //long pause print
  6509. {
  6510. st_synchronize();
  6511. //save currently set parameters to global variables
  6512. saved_feedmultiply = feedmultiply;
  6513. HotendTempBckp = degTargetHotend(active_extruder);
  6514. fanSpeedBckp = fanSpeed;
  6515. start_pause_print = millis();
  6516. //save position
  6517. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6518. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6519. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6520. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6521. //retract
  6522. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6524. //lift z
  6525. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6526. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6528. //set nozzle target temperature to 0
  6529. setTargetHotend(0, 0);
  6530. setTargetHotend(0, 1);
  6531. setTargetHotend(0, 2);
  6532. //Move XY to side
  6533. current_position[X_AXIS] = X_PAUSE_POS;
  6534. current_position[Y_AXIS] = Y_PAUSE_POS;
  6535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6536. // Turn off the print fan
  6537. fanSpeed = 0;
  6538. st_synchronize();
  6539. }
  6540. void serialecho_temperatures() {
  6541. float tt = degHotend(active_extruder);
  6542. SERIAL_PROTOCOLPGM("T:");
  6543. SERIAL_PROTOCOL(tt);
  6544. SERIAL_PROTOCOLPGM(" E:");
  6545. SERIAL_PROTOCOL((int)active_extruder);
  6546. SERIAL_PROTOCOLPGM(" B:");
  6547. SERIAL_PROTOCOL_F(degBed(), 1);
  6548. SERIAL_PROTOCOLLN("");
  6549. }
  6550. extern uint32_t sdpos_atomic;
  6551. #ifdef UVLO_SUPPORT
  6552. void uvlo_()
  6553. {
  6554. unsigned long time_start = millis();
  6555. bool sd_print = card.sdprinting;
  6556. // Conserve power as soon as possible.
  6557. disable_x();
  6558. disable_y();
  6559. disable_e0();
  6560. #ifdef TMC2130
  6561. tmc2130_set_current_h(Z_AXIS, 20);
  6562. tmc2130_set_current_r(Z_AXIS, 20);
  6563. tmc2130_set_current_h(E_AXIS, 20);
  6564. tmc2130_set_current_r(E_AXIS, 20);
  6565. #endif //TMC2130
  6566. // Indicate that the interrupt has been triggered.
  6567. // SERIAL_ECHOLNPGM("UVLO");
  6568. // Read out the current Z motor microstep counter. This will be later used
  6569. // for reaching the zero full step before powering off.
  6570. uint16_t z_microsteps = 0;
  6571. #ifdef TMC2130
  6572. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6573. #endif //TMC2130
  6574. // Calculate the file position, from which to resume this print.
  6575. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6576. {
  6577. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6578. sd_position -= sdlen_planner;
  6579. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6580. sd_position -= sdlen_cmdqueue;
  6581. if (sd_position < 0) sd_position = 0;
  6582. }
  6583. // Backup the feedrate in mm/min.
  6584. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6585. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6586. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6587. // are in action.
  6588. planner_abort_hard();
  6589. // Store the current extruder position.
  6590. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6591. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6592. // Clean the input command queue.
  6593. cmdqueue_reset();
  6594. card.sdprinting = false;
  6595. // card.closefile();
  6596. // Enable stepper driver interrupt to move Z axis.
  6597. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6598. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6599. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6600. sei();
  6601. plan_buffer_line(
  6602. current_position[X_AXIS],
  6603. current_position[Y_AXIS],
  6604. current_position[Z_AXIS],
  6605. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6606. 95, active_extruder);
  6607. st_synchronize();
  6608. disable_e0();
  6609. plan_buffer_line(
  6610. current_position[X_AXIS],
  6611. current_position[Y_AXIS],
  6612. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6613. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6614. 40, active_extruder);
  6615. st_synchronize();
  6616. disable_e0();
  6617. plan_buffer_line(
  6618. current_position[X_AXIS],
  6619. current_position[Y_AXIS],
  6620. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6621. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6622. 40, active_extruder);
  6623. st_synchronize();
  6624. disable_e0();
  6625. disable_z();
  6626. // Move Z up to the next 0th full step.
  6627. // Write the file position.
  6628. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6629. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6630. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6631. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6632. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6633. // Scale the z value to 1u resolution.
  6634. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6635. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6636. }
  6637. // Read out the current Z motor microstep counter. This will be later used
  6638. // for reaching the zero full step before powering off.
  6639. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6640. // Store the current position.
  6641. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6642. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6643. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6644. // Store the current feed rate, temperatures and fan speed.
  6645. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6646. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6647. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6648. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6649. // Finaly store the "power outage" flag.
  6650. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6651. st_synchronize();
  6652. SERIAL_ECHOPGM("stps");
  6653. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6654. disable_z();
  6655. // Increment power failure counter
  6656. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6657. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6658. SERIAL_ECHOLNPGM("UVLO - end");
  6659. MYSERIAL.println(millis() - time_start);
  6660. #if 0
  6661. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6662. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6664. st_synchronize();
  6665. #endif
  6666. cli();
  6667. volatile unsigned int ppcount = 0;
  6668. SET_OUTPUT(BEEPER);
  6669. WRITE(BEEPER, HIGH);
  6670. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6671. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6672. }
  6673. WRITE(BEEPER, LOW);
  6674. while(1){
  6675. #if 1
  6676. WRITE(BEEPER, LOW);
  6677. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6678. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6679. }
  6680. #endif
  6681. };
  6682. }
  6683. #endif //UVLO_SUPPORT
  6684. #if defined(TACH_1) && TACH_1 >-1
  6685. void setup_fan_interrupt() {
  6686. //INT7
  6687. DDRE &= ~(1 << 7); //input pin
  6688. PORTE &= ~(1 << 7); //no internal pull-up
  6689. //start with sensing rising edge
  6690. EICRB &= ~(1 << 6);
  6691. EICRB |= (1 << 7);
  6692. //enable INT7 interrupt
  6693. EIMSK |= (1 << 7);
  6694. }
  6695. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6696. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6697. ISR(INT7_vect) {
  6698. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6699. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6700. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6701. t_fan_rising_edge = millis_nc();
  6702. }
  6703. else { //interrupt was triggered by falling edge
  6704. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6705. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6706. }
  6707. }
  6708. EICRB ^= (1 << 6); //change edge
  6709. }
  6710. #endif
  6711. #ifdef UVLO_SUPPORT
  6712. void setup_uvlo_interrupt() {
  6713. DDRE &= ~(1 << 4); //input pin
  6714. PORTE &= ~(1 << 4); //no internal pull-up
  6715. //sensing falling edge
  6716. EICRB |= (1 << 0);
  6717. EICRB &= ~(1 << 1);
  6718. //enable INT4 interrupt
  6719. EIMSK |= (1 << 4);
  6720. }
  6721. ISR(INT4_vect) {
  6722. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6723. SERIAL_ECHOLNPGM("INT4");
  6724. if (IS_SD_PRINTING) uvlo_();
  6725. }
  6726. void recover_print(uint8_t automatic) {
  6727. char cmd[30];
  6728. lcd_update_enable(true);
  6729. lcd_update(2);
  6730. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6731. recover_machine_state_after_power_panic();
  6732. // Set the target bed and nozzle temperatures.
  6733. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6734. enquecommand(cmd);
  6735. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6736. enquecommand(cmd);
  6737. // Lift the print head, so one may remove the excess priming material.
  6738. if (current_position[Z_AXIS] < 25)
  6739. enquecommand_P(PSTR("G1 Z25 F800"));
  6740. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6741. enquecommand_P(PSTR("G28 X Y"));
  6742. // Set the target bed and nozzle temperatures and wait.
  6743. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6744. enquecommand(cmd);
  6745. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6746. enquecommand(cmd);
  6747. enquecommand_P(PSTR("M83")); //E axis relative mode
  6748. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6749. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6750. if(automatic == 0){
  6751. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6752. }
  6753. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6754. // Mark the power panic status as inactive.
  6755. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6756. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6757. delay_keep_alive(1000);
  6758. }*/
  6759. SERIAL_ECHOPGM("After waiting for temp:");
  6760. SERIAL_ECHOPGM("Current position X_AXIS:");
  6761. MYSERIAL.println(current_position[X_AXIS]);
  6762. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6763. MYSERIAL.println(current_position[Y_AXIS]);
  6764. // Restart the print.
  6765. restore_print_from_eeprom();
  6766. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6767. MYSERIAL.print(current_position[Z_AXIS]);
  6768. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6769. MYSERIAL.print(current_position[E_AXIS]);
  6770. }
  6771. void recover_machine_state_after_power_panic()
  6772. {
  6773. char cmd[30];
  6774. // 1) Recover the logical cordinates at the time of the power panic.
  6775. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6776. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6777. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6778. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6779. // The current position after power panic is moved to the next closest 0th full step.
  6780. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6781. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6782. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6783. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6784. sprintf_P(cmd, PSTR("G92 E"));
  6785. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6786. enquecommand(cmd);
  6787. }
  6788. memcpy(destination, current_position, sizeof(destination));
  6789. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6790. print_world_coordinates();
  6791. // 2) Initialize the logical to physical coordinate system transformation.
  6792. world2machine_initialize();
  6793. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6794. mbl.active = false;
  6795. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6796. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6797. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6798. // Scale the z value to 10u resolution.
  6799. int16_t v;
  6800. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6801. if (v != 0)
  6802. mbl.active = true;
  6803. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6804. }
  6805. if (mbl.active)
  6806. mbl.upsample_3x3();
  6807. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6808. // print_mesh_bed_leveling_table();
  6809. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6810. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6811. babystep_load();
  6812. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6814. // 6) Power up the motors, mark their positions as known.
  6815. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6816. axis_known_position[X_AXIS] = true; enable_x();
  6817. axis_known_position[Y_AXIS] = true; enable_y();
  6818. axis_known_position[Z_AXIS] = true; enable_z();
  6819. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6820. print_physical_coordinates();
  6821. // 7) Recover the target temperatures.
  6822. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6823. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6824. }
  6825. void restore_print_from_eeprom() {
  6826. float x_rec, y_rec, z_pos;
  6827. int feedrate_rec;
  6828. uint8_t fan_speed_rec;
  6829. char cmd[30];
  6830. char* c;
  6831. char filename[13];
  6832. uint8_t depth = 0;
  6833. char dir_name[9];
  6834. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6835. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6836. SERIAL_ECHOPGM("Feedrate:");
  6837. MYSERIAL.println(feedrate_rec);
  6838. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6839. MYSERIAL.println(int(depth));
  6840. for (int i = 0; i < depth; i++) {
  6841. for (int j = 0; j < 8; j++) {
  6842. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6843. }
  6844. dir_name[8] = '\0';
  6845. MYSERIAL.println(dir_name);
  6846. card.chdir(dir_name);
  6847. }
  6848. for (int i = 0; i < 8; i++) {
  6849. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6850. }
  6851. filename[8] = '\0';
  6852. MYSERIAL.print(filename);
  6853. strcat_P(filename, PSTR(".gco"));
  6854. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6855. for (c = &cmd[4]; *c; c++)
  6856. *c = tolower(*c);
  6857. enquecommand(cmd);
  6858. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6859. SERIAL_ECHOPGM("Position read from eeprom:");
  6860. MYSERIAL.println(position);
  6861. // E axis relative mode.
  6862. enquecommand_P(PSTR("M83"));
  6863. // Move to the XY print position in logical coordinates, where the print has been killed.
  6864. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6865. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6866. strcat_P(cmd, PSTR(" F2000"));
  6867. enquecommand(cmd);
  6868. // Move the Z axis down to the print, in logical coordinates.
  6869. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6870. enquecommand(cmd);
  6871. // Unretract.
  6872. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6873. // Set the feedrate saved at the power panic.
  6874. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6875. enquecommand(cmd);
  6876. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6877. {
  6878. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6879. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6880. }
  6881. // Set the fan speed saved at the power panic.
  6882. strcpy_P(cmd, PSTR("M106 S"));
  6883. strcat(cmd, itostr3(int(fan_speed_rec)));
  6884. enquecommand(cmd);
  6885. // Set a position in the file.
  6886. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6887. enquecommand(cmd);
  6888. // Start SD print.
  6889. enquecommand_P(PSTR("M24"));
  6890. }
  6891. #endif //UVLO_SUPPORT
  6892. ////////////////////////////////////////////////////////////////////////////////
  6893. // new save/restore printing
  6894. //extern uint32_t sdpos_atomic;
  6895. bool saved_printing = false;
  6896. uint32_t saved_sdpos = 0;
  6897. float saved_pos[4] = {0, 0, 0, 0};
  6898. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6899. float saved_feedrate2 = 0;
  6900. uint8_t saved_active_extruder = 0;
  6901. bool saved_extruder_under_pressure = false;
  6902. void stop_and_save_print_to_ram(float z_move, float e_move)
  6903. {
  6904. if (saved_printing) return;
  6905. cli();
  6906. unsigned char nplanner_blocks = number_of_blocks();
  6907. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6908. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6909. saved_sdpos -= sdlen_planner;
  6910. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6911. saved_sdpos -= sdlen_cmdqueue;
  6912. #if 0
  6913. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6914. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6915. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6916. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6917. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6918. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6919. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6920. {
  6921. card.setIndex(saved_sdpos);
  6922. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6923. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6924. MYSERIAL.print(char(card.get()));
  6925. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6926. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6927. MYSERIAL.print(char(card.get()));
  6928. SERIAL_ECHOLNPGM("End of command buffer");
  6929. }
  6930. {
  6931. // Print the content of the planner buffer, line by line:
  6932. card.setIndex(saved_sdpos);
  6933. int8_t iline = 0;
  6934. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6935. SERIAL_ECHOPGM("Planner line (from file): ");
  6936. MYSERIAL.print(int(iline), DEC);
  6937. SERIAL_ECHOPGM(", length: ");
  6938. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6939. SERIAL_ECHOPGM(", steps: (");
  6940. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6941. SERIAL_ECHOPGM(",");
  6942. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6943. SERIAL_ECHOPGM(",");
  6944. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6945. SERIAL_ECHOPGM(",");
  6946. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6947. SERIAL_ECHOPGM("), events: ");
  6948. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6949. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6950. MYSERIAL.print(char(card.get()));
  6951. }
  6952. }
  6953. {
  6954. // Print the content of the command buffer, line by line:
  6955. int8_t iline = 0;
  6956. union {
  6957. struct {
  6958. char lo;
  6959. char hi;
  6960. } lohi;
  6961. uint16_t value;
  6962. } sdlen_single;
  6963. int _bufindr = bufindr;
  6964. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6965. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6966. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6967. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6968. }
  6969. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6970. MYSERIAL.print(int(iline), DEC);
  6971. SERIAL_ECHOPGM(", type: ");
  6972. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6973. SERIAL_ECHOPGM(", len: ");
  6974. MYSERIAL.println(sdlen_single.value, DEC);
  6975. // Print the content of the buffer line.
  6976. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6977. SERIAL_ECHOPGM("Buffer line (from file): ");
  6978. MYSERIAL.print(int(iline), DEC);
  6979. MYSERIAL.println(int(iline), DEC);
  6980. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6981. MYSERIAL.print(char(card.get()));
  6982. if (-- _buflen == 0)
  6983. break;
  6984. // First skip the current command ID and iterate up to the end of the string.
  6985. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6986. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6987. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6988. // If the end of the buffer was empty,
  6989. if (_bufindr == sizeof(cmdbuffer)) {
  6990. // skip to the start and find the nonzero command.
  6991. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6992. }
  6993. }
  6994. }
  6995. #endif
  6996. #if 0
  6997. saved_feedrate2 = feedrate; //save feedrate
  6998. #else
  6999. // Try to deduce the feedrate from the first block of the planner.
  7000. // Speed is in mm/min.
  7001. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7002. #endif
  7003. planner_abort_hard(); //abort printing
  7004. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7005. saved_active_extruder = active_extruder; //save active_extruder
  7006. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7007. cmdqueue_reset(); //empty cmdqueue
  7008. card.sdprinting = false;
  7009. // card.closefile();
  7010. saved_printing = true;
  7011. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7012. st_reset_timer();
  7013. sei();
  7014. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7015. #if 1
  7016. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7017. char buf[48];
  7018. strcpy_P(buf, PSTR("G1 Z"));
  7019. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7020. strcat_P(buf, PSTR(" E"));
  7021. // Relative extrusion
  7022. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7023. strcat_P(buf, PSTR(" F"));
  7024. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7025. // At this point the command queue is empty.
  7026. enquecommand(buf, false);
  7027. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7028. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7029. repeatcommand_front();
  7030. #else
  7031. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7032. st_synchronize(); //wait moving
  7033. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7034. memcpy(destination, current_position, sizeof(destination));
  7035. #endif
  7036. }
  7037. }
  7038. void restore_print_from_ram_and_continue(float e_move)
  7039. {
  7040. if (!saved_printing) return;
  7041. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7042. // current_position[axis] = st_get_position_mm(axis);
  7043. active_extruder = saved_active_extruder; //restore active_extruder
  7044. feedrate = saved_feedrate2; //restore feedrate
  7045. float e = saved_pos[E_AXIS] - e_move;
  7046. plan_set_e_position(e);
  7047. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7048. st_synchronize();
  7049. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7050. memcpy(destination, current_position, sizeof(destination));
  7051. card.setIndex(saved_sdpos);
  7052. sdpos_atomic = saved_sdpos;
  7053. card.sdprinting = true;
  7054. saved_printing = false;
  7055. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7056. }
  7057. void print_world_coordinates()
  7058. {
  7059. SERIAL_ECHOPGM("world coordinates: (");
  7060. MYSERIAL.print(current_position[X_AXIS], 3);
  7061. SERIAL_ECHOPGM(", ");
  7062. MYSERIAL.print(current_position[Y_AXIS], 3);
  7063. SERIAL_ECHOPGM(", ");
  7064. MYSERIAL.print(current_position[Z_AXIS], 3);
  7065. SERIAL_ECHOLNPGM(")");
  7066. }
  7067. void print_physical_coordinates()
  7068. {
  7069. SERIAL_ECHOPGM("physical coordinates: (");
  7070. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7071. SERIAL_ECHOPGM(", ");
  7072. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7073. SERIAL_ECHOPGM(", ");
  7074. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7075. SERIAL_ECHOLNPGM(")");
  7076. }
  7077. void print_mesh_bed_leveling_table()
  7078. {
  7079. SERIAL_ECHOPGM("mesh bed leveling: ");
  7080. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7081. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7082. MYSERIAL.print(mbl.z_values[y][x], 3);
  7083. SERIAL_ECHOPGM(" ");
  7084. }
  7085. SERIAL_ECHOLNPGM("");
  7086. }
  7087. #define FIL_LOAD_LENGTH 60
  7088. void extr_unload2() { //unloads filament
  7089. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7090. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7091. // int8_t SilentMode;
  7092. uint8_t snmm_extruder = 0;
  7093. if (degHotend0() > EXTRUDE_MINTEMP) {
  7094. lcd_implementation_clear();
  7095. lcd_display_message_fullscreen_P(PSTR(""));
  7096. max_feedrate[E_AXIS] = 50;
  7097. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7098. // lcd.print(" ");
  7099. // lcd.print(snmm_extruder + 1);
  7100. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7101. if (current_position[Z_AXIS] < 15) {
  7102. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7104. }
  7105. current_position[E_AXIS] += 10; //extrusion
  7106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7107. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7108. if (current_temperature[0] < 230) { //PLA & all other filaments
  7109. current_position[E_AXIS] += 5.4;
  7110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7111. current_position[E_AXIS] += 3.2;
  7112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7113. current_position[E_AXIS] += 3;
  7114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7115. }
  7116. else { //ABS
  7117. current_position[E_AXIS] += 3.1;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7119. current_position[E_AXIS] += 3.1;
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7121. current_position[E_AXIS] += 4;
  7122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7123. /*current_position[X_AXIS] += 23; //delay
  7124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7125. current_position[X_AXIS] -= 23; //delay
  7126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7127. delay_keep_alive(4700);
  7128. }
  7129. max_feedrate[E_AXIS] = 80;
  7130. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7132. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7134. st_synchronize();
  7135. //digipot_init();
  7136. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7137. // else digipot_current(2, tmp_motor_loud[2]);
  7138. lcd_update_enable(true);
  7139. // lcd_return_to_status();
  7140. max_feedrate[E_AXIS] = 50;
  7141. }
  7142. else {
  7143. lcd_implementation_clear();
  7144. lcd.setCursor(0, 0);
  7145. lcd_printPGM(MSG_ERROR);
  7146. lcd.setCursor(0, 2);
  7147. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7148. delay(2000);
  7149. lcd_implementation_clear();
  7150. }
  7151. // lcd_return_to_status();
  7152. }